
Convolutional Factor Graphs as Probabilistic Models

Yongyi Mao
School of Information

Technology and Engineering
University of Ottawa

yymao@site.uottawa.ca

Frank R. Kschischang
Department of Electrical

and Computer Engineering
University of Toronto

frank@comm.utoronto.ca

Brendan J. Frey
Department of Electrical

and Computer Engineering
University of Toronto

frey@psi.toronto.edu

Abstract

Based on a recent development in the area
of error control coding, we introduce the no-
tion of convolutional factor graphs (CFGs) as
a new class of probabilistic graphical mod-
els. In this context, the conventional fac-
tor graphs are referred to as multiplicative
factor graphs (MFGs). This paper shows
that CFGs are natural models for probability
functions when summation of independent la-
tent random variables is involved. In par-
ticular, CFGs capture a large class of linear
models, where the linearity is in the sense
that the observed variables are obtained as a
linear transformation of the latent variables
taking arbitrary distributions. We use Gaus-
sian models and independent factor models
as examples to demonstrate the use of CFGs.

The requirement of a linear transformation
between latent variables (with certain inde-
pendence restriction) and the observed vari-
ables, to an extent, limits the modelling flex-
ibility of CFGs. This structural restriction
however provides a powerful analytic tool to
the framework of CFGs; that is, upon taking
the Fourier transform of the function repre-
sented by the CFG, the resulting function is
represented by a MFG with identical struc-
ture. This Fourier transform duality allows
inference problems on a CFG to be solved on
the corresponding dual MFG.

1 INTRODUCTION

Probabilistic graphical models are an effective and ef-
ficient methodology for the representation and inter-
pretation of statistical relationship and for statistical
inference and learning. Classically, popular choices
of such models are Bayesian networks (BNs) [1] and

Markov random fields (MRFs) [2]. For a set of random
variables XV := {Xi : i ∈ V } indexed by a finite set V ,
a BN uses a directed graph with vertex set V to repre-
sent the joint probability function 1 pXV

(xV) of these
random variables, in which pXV

(xV), with respect to
the graph, factors as

pXV
(xV) =

∏
u∈V

pXu|Xπ(u)
(xu|xπ(u)).

Here π(u) is the set of parents of vertex u on the graph,
and for any subset S ⊆ V , we have used XS to denote
the set of random variables {Xi : i ∈ S} and the corre-
sponding lower-cased symbol xS to denote the vector-
valued configuration that XS may take. An MRF on
the other hand uses an undirected graph representa-
tion for the joint probability pXV

(xV). That is, an
MRF represents pXV

(xV) as

pXV
(xV) =

1
Z

∏
C∈Q

φC(xC),

where Q is the set of maximal cliques of the graph,
φC(xC) is a positive function (known as the potential
function) on clique C, and 1/Z is a scaling factor.

Recently the notion of factor graphs [3], referred to
as multiplicative factor graphs (MFGs) in this paper,
has been introduced as a probability model. Given a
factorization of the joint probability function pXV

(xV)
into arbitrary functions, an MFG (see its definition in
Section 2) uses a bipartite graph to explicitly repre-
sent not only the variables but also the factors. More
recently, the framework of MFGs is further extended
to allow edges to be directed [4]. It is shown that this
extended notion of MFG unifies BNs and MRFs and
have advantages over both representations.

In this paper, staying with the undirected factor graph
formalism, we introduce convolutional factor graphs

1In this paper, we use the term “probability function”
in place of “probability mass function” and “probability
density function”.

(CFGs) as a new class of probabilistic graphical mod-
els. The foundation of this paper is presented in [5]
and [6], where a generalized notion of multi-variate
convolution and the notion of CFGs were presented in
the context of error correction coding.

In this paper, we focus on the aspect of using CFGs as
probability models. We show that CFGs become nat-
ural representations of probability distributions when
summation of independent latent random variables is
involved. In particular we show that summation of
independent latent variables is the necessary and suf-
ficient condition for the convolutional factorization of
the probability function of the observed variables.

As an example, we show that every multi-variate Gaus-
sian density factors convolutionally and therefore can
be represented by a CFG. More interestingly, in this
case, the structure of the CFG precisely corresponds to
the covariance matrix of the Gaussian density. In fact,
beyond Gaussian models, a large class of probability
models may have corresponding CFG representations.
To demonstrate this, we derive the CFG representa-
tion for the independent factor (IF) model.

