
A Dynamic Pricing Approach in E-Commerce

Based on Multiple Purchase Attributes

Tapu Kumar Ghose and Thomas T. Tran

School of Information Technology and Engineering
University of Ottawa, Ottawa, ON K1N 6N5, Canada

{tghos009,ttran}@site.uottawa.ca

http://www.site.uottawa.ca

Abstract. In this paper, we propose an approach of dynamic pricing
where buyers purchase decision is dependent on multiple preferred pur-
chase attributes such as product price, product quality, after sales service,
delivery time, sellers’ reputation. The approach requires the sellers, by
considering the five attributes, to set an initial price of the product with
the help of their prior knowledge about prices of the product offered by
other competing sellers. Our approach adjusts the selling price of prod-
ucts automatically with the help of neural network in order to maximize
seller revenue. The experimental results portray the effect of considering
the five attributes in earning revenue by the sellers. Before concluding
with directions for future works, we discuss the value of our approach in
contrast with related work.

Keywords: Dynamic Pricing, Multiple Purchase Attributes, Electronic
Commerce.

1 Introduction

In dynamic pricing products prices always respond to the fluctuation of the
market and hence the prices keep on changing with the tick of a clock. Every
seller wants to set the selling price of their products so that their revenue is
maximized. Determining selling prices of products is a challenging task for the
sellers to sustain in the market. The purpose of the dynamic pricing problem
is to determine the selling prices such that sellers receive maximum revenue.
Usually, a customer before buying a product selects a store/seller for the pur-
chase. The selection may be done under multiple attributes (preferences), such
as best price offered, after-sale services, product quality, delivery time, sellers’
reputation etc. Therefore, the sellers have to provide a competitive price for a
product in response to variation in the market parameters such as competitors’
prices and consumers purchase preferences. There exist intelligent agents, called
pricebots, which enable online sellers to dynamically calculate a competitive
price for a product. According to Dasgupta et al. [8], ”these intelligent agents
provide a convenient mechanism for implementing automated dynamic pricing
algorithms for the sellers in an online economy”. However, some intelligent agents

A. Farzindar and V. Keselj (Eds.): Canadian AI 2010, LNAI 6085, pp. 111–122, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.site.uottawa.ca

112 T.K. Ghose and T.T. Tran

use a number of assumptions for the dynamic pricing in online markets. Some
intelligent agents assume that sellers are provided with complete knowledge of
market parameters, while some other agents consider product price as the only
attribute that determines consumers’ purchase decision [8]. In recent decades
extensive research has been done in dynamic pricing. Some of the research made
an assumption that there is only one seller in the market [16]. On the contrary,
in real life sellers have limited or no prior knowledge about the market parame-
ters (e.g., buyer’s reservation price, competitive sellers’ price and profit etc). In
addition, in reality there exist several competitive sellers in online market.

The goal of this work is to address the problem of dynamic pricing in a
competitive online economy, where a buyer’s purchase decision is determined by
multiple attributes. From the knowledge of our literature review [8,6,7], the most
common attributes that can play vital role in determining customers’ purchase
decision would include product price, product quality, delivery time, after-sale
service, and sellers’ reputation. In our model we consider these mentioned five
attributes in determining a competitive price for a product P. We use feed-
forward neural network to determine a competitive price for the products in
order to maximize sellers’ revenue. In our simulation we showed that once the
sellers set an initial price of the product, our model adjusts the price of the
product automatically with the help of neural network in order to maximize
profits. In setting the initial price of a product, we assume that sellers use their
prior knowledge about the prices of the product offered by other competing
sellers. The remaining of the paper is organized as follows: Section 2 provides
background information on feed-forward neural network. Sections 3 discusses
related work. Section 4 presents our proposed approach for dynamic pricing.
Section 5 represents results and analysis from our simulation. Section 6 provides
a brief discussion on our approach. Section 7 concludes the paper with future
research directions.

