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We have developed an integrated suite of algorithms,
statistical methods, and computer applications to support
large-scale LC-MS-based gel-free shotgun profiling of
complex protein mixtures using basic experimental pro-
cedures. The programs automatically detect and quantify
large numbers of peptide peaks in feature-rich ion mass
chromatograms, compensate for spurious fluctuations in
peptide signal intensities and retention times, and reliably
match related peaks across many different datasets. Ap-
plication of this toolkit markedly facilitates pattern recog-
nition and biomarker discovery in global comparative pro-
teomic studies, simplifying mechanistic investigation of
physiological responses and the detection of proteomic
signatures of disease. Molecular & Cellular Proteomics
3:984–997, 2004.

Protein expression profiling is the study of the key func-
tional molecules—the proteins—present in a biological sys-
tem. In practice, it involves determining the identities, abun-
dance, and post-translational states of the myriad of proteins
present at specific time points within the life cycle of an
organism (1). Because cells respond to physiological cues
and environmental perturbations, the proteome serves as a
unique and informative “readout” of phenotypic state (2). By
providing an overview of entire biochemical pathways, expres-
sion profiling complements and extends traditional single mol-
ecule analyses in the generation of testable hypotheses regard-
ing the biological roles of proteins in health and disease (3).

Many of the successes of therapeutic intervention have
evolved from improvements in the ability to diagnose, stage,

and stratify subgroups of patients who may respond differ-
ently to various management strategies (4). Despite these
advances, the treatment of many diseases, such as cancer
and cardiovascular disease, still suffers from the fact that
most patients present at late stages of illness. Earlier detec-
tion of pathology is highly beneficial to patient outcomes (5),
yet there are few effective diagnostic tools for recognizing
early stage disease or prognostic tools for identifying those at
high risk of dying or being nonresponsiveness to therapy (6).
Development of satisfactory therapeutics is also hampered by
a lack of informative bioassays (6). As a result, biological
markers are urgently needed to improve the efficacy of clinical
intervention, the reliability of clinical trials, and the validation
of leads and targets (3, 6).

DNA microarrays are commonly used to detect differences
in gene expression between different physiological states (7),
including global changes in mRNA abundance across repeat
experiments, distinct experimental perturbations, discrete
time points, or large patient cohorts (7). Pattern recognition
algorithms can then be applied to sort and classify samples
based on their expression profiles (8). Nonetheless, it is likely
that pathophysiological mal-adaptations associated with
common pathologies, such as diabetes and cancer, are more
accurately reflected in the proteomic patterns of disease-
affected tissues (3), especially in samples with little messen-
ger RNA (e.g. serum) (9).

To date, most clinically useful protein biomarkers have ei-
ther been found serendipitously or through limited candidate
evaluation based on hypotheses regarding disease action (3,
10). The lack of effective generic procedures for routinely
detecting differences in global protein patterns across many
different samples hinders the discovery of new biomarkers (3,
5). This constraint is particularly apparent in a clinical setting
(5, 11), where specialized analytical procedures are often
required to derive useful qualitative and quantitative informa-
tion from the minuscule amounts of protein typically found in
patient specimens, such as a biopsy. Furthermore, while sen-
sitive immunoassays can be used to prospectively validate a
biomarker, they are generally not well suited to the discovery
of new biomarkers (3).
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MS has emerged as a key enabling technology for protein
expression profiling (1, 12). Recent ground-breaking studies
have demonstrated the utility of combining MS-based profil-
ing and computer-based pattern recognition as a means of
detecting proteomic signatures of cancer in blood (13, 14).
However, the relatively simple MS instrumentation used in
these pioneering studies was biased toward the detection of
low molecular mass proteins (13). Moreover, it did not allow
for ready protein identification, which is critical if such biomar-
kers are to form the basis of a simplified, widely adopted
diagnostic (5, 10). Reliable methods for determining both the
identity and quantity of large numbers of proteins across
many different clinical samples are therefore urgently needed to
test and prospectively validate the hypothesis that compensa-
tory responses to disease are reflected by changes in the pro-
teomic patterns of blood or tissue (10, 15). Moreover, there is a
parallel need to develop rigorous statistical methods to evaluate
the significance of any differences detected (16). This is partic-
ularly true of global proteomic studies subject to numerous
sources of variation, both experimental and biological in origin.

