
Not As Easy As It Seems: Automating the Construction 
of Lexical Chains Using Roget’s Thesaurus 

Mario Jarmasz and Stan Szpakowicz 

School of Information Technology and Engineering 
University of Ottawa 

Ottawa, Canada, K1N 6N5 
{mjarmasz, szpak}@site.uottawa.ca 

Abstract. Morris and Hirst [10] present a method of linking significant words 
that are about the same topic. The resulting lexical chains are a means of 
identifying cohesive regions in a text, with applications in many natural 
language processing tasks, including text summarization. The first lexical 
chains were constructed manually using Roget’s International Thesaurus. 
Morris and Hirst wrote that automation would be straightforward given an 
electronic thesaurus. All applications so far have used WordNet to produce 
lexical chains, perhaps because adequate electronic versions of Roget’s were 
not available until recently. We discuss the building of lexical chains using an 
electronic version of Roget’s Thesaurus. We implement a variant of the original 
algorithm, and explain the necessary design decisions. We include a comparison 
with other implementations. 

1   Introduction 

Lexical chains [10] are sequences of words in a text that represent the same topic. The 
concept has been inspired by the notion of cohesion in discourse [7]. A sufficiently 
rich and subtle lexical resource is required to decide on semantic proximity of words. 

Computational linguists have used lexical chains in a variety of tasks, from text 
segmentation [10], [11], to summarization [1], [2], [12], detection of malapropisms 
[7], the building of hypertext links within and between texts [5], analysis of the 
structure of texts to compute their similarity [3], and even a form of word sense 
disambiguation [1], [11]. Most of the systems have used WordNet [4] to build lexical 
chains, perhaps in part because it is readily available. An adequate machine-tractable 
version of Roget’s Thesaurus has not been ready for use until  recently [8]. The lexical 
chain construction process is computationally expensive but the price seems worth 
paying if we then can incorporate lexical semantics in natural language systems.  

We build lexical chains using a computerized version of the 1987 edition of 
Penguin’s Roget’ s Thesaurus of English Words and Phrases [8], [9]. The original 
lexical chain algorithm [10] exploits certain organizational properties of Roget’s. 
WordNet-based implementations cannot take advantage of Roget's relations. They 
also usually only link nouns, as relations between parts-of-speech are limited in 
WordNet. Morris and Hirst wrote: “ Given a copy [of a machine readable thesaurus], 
implementation [of lexical chains] would clearly be straightforward”. We have set out 



to test this statement in practice. We present a step-by-step example and compare 
existing methods of evaluating lexical chains. 

2   Lexical Chain Building Algorithms 

Algorithms that build lexical chains consider one by one the words for inclusion in the 
chains constructed so far. Important parameters to consider are the lexical resource 
used, which determines the lexicon and the possible thesaural relations, the thesaural 
relations themselves, the transitivity of word relations and the distance — measured in 
sentences — allowed between words in a chain [10]. 

Barzilay and Elhadad [2] present the following three steps: 
1. Select a set of candidate words; 
2. For each candidate word, find an appropriate chain relying on a 

relatedness criterion among members of the chain; 
3. If i t is found, insert the word in the chain and update it accordingly. 

Step1: Select a set of candidate words. Repeated occurrences of closed-class words 
and high frequency words are not considered [10]. We remove words that should not 
appear in lexical chains, using a 980-element stop list, union of five publicly-available 
l ists: Oracle 8 ConText, SMART, Hyperwave, and lists from the University of Kansas 
and Ohio State University. After eliminating these high frequency words it would be 
beneficial to identify nominal compounds and proper nouns but our current system 
does yet not do so. Roget’ s allows us to build lexical chains using nouns, adjectives, 
verb, adverbs and interjections; we have therefore not found it necessary to identify 
the part-of-speech. Nominal compounds can be crucial in building correct lexical 
chains, as argued by [1]; considering the words crystal and ball independently is not 
at all the same thing as considering the phrase crystal ball. Roget’s has a very large 
number of phrases, but we do not take advantage of this, as we do not have a way of 
tagging phrases in a text. There are few proper nouns in the Thesaurus, so their 
participation in chains is l imited.  

Step 2: For each candidate word, find an appropriate chain. Morris and Hirst 
identify five types of thesaural relations that suggest the inclusion of a candidate word 
in a chain [10]. We have decided to adopt only the first one, as it is the most frequent 
relation, can be computed rapidly and consists of a large set of closely related words. 
We also have simple term repetition. The two relations we use, in terms of the 1987 
Roget’s structure [8], are: 

1. Repetition of the same word, for example: Rome, Rome. 
2. Inclusion in the same Head. Roget’s Thesaurus is organized in 990 Heads 

that represent concepts [8], for example: 343 Ocean, 747 Restraint and 
986 Clergy. Two words that belong in the same head are about the same 
concept, for example: bank and slope in the Head 209 Height.  