2 Feed-Forward Neural Network

In feed-forward Neural Networks the nodes in input layer accept information
from outside the network, while the nodes in output layer send information
outside the network. Each node, also known as unit, is connected to one or more
other nodes by directed links. Each link contains a numerical weight, for instance
Wi,j indicates the strength of the connection between unit i and unit j [9]. Each
unit ui has an activation value ai which acts as output of the unit. The activation
value is calculated as follows:

ai = f

⎛
⎝

i−1∑
j=0

Wj,iaj

⎞
⎠ . (1)

where
∑i−1

j=0 Wj,iaj is the weighted sum of the inputs to unit ui and f is the
activation function applied to the weighted sum. We have chosen logistic sigmoid
function as the activation function.

A Dynamic Pricing Approach 113

f(x) =
1

1 + exp−x
.

3 Related Works

Over the past few years there can be observed a noticeable rise in interest of
dynamic pricing in commercial and research communities. In spite of rich lit-
eratures in the field, majority of the research works do not consider the com-
petition markets [13]. Kephart et al. [1], for their work, considered a picture
where a monopolist seller willing to maximize his/her revenue, provided buyers
demand curve is random and unpredictable. Li et al. [17] studied the enter-
prises’ dynamic decision problem on price strategies (dynamic pricing decision)
in duopolistic retailing market under uncertain market state. Chinthalapati et
al. [10] used machine learning based approach to study price dynamics in an
electronic retail market. In the study they have taken price attributes into con-
sideration that would determine a customer’s buying decision. Dasgupta et al.
[11] studied dynamic pricing in a multi-agent economy which consisted of buyers
and competing sellers. They had taken price as the only attribute which take
part in buyers purchase decision. In contrast, our model considers four more at-
tributes (product quality, delivery time, after sale service and sellers’ reputation)
other than price. In fact our model is general enough to work for any number
of attributes. Moreover, our model is not limited to two competitive sellers. Our
model can work for both monopolist market and a competitive market with
multiple sellers.

Dimicco et. al [5], by using Learning Curve Simulator, analyzed performance of
two adaptive pricing algorithms: Goal-Directed (GD) and Derivative-Following
(DF). They considered both monopoly and competitive economy of finite mar-
kets where goods like airlines ticket, sport events ticket, perishable goods have
to be sold by finite time horizon. Alexandre et. al [14] discussed on the problems
of dynamic pricing in finite time horizon. They considered a retailer who has
to set the price of a good to optimize the total expected revenues over a period
of time T. Their model is dependent on demand curve of the products. Kong
[12], in his paper, examined seller strategies for dynamic pricing in a market for
which a seller has finite time horizon to sell its inventory. Dasgupta et. al [15],
in their paper, employed push strategies mechanism for dynamic pricing where
they make use of demand curve. The authors considered time-limited goods in a
supplier driven marketplace where goods are sold by maintaining strict deadline.
On the contrary, our model of dynamic pricing does not require the sellers to
figure out the demand curve of the products. Moreover, the model is not limited
to goods with finite time horizon.

Greenwald and Kephart [2] explored no-regret learning for probabilistic pric-
ing algorithm. In their model they considered an economy for single homogeneous
goods. On the other hand, our model is not restricted to homogeneous goods.
Our model is not concerned about how many sellers are there in the market,
whereas, Tesauro and Kephart [3], in their experiment they assumed that there

114 T.K. Ghose and T.T. Tran

are only two competing sellers participating in the economy who alternatively
take turns in adjusting their prices at each time step.

4 Design of the Proposed Model

In our model, for determining the price, we used a feed-forward neural network
which contains three layers: input layer, hidden layer and output layer. The
network we designed consists of five units in the input layer, one for each attribute
mentioned in Section 1. The input layer also consists of one extra unit u0 as
the bias unit. We set the value of a0 to the production cost of the product.
Usually, sellers are not willing to sell their products below the production cost
of the corresponding products. Hence, we considered the production cost of the
product as the output of the bias unit. All the units accept numerical values as
input. Initially, all the values a1, a2, a3, a4 and a5 of the input units are set by
the sellers. In setting the initial price of a product, we assume that sellers use
their prior knowledge about the prices of the product offered by other competing
sellers in the market.