Gel-free protein profiling procedures coupling capillary-
scale HPLC to data-dependent MS/MS (LC-MS) present an
exciting new paradigm for proteomic screening (1, 12). In
particular, multidimensional protein identification technology
(17, 18) and isotope-coded affinity reagents (19) now allow for
the “shotgun” profiling of hundreds of proteins in a single
experiment, albeit with a significant expenditure of time and
effort. The clinical impact of these methods has been limited
to date (3), however, in part due to problems associated with
the reproducibility of LC-MS (20, 21), as well as to difficulties
in extracting clinically relevant information from the limited
number of samples that can practicably analyzed using these
specialized methods (16).

In an effort to improve the reliability of LC-MS-based pro-
filing studies, Smith and colleagues (22) have reported the
utility of advanced equipment, FT-ICR MS and HPLC pumps
capable of sustained performance at �10,000 psi. While this
strategy circumvents many of the problems associated with
traditional profiling procedures, it relies on technologies that
are not widely available to the broader biomedical community.
Moreover, it does not address fundamental issues concerning
the statistical evaluation of multivariate proteomic datasets for
the purpose of biomarker discovery (16).

Becker and colleagues (20) recently introduced an alterna-
tive computational method for detecting differential protein
abundance by LC-MS without the need for isotopic labeling or
advanced instrumentation. Their approach relies on the
roughly linear relationship of MS signal as a function of pep-
tide ion concentration. Proprietary data processing algorithms
were then used to track quantitative variation in peptide signal
across different LC-MS datasets. A key step in minimizing
sample dispersion was the use of a “time wrapping” align-
ment algorithm to correct for spurious deviations in recorded
ion maps, resulting in modest (�25%) coefficients of variation

across integrated peak intensities. Significant computational
cost was observed with increasing sample complexity (20),
restricting the effectiveness of this first-generation platform
for pattern recognition across multiple complex proteomic
datasets (10, 15, 20, 23, 24).

Experimental repetition, pattern recognition, and mathe-
matical algorithms can minimize the effects of unwanted noise
and spurious signal fluctuation (15, 25). Here, we report the
development of a more advanced generation of computer
algorithms, statistical data-mining procedures, and software
built upon these principles that greatly facilitate large-scale
protein expression profiling of mammalian tissue samples
using basic gel-free shotgun profiling procedures and stand-
ard LC-MS instrumentation. We show that this informatics
toolkit allows for systematic global comparison and classifi-
cation of complex tissue proteomic samples, speeding dis-
covery of biologically relevant proteomic biomarkers.

EXPERIMENTAL PROCEDURES

Programming and Data Pre-processing

The software suite encompasses a set of integrated modules (de-
scribed below) written in Fortran that produce interlinked data tables.
A high-level schematic of the program workflow, highlighting key
functionalities (algorithms and scripts) of the platform, is provided in
Supplemental Fig. S9. Plots were prepared using Microsoft Excel.

Signal Filtering Algorithm

After conversion of the raw LC-MS data files to text format, a Perl
script is used to parse out all irrelevant MS/MS scan data. Peak m/z
ratios in the retained scans are rounded off to the closest integer and
binned (�0.5 Th).

Applying the M-N rule—The program processes individual nominal
m/z ion traces {Zi} (where Zi is the intensity on the ith scan header, and
m/z is fixed) and computes a robust center, C. We suggest C � 30%
of the trimmed mean of {Zi}, although C � median of {Zi} produces
reliable results. The data are smoothed using moving averages. That
is, for a given fixed m/z slice, the feature intensities are transformed
by averaging over a fixed window of five consecutive scans. Next, for
predefined constants M and N, the algorithm extracts only those
features of Zi greater than M*C for N observations in a row. For
example, if C � 3,000, and the M-N rule is set to 5–3, we would
declare Zi a pixel if Zi–1, Zi, and Zi�1 are all larger than 15,000 (i.e. the
ion signal intensity was �5*C for at least three scans in a row). Finally,
for a declared constant, Li � 2i–11,000, i � 1, . . . 5, a set of M-N
constants (rules) producing Li pixels are chosen.

