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Algebraic Soft-Decision Decoding
of Reed—-Solomon Codes

Ralf Koetter Member, IEEEand Alexander Vardyrellow, IEEE

Abstract—A polynomial-time soft-decision decoding algorithm as [29] and its modifications [7], [23], [24], are nonalgebraic
for Reed-Solomon codes is developed. This list-decoding algo-and run in time that scalesxponentiallywith the length of the
rithm is algebraic in nature and builds upon the interpolation — co4e This makes the use of such algorithms generally infeasible
procedure proposed by Guruswami and Sudan for hard-decision . . . -
decoding. Algebraic soft-decision decoding is achieved by means' pract|ce: An. alternative aPproaC_h Fo the p.roblem of efficient
of converting the probabilistic reliability information into a set of ~ SOft decoding is the generalized minimum distance (GMD) de-
interpolation points, along with their multiplicities. The proposed coding of [10], [11]. While the complexity of GMD decoding
conversion procedure is shown to be asymptotically optimal js moderate—ultimately, of the same order as that of hard-deci-
for a certain probabilistic model. The resulting soft-decoding g decoding [3], [16], [17], [26], the gains that can be realized
algorlthm significantly ou;perforr.n.s both t.he Guruswaml-Sudap by GMD d di | derat f Fia. 1). Thus in liaht
decoding and the generalized minimum distance (GMD) decoding y . ec_:o ing are also moderate (cf. '_g'_ ). Thus in _'9
of Reed—Solomon codes, while maintaining a complexity that is Of the ubiquity of Reed—Solomon codes, efficient soft-decision
polynomial in the length of the code. Asymptotic analysis for a decoding of Reed—Solomon codes is one of the most important
large number of interpolation points is presented, leading to a geo- problems in coding theory and practice.
metric characterization of the decoding regions of the proposed = o, goal in this paper is to present a polynomial-time soft-
algorithm. It is then shown that thg asymptotic pe.rformance can decision d di lgorithm for Reed—Sol des. This al-
be approached as closely as desired with a list size that does not?€C¢!SIOn decoding algorithm for Ree olomon codes. This a
depend on the length of the code. gorithm significantly outperforms both the Guruswami-Sudan

Index  Terms—Berlekamp-Welch algorithm, Guruswami list decodm_g [14] and the GMD-based decoding method;. For
Sudan algorithm, list decoding, polynomial interpolation, Reed— example' Fig. 1 §hows the performance of the three algorithms
Solomon codes, soft-decision decoding. for a simple coding scheme: codewords of (B85, 144, 112)
Reed-Solomon code over GF6) are modulated using a
256-QAM signal constellation and transmitted over an AWGN
channel. We note that similar coding schemes, although with

URUSWAMI and Sudan [27], [14] have recently achievetiigher rate Reed—Solomon codes, are in use today on satellite

a breakthrough in algebraic decoding of Reed—Solomeammunication channels.
codes. A long-standing open problem in hard-decision de-The proposed algorithm is based on the algebraic interpola-
coding of Reed—Solomon codes was that of decoding beyond tieen techniques developed by Guruswami and Sudan [14], [27].
error-correction radius. The algorithm of Guruswami and Sud&uruswami and Sudan also present a weighted version of their
[14] corrects any fraction of < 1 — /R erroneous positions list-decoding algorithm in [14]. As pointed out by a referee, this
for a Reed—Solomon code of rafe Thus the error-correction version can be viewed as a soft-decoding algorithm, assuming
capability of this algorithm exceeds the packing radius bourtbe interpolation weights can be set “appropriately” given the
(1 — R)/2 for all rates in the intervdl, 1). channel observations. However, the referee also points out

Soft-decision decoding of Reed—Solomon codes is, howevirat Guruswami and Sudan [14] do assume that interpolation
an entirely different matter. Although the decoder can be oftgyeights are somehow magically given to the algorithm. The
supplied with reliable soft-decision data relatively easily [5], theaain contribution of the present paper is this: we show how the
high complexity of optimal soft-decision decoding makes fukoft-decision reliability information provided by the channel
utilization of such data prohibitive. Indeed, all the availadge  should be translated into algebraic interpolation conditions.
timal soft-decoding algorithms for Reed—Solomon codes, su€hce this is done, we appeal to the interpolation-based tech-

niques of [14].
Specifically, given the channel output vectos, v, . . . , ¥n)
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Fig. 1. Performance comparison for a simple coding scheme. Codewords(@bthel44,112) Reed—Solomon code are modulated using a 256-QAM signal
constellation and transmitted over an additive white Gaussian noise (AWGN) channel. At the channel output, soft decisions are quantized ecd#ffeitsniTh
curves correspond to the performance achieved by two hard-decision decoding algorithms and two soft-decision decoding algorithms. Thedisimtard-de
algorithms are the conventional Berlekamp-Welch [30] decoding up to half the minimum distance and the list-decoding algorithm by Guruswami ddd. Suda
For the latter, asymptotic performance is shown, assuming that the multiplicity of interpolation points tends to infinity (cf. Theorem 2). Thedeeismm
algorithms are Forney’s GMD decoding [10] and the algebraic soft-decision list-decoding algorithm developed here. The curve theskabes asymptotic
performance for a large number of interpolation points, and hence large list size. However, the curvearsred that the asymptotic performance can be
closely approached with a finite list that is guaranteed to have at most 32 codewords (cf. Section VI).

useful characteristics of our algorithm is a complexity—perfor- Il. THE GURUSWAMI-SUDAN LIST-DECODING ALGORITHM
mance tradeoff that can be chosen freely. In particular, the COMype first set up some of the notation that will be used
plgx!ty can b? adjusted to any required level of performan?ﬁroughout this work. Let=, be the finite field withq el-
within a certain fundamental bound (cf. Theorem 12).

. : : ements. The ring of polynomials ovér, in a variable X
The rest of this paper is organized as follows. The next S8E- denoted F [X]. Reed—Solomon codes are obtained by
tion contains a brief overview of the Guruswami-Sudan list- !

%’valuating certain subspaces Bf[X] in a set of points

coding algorithm [14]. Section Ill then sets the ground foralgeﬁ o C F.. Specificallv. the Reed—Solomon
braic soft-decision decoding of Reed—Solomon codes. In p%’d_e gl(’nxz)' of7 xlgig?h nq'anz dlirlnen);ionk is defined as
ticular, we define the concepts séoreandcostassociated with f IIows? ’

each possible set of interpolation points. We then give a su?— '

ficient condition for successful list decoding in terms of thes€,(n, k) C L (f@),. ., f(xn)) 21, an €D,
concepts. The core of our soft-decoding algorithm is developed )

in Section IV, which deals with the computation of (the multi- F(X) € Fg[X], deg f(X) <k} (1)
plicities of) the interpolation points. In particular, we show how he set of polynomials of degree less thain F,[X] is a linear

to iteratively compute the interpolationultiplicity matrixso as space, which together with the linearity of the evaluation map
to maximize the expected score in a certain probabilistic modél) establishes that,(n, k) is a linear code. The minimum
Thus Section IV contains the new algorithmic component of thidamming distance o€, (n, k) isd = n — k + 1, which fol-
paper. Section V presents an asymptotic performance analysigss from the fact that any nonzero polynomial of degree less
for our algorithm as the the number of interpolation points aphank evaluates to zero in less th&rpositions.

proaches infinity. The analysis leads to a simple geometric char-Given an arbitrary vectoy € Fy, the hard-decision decod-
acterization of the (asymptotic) decoding regions of our algaig taskconsists of finding the codeworge C,(n, k) such that
rithm. In Section VI, we show that the asymptotic performandbe Hamming weightvt(e) of the error vectoe = y — ¢ is min-

can be approached arbitrarily closely with a list size that dewmized. The Berlekamp—Welch algorithm [30] is a well-known
pends on the rate babt on the the length of the code at handalgorithm that accomplishes this task, providede) < d/2.

We also present simulation results for various list sizes, for boBeneralizing upon Berlekamp—Welch [30], Sudan [27] as well
half-rate and high-rate Reed—Solomon codes. In Section VII, e Guruswami and Sudan [14] derived a polynomial-time algo-
consider channels with memory, and show how the soft-decisiotihm that achieves error correction substantially beyond half the
decoder should be adapted to deal with such channels. Finaifynimum distance of the code. In the remainder of this section,
we conclude with a brief discussion in Section VIII. we describe the essential elements of this algorithm.
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Definition 2: A bivariate polynomiald(X,Y) is said to pass
through a poin{«, 8) with multiplicity + if the shifted poly-
nomial A(X + «,Y + ) contains a monomial of degree
and does not contain a monomial of degree less thaBquiv-
alently, the poinf«, /3) is said to be a zero of multiplicity: of
the polynomialA(X,Y).

Using a well-known explicit relation (cf. [14]) between the
coefficients of a bivariate polynomiad(X,Y") and the coeffi-
cients of the shifted polynomial, we find that Definition 2 im-
poses the following linear constraints:

oo o0 . .
Fig. 2. A bound on the number of monomials(ef x , wy )-weighted degree Z Z LA ai—kﬂj—l =0
at mosté. Here, N, ., (6) is the area under the solid line, with each YAV L

monomialX *Y® represented by the unit square whose lower left corner is a&k =1
the point(a, b). Itis easy to see that the triangle of afég 2w x wy (bounded Vk,0 >0suchthatt +1 <m (3)
by the dashed line) is completely enclosed by the solid line. '

on the coefficientsa; ; of A(X,Y). Thus A(X,Y) passes
through a given point with multiplicity at least if and only if

a; ; satisfy them(m + 1) /2 constraints specified by (3). We are
now ready to formulate the first step of the Guruswami-Sudan
[14], [27] algorithm.