In the context of probability models, the global
Markov property is known to hold on a MFG and on
a (positively constrained) MRF [7]. That is, for every
disjoint subsets XA, XB , XS of the random variables
on the graph, if XS separates XA from XB , then XA is
independent of XB conditioned on XS . On a CFG, we
show that a somewhat dual statement holds. That is,
for every disjoint subsets XA, XB , XS of the random
variables on the graph, if XS separates XA from XB ,
then XA is independent of XB marginally.

Similar to BNs and MRFs, CFGs have its limitation in
its modelling flexibility. More specifically, this limita-
tion is that the observed variables must be obtained as
a linear transformation of latent variables. In this re-
spect, CFGs are more restricted than BNs and MRFs.
This restriction however provides an extra structure to
the model so that powerful tools of the Fourier analysis
are applicable. That is, by taking the Fourier trans-
form of the function represented by a CFG, the re-
sulting function is readily represented by a MFG with
identical structure. As an example, this Fourier trans-
form duality allows inference problems associated with
a CFG model to be solved on the corresponding MFG
via the Fast Fourier Transform (FFT). This provides
a reduced computational complexity comparing with
solving the problem without identifying the convolu-
tional factorization of the probability function.

In Section 2, we review the generalized notion of con-
volutional factorization and the notions of CFGs and
MFGs, according to [6]. In Section 3, we develop the
general setting for which CFG models are naturally ap-

plicable. In Section 4, we discuss inference algorithms
based on CFG models.

2 FACTORIZATION AND FACTOR
GRAPHS

In this section, we summarize the results in [6] that are
necessary for this paper. Further details concerning
this section may be found in [6].

2.1 Convolutional Factorization

Let f(x1, x2) and g(x2, x3) be two functions. The con-
volution f ∗ g of f and g is a function involving the
union of their variables, defined as

(f ∗ g)(x1, x2, x3) :=
∑
y2

f(x1, x2 − y2)g(y2, x3).

Here we have assumed that the domain of the func-
tions is discrete; this definition can obviously be ex-
tended to functions defined on continuous domains, in
which summation is replaced with integration2. We
remark that this notion of convolution in fact general-
izes the conventional multi-variate convolution known
in the literature of multi-dimensional signal process-
ing. One may also interpret this notion of convolu-
tion as the conventional convolution with respect to
the common variables between the involved functions,
while treating other variables as the parameters of the
functions. We will also write (f ∗ g)(x1, x2, x3) as
f(x1, x2) ∗ g(x2, x3) to remind the readers of the vari-
ables of the original functions. Furthermore, if two
functions do not have variables in common, their con-
volution reduces to multiplication.

It can be shown that convolution according to this
definition is commutative and associative. This al-
lows us to write the convolution of arbitrary number
of functions in any order. In particular, we may use

∗∏
j=1...m

fj(xSj) to denote convolutional factorization

f1(xS1) ∗ f2(xS2) ∗ . . . ∗ fm(xSm
),

where xSj
is the set of variables involved in function

fj .

2.2 MFGs and CFGs

Now we define the two types of factor graphs.

2More rigorously speaking, as long as each variable
takes value from a locally compact abelian group, includ-
ing the fields of real and complex numbers, integers, finite
abelian groups, Euclidean n-space etc, one can define such
a notion of convolution.

x1 x2 x3

x4

f1 f2

f3

x5

Figure 1: The bipartite graph in Example 1.

A factor graph (G, ◦) is a bipartite graph G together
with a product operation ◦, which is either defined as
multiplication × or convolution ∗; the bipartite graph
G consists of two types of vertices, the set of function
vertices, representing a set of functions {fj : j ∈ J}
and the set of variable vertices, representing a set of
variables xV := {xi : i ∈ V }; each function fj takes a
subset xSj of variable set xV as its argument, and the
union

⋃
j∈J xSj of these subsets is xV ; if xi ∈ xSj , then

there is an edge connecting variable vertex xi to func-
tion vertex fj . The factor graph (G, ◦) then represents

the product
◦∏

j∈J

fj(xSj). If ◦ is defined as convolution

∗, the product is the convolutional product of these
functions and the factor graph (G, ∗) is said to be a
convolutional factor graph (CFG); if ◦ is defined as
multiplication ×, the product is the ordinary (multi-
plicative) product 3 of these functions and the factor
graph (G,×) is said to be a multiplicative factor graph
(MFG). An example should make this definition clear.