Fig. 1. A three-layered Feed-forward Neural Network for Price Determination

Our model can accept more attributes. One additional unit in the input layer
needs to be added for each new attribute. On the other hand, in order to remove
an attribute from the network the corresponding unit from the input layer,
along with all the links that are connected to the unit, has to be eliminated.
This implies that our model will work for any number of attributes.

4.1 Dynamic Pricing Algorithm

The price of the product determined by the network (Fig. 1) can be found by
using final output a9. The value of a9 can be calculated with the aid of equation
(1) as follows:

A Dynamic Pricing Approach 115

Finaloutput, a9 = f (W6,9a6 + W7,9a7 + W8,9a8) . (2)

where, a6 = f (W0,6a0 + W1,6a1 + W2,6a2 + W3,6a3 + W4,6a4 + W5,6a5)
a7 = f (W0,7a0 + W1,7a1 + W2,7a2 + W3,7a3 + W4,7a4 + W5,7a5)
a8 = f (W0,8a0 + W1,8a1 + W2,8a2 + W3,8a3 + W4,8a4 + W5,8a5)

We sub-divide the process of dynamic pricing by our model of neural network into
two phases: training phase and price determination phase. In the training phase
we train our network with a set of training pattern. A training pattern consists
of a set of inputs with desired output. A typical set of training pattern for our
model would look as Table 1. Each row of Table 1 represents a training pattern
which contains a set of inputs with corresponding desired output. Initially we
assume that the buyers have equal preference on all the five attributes that
we are considering. Therefore, we associate each link between input units and
hidden units with equal weights. The purpose of the training process is to adjust
the weights between the links such that the errors are minimized. To obtain this
goal we feed units of the input layer of our network with the corresponding input
values (Inputij) from each training pattern. We then determine the output from
our network and compare it with the corresponding desired output (Outputi) of
the training pattern to calculate error. Finally, we update weights between the
links depending on the calculated errors. In our model, during the process of
training, the errors between the links are minimized by using back-propagation
technique. The training process can be portrayed by the following steps:

i Input values from a training pattern to units of the input layer of the network.
ii If the current training pattern is the first training pattern of the training

set, then associate the links between input units and hidden units with equal
weight, i.e., 0.2. Also, associate the links between hidden units and output
unit equally, i.e., 0.33.

iii Determine the value from the output layer.
iv Compute the error, i.e., the difference between desired output of the training

pattern and the value obtained in step iii.
v If the error is more than zero then go to step viii.
vi If the error is approximately zero and there is more training pattern left,

then take the next training pattern and go to step i.
vii If the error is approximately zero and there is no more training pattern left,

then terminate the training process.

Table 1. General set of training pattern of our model

Product
Price

Product
Quality

Delivery
Time

Sellers’
Reputa-
tion

After
Sales
Service

Desired
Output

Input11 Input12 Input13 Input14 Input15 Output1
Input21 Input22 Input23 Input24 Input25 Output2
Input31 Input32 Input33 Input34 Input35 Output3

116 T.K. Ghose and T.T. Tran

viii Update the weights of the links using back-propagation technique to mini-
mize the error.

ix Go to step iii.

The training phase updates weights between the links of the network as needed
so that it can provide better output. Once the training process is complete, our
model of network is ready to determine a competitive price for a product, P,
from the price determination phase as follows:

i Set the production cost of the product, P as the input to bias unit of the
input layer and set the weights of the links associated with bias unit to 1.

ii Set the values (ai) of the input units for the corresponding purchase at-
tributes of product (as mentioned in Section 3.1) by using prior knowledge
about the prices of product offered by other competing sellers.

iii Run the network and derive the price from the output layer.
iv Set the price from the output layer as the product price.

4.2 Error Minimization and Price Determination

The error is minimized at each iteration from step iii through step ix of training
phase. Once the price of a specific product is determined from the output layer
from step iv of price determination phase, the weights of the links remain un-
changed. In step ii of price determination phase we assume that sellers use their
prior knowledge of price offered by other sellers in the market. This indicates
that our model keep an eye on the competitive price set by other sellers in the
competing market.