Definition 1: Let A(X,Y) = 33723 "2 a;; X'Y/ be a
bivariate polynomial ovef,, and letwxy,wy be real num-
bers. Then, thdwx, wy )-weighted degree ofA(X,Y), de-
noteddeg,, . ., A(X,Y), is the maximum over all numbers
iwx + jwy such thai,; ; # 0. Interpolation step: Given the sef® points inF, x F,
and a positive integem, compute a nontrivial bivariate
polynomialQ» (X, Y') of minimal (1, k—1)- weighted de-
gree that passes through all the pointsAnwith multi-
plicity at leastm.

Nur oy (8) < | {X*Y7 :i,j > 0andiwx + jwy <6} |. If deg; ,_, QP(X,Y) = 6, thenQP(X,Y) may have up to

. . . N1 ,—1(6) nonzero coefficients. These coefficients should be
The following lemma provides a closed-form expression f%rhosen S0 as to satisfy then(m + 1)/2 linear constraints
Ny wy (0) for the casewx = 1. Similar statements can be

. of type (3), imposed by the interpolation step. This produces
found in [14], [20], [25], [27], and other papers. a system ofum(m +1)/2 linear equations (not all of them nec-

The(1,1)-weighted degree is simply tllegreeof a bivariate
polynomial. The number of monomials @b x , wy )-weighted
degree at most is denotedV,, ., (6). Thus

Lemma 1: essarily linearly independent) ovef, in Ny j_1(6) unknowns.
It is clear that this system has a nonzero solution as long as
N (8) = 0+1 5 k|6 L
1k(6) = o S lrl ) nm(m + 1)
Nl,k—l((s) > 72 . (4)

The lemma follows by a straightforward counting of monogqy efficient algorithms to solve such a system of linear equa-
mials; for a proof, see [14, Lemma 6]. The exact expression{@ns and, hence, accomplish the interpolation step, we refer the
Lemma 1 can be converted into a simple lower bound reader to [9], [16], [20], [21], [25], [32].

N 5) The idea of the Guruswmi-Sudan algorithm [14], [27] is that,

LE-1 under certain constraints on the weight of the error vector, we
_ (641> k-1 ( PHW 3 < P*—ll 6+1 )2 ) can read off a list of decoding decisions as factor@g{ X, Y)

- 2(k-1) 2 k-1 k—1| k=1 of typeY — f(X). Thus the second (and last) step of the algo-
52 rithm is as follows.
> 2(k—1)" ) Factorization step: Given the bivariate polynomial

This is, in fact, a special case of the more general lower boundgi(f)(()’g;)v'vige(?;gt(a)”(; iekfa%ngtfpgﬁg{ri )a?;c:?/i?r?m

2 < 4 i . .
N“’X*“’Y(‘S.) > 8 /2“)‘.‘“)’ - The latter bound can be easily is a list of the codewords that correspond to these factors.
proved using geometric arguments, as shown in Fig. 2.

Given the channel output vectpr= c+e = (y1,92,...,yn) Notice that full factorization o@» (X,Y’) is notrequired to find
and the corresponding point ®t= {z1,z9,...,z,}, we con- all the factors of typ&” — f(X) with deg f(X) < k. Efficient
sider the set of pair® = {(z1,y2), (z2,42),-...,(zn,yn)} as algorithms to accomplish such “partial factorization” are given

pointsin a two-dimensional affine space. Given a pdiat3) in [1], [8], [9], [20], [32]. The eventual decoder output can be
and a bivariate polynomiad(X,Y"), we say thata, ) lies on taken as the codeword on the list produced at the factorization
A(X,Y) if A(a,8) = 0. Equivalently, we say thatl(X,Y) step that is closest to the received veator

passes througtthe point(a, 3). Here, we will be interested in  The fundamental question is under which conditions can one
bivariate polynomials that not only pass through all the pointgiarantee that the correct decoding decision is found on the list.
in P but do so with high multiplicities. The answer to this question is given in Theorem 2.
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Theorem 2: Suppose that a vectgrand a positive integen  hard-decision decoding is the construction ofltlaed-decision
are given. Then the factorization step produces a list that corectoru = (u1, us,. . ., u,) € Fy, where
tains all codewords of,(n, k) at distance less than

ujdéfargmaxaeu: (e, 5), forj=12,....,n. (9)
[l [ (-] q
t=n—|>|>|n R——
m m

(5) This hard-decision vector is then taken as the channel output
¢ + e (cf. Section 1), thereby converting the channel at hand
from y, whereé is the smallest integer such th&i _1(6) > into a hard-decision channel.
nm(m + 1)/2 andR = k/n. On the other hand, a soft-decision decoder works directly
For a proof of (5), see [14], [20]. The inequality in (5) follows with the probabilities compiled in the reliability matrit. If

from (2). Here, we observe that Theorem 2 is a special casellg decoder is algebraic, it must somehow convert these prob-
Theorem 3, which we prove in the next section. Theorem 2 ilities into algebraic conditions. The algebraic soft-decision

the main result of Guruswami and Sudan in [14]. The theorel;)ﬁeed —Solomon decoder developed in this paper converts the re-

shows that as, — oo, the algorithm of [14] corrects any frac- liability matrix 11 into achoice of interpolation points and their
tion of 7 < 1 — +/R erroneous positions. ::EIrtT:phcmesm the Guruswami—Sudan [14] list-decoding algo-

A convenient way to keep track of the interpolation points
and their multiplicities is by means of a multiplicity matrix. A

In many situations [5], [29], the decoder can be supplied withultiplicity matrix is aq x n matrix M with nonnegative in-
probabilistic reliability information concerning the receivedeger entriesn; ;. Thus the first step of our decoding algorithm
symbols. A decoding algorithm that utilizes such information isonsists of computing the multiplicity matrix/ from the re-
generally referred to assoft-decisiondecoding algorithm. We Jiability matrix II. This step is discussed in detail in the next
now specify this notion precisely, in the context of the preseséction. From there, the soft-decision decoder proceeds as in

paper. First, we define amemoryless channelor simply a the Guruswami-Sudan [14] algorithm. In particular, the second
channel as a collection of a finite input alphah®t an output step consists of the following.

alphabet), and|X| functions ) _ . :
Soft interpolation step: Given the point setD and

fClz): Y =R forallzeX (6) the multiplicity matrix M = [m; ;], compute a nontrivial
that are assumed to be known to the decoder. We think ofbivariate polynomialQ,,(X,Y) of minimal (1,k—1)-
channel input and output as random variablesand ), res-  weighted degree that has a zero of multiplicity at least
pectively, and assume thatis uniformly distributed ovek. If m; ; atthe poin(z;, «;) for everyi, j such thatn; ; # 0.
the channel is continuous (e.g., Gaussian), fiéncontinuous
and thef(-|z) are probability-density functions, while if the
channel is discrete the}i is discrete and th¢(-|z) are prob-
ability-mass functions. In either case, the decoder can eas%k)
compute the probability that € X was transmitted given that

was observed as follows: ) CoT . .
ved codeword: € C,(n, k), for agiven choicef interpolation points

f(yla) Pr(X=a) f(yle) e . ; o .

Pr(x = = = = g and their multiplicities (that is, for a given multiplicity matrix

{(¥=e1=v) = S pr=s) > S0l ) pleties | ’ P
z€X

rEX

[ll. ALGEBRAIC SOFT-DECISION DECODING

The third and final step of the algorithm is the factorization step,
which is identical to the factorization step of the Guruswami-
dan algorithm, described in the previous section.

In the remainder of this section, we characterize the con-
ditions under which the decoder will produce the transmitted

here th d lity foll from th i Af(wgt Definition 3: Given ag x n matrix M with nonnegative in-
where the second equality Tollows from the assumption eger entriesn, ;, we define the cost al/ as follows:

uniform. For Reed—Solomon codes, the input alphabet is alway
X =F,. Letay, as,. .., o, be afixed ordering of the elements def 1

: oAy T . . ij(mi;+1).
of [Fq;th|s ordering will be implicitly assumed in the remainder sz i+

of this paper. Given the vectar = (y1,¥2,...,%.) € 9" ob- ==t
served at the channel output, we compute It is easy to see that the computation®@f, (X, Y) is equiv-
def Pr (X a | Y=y, ) alent to solving a system of linear equations of type (3). Since a
l J

) given zero of multiplicitym imposesn(m + 1)/2 linear con-

fori=1,2,....qandj = 1,2,....n (8) gtraints on the coefficients @, (X, Y), the cosC(M) is pre-
according to the expression in (7). LEtbe theq x n matrix cisely the total number of linear equations. As in (4), we can
with entriesr; ; defined in (8). We will refer tdl as thereli-  always find a nonzero solutio@,,(X,Y") to the soft interpo-
ability matrix and assume that is the input to a soft-decision lation task if the(1, k—1)-weighted degreé is large enough,
decoding algorithm. For notational convenience, we will someamely, if
times writelT(«, 7) to refer to the entry found in thgh column
of IT in the row indexed by € F,,. Ny p—1(6) > C(M) (10)