The M-N computation scales linearly with the number of experi-
ments, and application of the algorithm (five levels per analysis, with
each level taking �1 min of CPU time) is generally not a limiting factor.

Normalization—A basic form of data normalization is carried out by
a two-step mechanism. First, before application of the M-N rule, the
feature intensities of individual datasets are transformed into an inte-
ger (ranging between 1–10,000 arbitrary units) by dividing all feature
intensities with a constant, K. The constant, K, is chosen as the
minimum value such that the total number of features with intensities
larger than K*10,000 equals 100. In other words, there are only 100
features with intensities above the cut-off value of 10,000. The sec-
ond mechanism is designed to detect a potential normalization prob-
lem. It monitors both the K constants and the M-N rules produced for
each corresponding pamphlet, and issues an alarm (error message) if
these (feature intensities and pixel count) differ for more than 20%. No
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error messages were generated for any of the datasets reported in
this study.

Evaluating System Stringency—Generally, the first scans acquired
during LC-MS consist of noise (assuming no sample bleed-through).
Thus, by concatenating the first �10% of total acquired scans ob-
tained from 10 independent LC-MS analyses of a yeast cell tryptic
digest, we constructed a virtual experimental dataset consisting en-
tirely of nonpeptide ion noise. We then evaluated the performance
and sensitivity of various elaborations of the M-N rule with each of the
genuine LC-MS datasets versus the noise dataset alone. As seen in
Table I below, the M-N rule approach proved to be highly stringent.
Even a liberal Level 3–3 threshold, which extracts �11–16,000 fea-
tures on average from each of the peptide profiles, resulted in detec-
tion of a few spurious peaks in the control dataset (i.e. only 34
false-positives satisfying the rule detected).

Peak Detection Algorithm

Basic Extraction Principle—All adjacent neighboring (touching) fea-
tures (pixels) are grouped and assigned the same peak ID.

Peak Extraction Algorithm—The algorithm proceeds in an iterative
stepwise manner, starting from Level 1 (1,000 pixels) using the basic
extraction principle. Each distinct peak (defined by discrete scan
headers and m/z) is assigned a unique ID. Next, the algorithm pro-
gressively adds features from successive levels (Level 2, then 3, and
so on). If these added features overlap with more than one peak, the
groupings are split (IDs reassigned) such that, at most, only a single
peak is retained from a previous level. That is, the overlapping fea-
tures are bisected at each additional level by computing a discrimi-
nating line that separates (and hence preserves) the original peaks.

Peak Alignment Algorithm

Because a pamphlet can be represented as a collection of pixels
with X and Y coordinates, where X is the scan number and Y the
nominal m/z (for the alignment problem, we need not consider inten-
sity values), we let P1 � {Xi,1,Yi,1}i�1

L1 and P2 � {Xi,2,Yi,2}i�1
L2 formally

represent two different pamphlets. A relatively simple but robust
measure of similarity between two datasets (Matching) is then calcu-
lated based on the percentage feature (pixel) overlap, defined as:

Matching �P1 , P2� � max�L1 , L2�
�1�

i�1

L1 �
j�1

L2

1Xi,1�Xj,21Yi,1�Yj,2

Given a smooth increasing function, F(X,Y), we let P̃2 �
{F(Xi,2,Yi,2),Yi,2}i�1

L2 serve as a time-transformed second pamphlet. The
alignment problem now reduces to finding the function, F, that max-
imizes Matching(P1,P̃2). We considered only functions of the form

F�x, y� � �
j�1

D �
i�1

E

�Ai, jx � Ci, j�1ai�1�x�ai 1bj�1�y�bj

where Ai,j and Ci,j are chosen such that �F(x1,y) – F(x2,y)�� K1�x1 – x2�
and �F(x,y1) – F(x,y2)�� K2�y1 – y2�, with Lipschitz constants 0.9 � K1 �

1.1 and –0.05 � K2 � 0.05. The partitions {ai}i�1
E and {bj}j�1

D were
uniform, while constants D and E were set as 5 and 6, respectively.
The optimization now reduces to finding the optimal values for Ai,j and
Ci,j. Accelerated Random Search (26) was the optimization schema of
choice, because it is robust and easy to implement. As a further
measure of peak matching, a final “wobble” function is applied
wherein a peak is allowed to move (�1–2% of total scan headers) in
order to find the nearest adjacent peak in a different experimental
dataset. Generally, even for complex mixtures and higher level pam-
phlets, there is an extremely low probability that there will be two (or
more) peaks exactly equidistant. If that happens, the software will
pick one (randomly) and an alarm (error message) is produced (we
have rarely seen this form of error).