In dynamic online economy, the price of products keeps on changing with the
tick of clock. In order to sustain in the competitive online economy a seller needs
to update his/her price in response to price fluctuation by other competing sellers
in the market. While updating the price by using our model, we go through
training and price determination phase of our model to recalculate the price.
Before recalculating the price we analyze the revenue earned by using the selling
price, Pr, for the product, P , that was generated from our model. If the revenue
earned is greater than zero, then in step ii of training phase instead of taking
0.2 as the weight, Wi,j , between the input units and the hidden units, we use
the weights, Wi,j , that were determined during the last iteration of the training
phase at the time of determining Pr and go through the process again. For
instance, assume that the value of W1,6 was 0.38 when the product price was
determined from step iv of price determination phase. In such scenario, we would
like to set the value of W1,6 to 0.38 instead of 0.2 in step ii of training phase
and run the process again. Moreover, at the time of determining Pr we store
the values of input units from step i and values of output unit from step iv of
price determination phase as the historical data. We use this historical data as
an additional training set during the training phase. On the other hand, if there
was no revenue earned then the entire process is run by providing a new set of
inputs in step ii of price determination phase.

A Dynamic Pricing Approach 117

5 Results and Analysis

We simulated our model in an e-commerce market place to examine if the model
performs better than the simple pricing algorithm outlined in the following
subsection. We also analyzed if a seller earns more revenue by employing our
model instead of the Derivative-Following (DF) strategy proposed in [10]. In
derivative following (DF) strategy, initially, product prices are set randomly and
profitability is observed. The product prices are increased in the same direc-
tion unless the observed profitability falls. If the observed profitability falls then
product prices are decreased as long as profit is encountered. It requires keep-
ing track of past average profit of each state, and increases the prices till the
profitability level falls [10].

5.1 Simple Pricing Algorithm

A seller, by taking five attributes of our model into consideration, can employ a
simple pricing algorithm to determine a competitive price of products. A simple
pricing algorithm may take at least production cost of a product as initial selling
price of the product. If a buyer prefers to enjoy any additional attributes such
as after sale service of the product, then the algorithm may wish to add some
additional price for each supplementary attributes. Finally, the algorithm would
provide a selling price of the products. Since in online economy prices of products
do not remain static, a seller has to update his/her offered price of the products.
While updating the prices, there can arrive two different scenarios for a seller who
employs the simple pricing algorithm. First, the algorithm, while updating the
price by adding extra price for additional attributes, does not use any information
of how other competing sellers in the market set their selling price. Since the
algorithm has no knowledge about market parameters, it uses some random
extra prices for additional attributes. Hence, the price can be too low or too
high which may lead to earn inadequate revenue for a seller. In the second
scenario let us assume that a seller who employed the simple algorithm, do
some manual search on the prices offered by other vendors. The algorithm uses
information obtained from the seller’s search to determine a selling price for
products. However, the manual search could be time consuming. It might take
hours to days or even longer to gather information by manual search. Since prices
change within very short span of time in online market, the information acquired
by manual search during relatively large span of time might become outdated.
Consequently, the algorithm would be using obsolete information which may lead
to generate inappropriate output. In contrary, our model outputs a competitive
selling price of products by providing importance to five attributes based on
historical data, which implies it does not rely on any manual search. In addition,
our technique, while determining competitive selling price, considers the sellers
make use of their prior knowledge of the prices set by other competing sellers in
providing initial input to the model. This indicates that our model keep an eye
on the competitive price set by other sellers in competing market and utilizes
fresh information of price.