We note that in some appllcatlons [5], [31],itis the rellab|l|ty
matrixII rather than the vectgr € 9" that is directly available
at the channel output. In many other cases, the channel out%
alphabet) is quite different fromF,. Thus the first step in Ay wy (V) < 1nin {6 €Z: Nyywy () >v}. (11)

so that the number of degrees of freedom is greater than the
|Enber of linear constraints. Thus we define the function
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Observe that\; ;.1 (v) </2(k—1)vin view of (2). Next, giv- (10) and (11) thatleg; ,,_; Qm(X,Y) < Ay x—1(C). Thus if
en twog x n matricesA and B over the same field, we define g(X') # 0 thenSx;(c) < degg(X) < Aq,x—1(C). Hence, (12)
the inner product implies thatg(X) = 0. O

q n . .
def T _ o Corollary 5: LetC = C(M) be the cost of a given multi-
(4,B) = trace(AB") = 2} z:lawb’”' plicity matrix. Then,Q,,(X,Y) has a factol” — f(X), where
i1 = .
X) evaluates te € C,(n, k), if Sy, > /2(k-1)C.
Finally, it will be convenient to think of the codewords of thef( ) 2e g(n _ ), if Sar(e) = /2(k—1)
Reed—Solomon codg, (n, k) asq x n matrices over the reals. Proof: Follows immediately from Theorem 3 and the fact

Specifically, any vectov = (v1,v2,...,v,) overF, can be thatAy x—1(C) < v/2(k—1)C by Lemma 1. =
represented by the x n real-valued matri{v] defined as fol-
lows: [v]; ; = 1if v; = oy, and[v]; ; = 0 otherwise. With this IV. FROM POSTERIOR PROBABILITIES

notation, we have the following definition. TO INTERPOLATION POINTS

This section developes the core contribution of our paper: an
F, with respect to a given multiplicity matrik/ is defined as algorithm that cc_)nverts po;terior _probabilit?es der_ived from th_e
the inner produca; (v) = (M, [v]). chaqnt_el_qutput into a chplce of _mterpola_tlor_l_pomts and their
multiplicities. More specifically, given a reliability matriX, as
The following theorem characterizes the set of codewordgfined in (8), we compute the multiplicity matrd{ that serves
produced by our soft-decision decoding algorithm for a givess input to the soft interpolation step. Lt, ,, denote the set
multiplicity matrix. Notice that Theorem 2 follows as a speciabf all ¢ x » matrices with nonnegative integer entries ;, and
case of Theorem 3 for the multiplicity matri' = m [y]. let 90(C) be the finite set of all matrices #, ,, whose cost is
equal toC. Thus

Definition 4: The score of avectar= (vy,vs, ..., v,) Over

Theorem 3:Let C be the cost of a given multiplicity ma-
trix M. Then the polynomia®@,,(X,Y") has afactot” — f(X), ot 1L
wheref(X) evaluates to a codeworde C,(n, k), ifthe score  9M(C) = { M € M, : 3 D> mij(mij+1)=C 5.

of ¢ is large enough compared g namely, if i=1j=1
Su(c) > Ay x—1(C). (12) Inview of Theorem 3, we would like to choose € 9(C) so
as to maximize the score of the transmitted codeword
Proof: Letc = (ci,...,cn) be a codeword o€, (n, k), . ¢ ¢ (n,k). However, this codeword is obviously unknown

and let f(X) be the polynomial that evaluates toThat is, 15 the decoder; only some stochastic information abeut
f(z;) = ¢; forall z; € D, whereD is the set of points that is ayajlable through the observation of the channel output
specify Cy(n, k) as in (1). GivenQy/(X,Y), we define the (,, ., ) e 9" and the knowledge of the transition
polynomialg(X) € F,[X] as follows: probabilitiesPr(X = a |V =y). In fact, as far as the decoder
9(X) def (X, f(X)). is concerned, the transmitted codeword may be tho_ught of as
a random vectoA = (X, Xs, ..., X,). We shall specify the

It would clearly suffice to prove that (12) implies thatX') is  gjistribution of X shortly (see (15) on the next page and the
the all-zero polynomial, since thedy, (X, Y') must be divisible  giscussion immediately following this equation). For the time
by Y — f(X). To prove thatg(X) = 0, we will show that pejng observe that, for a given multiplicity matrid, the
deg g(X) < Aq-1(C) and yetg(X) has a factor of degree gcqre of the transmitted codeword is a functiontbiven by
Sn(c). We write Su(X) = (M, [X]).
Su(e) = (M,[c]) =mi+ma+--+m,. Thus Sy (&X) is a random variable, and the question is:
what is the best choice of a multiplicity matri}d € 9t(C) in
this probabilistic setting? We choose to compute the matrix
M e 9(C) that maximizes the expected value &f;(X).
This choice is based on the following considerations. First,
Lemma 4: Suppose that a bivariate polynomi@(X,Y) this is a reasonable optimization criterion for the proba-
passes through a poilt, 8) in F, x F, with multiplicity at bilistic setup which is the focus of this paper. The obvious
leastm, and letp(X) be any polynomial irf,[X] such that alternative is to computd/e1(C) that directly maximizes
p(a) = B. ThenQ(X, p(X)) is divisible by(X — «)™. Pr{Sn(X)> A1 ,-1(C)}. However, this computation appears
éo be extremely difficult, except for certain special cases of
Simple channels.
The second reason is this. Theorem 14 of Section V-B shows
. AN that this criterion is asymptotically optimal in the following
polynomialg(X) = Qa(X, f(X)) is divisible by the product sense. LeP, denote the probability of decoding failure, defined
(X —z)™ (X —x2)™ - (X —z,)™" as the probability that the transmitted codeweiid not on the

whose degree i§;(c). We conclude that eitheteg g(X) > list produced by the soft-decoder. Theorem 14 implies that for
Sar(c) or g(X) = 0. Sincedeg f(X) < k — 1, itis easy to see €verye > 0, we havel, < ¢ provided

Thus the polynomialQ,,(X,Y) passes through the point
(z;, c;) with multiplicity at leastm, for j = 1,2,...,n. We
will make use of the following lemma.

This lemma is identical to [14, Lemma 4], and we omit th
proof. Sincef(z;) = ¢; for j = 1,2,...,n, it follows from
Lemma 4 and the fact that , zo, . . ., x,, are all distinct that the

that the degree of(X) = 9 (X, f(X)) cannot exceed the VR < E{Sn(X)} 1 13
(1, k—1)-weighted degree 0D,,(X,Y). Yet it follows from S V2l N Ven (13)

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.



2814 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 11, NOVEMBER 2003

where R = k/n is the rate of the Reed—Solomon code anillore explicitly, we have

E{Sy(&X)} is the expected value of the score for a given E (S (X)) — M P
multiplicity matrix M € 9t(C). Thus at least asymptotically PiSu (&)} Z< olal) Plz)

for n — oo, maximizing the expectation of the score allows e

for reliable transmission at the highest possible rate. One might = > (M, [z]P(z))

argue that such asymptotic reasoning has little meaning for z€Fy

Reed-Solomon codes, sinee < ¢. However, the proposed

soft-decoding algorithm can be generalized to algebraic-geom- = <M7 Z [&]P(£)> =(M,II). O
etry codes, so that — oo makes sense for a fixegd More zeFy

importantly, the bound in (13) essentially follows from theye will constructM (11, C) iteratively, starting with the all-zero
fact that the random variablé,, (&) concentrates about its matrix and increasing one of the entries in the matrix at each it-
expected value as becomes large. We have observed that eration. Referring to Lemma 6, we see that increasing from
does not have to be very large for this concentration to takqo 1 increases the expected scoreryy while increasing the

place. cost byl. If we require thaQ,;( X, V) passes through the same
To proceed, let us define thexpected scorevith respect point again (that is, increase; ; from 1 to 2), then the expected

to a prObab”lty d|Str|bUt|OnP() on the random vectoX = score again grows byi,j; but now we have to “pay” two addi-

(X1, Xy, ..., &y) as follows: tional linear constraints. In general, increasing; from a to

dof " . a + 1 always increases the expected scorerhy while intro-
Ep {Su(X)} = D Su(@)P(z) = Y Y M(x;,j)P(x) ducinga + 1 additional constraints of type (3). These observa-
ZEX™ z€Fg =1 tions lead to the following algorithm, which greedily maximizes

) L (14)  the ratio of the increase in the expected score to the increase in
where M (z;, j) denotes the entry found in theh column of . <t ot each iteration.