Example 1 The bipartite graph G in Figure 1 consists
of variable vertices x1, x2, x3, x4 and function vertices
f1(x1, x2), f2(x2, x3) and f3(x2, x4, x5)). Then asso-
ciating with G the multiplicative product operation ×
defines multiplicative factor graph (G,×), which repre-
sents function f1(x1, x2)f2(x2, x3)f3(x2, x4, x5); like-
wise, associating with G the convolutional product op-
eration ∗ defines convolutional factor graph (G, ∗),
which represents function f1(x1, x2) ∗ f2(x2, x3) ∗
f3(x2, x4, x5).

2.3 Duality

With the classic notion of convolution, it is well-known
that the Fourier transform of a convolutional product
is a multiplicative product and vice versa. This result,
known as the convolution theorem, in fact holds for this
generalized notion of convolution. More precisely, for a
set of functions {fj(xSj

) : j ∈ J}, let the Fourier trans-

3The notation
×Q

is then simply taken as
Q

.

form of fj(xSj) be f̂j(x̂Sj) for each j, then
∗∏

j∈J

fj(xSj)

and
×∏

j∈J

f̂j(x̂Sj
) are a Fourier transform pair4. It then

follows that for a given CFG (resp. MFG) representing
∗∏

j∈J

fj(xSj
) (resp.

×∏
j∈J

fj(xSj
)), by letting the variable

vertex indexed by i represent x̂i, function vertex in-
dexed by j represent f̂j , and the product operation be
defined as the “dual” operation × (resp. ∗), we arrive

at a MFG (resp. CFG) representing
×∏

j∈J

f̂j(x̂Sj
) (resp.

∗∏
j∈J

f̂j(x̂Sj)) up to scale. We call the original and the

resulting factor graph a pair of dual factor graphs.

Another important property of the Fourier transform
is the slice-projection (or evaluation-marginalization)
duality. That is, for a given Fourier transform pair
f(x1, x2) and f̂(x̂1, x̂2) and any fixed configuration
x1 of x1, f(x1, x2) and

∑
x̂1

f̂(x̂1, x̂2)〈x̂1, x1〉 are a
Fourier transform pair, where depending on the no-
tions of the Fourier transform, the term 〈x̂1, x1〉 may
have various forms. For example, for the Fourier trans-
form defined for functions on reals, 〈x̂1, x1〉 is ej2πx̂1x1 ,
and for the Fourier transform defined for functions on
{0, 1, 2, . . . , N − 1}, 〈x̂1, x1〉 is ej2πx̂1x1/N , etc.

3 CFGS AS PROBABILITY
MODELS

3.1 Modelling

It is well know that the summation of two indepen-
dent random variables results in a convolution of their
probability functions. That is, if independent ran-
dom variables X and Y have probability functions
pX(x) and pY (y) respectively and random variable
Z := X + Y , then the probability function pZ(z) of
Z is pX(z) ∗ pY (z). This result generalizes to multiple
random variables, as shown in Lemma 1.

Lemma 1 Let (X, U) and (V,Z) be two pairs of ran-
dom variables and (X, U)⊥⊥(V,Z). Suppose random
variable Y is defined as Y := U + V . Then the joint
probability function pXY Z(x, y, z) of (X, Y, Z) is

pXY Z(x, y, z) = pXU (x, y) ∗ pV Z(y, z) (1)

and the conditional probability function pY |XZ(y, x, z)
of Y conditioned on (X, Z) is

pY |XZ(y, x, z) = pU |X(y, x) ∗ pV |Z(y, z). (2)

4Depending on the notion of the Fourier transform, a
scaling factor may be necessary.