A Head is divided into paragraphs grouped by part-of-speech: nouns, adjectives, 
verbs and adverbs. A paragraph is divided into semicolon groups of closely related 
words, similar to a WordNet synset, for example {mother, grandmother 169 
maternity} [8]. There are four levels of semantic similarity within a Head: two words 
or phrases located in the same semicolon group, paragraph, part-of-speech and Head. 



Morphological processing must be automated to assess the relation between words. 
This is done both by WordNet and the electronic version of Roget’s. Relations 
between words of different parts-of-speech seem to create very non-intuitive chains, 
for example: {constant, train, train, rigid, train, takes, line, takes, train, train}. The 
adjective constant is related to train under the Head 71 Continuity: uninterrupted 
sequence and rigid to train under the Head 83 Conformity, but these words do not 
seem to make sense in the context of this chain. This relation may be too broad when 
applied to all parts-of-speech. We have therefore decided to restrict it to nouns. 
Roget’s contains around 100 000 words [8], but very few of them are technical. Any 
word or phrase that is not in the Thesaurus cannot be linked to any other except via 
simple repetition. 

Step 3: Insert the word in the chain. Inclusion requires a relation between the 
candidate word and the lexical chain. This is the essential step, most open to 
interpretation. An example of a chain is {cow, sheep, wool, scarf, boots, hat, snow} 
[10]. Should all of the words in the chain be close to one another? This would mean 
that cow and snow should not appear in the same chain. Should only specific senses of 
a word be included in a chain? Should a chain be built on an entire text, or only 
segments of it? Barzilay [1] performs word sense disambiguation as well 
segmentation before building lexical chains. In theory, chains should disambiguate 
individual senses of words and segment the text in which they are found; in practice 
this is difficult to achieve. What should be the distance between two words in a chain? 
These issues are discussed by [10] but not definitively answered by any 
implementation. These are serious considerations, as it easy to generate spurious 
chains. We have decided that all words in a chain should be related via a thesaural 
relation. This allows building cohesive chains. The text is not segmented and we stop 
building a chain if no words have been added after seeing five sentences. 

Step 4: Merge lexical chains and keep the strongest ones. This step is not explicitly 
mentioned by Barzilay [1] but all implementations perform it at some point. The 
merging algorithm depends on the intermediary chains built by a system. Section 4 
discusses the evaluation of the strength of a chain.  

3   Step-by-Step Example of Lexical Chain Construction 

Ellman [4] has analyzed the following quotation, attributed to Einstein, for the 
purpose of building lexical chains. The words in bold are the candidate words retained 
by our system after applying the stop list.  

 
We suppose a very long train travelling along the rails with a constant velocity v and 
in the direction indicated in Figure 1. People travelling in this train will with 
advantage use the train as a rigid reference-body; they regard all events in reference 
to the train. Then every event which takes place along the line also takes place at a 
particular point of the train. Also, the definition of simultaneity can be given relative 
to the train in exactly the same way as with respect to the embankment. 
 

All possible lexical chains (consisting of at least  two words) are built for each 
candidate word, proceeding forward through the text. Some words have multiple 



chains, for example {direction, travelling, train, train, train, line, train, train}, 
{direction, advantage, line} and {direction, embankment}. The strongest chains are 
selected for each candidate word. A candidate generates its own set of chains, for 
example {events, train, line, train, train} and {takes, takes, train, train}. These two 
chains can be merged if we allow one degree of transitivity: events is related to takes 
since both are related to train. Once we have eliminated and merged chains, we get: 

1. {train, travelling, rails, velocity, direction, travelling, train, train, 
events, train, takes, line, takes, train, train, embankment} 

2. {advantage, events, event} 
3. {regard, reference, l ine, relative, respect} 

As a reference, the chains can be compared to the eight obtained by Ellman [4]: 1. 
{train, rails, train, line, train, train, embankment}, 2. {direction, people, direction}, 3. 
{reference, regard, relative-to, respect}, 4. {travelling, velocity, travelling, rigid}, 5. 
{suppose, reference-to, place, place}, 6. {advantage, events, event}, 7. {long, 
constant}, 8. {figure, body}. There also are nine chains obtained by St-Onge [4]: 1. 
{train, velocity, direction, train, train, train, advantage, reference, reference-to, train, 
train, respect-to, simultaneity}, 2. {travelling, travelling}, 3. {rails, l ine}, 4. {constant, 
given}, 5. {figure, people, body}, 6. {regard, particular, point}, 7. {events, event, 
place, place}, 8. {definition}, 9. {embankment}. We do not generate as many chains as 
Ellman or St-Onge, but we feel that our chains adequately represent the paragraph. 
Now we need an objective way of evaluating lexical chains.  