M inthe row indexed by:;. It remains to specify?(-). For this
purpose, we adopt the product distribution determined by the

channel outputy1, y2, . . ., yn) € D", namely Algorithm A
dof T Input:  Reliability matrix II and a positive
P(xy,22,...,0,) = HPI“(XJ' =x; |yj:yj) integer s, indicating the total number of
Jj=1 interpolation points.
n ) Output:  Multiplicity matrix M.
= HH("EJ"J) (15) Initialization step: Set II* :=1I and
i=1 M := all — zero matrix.
wherell is the reliability matrix defined in (8). It is easy t0 Se§eration step: Find the position (i,j) of the
that this would be the posterioridistribution of X given the largest entry 7, in I, and set
channel observations, if treepriori distribution of X’ were uni- . T
form over the spac&”. However, the decoder knows that [ A}

was drawra priori from the codeC,(n, k) rather than from the

entire spac&”, and hence the probability model in (15) is sub-

optimal. Taking this into account results in the probability model

given in (47). This model is optimal in that it reflects preciselfontrol step: If s=0, return  M; otherwise go

all the information available to the decoder. Unfortunately, this to the iteration step.

model leads to an intractable optimization problem, as shown in

the Appendix (cf. Theorem 20). Thus the remainder of this sec-

tion is concerned with the computation of the matkiIT, C) Let M(TI, s) denote the multiplicity matrix produced by Al-

defined as follows: gorithm A for a given reliability matriX1 and a given number
M(IL, ) def argmaXA16m<C)EP{SM(X)} (16) of interpolation points: (counted with multiplicities). The fol-

o ' _lowing theorem shows that this matrix is optimal.
where the expectation is taken with respect to the probability

distribution P(-) in (15). We start with the following lemma, ~Theorem 7:The matrix M(II, s) maximizes the expected

which gives a useful expression for the expected score. ~ Score among all matrices BIt, ,, with the same cost. That is,
_ _if C is the cost ofM(11, s), then
Lemma 6: The expected score with respect to the probability

distribution in (15) is equal to the inner product of the multi- M(TL, 5) = argmax ysean(cy (M, 1T) .
plicity matrix and the reliability matrix, namely

m;; =m;;+1

s :=s5—1

Proof: With each positiorii, 5) in the reliability matrixII,
Ep{Su(X)} = (M,TI). we associate an infinite sequence of rectangles:, Bi j.2, - . -
Proof: It is easy to see that it is distributed according Ndexed by the positive integers. L& denote the set of all
to (15), thenil is precisely the componentwise expected valu¥Ch rectangles. For each rectanfle;; € B, we define its
of [X]. The lemma now follows by linearity of expectation: ~ +ength(Bi ;1) = |, height(B; ;) = mi;/l, and

EP{SA[(X)} = Ep{(M/ [XD} = (M, Ep{[X]}> = <M/ H) area(Bm;l) = length(Bm'J) . height(Bi7j7l) = 7ri7j.
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For a multiplicity matrixA € 9, ,,, we define the correspond-Thus given a bound on the desired list size, all one hasto do is to
ing set of rectangle& (M) as keep track of the total cosl, and stop Algorithm A just before

the right-hand side of (18) exceeds this bound.
S(M) L (B 1<i<q 1<j<n, 1<I<mih
a7 V. ASYMPTOTIC PERFORMANCEANALYSIS
Observe that the number of rectangles&i)) is given by |y the next subsection, we investigate the multiplicity matrix
_1 >_j=1 mij, which is precisely the total number of inter- “M(IL, 5) produced by Algorithm A as — oo. We shall see
polat|on points imposed by the multiplicity matid (counted a4 for s —, o this matrix becomes proportional . Based

with multiplicities). Furthermore on this result, we derive an asymptotic condition for successful

an an mi; list decoding, and provide a geometric characterization of the
C(M) = w Z I asymptotic decoding regions of our algorithm. In a subsequent
1 =1 =1 subsection, we focus instead on long codes—that is, we study
=t =t the limiting performance of our algorithm as the code length
L approaches infinity.
= Z length(B;, Jl Z length(B PP y
i-i} =1 Be&(M) A. Asymptotic Analysis for Large Costs
a.n q,n M We start with two simple lemmas. In all of the subsequent
(M) =>"mijomi;=»_ Y mj analysis, we keep the reliability matrix = [r; ;] fixed, while
i=1 i=1 1=1 s ranges over the positive integers. For convenience, we define
jl’n . . ¢ ={1,2,...,q} x {1,2,...,n}. Let x(II) denote the set of
’ < all (,5) € ® such thatr; ; # 0. Letm, ;(s) denote the entries
= Z area(B; j;) = Z area(B). . ’ . %7 BIN7,
— = BESM) in the matrix M(II, s) produced by Algorithm A.
j=1

Lemma 8: As s — oo, every nonzero entry iM (11, s) grows

Thus the cost of\/ is the total length of all the rectangles inwithout bound. In other words; ;(s) — oo whens — oo for
G (M) and the expected scofé/, II) is the total area of all all (z,7) € x(IT).

the rectangles it5(M). It is intuitively clear that to maximize Proof; Define
the total area for a given total length, one has to choose the

X o ) . ) Mmax($) = max m; ;(s)
highest rectangles. This is precisely what Algorithm A does: the (i,j)€®

algorithm constructs the matrix (11, s) that corresponds to the gng

set of s highest rectangles i%. Indeed it is easy to see that the Mmin(s) =  min_ mqi(s)

ratios«} ; with which Algorithm A operates are precisely the mm (ij)exa)

heights of the rectangles. The algorithm “removes” fil@nand ~ cjearly, it would suffice to show thatmin (5) — oo for s — oo.
puts in&(M) the highest rectangle available at each iteratiofgtice that

It is now obvious that if the highestrectangles if8 have total

lengthC, then no collection of rectangles of total length at most Z Z m; ;(8) < qnMmax(s). (19)
C can have a larger total area. O i=1j=1

Although Algorithm A produces an optimal multiplicity ma-It follows from (19) thatm,,.x(s) — oo ass — oo. Hence,
trix M(II, s) for an arbitrary number of interpolation points there exists an infinite integer sequenges,, ss, ... defined
it cannot be used to solve the optimization problem (16) f& the property thatimax(s,) = 7 andmmax (s, +1) = r + 1.
an arbitrary value of the cost The algorithm computes a so-The iterative nature of Algorithm A implies that for all> 1,
lution to (16) only for those costs that are expressible as tHtere is exactly one positiofio, jo) such that
total length of thes highest rectangles i for somes. In iy o (s + 1) = miy o (s) + 1.
other words, ifM (11, 1), M (11, 2), M(TI, 3), . .. is the infinite o " ’ ) )
sequence of matrices defined by (16) €& 1,2, 3, .. ., then We say thatio, jo) is the positiorupdated at iterations + 1 of
M(IL, 1), M(IL, 2), M(IL, 3), ... is a subsequence of this seAlgorithm A. This position is distinguished by the property that

i j

guence. This subsequence WI|| generally suffice for our pur- __ ™io.jo > , forall (i,j) € . (20)
poses. Mig,jo(8) +1 7 mij(s) +1
Forr = 1,2,..., let (7., j.) denote the position updated at

Remark: Algorithm A can be also used to generate a Slt_eranonsr + 1of Algorlthm A. Then it follows from (20) and
quence of multiplicity matrices indexed by a bound on the s%

of the list produced by the soft-decision decoder. Clearly, thﬁe definition ofs,. that

number of factors 00,/ (X,Y’) of typeY — f(X)isbounded m, ;(s,) +1 > ;(mmax(sr) + 1)
by dego_l QJ\/[(X, Y), and Tirjr
/ Tmin Tmin ..
> , i, T
deg Q / (X Y) < \‘deng_IQJM(X?Y)J < \‘ALk_l(C)J T max T Wmax/ for all <LJ) < X( )
Bo LM B S k-1 = k-1 " wheremmax = max; j)ea i,j ANATmin = Ming ;e () T ;-

(18) Denoting byp the ratior iy / Tmax, We conclude from the above
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thatmin(s,-) = pr+p— 1. Sincep is a positive constant while Next, we define thaormalized multiplicity matrixM'(I1, s) =
7 — 00ass — oo, itfollows thatm i, (s) grows withoutbound [ ;(s)] and thenormalized reliability matrixIl" = [=; ;] as
for s — oo. O follows: p; j(s)=m; ;(s)/s andx; ;=m; j/n forall (4, j) € .
. " . _Itis clear from these definitions thai\’, 1) = (IT", 1) = 1,
Henceforth, let(i;, j,) denote the position updated at itera herel denotes the all-one matrix. The following theorem is

tlon_s of AIgo_nthm A, and consider the sequence .Of ratios The key result of this subsection: the theorem shows that the
the increase in the expected score to the increase in cost at su

cessive iterations of Algorithm A, namely op%mal multiplicity matrix M (I1, s) becomes proportional i@

ass — oo.
0 def  Tiyjn 0 def  Tiy,jo 0. def _ Tiz,js . o .
! mg, . (1) 2 mi, j,(2) ? mig s (3) 7 Theorem 10:As s — oo, the normalized multiplicity matrix
It follows from (20) that the sequencé,f-,... is nonin- converges to the normalized reliability matrix
creasing. (Indeed, this was our goal in the design of Algo- M/(T1,8) — 4 oo T

rithm A.) Clearly,t) = Tmax While lim, ... fs =0 by Lemma8. |, other words, for every > 0, there exists ar, such that for

Lemma 9: For every positive integey, there exists a positive all s > so we have

constant’ = K(s) < mpayx, Such that It — iy (s)] = mij  mi(s) <e, forall(i,j) € @.