118 T.K. Ghose and T.T. Tran

5.2 Train Network

We assume that sellers use their historical data as the training patterns to the
network. A training pattern consists of a set of inputs with desired output.
We began our simulation by training the network of our model with 10 sets of
training patterns so that errors can be minimized as much as possible by using
back propagation algorithm. We trained our network for nine different numbers
of epochs or iterations: 10, 50, 100, 500, 1000, 5000, 10000, 50000 and 100000.
As the training continues, after each iteration or epoch, the network calculates
amount of error. The calculated error is then used to update the weights of the
links by using back propagation algorithm so that error is minimized in the next
iteration. Practically the value of error never becomes zero, but approaches to
zero. We let our network to tolerate an error of amount 0.01 and 0.001. We
run our network with five different learning rates: 0.01, 0.005, 0.001, 0.0005 and
0.0001. Analysis of the training process in the following sub-section indicates
that the model performs better if we use 50000 epochs with 0.005 learning rate
during training the network.

5.3 Determine Training Parameters

The purpose of the model is to generate a competitive price for a product with
respect to the price offered by other competing sellers in the market. The more
number of training patterns are used to train the network in training phase, the
better knowledge the model will contain. This would lead to generate a more
competitive price. Hence, the performance of the model depends on the training
phase. Besides number of training patterns used, the training process is depen-
dent on three parameters: (i) number of epochs used, (ii) Learning rate and
(iii) Error tolerance. Use of proper values for these parameters plays a vital role
in the model’s performance. We trained our model by using different values (as
mentioned previous subsection) for these parameters with 10 sets of training pat-
terns. Once training process is complete, our model is ready to use to determine
a selling price for a product. We used our trained network to determine the price
of a product (lets call it P). We then derive suitable values for the parameters
by analyzing performance of the model through investigating the experimental
results shown later in this section. Since our model requires initial selling price
of the product to be set by the seller, we used the prices of Table 2 as initial
selling price based on five different attributes of the product. We assumed the
production cost of P is 645.00. According to our model, the output produced
from the output layer of our model is considered as the selling price, Pr, at which
a sellers, S, would be selling P . If there is M out of N buyers in the market
willing to buy P at a cost of Pr , then the revenue earned by S can be calculated
from the product of M and Pr.

While training our model, we found that the amount of revenue earned per
product after selling it to a single buyer is closely identical to each other for
different learning rates when lower number of epochs is used. Amount of revenue
earned is increased gradually with higher number of epochs used. Another finding

A Dynamic Pricing Approach 119

Table 2. Initial Selling Price of Product P

Product Price 645.00
Product Quality 648.99
Delivery Time 745.99

After Sale Service 805.99
Sellers Reputation 718.99

was that that the model performs better if 0.01 is chosen as learning rate. The
elapsed time for training our model increases gradually with increasing number
of epochs. However, there is a rapid increase in elapsed time after 100,000 epochs.
Therefore, we would not like to use more than 100,000 epochs during simulating
an e-commerce market place in the following subsection. While training our
model, we let our model to accept an error tolerance of 0.01 and 0.001. From 5000
number of epochs onwards the model delivers similar output for error tolerance
of 0.01 and 0.001.

Under the above circumstances of analysis, for training our model during
simulating an e-commerce market place in the following subsection we would
like to use 100,000 epochs, 0.01 learning rate and 0.01 error tolerance.

5.4 Results

We simulated our model in an e-commerce market place to evaluate perfor-
mance of our model. We consider a market place where three sellers (namely,
Sellersimple, SellerDF and Sellerom) wish to sell a product P to 200 different
buyers with five distinct preferable purchase attributes of products. Sellersimple

employs a simple pricing algorithm described in Section 5.1. SellerDF uses
derivative-following (DF) strategies and Sellerom follows our model.

We run the market for ten rounds, with twenty buyers in each round. After
each round we calculate the revenue earned by each seller. We then compare it
with the revenue earned by the corresponding seller in previous round to de-
termine the direction (positive or negative) of revenue earned. At the end of
each round, we allow the sellers to update their selling prices. In DF strategies,
the price of product is updated, by some amount, in the direction of revenue
earned. We consider that SellerDF updates his/her selling price by a random
amount between 0.00% and 5.00% of the current selling price. On the other
hand, Sellersimple updates the selling price either by using direction of revenue
earned or by using information of prices set by other two sellers in the market
during one of the previous rounds. We made an assumption that simple pricing
algorithm performs manual search, which is time consuming, to gather informa-
tion regarding other sellers’ selling price. Therefore, the information may not be
available to Sellersimple at the end of each round. In addition, we assume that
if the information is available, then due to manual slow searching process the
information of the immediate previous round is not available to Sellersimple. For
simplicity, we consider that if the information is available, then Sellersimple up-
dates the selling price of P by using average value of the prices set by other two