Proof:

pXY Z(x, y, z) =
∑
u,v

pXY ZUV (x, y, z, u, v)

=
∑
u,v

pXUV Z(x, u, v, z)pY |UV (y, u, v)

=
∑

(u,v):y=u+v

pXU (x, u)pV Z(v, z)

=
∑

u

pXU (x, u)pV Z(y − u, z)

= pXU (x, y) ∗ pV Z(y, z)

This proves (1). Noticing X⊥⊥Z, (2) can be proved
similarly. �

In this lemma, random variables U and V are under-
stood as latent or hidden random variables, which con-
tribute to random variable Y via summation. The
moral of this lemma is “hidden sum implies convolu-
tion”. Next lemma shows that the converse is also
true, i.e., “convolution implies hidden sum”.

We use the following short-hand notion in next lemma:
for an arbitrary function f(x, y), f(x,+) refers to∑
y

f(x, y).

Lemma 2 Let X, Y and Z be three random vari-
ables with joint probability function pXY Z(x, y, z) =
f(x, y)∗g(y, z) for some non-negative functions f(x, y)
and g(y, z). Then

1. pX(x) = f(x,+)P
x f(x,+) and pZ(z) = g(+,z)P

z g(+,z) ;

2. X⊥⊥Z; and

3. there exist latent random variables U and V such
that (X, U)⊥⊥(Z, V) and Y = U + V , where

pXU (x, u) =
f(x, u)∑
x,u f(x, u)

and

pV Z(v, z) =
g(v, z)∑
v,z g(v, z)

.

Proof:

pX(x) =
∑
y,z

pXY Z(x, y, z)

=
∑
y,z,u

f(x, y − u)g(u, z)

=
∑
z,u

f(x,+)g(u, z)

= f(x,+)
∑
u,z

g(u, z).

Since pX(x) is a probability function,
∑
x

pX(x) must

be 1. Then
∑
u,z

g(u, z) is necessarily 1/
∑

x f(x,+). Us-

ing the same argument for pZ(z), claim 1 is proved.

pXZ(x, z) =
∑

y

pXY Z(x, y, z)

=
∑
y,u

f(x, y − u)g(u, z)

=
∑

u

f(x,+)g(u, z)

= f(x,+)g(+, z)

=
f(x,+)∑
x f(x,+)

(
g(+, z)

∑
x

f(x,+)
)

= pX(x)pZ(z).

The last equality above is by claim 1 and the fact∑
u,z

g(u, z) = 1/
∑

x f(x,+) stated in proving claim 1.

This proves claim 2.

Now we construct random variables U and V such
that (X, U)⊥⊥(V,Z), pXU = f(x, u)/

∑
x,u f(x, u) and

pV Z = g(v, z)/
∑

v,z g(v, z). Construct random vari-
able Y ′ = U + V . By Lemma 1, we have

pXY ′Z(x, y′, z) =
f(x, y′) ∗ g(y′, z)∑

x,u
f(x, u)

∑
v,z

g(v, z)

= f(x, y′) ∗ g(y′, z)

That is, random variable Y ′ is Y , and we have proved
claim 3. �.

By the above lemmas, we have established a correspon-
dence between summation of latent random variables
and the convolutional factorization of the probability
function of the observed variables. Now we proceed
to give the general formalism of convolutional factor
graphs as probabilistic models.

Let U := {1, 2, . . . , |U |} be a finite set indexing
random variables XU . Suppose that U is parti-
tioned into m disjoint subsets U(1), U(2), . . . , U(m)
such that XU(i)⊥⊥XU(j) for every two distinct i, j ∈
{1, 2, . . . ,m}. Now re-partition the set U into K dis-
joint subsets, denoted by V (1), V (2), . . . , V (K) respec-
tively, where the re-partitioning needs to satisfy the
condition that if two distinct α and β belong to the
same U(i), they can not simultaneously belong to the
same V (l) for any l ≤ K − 1. That is, if α, β ∈ V (l)
for some l ≤ K − 1, then there is no i ∈ {1, 2, . . . ,m}
for which α, β ∈ U(i). Notice that this restriction does
not apply to the elements α, β ∈ V (K). Indeed as will
become apparent, the subset V (K) indexes random

variables in XU that are directly observed whereas ev-
ery other subset V (l), l ≤ K−1, indexes some random
variables in XU that are latent and will contribute to
the construction of another observed variable.