K(mm(s)—l—l) Z TG = Kmiyj(s)7 for all (L,J) € o. (21) " 5 (24)
Conversely, for every positive constalit< .., there exists Proof: It follows from Lemma 9 that for alk, there exists
a positive integes = s(K) such that (21) holds. aconstanf{(s) such that > m; ;/K(s) —m; j(s) = 0 for all

Proof: Givens, we choosek = K (s) so that (i,7) € ®. Dividing this inequality bys, we obtain
1 T
< -2 — — i (s)=0. 25
95-{-1 < K I gs S SK(S) H ;](s) ( )
whlch_ is always p035|b!e as the sgqgeﬁca‘)Q, --- 1S noNiN- From the bounds o () in (23), we conclude that
creasing. To prove the first inequality in (21), observe that , ,
- . T j S’]Ti,j/SK(S)<’/Ti1j+q7r,,j,j/8.
_ Ls+15]s+1
K>20,, = M jon (5 1) Combining this with (25), we get
’ o 1 max
_ Tisp1,ds41 - 3 = 71'27]» — i j(s) = —%. (26)
iot1sd +
i e () It follows that for alls > max{1/e, Tmaxq/e} = Tmaxq/e, the
> "W forall (,5) € bound in (24) holds for alli, ) € ®. Thussy = [Tmaxq/c].
mm(s) +1 0

where the last inequality follows from (20). The second in- Asymptotically, for a large number of interpolation points
equality in (21) holds vacuously if.; ;(s) = 0, so assume that (and, hence, for a large cost), a constraint on the cost

m; j(s) = 1. This assumption implies that positi¢h j) was C(M) = ((M. M M.1))/2

updated at least once, and we #ét < s denote the number (M) = (M, M) + (M, 1))/

of the most recentteration of Algorithm A at which position iS €quivalent to a constraint on tlie-norm /(M. M) of the
(i,7) was updated. Then multiplicity matrix. Obviously, for a fixed normy/(M, M),

i Tij maximizing the expected scof@d/, 1) is equivalent to max-
o imizing the correlation between/ andIl, which is clearly
mii(s*)  mi;(s)

where the last eq_ualit)_/ follqws frqm the fz_;\ct that posit{ery) 232;5\:;33 ﬂ?g rgﬂﬂgé\/sltabb?is%rgg ?r:t;?r:l:(l)r?g .1g.h|s intution

wasnotupdated since iteratiost'. Finally, given0 < K < Ty,

we chooses = s(K) so that,,; < K < 6, once again. Remark: Finding the optimal multiplicity matrixM (I, s)

This choice is possible because the sequéno, . . . is non- can be viewed as a gambling problem. Assume that a gambler

increasingfi = Tmax, andlim,_, . #, = 0. The proof then re- has a certain wealth in the form of a maximal number of linear

mains exactly the same, except that the first inequality in (2gpnstraints the gambler can satisfy. The mailfiprovides all

can be now strengthened to a strict inequality. O theinformation the gambler can use in order to place bets on in-

terpolation points with the goal of maximizing the return, which

is the score of the transmitted codeword. In this context, The-

orem 10 shows that proportional betting is the asymptotically

optimal gambling strategy. Proportional betting is known [6] to
> K(mij(s)+1)> > mj;> > Kmij(s). (22) bethe optimal strategy in the context dir horse race How-

(i,5)ED (i,5)€® (i,5)ED ever, these results do not appear to be related to Theorem 10 in

Kgasgasxz

Since (21) holds for al(z, j) € ®, both inequalities in (21)
remain valid under summation over &l j) € ®. Thus it fol-
lows from Lemma 9 that

These inequalities lead to upper and lower bounds on the cf-0bvious way.

stantK(s) in Lemma 9. Since) ; -y 1mi,;(s) = s while  We conclude this section with a geometric characterization of
> (i.j)ed Ti,j = n, We conclude from (22) that the (asymptotic) decoding regions of our soft-decision decoding
n algorithm. To start with, the following simple lemma essentially
(23) recasts Theorem 3 in slightly different terms.

"> K(s) > .
S s+ qn
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Lemma 11: For a given multiplicity matrix\/, the algebraic word [¢] is a point ofS, and the line connecting the origin to
soft-decision decoding algorithm outputs a list that containstlais point constitutes the central axis of the spherical cone. The

codeworde € C,(n, k) if angle of each spherical coneciss—! v/R. Notice that since the
(M, [c]) — algorithm is a list-decoding algorithm, its decoding regions are
(M, M) + (M, 1) 2 Vk-1. @7) not disjoint: the spherical cones of angte~! v/ are overlap-
' / _ ping. Also notice that we are concerned only with the positive
The lemma follows from Corollary 5 by observing that 21"-part of the Euclidean spad¥™ (which consists of points
20(M) = (M,M) + (M,1). with all coordinates nonengative), since all the entries of bbth

Theorem 10 and Lemma 11 now lead to a precise characterig@d[c] are nonnegative. .
tion of the performance limits of our algorithm as the number It follows from Theorem 2 that the asymptotic (for — oc)
of interpolation points approaches infinity. In the following thedecoding regions of the Guruswami-Sudan [14] algorithm are

orem and its corollaries;(1) denotes a function of that tends Spherical capn the surface o8 of the same spherical angle
to zero ass — oo. cos—1 /R, but the decoding process involves projecfihgnto

] o ] apoint [y] on the surface d§ in a nonlinear fashion, according

_Theorem 12:The algebraic soft-decision decoding algog, (g). Finally, the decoding regions of conventional Berlekamp-
rithm outputs a list that contains a codewerd C,(n, k) if Welch [30] hard-decision decoding are also spherical caps on

(IL, [c]) > VE—1+o(1). (28) the surface oS and the same nonlinear_projection is employed,

v/ (I, 1I) but the spherical angle of these caps is ordsrl(#), and

Proof: Substituting the optimal multiplicity matrix they are nonoverlapping.

M(1I, s) in (27) and normalizing (dividing by the numerator . _
and the denominator), we obtain the equivalent condition ~ B. Asymptotic Analysis for Long Codes

(M(1, 8), [c]) > VETT (29) As noted in Section IV, from the point of view of the receiver,
(M/(I1, 8), M'(I1, 8)) + L - ' the transmitted codeword is a random vectbmwhosea pos-
T ’ s teriori probability distribution is given by (15). For notational

It follows from Theorem 10 that fos — oo, one can re- ,nvenience, let us introduce two random variables

place M'(I1, s) in (29) by I, which upon renormalization (M, [X))
yields (28). More explicitly, we have z (M,|X]) and Z* def . .
(M(T1, 5), ] Vn (M, M) +n (M, 1)
, ; 1 The key result of this subsection is the following theorem which
\/<M (IL, 5), MI(IL, 5)) + 5 shows that as — oo, the random variabl€* converges to its
(I, [d]) — nS_Q expected value.
g \/(H.H) + 9Tmaxtl)n? | ginii,,, Theorem 14:Suppose that @ x n reliability matrix 11 is
’ s s given, and lef\f be an arbitrary; x n multiplicity matrix. Then
_ (L [e]) +o(1) for anye > 0, we have
V/(IL IT) . . 1
where the first inequality follows from (26) after some straight- Pr{|2” - E{Z7}| 2 e} < ne?’ (30)

th f. O
© proo Z = (M,[X]) = M(X1,1) + - - + M(X,,n)
Note that decoding under the asymptotic condition (28) c . L o L r
be directly achieved by choosing large integer multiplicities th%%?rjgtfjfl n_thg[t(hxégljg r;onr cJ)f]T/Ilif{H é ’ r7o7\j\} I‘Ziifé Eyg:e

are in proportion to the_ entries of the reliability T“atﬂx What The distribution ofY;, computed by marginalizing the distribu-
is particularly interesting about Theorem 12 is that it shovxﬁon of X in (15), is given by

that the greedy iterative algorithm (Algorithm A) asymptotically
achieves this limiting performance. Pr{ &; :ai> =m , fore=1,2,...,¢ andj =1,2,...,n.
Finally, Theorem 12 has an especially nice interpretation if . T )
the reliability matrixII and the codeworft] are viewed as vec- Using this distribution, we find thelt{2;} = 3 0, mijmi;
tors in thegn-dimensional Euclidean spags™. ande{Z7} = > i{_, m: ;m; ;. The key observation is this: since
the random variableg’;, X, ..., X, are independent, so are
Corollary 13: Let 8 = (11, ¢) denote the angle iR be- Z;, Z,,..., Z,. Hence,
tweenII and|c]. Then the algebraic soft-decision decoding al- n
gorithm outputs a list that contairsf Var(2) = Z Var(Z;)
cos 3 = VR + o(1). j=1

Proof: Follows directly from Theorem 12 and the identity

(1, [¢]) = /n (T1,TT) cos 3. O = ; (; mgmig = (; mi,j'/'rq',,j) )

Thus the asymptotic decoding regions of our algorithm are n q
spherical conef the Euclidean spad®™, extending from the < Z mL?J = (M, M).
origin to the surface of a sphe® of radius/n. The code- =ia
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The theorem now follows by a straightforward application ofthe  Proof: The size of the list is at mosleg,, ; Qa(X,Y).
Chebycheff inequality [22, p. 193] to the random variaBlfe By the definition of weighted-degree, we have

Thus
degy oy Qur(X,Y
e i 1) & 24T
Pr{jz® —E{2z7}Y > o} < 2E)
€ Now
Var(Z2) 1
_ <L degy oy Qur(X.Y)  Apy. M, M) + (M, 1
T ) S B SBue QYA€) VML) + (M 1)

k-1

Remark: The proof of Theorem 14 is essentially similar to avhere the first inequality follows from (10) and (11), while the
well-known proof of the weak law of large numbers. We notéecond inequality follows from Lemma 1, the definition of the
that using the strong law of large numbers, it is possible to sh&®StC = C(M), and (11). U
that asn — oo, the random variabl&€* equals its expectation
with probability 1.