The alignment algorithm is computationally intensive and scales
with the square of the number of experiments (e.g. pair-wise dataset
matchings). Sufficient RAM is therefore suggested to carry out the
most demanding calculations in memory.

Peptide Quantitation

A peptide quantitation module processes input LC-MS datasets
and outputs signature expression profiles, along with a measure of
statistical variation. Peak integration is performed by summing the
intensities of grouped features across adjacent MS scans recorded in
full scan mode.

Protein Sample Preparation

Human serum was prepared according to standard practice. Puri-
fied human heart troponin complex was obtained from a commercial
source. For the mouse protocol, we removed chow from the fasted
mice in the morning and sacrificed all mice 24 h later. The strain used
(27) was an inbred cross of C57BL6 	 129. Liver extract were pre-
pared as reported by Kislinger et al. (28). Protein fractions were
precipitated, solubilized in urea, resuspended in 100 mM NH4HCO3

with 1 mM CaCl2 (pH 8.5), and digested with Poroszyme trypsin beads
(Applied Biosystems, Foster City, CA). The resulting peptide mixtures
were solid phase extracted with SPEC-Plus PT C18 cartridges (Ansys
Diagnostics, Lake Forest, CA) and stored at �80 °C until further use.
Synthetic peptides were obtained from Sigma Aldrich (St. Louis, MO).

LC-MS Analysis

Peptide mixtures were subjected to capillary-scale LC-MS using a
quaternary HPLC pump coupled online to an LCQ DECA ion trap MS
(Thermo Finnigan, San Jose, CA) essentially as described (29). Briefly,
a fused-silica microcolumn (100 �m i.d. 	 365 �m o.d.) was pulled
with a Model P-2000 laser puller (Sutter Instrument Co., Novato, CA)
and packed with �5 cm of 5-�m C18 reverse-phase material (Zorbax
XDB-C18; Agilent, Palo Alto, CA). After loading, the column was
placed in-line with the ion source and the peptides eluted with a linear

TABLE I
Evaluation of the number of features (pixels) extracted using a given M-N rule

M-N
Exp.a

Noiseb

1 2 3 4 5 6 7 8 9 10

9–6 724 763 786 941 656 647 486 680 574 414 0
6–9 461 537 619 655 480 439 336 428 394 270 0
6–4 3,608 3,730 3,926 3,995 3,015 2,830 2,301 3,057 2,818 2,708 0
3–3 15,595 16,606 16,769 16,570 13,247 11,250 13,691 14,122 11,572 13,040 34

a Exp. � genuine protein sample experimental LC-MS dataset.
b Noise � control sample.
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gradient [100% buffer A (5% ACN, 0.02% heptafluorobutyric acid,
0.5% acetic acid) to 80% solvent B (100% ACN) over 45, 60, or 90
min] at a tip flow rate of �0.3 �l/min using a split line. Eluting peptide
ions were analyzed with alternating MS modes, using a full scan mass
range of 400–1,600 m/z followed by data-dependent CID. A dynamic
exclusion list was used to limit collection of redundant CID spectra.

Protein Identification

Peptide fragmentation product ion spectra were sequence-
mapped against a database of nonredundant protein sequences
(Swiss-Prot) using the SEQUEST software algorithm (30) running on a
multiprocessor computer. The probability-based evaluation algorithm
STATQUEST (28) was used to filter all putative matches based on a
�95% likelihood of predicted accuracy. Functional annotation was
obtained from Swiss-Prot.

RESULTS

In a typical LC-MS-based profiling experiment, peptide
mixtures derived from protein digests are fractionated using a
chromatography column packed with reverse-phase media
and electrosprayed into an online MS/MS instrument. In data-
dependent experiments, the instrument alternatively records
the signal intensities, m/z ratios, and retention times of all of
the detectable eluting peptides, as well as the fragmentation
pattern of individual peptides subject to CID. The recorded ion
peak intensities reflect intrinsic electrochemical properties of
a peptide (31) and its relative concentration (20, 32). Peptide
sequence can often be deduced by database searching of the
daughter ion spectra (1, 12).