Now for each l ≤ K − 1, define random variable
X|U |+l :=

∑
α∈V (l) Xα. This constructs a set of

new random variables, each from a subset XV (l).
For notational simplicity, define mapping T : U →
{1, 2, . . . , |U |+ K − 1} by

T (α) =
{

α, α ∈ V (K)
|U |+ l, α ∈ V (l), l ≤ K − 1.

Denote by T (S) the image of any subset S of U under
mapping T , then we have the following the theorem.

Theorem 1 The probability function of random vari-

ables XT (U) is
∗∏

i=1...m

pXU(i)(xT (Ui)).

An extension of Lemma 1, the proof of this result
is omitted. This theorem suggests that a convolu-
tional factor graph can be constructed to represent
the the joint probability function pXT (U)(xT (U)) of
observed random variables XT (U). It is helpful to
first construct a so-called chain graph [7] to repre-
sent the underlying distribution of all random vari-
ables, including both observed and latent variables.
Create an undirected graph with m connectivity com-
ponents where the ith connectivity component, i =
1, . . . ,m, forming a complete subgraph, includes ver-
tices XU(i); for each l ≤ K − 1, create a new vertex
X|U |+l and connect every vertex in set XV (l) to vertex
X|U |+l with a directed edge (arrow pointing to X|U |+l).
These directed connections indicate specifically that
X|U |+l =

∑
α∈V (l) Xα. The resulting graph is then

the chain graph representing the joint probability func-
tion pXU∪T (U)(xU∪T (U)) of all variables. The CFG,
representing the probability function of all observed
variables only, consists of variable vertices XT (U) and
function vertices are pXU(i) for all i = 1, 2, . . . ,m, and
each function vertex pXU(i) connects to all variable ver-
tices in XT (Ui). Specifically note that instead of taking
some xα as a variable, function pXU(i) will take xT (α)

in place of xα to form the convolutional product. We
here give an example to illustrate this definition.

Example 2 Let {X1, X2}, {X3, X4, X5, X6}, and
{X7, X8, X9} be three sets of random variables,
where every two sets are independent. Let
X10 := X2 + X4 + X8 and X11 := X6 + X9.
The underlying joint probability function
pX1...X11(x1, x2, . . . , x11) of all variables is repre-
sented by the chain graph in Figure 2 (left). Treating
X2, X4, X6, X8, X9 as latent variables, the joint
probability function of X1, X3, X5, X7, X10, X11

X1

X3

X5

X7

X2

X4

X6

X9

X8

X10

X11

pX1X2

pX3X4X5X6

pX7X8X9

X1

X3

X5

X7

X10

X11

Figure 2: The chain graph (left) and CFG (right) of
Example 2. The empty circles denotes the latent vari-
ables.

equals pX1X2(x1, x10) ∗ pX3X4X5X6(x3, x10, x5, x11) ∗
pX7X8X9(x7, x10, x11) according to Theorem 1.
This gives rise to the CFG representation of
pX1X3X5X7X10X11 as of Figure 2(right).

3.2 CFGs of Gaussian Densities

Consider jointly Gaussian random variables
(Y1, Y2, . . . , Ym) with arbitrary mean vector and
covariance matrix C. As follows, we will first create
an undirected graph representing the structure of
the covariance matrix C. Let the graph consist
of m vertices, each representing a random variable
Yi, i = 1, 2, . . . ,m; vertex Yi and Yj are connected by
an edge if Cij 6= 0. This graph is also known as the
covariance graph (see, e.g., [8] and [9]) of the Gaussian
density. Let Q denote the set of maximal cliques of
the covariance graph. Then the following theorem can
be proved.

Theorem 2 The Gaussian density of (Y1, Y2, . . . , Ym)

factors convolutionally as
∗∏

C∈Q

fC(yC), where each fC

is a |C|-dimensional Gaussian density.

This result suggests that every multi-variate Gaussian
density has a convolutional factorization, and further
that the factorization structure corresponds precisely
to the covariance matrix. It then follows that the CFG
representation of a Gaussian density has a structural
correspondence with the covariance matrix. Due to
length constraint, we omit the proof of this result and
simply present an example.

