
IEEE COMMUNICATIONS LETTERS, VOL. 11, NO. 4, APRIL 2007 343

Performance-Complexity Tradeoffs of
Raptor Codes over Gaussian Channels

Ketai Hu, Jeff Castura, and Yongyi Mao

Abstract— We investigate the performance-complexity trade-
offs of Raptor codes over Gaussian channels. Two different im-
plementations of the Belief-Propagation (BP) decoding algorithm
are considered, which we respectively refer to as “message-
reset decoding” and “incremental decoding”. We show that
incremental decoding offers great advantages over message-reset
decoding in terms of this tradeoff.

Index Terms— Raptor codes, performance-complexity tradeoff,
belief propagation, incremental decoding.

I. INTRODUCTION

THE invention of fountain codes [1], [2] has resulted
in reviving interest in incremental redundancy schemes

for communication under channel uncertainty. Remarkably,
fountain codes — consisting of LT codes [1] and Raptor
codes [2] — are shown to be capacity-achieving over unknown
erasure channels. Recently these codes are also shown to be
nearly capacity-achieving under other channel models such
as binary symmetric channels (BSC), AWGN and fading
channels [3]–[5]. In this paper, we investigate — under two
different decoding strategies — the tradeoffs between the
performance and decoding complexity of fountain codes,
particularly Raptor codes, over Gaussian channels. To date,
no results are available concerning performance-complexity
tradeoffs of fountain codes decoded over noisy channels (such
as BSC, AWGN, or fading channels). The two decoding
strategies we investigate are referred to as “message-reset
decoding” and “incremental decoding” respectively and we
show that incremental decoding offers significantly improved
performance-complexity tradeoff.

II. SYSTEM MODEL AND TWO DECODING STRATEGIES

We consider communication over a standard AWGN chan-
nel using Raptor codes under BPSK modulation. A Raptor
code is a linear code constructed by the serial concate-
nation of a high-rate LDPC code with an LT code. The
LDPC code encodes a k−bit message (a1, a2, . . . , ak) to
a k′-bit vector (b1, b2, . . . , bk′), and the LT code encodes
the vector (b1, b2, . . . , bk′) to an infinite binary sequence
(c1, c2, . . .) by multiplying (b1, b2, . . . , bk′) with a sparse
randomly-constructed generator matrix of k rows and infinite
number of columns, and the sequence (c1, c2, . . .) is trans-
mitted sequentially through the channel. k′ = 10, 000 and
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Fig. 1. The factor graph of a Raptor code. White circles represent LDPC
codeword bits, white boxes represent the parity checks of the LDPC code,
shaded circles represent the Raptor codeword bits, and shaded boxes represent
LT code parity checks. The graph shows a Raptor code truncated to length
n.

degree sequences for the LDPC code and LT given in [4]. The
canonical representation of Raptor codes are factor graphs [6].
An example of such a factor graph, truncated to length n and
to be referred to as Gn, is shown in Fig. 1.

The decoder attempts decoding at a prescribed set of times
{n1, n2, . . .}, with n1 < n2 < . . .. At the lth decoding
attempt, it performs BP decoding on factor graph Gnl

by
iteratively passing the LLR (log-likelihood ratio) messages,
where in each iteration all variables pass messages followed by
all checks passing messages. In the lth decoding attempt, if the
decoder is confident that the transmitted message is decoded,
it sends an ACK through a noiseless feedback channel to
terminate the transmission of the current codeword; otherwise
it waits until the next ((l + 1)th) decoding attempt to decode
again. We assume that a small number of CRC bits are em-
bedded in message (a1, . . . , ak), and that the decoder knows
whether it has decoded correctly at any decoding attempt
(the resulted slight rate loss is ignored in the forth-coming
discussion). For simplicity, we only consider that all decoding
attempts are uniformly spaced in time by T channel uses,
starting from some n1 (such that k/n1 is slightly higher than
the channel capacity).

Under the BP rule, in the initialization step (namely, when
messages are passed from variables to checks in the first
iteration) of the lth decoding attempt, every message passed
from a codeword variable ci to its connected check on Gnl

is computed as log(p(yi|ci = 0)/p(yi|ci = 1)), where yi is
the noisy observation of ci. Two different schemes may exist
for initializing messages passed from variables (b1, . . . , bk′) to
their connected checks: in a usual and default strategy which
we refer to as “message-reset” decoding, these messages are
initialized to 0; in an alternative initialization strategy which
we call “incremental decoding”, at the lth decoding attempt,
a message passed from a variable in (b1, . . . , bk′) is set to the
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Fig. 2. Word error rate for message-reset decoding over capacity-0.5 channel
with various choices of L.

corresponding message computed at the end of the (l − 1)th

decoding attempt if the edge is contained in graph Gnl−1 , and
set to 0 otherwise. Simply speaking, message-reset decoding
at every decoding attempt starts “from scratch” without
making use of the soft information produced in the previous
decoding attempt, whereas incremental decoding continues
from the decoding results of the last decoding attempt. The
idea of incremental decoding being under the guise of various
literature, this is however the first time it is presented in the
context of decoding fountain codes.