k-1 k-1

Let IT be a given reliability matrix, and let(I1, s) be the
corresponding multiplicity matrix produced by Algorithm A.
We can use Theorem 14 to derive a relationship between ffef convenience, we defingt(I1, 0) as the all-zerg x n ma-
probability P, of list-decoding failure, the expected score, antlix. Let 7 denote & x n matrix all of whose entries are non-
the rateR of the Reed—Solomon code. Indeed, we have negative real numbers not exceedinyVe write 7* instead of

J if all the entries in the matrix are strictly less than

P.<Pr{Z < A1 _1(C 31 . .
S Prf =10} G| emma 16: For every positive real numbey, there exists

since 2 = Sy (X) by defintion, and the “score condition” @ nonnegative integey, such that the matrix\((Il, s) can be
Sule) > Ap_1(C) is sufficient for successful decoding byWritten as

Theorem 3. It follows from (31) that def
M, s) = [AII] ‘= A0 - TJ". (34)

P, < Pr{Z < \/%} - Pr{Z* < Jﬁ} (32)

Conversely, for every nonnegative integethere exists a posi-

sinceAs x_1(C) < /2(=1)C < /2kC in view of Lemma 1 tive real) such that (34) holds, possibly with replaceq by7.
and (2). In conjuction with (32), Theorem 14 immediately im- ~ Proof: As before, letry., be the largest entry ifil. If

plies the following. For alk > 0, if A < mpl, then M(IL, 0) satisfies (34). Otherwise, sé&f =
A1, sothat) < K < mmax. We know from Lemma 9 and its
VE < E{Z*)} - 1 proof that there exists a positive integersuch that
\/% 5 5 Ti,5 .o
o _ N _ —= — 1< m,j(s) < ==, forall (i,j) € .  (35)
then P, < e. This is precisely condition (13) relating the ex- K K

pected score to the probability of decoding failure, discusseditnfollows from (35) thatM(T1, s) is of the form (34). Con-
the fourth paragraph of Section IV. versely, givenM (11, s), we take = K1, where

K = K(S) < Tmax
VI. PERFORMANCEANALYSIS FOR A FIXED LIST SIZE . ] ]
) ) ) is the constant derived in Lemma 9. O
In this section, we study the performance achieved by our

soft-decoding algorithm under a constraint which guaranteesGiven M = M(II, s), let A be a positive real constant such
that the number of codewords on the list produced by the dBatM = AIl — 7. Such a constant exists by Lemma 16. Then
coder does not exceed a given boundrhe key analytical re- — n - v o 1y = X2 (T T — A (1L 2.7 —1 1

sult in this section is Theorem 17. This theorem extends Theg M)+(M.1) (L= (I, 27 -1)+(7. T (>3.6)

orem 12 by providing a bound on h‘,’W quickly the decoding\,e can use (36) and (33) to derive an expression forterms
algorithm converges to the asymptotic performance as afurbcf—n, 7, and £,(M). Equating the right-hand side of (36)

tion of L. The analytical results are confirmed by simulationtco (k—1)£2(M), we obtain a quadratic equation i Since

for both high-rate and low-rate codes. I1,1T) > 0 and(7, J—1) < 0, this equation has one positive

We start with two lemmas. A.S observed in Section IV, th pot and one negative root. Solving for the unique positive root
number of codewords on the list produced by the soft-deg)l—eldS

sion decoder is upper-bounded byg, ; Qar(X,Y), where
Q1(X,Y) is the interpolation polynomial. This leads to the , _ {Il.27-1)

following lemma. 2 (1, 11)
Lemma 15: The number of codewords on the list produced (11,27 1) n (T,1-T) (k=1)L3(M) (37)
by the soft-decision decoder for a given multiplicity matfik 4 (11, I1)? (I, IT) (1L, II)

does not exceed . .

Suppose now that we are given a positive integend would
) et VM, M)+ (M, 1) 33 like to guarantee that the number of codewords on the list pro-
(M) = E—1 ) (33) duced by the soft-decision decoder does not excéeéuview

Ly,
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of Lemma 15, we can do so by computidg (M) at each it- In conjunction with (41) and (40), this completes the proof of
eration of Algorithm A, and stopping the algorithm just beforéhe theorem. O
L (M) equals or exceeds + 1. At this point

L<Ly(M)<L+1 (38)

and since the number of codewords on the list produced by
), this number is at

decoder is an integer not exceedifig(M
most L. We will refer to this decoding procedudrasalgebraic
soft-decoding with list size limited tb.

We observe that Theorem 17 is a very loose bound. The actual
performance of algebraic soft-decoding with list size limited to
is usually orders of magnitude better than that predicted by
). In the proof of Theorem 17, we have used the inequality
(IL, II) > n/q, which is a weak lower bound sin¢#, IT) ~ n
for signal-to-noise ratios (SNRs) of practical interest. Replacing
n/q on the right-hand side of (42) by the actual vallig IT),

Theorem 17:Algebraic soft-decoding with list size limited we obtain a somewhat stronger bound, which guarantees that

to L produces a list that contains a codewerd C,(n, k) if

)
(39)

Va
2V R*

¢ € C,(n, k) is on the list produced by the decoder, provided

where II is the reliability matrix derived from the channel

output,R* = (k—1)/n is the rate ofC,(n, k—1), and the con-

stant inO(-) depends only o* andgq.

Proof: Writing M = MI — J as in Lemma 16 and using

<H[Q]> > k-1
V(I TI) 1_%(%+2\/1F. Z{fn>>
Vk—

(44)

(e m)'

the definition of £,,(M) in (33), we can recast the sufficientyhis works well for largel, although (44) is still a loose bound

condition (27) of Lemma 11 in the following way:

(IL, [c]) <)\_<~7[Q]>) V/(IL, I1)
(IL1I) (IL[e) ) Lo(M)VE=1~

= Vk—1. (40)

for moderate list sizes. Nevertheless, the significance of The-
orem 17 is that it proves convergence to the asymptotic per-
formanceat leastas fast a$)(1/L). Furthermore, the theorem

shows that the size of the list required to approach the asymp-

Using the expressmn fox in (37), we now express the factortotic performance within any given constant does not depend on

multiplying (IT
Fi(Il, L) - fz(H,L) .F;(H ¢, L), where
Fi(II, L)
def (10,27 1)2 (T.1-0)
) \/”4<H7H>c2< 1) Ok !
(41)
def 1 A <H7 1_2j>
LI = i 2\/ (I, 10)
1
S LDV 2F (“42)
and
def (7. [d]) v {IL1I)
el T LoD (L)
1 n
Lo(MWE—1 VE—1 (43)

To obtain the inequality in (42), we have used the fact that

(II,1-27) < (I,1) = n and (IL,II) > n/q.

.[¢]) /+/(TL, TI) on the left-hand side of (40) asthe length of the code.

In addition to the analysis of Theorem 17, we have per-
formed extensive simulations of algebraic soft-decoding with
list size limited to L for various Reed—Solomon codes over
GH(256). As the running channel model, we have assumed
an AWGN channel with a 256-QAM signal constellation. The
256 constellation points were matched to the 256 elements of
GF(256) in an arbitrary manner. The reliability matrlX was
computed by measuring the distance from the channel output
to the four nearest constellation points. Thus only four entries
in each column ofll were nonzero. Moreover, all the entries
in 11 were normalized and quantized to 8 bits of precision. The
performance curves were obtained by running Algorithm A
as discussed in the remark at the end of Section IV, then
interpolating and factoring as discussed in Section Ill. We note
that the same curves result by simply evaluating the sufficient
condition of Theorem 3: the difference between the two error
rates was in the second or third significant digit at all SNRs, in
all cases we have simulated.

Simulation results for th&255,144,112) Reed—Solomon
code of rate~0.56 are summarized in Fig. 3. One can see from
Fig. 3 that at codeword error ratesisf—> and lower, algebraic
soft-decision decoding provides a coding gain of about 1.5 dB,

To obtain the inequality in (43), we made use of the followingshereas GMD decoding and Guruswami—Sudan decoding

two observations. First, we have/,[c]) < (1,[¢]) =
Second, IiflT and ¢ are such that (39) holds, themfortiori

I []) //LID > VE—1. SinceL < L(M) by (38), it

follows from (42) and (43), respectively, that
Fo(II, L)< /q/2LVR* and F3(Il,¢, L)<1/LR".

1In practice, algebraic soft-decoding with list size limitedt@almost always

achieve coding gains of about 0.2 and 0.4 dB, respectively,
compared to conventional hard-decision decoding. Although
the 1.5-dB coding gain corresponds to asymptotic performance
(cf. Theorem 12), it is evident from Fig. 3 that most of this
gain can be obtained with very small list sizes. A list of size
L = 4 already outperforms both GMD and Guruswami—Sudan
decoding by a substantial margin, while a list of size= 32

produces lists with much less théncodewords, most often a single codewordapproaches the asymptotic performance to within 0.1 dB.
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Fig. 3. Performance of algebraic soft-decision decoding fof 26, 144, 112) Reed—Solomon code with 256-QAM modulation on an AWGN channel.
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Fig. 4. Performance of algebraic soft-decoding for (@4, 188, 17) shortened Reed—Solomon code with 256-QAM modulation on an AWGN channel.