Example 3 Let C be the covariance matrix of jointly
Gaussian random variables (Y1, Y2, . . . , Y6). Suppose

Y1

Y2

Y3

Y4

Y5

Y6

f{1,5}

f{2,3,5,6}

f{4,5,6}

Y1

Y2

Y3

Y4

Y5

Y6

Figure 3: The covariance graph (left) and the CFG
(right) of the Gaussian density in Example 3.

that C has the following structure

C =


× 0 0 0 × 0
0 × × 0 × ×
0 × × 0 × ×
0 0 0 × × ×
× × × × × ×
0 × × × × ×

 ,

where × denotes a non-zero element. Figure 3 (left)
shows the covariance graph, and Figure 3 (right) shows
the CFG representing the Gaussian density.

3.3 CFGs of IF Models

Summation of independent latent random variables
appear in a large class of probability models, beyond
those for Gaussian densities. We stress that in the
setup for CFG modelling, there is no restriction on
the functional forms of the involved probability func-
tions, while the only restriction is that the indepen-
dent latent variables contribute to forming the ob-
served variables via summation, or equivalently, via
a linear transformation. Here we give another exam-
ple, the CFG representation of the independent factor
(IF) generative model ([10] and [11]).

The IF model consists of a set of hidden source vari-
ables X1, X2, . . . , Xm, mutually independent, a set of
sensor variables Y1, Y2, . . . , YL, and an additive noise
vector (U1, U2, . . . , UL) independent of the sources; the
observed sensor vector is modelled generatively as

(Y1, . . . , YL)T = H (X1, . . . , Xm)T + (U1, . . . , UL)T ,

where H is an L × m matrix. Typically, noise
(U1, . . . , UL) is specified as jointly Gaussian with zero
mean. A judicious choice of the density pXi of each
source variable Xi, as shown in [11], is a mixture-
of-Gaussian density. Clearly, such a model general-
izes the models of factor analysis, principal component

X1 Xm

Y1 Y2 YL

(U1, . . . , UL)

Y1 Y2 YL

pU1,...,UL

pZ1,i,...,ZL,i
pZ1,m,...,ZL,m

Figure 4: The BN (top) and CFG (bottom) represen-
tation of an IF model.

analysis and independent component analysis. The BN
view of the IF model is shown in Figure 4 (top).

To construct the CFG representation of the IF model,
for each source variable Xi, we need to first intro-
duce a set of variables Zj,i := Hj,iXi, j = 1, . . . , L,
to represent the contribution of the ith source to
the jth sensor. This defines a joint probability
function pZ1,i...ZL,i

(z1,i, . . . , zL,i) of (Z1,i, . . . , ZL,i).
That is, pZ1,i...ZL,i

(z1,i, . . . , zL,i) evaluates to pXi(xi)
at (z1,i, . . . , zL,i) = (H1,ixi, . . . ,HL,ixi), and eval-
uates to 0, otherwise. Then by Theorem 1,
the joint probability function pY1,...,YL

(y1, . . . , yL)
of the sensor variables is pU1,...,UL

(y1, . . . , yL) ∗
∗∏

i=1...m

pZ1,i,...,ZL,i
(y1, . . . , yL), and can be represented

by the CFG in Figure 4 (bottom).

3.4 Marginal Independence on CFG Models

Proposition 1 On a CFG representation of the joint
probability function XV , if disjoint variable vertex sets
XA, XB and XS satisfy that XS separates XA from
XB, then XA⊥⊥XB.

This result is a straight-forward extension of Lemma
2 and we also omit its proof. Clearly, this property of
CFGs resembles, in a “dual” way, the global Markov
property of a MFG or MRF. That is, on a MFG, condi-
tioning on a cut-set induces independence, whereas on
a CFG, marginalization over a cut-set induces indepen-
dence. As will become more evident in next section,
marginalization and conditioning are in fact duals un-
der the Fourier transform.

4 INFERENCE

Given the probability function pXV
(xV) of a set of

random variables XV , an inference problem may be
regarded as various versions of the following generic
problem: for certain disjoint subsets M , E and R of
the index set V where M ∪E ∪R = V and for a given
configuration xE of variables xE , determine∑

xM

pXV
(xM , xR, xE).

That is, an inference problem typically involves ei-
ther the evaluation of a probability function or the
marginalization of a probability function, or both. No-
tice that marginalization is a necessary procedure of
computing any marginal distribution, whereas evalua-
tion is a necessary procedure of computing any condi-
tional distribution.