Details of the message-passing rules follow the standard BP
algorithm (see, e.g., [6]). We assume that at every decoding
attempt the decoder will perform L BP iterations for some pre-
determined L, with only one exception with the first decoding
attempt of incremental decoding, where the number of BP
iterations is fixed to 100.

For each codeword transmission, we define the realized rate
by k/n, where n is the time of the final decoding attempt
at which the codeword is successfully decoded. We then
evaluate the performance of two decoding strategies using
average realized rate (over all codeword transmissions). The
complexity of decoding schemes is evaluated by the total
number of BP iterations needed to decode a word (across all
decoding attempts) on average.

Intuitively, one may see that as we decrease T and L simul-
taneously in incremental decoding, there is an opportunity for
it to out-perform message-reset decoding for the same com-
plexity. This is because re-calculation of the same messages is
avoided with incremental decoding, and in addition, there is a
possibility for channel information to propagate much farther
in the graph even with very small value of L, as long as T is
also made sufficiently small.

III. SIMULATION RESULTS

We simulated both message-reset decoding and incremental
decoding with various respective settings of (T,L) and over
channels with capacity 0.25, 0.5, and 0.75 bits/channel use
respectively. Following [4], we use a Raptor code construction
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Fig. 3. Word error rate for incremental decoding over capacity-0.5 channel
with various settings of (T, L).
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Fig. 4. Complexity vs average realized rate for incremental decoding and
message-reset decoding over channel with capacity 0.75.

with k = 9, 500, k′ = 10, 000 where the outer LDPC code
has 4-regular left-degree distribution and Poisson right-degree
distribution, and the LT code has degree distribution given by

Ω(x) = 0.007969x + 0.493572x2 + 0.166220x3

+0.072464x4 + 0.082558x5

+0.056058x8 + 0.037229x9

+0.055590x19 + 0.025023x65

+0.003135x66.

For message-reset decoding, as the choice of decoding inter-
val T only affects the “resolution” of realized rates, we fix T as
100, following [5]. We then investigate the performance of the
code, under this choice of T , for various values of L. It appears
that L = 100 gives practically the “optimal” performance, and
that the performance gain becomes negligible as we further
increase L. This may be seen in Fig. 2, where the word error
rate (WER) is plotted against R−1 for channel with capacity
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Fig. 5. Complexity vs average realized rate for incremental decoding and
message-reset decoding over channel with capacity 0.25.

0.5 bits/channel use — Here for a given value of R, WER is
defined as the probability that the successful decoding does
not occur before k/R channel uses.

For incremental decoding, we observe that for all channels
and all parameter settings of (T,L), the performance is
primarily governed by the ratio T/L and that as long as
the ratio T/L is kept fixed, the performance of incremental
decoder is virtually independent of T or L alone. For example,
over the channel with capacity 0.5 bits/channel use, this is
demonstrated in Fig. 3. We thus choose L = 1 for incremental
decoder to minimize the number of BP iterations at each
decoding attempt.

Figures 4 and 5 plot the tradeoffs between decoding

complexity and average realized rate achieved respectively
by message-reset decoding and incremental decoding over
channels with capacity 0.75 and 0.25. It is evident that signifi-
cantly improved performance-complexity tradeoff is seen with
incremental decoding. Depending on the targeted performance,
50−80% reduction of decoding complexity is achievable with
incremental decoding compared with message-reset decoding.
Similar phenomenon is observed for channel with capacity
0.5. We note that this improvement of performance-complexity
tradeoff appears more pronounced for poorer channels.

IV. CONCLUSION

In this paper, we show that over Gaussian channels, incre-
mental decoders provide significantly improved performance-
complexity tradeoff over message-reset decoders. We believe
that this result to a large extent holds true for fading channels,
promising Raptor codes with incremental decoding as an
appealing solution for practical communication under channel
uncertainty.

REFERENCES

[1] M. Luby, “LT codes,” in Proc. 43rd Annual IEEE Symp. on the Found.
of Comp. Sci. 2002, pp. 271–280.

[2] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, June 2006.

[3] O. Etesami, M. Molkaraie, and A. Shokrollahi, “Raptor codes on sym-
metric channels,” in Proc. IEEE Int. Symp. on Inform. Theory 2004, p. 38.

[4] R. Palanki and J. S. Yedidia, “Rateless codes on noisy channels,” in Proc.
IEEE Int. Symp. on Inform. Theory 2004, p. 37.

[5] J. Castura and Y. Mao, “Rateless coding over fading channels,” IEEE
Commun. Lett., vol. 10, no. 1, pp. 46–48, Jan. 2006.

[6] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, Feb. 2001.