Simulation results for thé€204,188,17) shortened Reed- code: the Guruswami—Sudan decoder finds all codewords
Solomon code of ratev0.92 are presented in Fig. 4. Wewithin Hamming distance of
observe that this code, in conjunction with a 256-QAM signal
constellation, is implemented today in certain satellite com- L204(1 — \/0.92)J = [8.16] = (17-1)/2
munications systems. Here, algebraic soft-decision decoding
provides an ultimate coding gain of about 0.75 dB. The fact thliom the (hard-decision) channel output (cf. Theorem 2). In
the asymptotic coding gain decreases with the rate of a codedmtrast, soft-decision list decoding does provide a significant
to be expected since list decoding, in general, is less effectvading gain. As in the case of half-rate codes, most of this gain
for high-rate codes. In fact, the asymptotic performance oén be achieved with small list sizes. Moreover, one can see
Guruswami—Sudan list decoding coincides with that of tHfeom Fig. 4 that the coding gain grows with SNR. Extrapo-
conventional Berlekamp—Wech decoding for {Be4, 188,17) lating the simulation results to error rates of abobrt '° (that
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are of interest for many applications), one should expect codihgmma 6 for channels with memory and/or non-product input
gains in excess of about 1.0 dB for high-rate as well as low-radestributions.

Reed-Solomon codes. Lemma 18: The expected score with respect to the proba-

bility distribution Pyy(-|y) is equal to the inner product of

VIl. CHANNELS WITH MEMORY AND Co 4
and the multiplicity matrix, namely

CONCATENATED CODING

Throughout this paper, we have assumed that the channel Epyy {SMm(X)} = (M, 1T7) .
input comes from a product distribution, and that the channel )
is memoryless. In other words, ® = (X1, X,,...,X,) and Proof: Let ‘B denote the expected value [¥] with re-

Y =1,Ys..., ) denote the random vectors at the charfPect to the distributio®yy (-|y), namely
nel input and output, respectively, we have assumedihat

X,,..., X, are independent and identically distributed (i.i.d.) B=> [zPry(z|y).
and thaty; depends only oi’;, which makes the random vari- z€Fy
ables)y, Vs, ..., ), ii.d. as well. These assumptions are re-

flected in our definition of the reliability matrix in (7) and (8) Since[z]; ; = 1if ;= ai'_and@]%i = 0 otherwise, the entry
and of the expected score in (14) and (15). These are the pd@Hnd in rows and columny of the matrix3 is given by
concepts that underlie our soft-decoding algorithm. N
While the preceding assumptions are justified in a variety Pi-i = Z Pay(z|y) = Pr(Xj = a; | y:g) =T
of contexts, there are important applications of Reed—Solomon Tod
and algebraic-geometry codes where these assumptions are not
valid. In practice, the most consequential of such applicatioh§us P is precisely the generalized reliability matiik. The
is the use of Reed—Solomon (and algebraic-geometry) codedhgprem now follows by the linearity of expectation
outer codes in concatenated coding schemes [11], [15]. .
In the most general setup, we have to assume that the channel Epyy {(M, [X])} = <M7 Eryy {[X]}> = (M,1I") . [
input X and outpufy are governed by an-dimensional joint
probability distributionPx y(z, y). This setup encompasses ar- The result of Lemma 18 is of exactly the same form as that of
bitrary channels with memory and allows for arbitrary distriburemma 6. This makes it possible to apply Algorithm A, without
tions on the channel input. Fgre 9", let change, to the generalized reliability matfiX to compute a

Pry(@,y) multiplicity matrix that maximizes the expected score in (45).
X, Y\L Y
Priy(z|y) = T Py(y) Corollary 19: Let M(II*, s) denote the multiplicity matrix

- produced by Algorithm A for a given generalized reliability ma-

be the conditional joint distribution on the channel iNputiy 1+ and a given number of interpolation pointsLet C be
(X1, Xs, ..., &,) given thaty = y. Then, in the most generalihe cost ofM(II*, 5). Then

case, given the vectar € 2™ observed at the channel output ’

and ag x n multiplicity matrix M, we need to compute the M(IT*, s) = argmaXMemt(C)EPXW{SM(X)}~
expected score with respectRyy(-|y), namely

E Sur( X)) et Sur () Pt Corollary 19 follows immediately from Theorem 7 and

Priy {SM (X))} T; (@) Priy(zly) Lemma 18, and provides the basis for soft-decision decoding
. on channels with memory: all the results of Sections IlI-VI
= Z (M, [z]) Payy(z|y)-  (45) apply, with the reliability matriXI replaced by the generalized
z€F] reliability matrix IT*.

We then need to find a multiplicity matrixt € 90(C) thatmax- ~ The remaining problem is how to compulg® given the

imizes this expected score. In what follows, we show that ti§@annel observations. Fortunately, a computation of this kind is

decoding procedure of Section IV can be easily modified (¥ Common in communication systems. _

an optimal way) to accommodate channels with memory in theGiven a joint distributionPx,y(z,y) on the channel input

general setup of (45). X and outputy together with a specific observation =
To this end, we introducegeneralized reliability matrid1*, ~(¥1,%2---,yn), We have to compute the conditional probabil-
which reduces to the reliability matrix for memoryless chan- ities 7, = Pr(X; = |y = y) for all a1, s, ..., a4 and

nels and product input distributions. In the general cise=  all positionsj = 1,2,...,n. This is precisely the task known

[ ] is ag x n matrix whose entries are defined as follows: &S maximurra posteriori(MAP) symbol-by-symbol decoding.
’ General algorithms for MAP symbol-by-symbol decoding,

T def Pr(Xj = | y:y>7 such as the sum—product algorithm or the forward—-backward
: . " . algorithm, are well known [18].

fori=1,2,..., 7 =1,2,..., 4 . . . .- . .

o '2,+,q.and; 2,0eeom (46) In particular, if the channel is a finite-state machine with a
wherey is the observed channel outpat,= (X1, X, ..., X,) moderate number of states, then the generalized reliability ma-
is the channel input, and; is theith element of the input al- trix IT* can be computed with the Bahl-Cocke—Jelinek—Raviv
phabetX = F,. The following lemma is the counterpart of(BCJR) forward—backward algorithm [2]. Important special
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Fig. 5. Algebraic soft-decision coding gains on a fast Rayleigh-fading channel. Codewords of the Reed—Solomon code are binary phase-shi#tSk€ying (B
modulated to produce a sequenc@b5-8 bits (b1, b, . . ., bagao ). This sequence is multiplied componentwise by the ve@iar as, . . . , 2040 ), Wherew; are
i.i.d. Rayleigh random variables with unit mean. The channel output is givem;by + =1, asbs + z2,..., @2040b2040 + 22040, Wherez; are zero-mean

i.i.d. Gaussian random variables. In computing the reliability mdifjxthe channel states; are assumed to be unknown to the receiver. Large cost (high
interpolation multiplicity) asymptotic performance is shown for both the Guruswami—Sudan decoder and the algebraic soft-decision decodeméar®e
of the (255,144, 112) Reed-Solomon code. (b) Performance of(t2&5,191, 65) Reed—Solomon code.

cases include intersymbol interference (ISI) channels and outeNote Added in Proof: We point out that the coding gains
channels in a concatenated coding scheme, whose menmuug to algebraic soft-decision decoding of Reed—-Solomon
derives from an inner convolutional (or block) code. If theodes on certain important channels (with or without memory)
trellis complexity of the inner code is moderate (as is the casetimn out to be much higher than the corresponding coding gains
practice), then the BCJR [2] algorithm is usually quite efficierdn a memoryless AWGN channel. For example, simulation
. Thus one of the key conclusions of this section is as followsesults for a fast Rayleigh-fading channel are presented in
in the context of concatenated coding, the BCJR algorithRig. 5. We see from Fig. 5(a) that algebraic soft-decoding of
turns out to be an efficient means for converting a channtble (255, 144,112) Reed-Solomon code provides a coding
with memory into a “memoryless” channel for the purposes gfain of about 3.0 dB over hard-decision decoding, whereas
algebraic soft-decision decoding. the corresponding gain on the AWGN channel is 1.5 dB (cf.
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Fig. 3). In Fig. 5, we assume that channel state informationZg (z) : F; — {0,1} is the indicator function fo€, (n, k) de-
unknown to the receiver. Given the channel states, one canfuhed by

even better. For example, for thg55, 191, 65) Reed—Solomon _

code, we observe a soft-decision coding gain of about 2.5 dB in Ic(z) def { L, it z € Cy(n, k)

Fig. 5(b), whereas Grost al.[12], [13] assume perfect state ~ 10, otherwise.

information and obtain a soft-decision coding gain of 3.5 d%. :
iven the channel observations= (y1,y2,...,yn) € Y™ One
for the same code. . Z7 A
can easily compute the true posterior probability distribution of
X as follows:
VIII. CONCLUSION
* def
We have shown that interpolation-based decoding can be Py w2, w0) = Pr (‘;‘7‘:£ | Y= Q)
used to devise an efficient soft-decision decoding algorithm n
for Reed—Solomon codes. The soft-decoding algorithm outper- = yZc(z) [[ O(=j,5).  (47)
forms both GMD decoding and Guruswami-Sudan list de- j=1

coding by a substantial margin. N . L
The focus of this paper has been the performance achieval—)li]éa normalization constantin (47) is given by

in a probabilistic setting, where the channel output is charac- n
terized in terms ofa posteriori probabilities rather than error dof 1 ok jl;ll I3, (5)
patterns. This is quite different from several recent papers [15], 7 = ——w = ¢ W (48)
[19] which focus on a combinatorial setting, and provide guar- ;C Il M(z;,5) yis
x 1=

antees on the number (and type) of errors that can be corrected

on certain hard-decision channels. In particular, for long codggnere fy,(-) is the probability density function of the channel
the criterion derived here for the computation of a multiplicityytput Y = (31,)%,...,Y,) (we assume without loss of
matrix allows for reliable transmission at the highest pOSSibb%neraIity thafy is continuous), andfy () are the marginal
rate, although this is not necessarily the criterion that maximizgg,papility densities derived frorﬁ‘y(.j_ The expression in
the number of errors that one can guarantee to COIrect.  (47) follows by repeated application of the Bayes rule, first to
The asymptotic performance of the proposed soft-decodipgy = ; |y= 1) and then toPr(Y; =y, | X;=ux;). Hence,
algorithm for a large number of interpolation points or, equivgpe precise optimization problem we would like to solve is
lently, for large lists has been characterized in terms of simple
geometric conditions. Moreover, it has been shown that thatthe 7 (11, ) o argmaxysean(c) Ep- {Sa(X)} (49)
asymptotic performance can be approached arbitrarily closely

with list sizes that are bounded by a constant, even as the lengtiere, in contrast to (16), the expectatiop. {-} is taken with

of a code grows beyond all bounds. respect to the true posterior distribution (47). While (49) gives
a natural optimality criterion for the computation of the multi-
APPENDIX plicity matrix, we shall see that the computation itself is likely
ON THE UNDERLYING PROBABILISTIC MODEL to be intractable.