4   Evaluating Lexical Chains 

Two criteria govern the evaluation of a lexical chain: its strength and its quality. 
Morris and Hirst [10] identified three factors for evaluating strength: reiteration, 
density and length. The more repetitious, denser and longer the chain, the stronger it 
is. This notion has been generally accepted, with the addition of taking into account 
the type of relations used in the chain when scoring its strength [2], [3], [8], [12]. 

There should be an objective evaluation of the quality of lexical chains, but none 
has been developed so far. Existing techniques include assessing whether a chain is 
intuitively correct [4], [10]. Another technique involves measuring the success of 
lexical chains in performing a specific task, for example the detection of 
malapropisms [8], text summarization [2], [3], [12], or word sense disambiguation [1], 
[11]. Detection of malapropisms can be measured using precision and recall, but a 
large annotated corpus is not available. The success at correctly disambiguating word 
senses can also be measured, but requires a way of judging if this has been done 
correctly. [1] relied on a corpus tagged with WordNet senses, [11] used human 
judgment. There are no definite ways of evaluating text summarization. 

5   Discussion and Future Work 

We have shown that it is possible to create lexical chains using an electronic version 
of Roget’ s Thesaurus, but that it is not as straightforward as it originally seemed. 
Roget’s has a much richer structure for lexical chain construction than exploited by 



[10]. Their thesaural relations are too broad to build well-focused chains or too 
computationally expensive to be of interest. WordNet implementations have different 
sets of relations and scoring techniques to build and select chains. Although there is a 
consensus on the high-level algorithm, there are significant differences in 
implementations. The major criticism of lexical chains is that there is no adequate 
evaluation of their quality. Until it is established, it will be hard to compare 
implementations of lexical chain construction algorithms. We plan to build a harness 
for testing the various parameters of lexical chain construction listed in this paper. We 
expect to propose a new evaluation procedure. For the time being, we intend to use a 
corpus containing tagged malapropisms.  

Acknowledgments 

We thank Terry Copeck for having prepared the stop list used in building the lexical 
chains. This research would not have been possible without the help of Pearson 
Education, the owners of the 1987 Penguin’s Roget’s Thesaurus of English Words 
and Phrases. Partial funding for this work comes from NSERC. 

References 

1. Barzilay, R.: Lexical Chains for Summarization. Master’s thesis, Ben-Gurion University 
(1997) 

2. Barzilay, R., Elhadad, M.: Using lexical chains for text summarization. In: ACL/EACL-97 
summarization workshop (1987) 10–18 

3. Ellman, J.: Using Roget's Thesaurus to Determine the Similarity of Texts. Ph.D. Thesis, 
School of Computing, Engineering and Technology, University of Sunderland, England 
(2000) 

4. Fellbaum, C. (ed.) (1998a). WordNet: An Electronic Lexical Database. Cambridge: MIT 
Press. 

5. Green, S.: Lexical Semantics and Automatic Hypertext Construction. In: ACM Computing 
Surveys 31(4), December (1999)  

6. Halliday, M.A.K., Hasan, R.: Cohesion in English. Longman, London (1976) 
7. Hirst, G., St-Onge, D.: Lexical chains as representation of context for the detection and 

correction of malapropisms. In: Christiane Fellbaum, (ed.), WordNet: An electronic lexical 
database, Cambridge, MA: The MIT Press, (1998) 305–332 

8. Jarmasz, M., Szpakowicz, S.: The Design and Implementation of  an Electronic Lexical 
Knowledge Base. Proceedings of the 14th Biennial Conference of the Canadian Society 
for Computational Studies of Intelligence (AI 2001), Ottawa, Canada, June, (2001) 325–
334. 

9. Kirkpatrick, B.: Roget’s Thesaurus of English Words and Phrases. Harmondsworth, 
Middlesex, England: Penguin, (1998) 

10. Morris, J., Hirst, G.: Lexical cohesion computed by thesaural relations as an indicator of 
the structure of text. Computational Linguistics, 17(1), (1991) 21–45 

11. Okumura, M., Honda, T.: Word sense disambiguation and text segmentation based on 
lexical cohesion. In Proceedings of the Fifteen Conference on Computational Linguistics 
(COLING-94), volume 2, (1994) 755–761 

12. Silber, H., McCoy, K.: Efficient text summarization using lexical chains. Intelligent User 
Interfaces, (2000) 252–255 