Modern LC-MS systems can resolve hundreds of peptides
(1, 12). A typical dataset, consisting of a multiplexed stream of
co-eluting ion peaks (or ion map) acquired on a quadrupole
ion-trap, is shown in Supplemental Fig. S1. We refer to such
data as an empirical profile. Inspection of representative total
ion chromatograms demonstrates the general reproducibility
of LC-MS (Supplemental Fig. S2). Nonetheless, even under
controlled conditions (20, 22), both stochastic system per-
formance variation and chemical and electronic noise can
affect the relative position, width, amplitude, and shape of
individual peaks (Supplemental Fig. S3). We refer to this peak
artifact as drift and distortion.

Extracting Quantitative Information from LC-MS Datasets

An effective way for enhancing signal-to-noise is by per-
forming repeat analyses (25). The challenge, then, in profiling
experiments is to detect related peaks across different data-
sets, despite peak drift and distortion. Sophisticated filtering
techniques, such as time series, Fourier transform, expecta-
tion-maximization, and certain pattern recognition algorithms
(25), can be challenging to implement in an effective and
practical manner (D.R. and Y.M., unpublished observations).
Hence, we chose to develop robust, assumption-free, thresh-
old-like data filtering algorithms for detecting real differences
in peak number and intensity, yet that would not be overly
sensitive to the effects of spurious noise (25).

Step 1: Data Filtering and Signal Extraction—The key task is
to reliably extract genuine signal, representing individual pep-
tides, from large collections of interpolated MS full scans. To
reduce noise, we created a filtering algorithm (see “Experi-
mental Procedures”) to pre-process the spectra, binning (by
nominal m/z) and smoothing the data using “moving aver-
ages.” Any signal above a fixed threshold, M�Tm (where Tm
represents the centroid “trimmed mean” intensity and M a
pre-defined coefficient), for N consecutive scans is recorded
as a feature in a data matrix, wherein the x coordinate stores
the scan number, the y coordinate the nominal m/z, and the z
coordinate the recorded ion intensity. We refer to this matrix
as a data pamphlet.

A feature extraction algorithm is then used to select an
optimal set of (M,N)i rules to acquire a predefined series of Li

features for a geometrically increasing sequence, Li � 2i–1

1,000. [Pamphlets with Li features are referred to as Level i
pamphlets.] The algorithm starts conservatively, extracting
the most prominent ion features first, and then progressively
adding features until the cutoff is met. Statistical analysis (see
“Experimental Procedures”) suggests [M � 3,n � 3] as a
generally acceptable lower threshold, resulting in many dis-
crete features (depending on sample complexity) with little
specious background. Examples of Level 5 and 2 pamphlets
(16,000 and 2,000 features), generated by LC-MS analysis of
a yeast cell extract, are shown in Fig. 1, a and b, respectively.
Despite evidence of crowding, higher resolution “zoom in”
reveals good peak discrimination (Fig. 1c).

Theory and empirical evidence suggest that peak intensities
are not independent, but rather can be negatively correlated
due to ion-ion interactions leading to signal suppression (33).
This effect is often pronounced with contaminants such as
detergents or polymers that perturb ionization efficiency and
are manifested by prominent vertical “drop-out” strips in a
pamphlet (Supplemental Fig. S4a). Because such suppres-
sion can lower median scan feature intensities (Fig. S4b),
such artifacts can be corrected using adjacent scan median
values (Fig. S4c). However, since gross ion suppression is
nearly always related to sample contamination, it may be pref-
erable to declare an affected pamphlet invalid and repeat the
analysis.

Step 2: Peak Definition—Global proteomic studies depend
on the comprehensive accounting of peptide patterns. We
therefore developed a contour detection algorithm, based on
established boundary detection and integration techniques
(see “Experimental Procedures”), to automate peak definition.
By first converting feature intensities to unity, pamphlets can
be treated as a bitmap (collection of pixels) to simplify data
processing and visualization. The routine then subgroups (as-
signs a unique ID to) nearest neighbor features (pixels), start-
ing off with a Level 1 pamphlet and then iteratively importing
additional features from higher-level pamphlets (see “Experi-
mental Procedures”). By maintaining peak independence, the
algorithm reliably sorts large numbers of closely spaced fea-
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tures without arbitrarily fusing unrelated adjacent peaks (Fig.
2; compare panels a and b).