120 T.K. Ghose and T.T. Tran

sellers during the (r-2)th round, where r is the current round. In contrary, if the
information is not available, Sellersimple uses direction of revenue to update the
price. We used a randomly-generated probability to determine if the information
is available to Sellersimple. Sellerom always uses our model to update the price.
For simplicity we assume that in all ten rounds of the market there are equal
numbers of buyers (four out of twenty) preferred each given five attributes.

We begin our simulation of the market by assuming that at the beginning of
the first round Sellersimple and SellerDF use data from Table 2 to set their
selling price of the product P whose production cost is 645.00. Sellerom uses
information from Table 2 with 100,000 epochs, 0.01 learning rate and 0.01 error
tolerance to generate a selling price (650.487) for P . Figure 2 summarizes the
total revenue earned at the end of each round by the three different sellers who
employed three distinct pricing algorithms.

Fig. 2. Total revenue earned by three sellers

Initially, all the sellers managed to earn some revenue. Among the three sellers,
the growth of revenue earned by Sellersimple was the slowest. Sellersimple failed
to earn any revenue at the end of most of the rounds. Apart from first round,
Sellersimple earned some revenue after the end of seventh and tenth round. The
performace of SellerDF in terms of earning revenue was better than Sellersimple,
however, he/she could not beat Sellerom in any of the rounds. On the contrary,
Sellerom, who employed our model, earned revenue at each round. Moreover,
after each round, Sellerom earned higher revenue than that of revenue earned
by other two sellers. At the end of tenth round, SellerDF earned nearly 43%
more revenue than Sellersimple. On the other hand, Sellerom earned nearly
eight times more revenue than SellerDF .

A Dynamic Pricing Approach 121

6 Discussion

The experimental results show that our model can attract more buyers compared
to other two buyers, because we have considered multiple attributes in deter-
mining a selling price for the product P. Attracting more buyers from wider
range of preferred attributes implies that more revenue can be earned. Various
pricing algorithms are followed in present online economy. Among them game-
theoric pricing (GT), myoptimal pricing (MY), derivative following (DF), and
Q-learning (Q) are practiced widely. Game-theoretic (GT) strategy makes an
assumption that all other competing sellers use game-theoretic [4]. However, in
present world different sellers employ distinct pricing strategies. GT uses com-
plete information regarding buyer population. Moreover, it does not use any
historical data. In contrast, historical data plays an important role in under-
standing changing behavior of the market. We used little historical data of the
price offered by other competitive sellers. In addition, our model is not concerned
about what strategies are being used by other competing sellers. Similarly, My-
optimal (MY) strategy does not dependant on whether other sellers employing
different pricing strategies or not, but it is concerned about buyers demand curve
and also the prices set by other sellers in the economy. MY also assumes that
prices set by other competing sellers will remain unchanged [4]. On the contrary,
sellers are always willing to change their offered price for the sake of sustain-
ing in competing market. Hence, our model always keeps an eye on the random
prices set by other sellers. Q-learning strategy is based on reinforcement learning
and makes use of both buyers’ demand curve and knowledge about competitors
pricing strategies. On the other hand, our model does not rely on buyer demand
curve. In short, we attempt to address the problem of dynamic pricing in a
competitive online economy, where a buyer’s purchase decision is determined by
multiple attributes. By taking multiple purchase attributes into account we can
attract more number of buyers which lead to earning more revenue.