. . ) - There are two sources of difficulty in performing the max-
In Section IV, in order to convert posterior probabilities (thﬁ“nization in (49). One of these has to do with the fact that
reliapility matrix II) into interpolatiion points (the multiplicity computing P*(z) is difficult, even for a single input vector
matrix M), we regard the transmitted codeword as a random__ (21,32, - 7y) € F. While Ze (z) andH?Zlﬂ(a:j,j)

vectorX = (X;,AX,,...,X,) € X" and use the following aree

probability distribution: asy to evaluate, it can be shown that computing48) for

an arbitrary reliability matridI and an arbitrary linear code

n is NP-hard. This difficulty, however, can be avoided as follows.
P(:l}'l,.’L'Q,...,.CUn):HPI‘(X]'ZLEJ'|yj:’yj) Let
j=1 n
n def P*(E) .
. U(x) = =1c(z II(x;, 7 50
j=1
. be a density function. Given a multiplicity matri¢, let us for-
wherey = (y1,12, ..., yn) €D" is the vector observed at the, .. jefine the expected score with respecito) as follows:
channel output (cf. (15) of Section IV). Recall that this distribu- y cet XP w pect1o) WS-
tion corresponds to the following scenario: a vectbis drawn Eo {Sn(X)} def Z Sar(z)¥(x)

uniformly at random from the spaé€; and transmitted over a
memoryless channel characterized by (6); thereupon the vector n
y €Q" is observed at the channel output. Up to certain nat- - Z ZM(‘”J'J)\I'@)' (51)
ural assumptions, this is indeed what happexsgeptthat the
transmitted codeword’ is drawn uniformly at random from
the codeC,(n, k) rather than the entire spaé€. Thus the Then, itis easy to see from (50) and (51) tBat {S,,(X)} and

a priori distribution of X is Pr(X = z) = Zc(z)/q¢", where Eg {Sy(X)} differ by a factor ofy that does not depend on the

zEX"

zeFy j=1
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multiplicity matrix M. Thus the knowledge of is not essential ¢ € C,(n, k) such thatd(c,y) < t. Let M = [c]. Itis easy to

for the computation ofirgmax in (49), and we have see that(M) = n, and saM € 9M(C) for C = n. Furthermore
Mopt(I1,€) = argmax ey Ep- {Su (X))} Eo{Su(X)} = ) (M, [a]) ¥(z)
= argmaxyseom(c)Ev{Sn(X)}.  (52) zex™ .
Unfortunately, the second difficulty in the optimization of (49) = Z ([c], [z]) H (z;, )
and (52) is inherent in the presence of the indicator function 2€C, (n,k) j=1
Zc(-) in both P*(-) and ¥(-). Specifically, we now show n
that given a polynomial-time algorithm for the computation =n HH(qJ)
of M,,:(IL,C) in (52), one could devise a polynomial-time j=1

algorithm for maximum-likelihood hard-decision decoding ofyhere the inequality follows by retaining a single term in the
Cy(n, k). If Cy(n, k) is a general linear code, the latter task ig,mmation over: € C,(n, k) that corresponds to = ¢. With

known [4] to be NP-hard. the reliability matrix given byil = +68(1— we further
More precisely, leyy be a fixed prime power and lel(-,-)  -onclude th);lt g Y= [g] ( [g])

denote the Hamming distance. Then the following decision

problem: Egv {Su(X)} =n H (cj, )
Problem: MAXIMUM- LIKELIHOOD DECODING J=1
Instance: Positive integers, k, t, an(n—k) x n matrix £ =ty sdey) > ntgt = 3

overf,, and a vectoy € Fy. where the last inequality follows from(c,y) < t andé <
uestion: Is there a vector € F” such thatl(c, y) < t ; _ G Y) S S €
QandHcT — 07 -1 (e:9) Therefore, if {H,y,t} is a “YES” instance of MXIMUM-

LIKeELiHOOD DECODING then {H,II,C, 3} is also a “YES”
was shown to be NP-complete by Berlekamp, McEliece, aiitstance of ®TIMAL MULTIPLICITY MATRIX.
van Tilborg [4]. Let@ denote the field of rational numbers. Now let {H,y,t} be a “NO” instance of MXIMUM- LIKELI-
In this appendix, we exhibit a polynomial transformation frormoop DEcoDING. Then,d(z,y) > t + 1 forall z € C,(n, k).
MAXIMUM- LIKELIHOOD DECODING to the following decision Observe that for any matrix/ € 9t(n) and any vector: € Fy

problem: we have(M, [z]) < (M, 1) < C(M) = n. It follows that
Problem: OPTIMAL MULTIPLICITY MATRIX L
Instance: Positive integers, k, andC, an(n—k) x n matrix Eof{Su(X)} = Y (M, [z]) [ 11z}, 9)
H overF, which defines a cod€, (n, k), agxn reliability z€C4(n,k) j=1
matrix Il over@, and a rational numbet. < Z net—tm1gttl
Question: Is there a matrix\/ € 9M(C) such that 2€C, (n.k)

Eo{Sum(X)} > B?

k 6
. . =q¢()f<p
It is easy to see that@IMAL MULTIPLICITY MATRIX is just €

a reformulation of the optimization problem (52) as a decisicr any M e 9M(n). Hence, if{H,y,t} is a “NO” instance
problem. Notice that this decision problem is not necessar§ MaxIMUM- LIKELIHOOD DECODING then {H,11,C,B} is

in NP, since given a putative solutiad € 97(C), there is o a “NO” instance of ®@TIMAL MULTIPLICITY MATRIX. O
obvious way to verify thaEy {Sr(X)} > 3 in polynomial _ o
time. It follows from Theorem 20 that solving the optimization

problem (52) for an arbitrary linear codg,(n, k) and an ar-
Theorem 20: OPTIMAL MULTIPLICITY MATRIX is NP-hard.  pitrary costC is NP-hard. It is possible to argue that the original
Proof: We reduce from MXIMUM-LIKELIHOOD DE- optimization problem (16) might be also NP-hard for arbitrary
CODING. Given aninstancgH, y, 1} of MAXIMUM- LIKELIHOOD  costs; nevertheless, Algorithm A solves this problem for certain
DECODING, we generate an instance ofPOMAL MULTIPLICITY  specific costs. However, in contrast to (16), the optimization in
MATRIX as follows. Fix a rational numbee such that (52)remains NP-hard even if we restrict the cost te n. Fur-
1>e>q"/(¢"+q—1)andlets = (1-¢€)/(qg—1). This thermore, as can be seen from the proof of Theorem 20, maxi-
choice ofe andé ensures that+ (¢ — 1)§ = 1 ande/6 > ¢*.  mizingE . {Sy;(X)} over all multiplicity matrices\/ such that
In terms ofe, 6, andy, we set (M, 1) = n (thisis equivalent to selectinginterpolation points
_ regardless of the cost) is still NP-hard. The analogous problem
= ely] +o(t—[y]) for Ep{Sn (&)}, whereP(-) is the distribution in (15) is trivial:
The fact thate + (¢ — 1) = 1 implies thatll is a valid re- it is solved by allocating all the points at the position of the
liability matrix. We take3 = ne™~'6%. Finally, we use the largest entry ifl.
same parity-check matrik, and set = n. This completesthe Finally, one might argue that while theP@™MAL MuULTI-
mapping of{ H, y, t} onto an instancéH, 11, C, 5} of OPTIMAL  PLICITY MATRIX problem has to do with arbitrary linear codes
MULTIPLICITY MATRIX. over F,, the codes involved in the optimization task (52)
Suppose thafH,y,t} is a “YES” instance of MxiMuMm- are Reed-Solomon codes and thus have a lot of structure.
LIKELIHOOD DECODING. Then there exists a codewordn this context, Theorem 20 shows that the computation of
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M, (I1,C) in (52) subsumes maximum-likelihood hard-deci- [13] —, “Applications of algebraic soft-decision decoding of Reed-
sion decoding of Reed—Solomon codes. No polynomial-time

algorithm for maximum-likelihood hard-decision decoding o

£4]

Reed-Solomon codes is presently known [28], and the problem

is generally considered to be hard.

[15]
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