Chapter 9: Regular Languages

A regular language is a language that can be defined by a regular expression. We study some properties of the class of regular languages.

Example: Every finite language is regular

Theorem: Let \(L_1 \) and \(L_2 \) be two regular languages. The languages \(L_1 + L_2, L_1 L_2, \) and \(L_1^* \) are regular languages.

Proof 1: If \(L_1 \) and \(L_2 \) are regular languages, then there exist regular expressions \(r_1 \) and \(r_2 \) that define them.

- The language associated with \(r_1 + r_2 \) is \(L_1 + L_2 \).
- The language associated with \(r_1 r_2 \) is \(L_1 L_2 \).
- The language associated with \(r_1^* \) is \(L_1^* \).

\(L_1 + L_2, L_1 L_2, \) and \(L_1^* \) can be defined by regular expressions. Thus, by definition, they are regular languages.

Proof 2: using Kleene’s theorem

Because \(L_1 \) and \(L_2 \) are regular languages, there are regular expressions \(r_1 \) and \(r_2 \) that define them. By Kleene’s theorem, there are transition graphs that accept them. We can transform these transition graphs into transition graphs with one start state and one final state. Let \(TG_1 \) and \(TG_2 \) be two transition graphs of this form that accept \(L_1 \) et \(L_2 \).
Chapter 9: Regular Languages.

A transition graph that accepts $L_1 + L_2$.

A transition graph that accepts $L_1 L_2$.

There exist transition graphs that accept $L_1 + L_2$, $L_1 L_2$, and L_1^*. Thus, there are regular expressions that define them (by Kleene’s theorem). Therefore $L_1 + L_2$, $L_1 L_2$, and L_1^* are regular languages (by definition).

Words that begin and end with the same letter. $a(a+b)^*a + b(a+b)^*b$

Words that contain aba. $(a+b)^*aba(a+b)^*$
Chapter 9: Regular Languages.

(a+b)*aba(a+b)* + a(a+b)*a + b(a+b)*b

Chapter 9: Regular Languages.

(a(a+b)*a + b(a+b)*b)((a+b)*aba(a+b)*)

Chapter 9: Regular Languages.

(a(a+b)*a + b(a+b)*b)*

/(a+b)*aba(a+b)*}
Chapter 9: Regular Languages.

Definition: If L is a language over the alphabet Σ, the complement of L, written L', is the language of all words on Σ that are not words in L. ($L' = \Sigma^* - L$).

Example:
$S = \{ a, b \}$
$L = \text{all words containing } aa$.
$L' = ?$

$b^*(abb^*)^*(a+ \Lambda)$

Remark: $(L')' = L$.

Chapter 9: Regular Languages.

Theorem: If L is a regular language, then L' is a regular language.

Proof: There exists a finite automaton that accepts L (by Kleene's theorem). All words accepted by this FA end in a final state. All words that are not accepted end in a state that is not a final state.

We reverse the final status of each state: all final states become non-final states, and all non-final states become final states.

The new finite automaton accepts exactly those words that are not in L. By Kleene's theorem, L' is regular.

Chapter 9: Regular Languages.

Example: $L = \{ aba, abb \}$

$L' = \Sigma^* - \{ aba, abb \}$
Chapter 9: Regular Languages.

Theorem: Let \(L_1 \) and \(L_2 \) be two regular languages. Then \(L_1 \cap L_2 \) is a regular language.

Proof:
\[L_1 \cap L_2 = (L_1' + L_2')' \]

If \(L_1 \) and \(L_2 \) are regular, then \(L_1' \) and \(L_2' \) are also regular. If \(L_1' \) is regular, then \(L_1' + L_2' \) is also regular. If \(L_1' + L_2' \) is regular, then \((L_1' + L_2')'\) is regular.

Thus, \(L_1 \cap L_2 \) is a regular language.

L_1: words with double a

L_2: words with an even number of a's

\[\text{aaa} \in L_1 \quad \text{aba} \in L_2 \]

L'_1

L'_2

Chapter 9: Regular Languages.

Theorem: Let \(L_1 \) and \(L_2 \) be two regular languages. Then \(L_1 \cap L_2 \) is also a regular language.

Proof: By constructive algorithm. There exist finite automata that accept \(L_1 \) and \(L_2 \) (by Kleene’s theorem). Recall the constructive algorithm for building a finite automaton for \(L_1 + L_2 \) from the finite automata for \(L_1 \) and \(L_2 \). We build the same finite automaton except for the final states. Each state in the new automaton represents a pair of states, one from each of the original finite automata, \((x, y)\). A state in the new machine is final if both of these states are final states in the original machines.