Since the popular choices of graphical models — BNs
and MRFs — can both be converted to a MFG, we will
first review the solution of the generic inference prob-
lem on a MFG. We then discuss solving the generic
inference problem on a CFG, which exhibits a clear
algorithmic symmetry with the MFG case.

4.1 Inference on MFGs

Let the MFG represent pXV
(xV) =

∏
j=1...m fj(xSj).

Then evaluating pXV
(xV) at xE = xE gives rise to the

function

pXV
(xM , xR, xE) =

∏
j=1...m

fj(xSj\E , xSj∩E),

where xSj∩E is the component of xE indexed by
Sj ∩ E. This essentially defines a new product func-
tion, where the factors are fj(xSj\E , xSj∩E), j =
1, . . . ,m. We may then represent this product by a dif-
ferent MFG with reduced structure, and the generic in-
ference problem becomes a pure marginalization prob-
lem. That is, we may without loss of generality con-
sider the generic inference problem on a MFG as com-
puting

∑
xM

FXV
(xV), for some function FXV

(xV) =∏
j=1...m fj(xSj).

This problem can be in fact solved by an algorithm on
the MFG, equivalent to the Elimination algorithm [12]
on a BN. We now describe this algorithm, which we
refer to as the MFG-Elimination algorithm. Select an
ordering of the elements in set M , and identify each
element of M by its order 1, 2, . . . , |M |. We will not be
concerned with the optimal ordering of the elements
of M , it is however preferable to let the indices of the
leaf vertices to appear first in the ordering. We will
use N (·) to denote the set of adjacent vertices of any

given vertex. The MFG-Elimination algorithm is then
an algorithm that successively reduces the MFG, given
as follows.

for i = 1 to |M |
{
fm+i(N (xi) \ {xi}) :=

∑
xi

∏
j:fj∈N (xi)

fj(xSj
);

remove {fj : fj ∈ N (xi)} and xi from MFG;
add fm+i to MFG;
}

At this end, the resulting MFG represents the desired
function

∑
xM

FXV
(xV). We remark that in the MFG-

Elimination algorithm, we in fact do not require that
FXV

be a probability function or an evaluated prob-
ability function, i.e., for an arbitrary function FXV

of
variables xV , we can use the MFG-Elimination algo-
rithm to solve for

∑
xM

FXV
(xV).

4.2 Inference on CFGs

Let the CFG represent pXV
(xV) =

∗∏
j=1...m

fj(xSj).

Then it can be shown, in a way similar to the proving
claim 2 of Lemma 2, that marginalizing pXV

(xV) over
xM gives rise to the function

∑
xM

pXV
(xM , xR, xE) =

∗∏
j=1...m

∑
xM∩Sj

fj(xSj).

This essentially defines a new convolutional product
function, where the factors are

∑
xM∩Sj

fj(xSj), j =
1, . . . m. We may then represent this product by a dif-
ferent CFG with reduced structure, and the generic
inference problem becomes a pure evaluation prob-
lem. That is, we may without loss of generality con-
sider the generic inference problem on a CFG as com-
puting FXV

(xV \E , xE), for some function FXV
(xV) =

∗∏
j=1...m

fj(xSj).

Similar to marginalization on a MFG, evaluation prob-
lem on a CFG can be solved by successively reducing
structure of the CFG. In what follows we describe what
we call the CFG-Elimination algorithm for this pur-
pose. Select an ordering of the elements in set E, and
identify each element of E by its order 1, 2, . . . , |E|.
Again, we prefer an ordering such that the indices of
the leaf vertices appear first in the ordering. The CFG-
Elimination algorithm is then given as follows.

for i = 1 to |E|
{

fm+i(N (xi) \ {xi}) :=
∗∏

j:fj∈N (xi)

fj(xSj
)

]
xi=xi

;

remove {fj : fj ∈ N (xi)} and xi from CFG;
add fm+i to CFG;
}

At this end, the resulting CFG represents the desired
function FXV

(xV \E , xE).