7 Conclusion and Future Work

The proposed approach described here considered multiple purchase attributes
to determing product price dynamically by using feed-forward neural network.
We simulated an e-commerce market place with 200 buyers, three sellers where
all the sellers trying to sell a product P. The experimental results showed that
the seller employing our model earned higher revenue than that of earned by
other two sellers who followed simple pricing algorithm and derivative-following
(DF) strategies. We would like to compare our approach with other existing well
known approach of dynamic pricing, like game-theoretic (GT), my-optimal (MY)
etc. Our model made an assumption that sellers have limited prior knowledge
about market parameters in setting the initial price of the products. We would
like to eliminate the assumption from our model by employing a web crawler
tool in our application in order to learn the information on prices set by other

122 T.K. Ghose and T.T. Tran

competitive sellers in the market. Using this information we may set the initial
price of the products such that the sellers no need to initialize the product prices
while using our model.

References

1. Kephart, J., Brooks, C., Das, R.: Pricing information bundles in a dynamic envi-
ronment. In: ACM Conference on Electronic Commerce 2001, pp. 180–190 (2001)

2. Greenwald, A., Kephart, J.: Probabilistic pricebots. Agents, 560–567 (2001)
3. Tesauro, G., Kephart, J.: Foresight-based pricing algorithms in agent economies.

Decision Support Systems 28(1-2), 49–60 (2000)
4. Greenwald, A., Kephart, J., Tesauro, G.: Strategic pricebot dynamics. In: ACM

Conference on Electronic Commerce 1999, pp. 58–67 (1999)
5. DiMicco, J., Greenwald, A., Maes, P.: Dynamic pricing strategies under a finite

time horizon. In: ACM Conference on Electronic Commerce, pp. 95–104 (2001)
6. Bar-Isaac, H., Tadelis, S.: Seller Reputation. Foundations and Trends in Microe-

conomics 4(4), 273–351 (2008)
7. Chen, Y., Tsao, C., Lin, C., Hsu, I.: A Conjoint Study of the Relationship between

Website Attributes and Consumer Purchase Intentions. In: Pacific Asia Conference
on Information Systems, PACIS (2008)

8. Dasgupta, P., Hashimoto, Y.: Multi-attribute dynamic pricing for online markets
using intelligent agents. In: AAMAS (2004)

9. Russell, S.J., Norvig, P.: Artificial Intelligence: A modern Approach, 2nd edn.
Prentice-Hall, Englewood Cliffs (2005)

10. Chinthalapati, V., Yadati, N., Karumanchi, R.: Learning Dynamic Prices in Mul-
tiSeller Electronic Retail Markets With Price Sensitive Customers, Stochastic De-
mands, and Inventory Replenishments. IEEE, Los Alamitos (2006)

11. Dasgupta, P., Das, R.: Dynamic Service Pricing for Brokers in a Multi-Agent Econ-
omy. IEEE, Los Alamitos (2000)

12. Kong, D.: One Dynamic Pricing Strategy in Agent Economy Using Neural Network
Based on Online Learning. In: Proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence (2004)

13. Luo, L., Xiao, B., Deng, J.: Dynamic pricing decision analysis for parallel flights
in competitive markets, pp. 323–327. IEEE, Los Alamitos (2005)

14. Carvalho, A., Puterman, M.: Dynamic pricing and reinforcement learning. IEEE,
Los Alamitos (2003)

15. Dasgupta, P., Moser, L., Melliar-Smith, P.: Dynamic Pricing for Time-Limited
Goods in a Supplier-Driven Electronic Marketplace. Electronic commerce research
(2005)

16. Gallego, G., Ryzin, G.: Optimal dynamic pricing of inventories with stochastic
demand over finite horizons. Manage. Sci. 40(8), 999–1020 (1994)

17. Li, C., Wang, H., Zhang, Y.: Dynamic pricing decision in a duopolistic retailing
market. In: Proceedings of the 6th World Congress on Intelligent Control and
Automation, Dalian, China (June 2006)

	A Dynamic Pricing Approach in E-Commerce Based on Multiple Purchase Attributes
	Introduction
	Feed-Forward Neural Network
	Related Works
	Design of the Proposed Model
	Dynamic Pricing Algorithm
	Error Minimization and Price Determination

	Results and Analysis
	Simple Pricing Algorithm
	Train Network
	Determine Training Parameters
	Results

	Discussion
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