In fact one can show that this algorithm is identical
to representing the underlying distribution including
the latent variables by a MFG and following a certain
order to perform evaluation at a subset of observed ver-
tices and marginalization over all latent vertices. In-
deed, the CFG-Elimination algorithm is not the most
efficient way of computing FXV

(xV \E , xE), particu-
larly if each variable takes values from a large set of
configurations. Our description of CFG-Elimination
is mainly to demonstrate the algorithmic duality be-
tween marginalization problems and evaluation prob-
lem. Exploiting the evaluation-marginalization duality
and the convolution theorem of the Fourier transform,
a more efficient way for computing FXV

(xV \E , xE) can
be performed via the Fast Fourier Transform (FFT).
More specifically, note that the Fourier transform of
FXV

(xV \E , xE) is∑
x̂E

F̂ (x̂V)〈x̂E , xE〉 =
∑
x̂E

∏
j=1...m

f̂j(xSj
)〈x̂Sj∩E , xSj∩E〉.

That is, we can take the FFT of each convolutional
factor fj

5, define gj(x̂Sj) := f̂j(xSj)〈x̂Sj∩E , xSj∩E〉,
construct an MFG representing

∏
j=1...m gj(x̂Sj) and

compute
∑

x̂E

∏
j=1...m gj(x̂Sj

) on the MFG by the
MFG-Elimination algorithm. By taking the inverse
FFT of the resulting function we obtain the desired
function F (xV \E , xE). We note that the MFG repre-
senting

∏
j=1...m gj(x̂Sj) has precisely the same struc-

ture as the CFG representing F (xV). As is typically
expected with FFT based implementations, it can be
shown that using the MFG-Elimination algorithm via
the FFT, the computational saving for each computa-
tion of convolution 6 is by a factor of approximately
A/ log A, where A is the number of values that a vari-
able can take.

We remark that it is also possible to develop al-
gorithms for CFGs that are analogous to the Sum-

5More precisely, it is only necessary to take the “partial”
FFT for each fj(xSj) with respect to the non-leaf variables.
We here choose not to elaborate on this subtlety.

6When using the CFG-Elimination algorithm (or the
equivalent algorithms without using the CFG representa-
tion), convolution arises explicitly or implicitly when elim-
inating each non-leaf variable vertex and when computing
the function represented by the final resulting CFG.

Product or Junction Tree algorithm on MFGs. Here
we omit this discussion for simplicity.

5 CONCLUDING REMARKS

Building upon a previous work, this paper introduces
CFGs as a new class of probabilistic models. We show
that CFGs are natural representations of probability
functions of observed random variables which are ob-
tained as a linear transformation of a set of indepen-
dent latent random variables. Explicitly identifying
the convolutional factorization of the modelled proba-
bility functions, CFG models are facilitated with the
tools of Fourier analysis, which may provide conve-
nience for either analysis or computation.

References

[1] J. Pearl, Probabilistic Reasoning in Intelligent
Systems, Morgan Kaufmann, San Mateo, CA,
1988

[2] R. Kindermann and J. L. Snell, Markov Random
Fields and Their Applications, Providence, RI,
1980

[3] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger,
“Factor graphs and the sum-product algorithm,”
IEEE Trans. Inform. Theory, vol. 47, no. 2, pp.
498–519, Feb 2001

[4] B. J. Frey, “Extending factor graphs so as to unify
directed and undirected graphical models”, UAI
2003

[5] Y. Mao and F. R. Kschischang, “On factor graphs
and the Fourier transform,” in Proc. IEEE Int.
Symp. Inform. Theory 2001, Washington, D.C.,
Jun. 2001

[6] Y. Mao and F. R. Kschischang, “On factor graphs
and the Fourier transform,” accepted by IEEE
Trans. Inform. Theory, June, 2002

[7] S. L. Lauritzen, Graphical Models, Clarenton
Press, Oxford, 1996

[8] D. R. Cox and N. Wermuth, “Linear dependencies
represented by chain graphs,” Statistical Science,
8(3), 204–218, 1993

[9] M. Drton and T. S. Richardson, “A new al-
gorithm for maximum likelihood estimation in
Gaussian graphical models for marginal indepen-
dence,” UAI 2003

[10] B. S. Everitt, An Introduction to Latent Variable
Models. Chapman and Halll, London, 1984

[11] H. Attias, “Independent factor analysis,” Neural
Computation, vol. 11, no. 4, pp. 803–851, 1999

[12] N. L. Zhang and D. Poole, “A simple approach to
Bayesian network computations,” 10th Canadian
Conference on Artificial Intelligence, 1994