As a measure of the reliability of peak detection, we
mapped high-confidence (p value 
0.05) peptide sequences,
derived by searching CID spectra against a comprehensive
protein-sequence database using the SEQUEST (30) and
STATQUEST (28) algorithms, on to a data pamphlet. As ex-
pected, peak-to-peptide overlap was extensive, with few out-
liers (Fig. 2c). This analysis also affirms a well-known fact that
considerably more peptide peaks are detectable in full scan
MS mode than can be identified in the same time frame using
the quasi-stochastic CID process.

Step 3: Correction of Peak Drift and Distortion and Peak
Alignment—Biomarker discovery depends on the careful ex-
amination of protein abundance across multiple samples (5,
10). Although repeat LC-MS analyses are generally highly
similar, an obvious alignment problem presents itself follow-
ing attempts to overlay related data pamphlets (Fig. 3a). This
deviation can be nonlinear along both peptide retention time
and (albeit less prominently) m/z. In the example provided,
peak drift and distortion are more pronounced at the begin-
ning of the analyses.

To surmount this problem, we devised an efficient pamphlet
alignment algorithm that uses self-optimizing 2D smooth
spline transformation (see “Experimental Procedures”) to cor-
rect for nonlinear deviation in peak patterns across both the
m/z and time axes. The algorithm optimizes feature overlap
between an input pamphlet and a second reference pamphlet.
Exhaustive pair-wise alignments are performed to find a glo-
bal optimum with larger sample sets.

Last, to compensate for residual random (nonsmooth) var-
iation, each of the peaks detected by contour mapping is
“wobbled” to maximize peak overlap (see “Experimental Pro-
cedures”). Although this local optimization is limited in scope
(�1% total scans), it provides an added measure of peak
matching. Fig. 3b illustrates the considerably improved peak
matching achieved by this multistage procedure.

We note that, just as data normalization is often used to
correct for systemic signal discrepancies in microarray stud-
ies (34), global peak intensities of different datasets can like-
wise first be normalized by adjusting median feature intensi-
ties to unity prior to matching. However, many substantive
issues are raised by normalization procedures (34). In our
experience, well-controlled sample preparation and LC-MS
procedures serve sufficiently well in most instances such that
data normalization is not a major concern. Nevertheless, nor-
malization may improve the inferences that can be drawn from
comparisons of proteomic datasets generated by different
sources and locations.

Computational time is another obvious constraint here. We
have worked under the general guiding principle that the
routine application of our informatics platform should not
exceed the time necessary to complete the LC-MS analyses
themselves (that is, the rate of data production should not
exceed data processing capacity). In fact, running the soft-
ware on a basic single Pentium CPU Win/PC workstation is
generally more than sufficient to keep up with the data output
of a dedicated LC-MS system collecting spectra more or less
around-the-clock.

The alignment algorithm is by far the most computationally
intensive and scales with the square of the number of exper-
iments (e.g. pair-wise dataset matchings). While the inherent
computational difficulties (multidimensional optimization gen-
erally requires 5–10 min of CPU time per matching) will be
hard to speed up, the concept of “Mother pamphlet” was
specifically designed to tackle the quadratic increase.

FIG. 1. Feature detection in LC-MS-based proteomic profiles.
Representative examples of (a) Level 5 and (b) Level 2 data pam-
phlets, harboring 16,000 and 2,000 peptide features (black pixels),
respectively. The datasets were generated by extracting ion peak
signal above a specified threshold from an LC-MS dataset obtained
for a yeast tryptic digest. c, higher resolution “zoom in” of the Level 2
pamphlet reveals good peak dispersion. x-axis, scan number; y-axis,
m/z ratio.
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Step 4: Quantitative and Qualitative Proteomic Compari-
sons—Once aligned, LC-MS datasets can be directly com-
pared in a systematic manner. As a simple first-pass measure

of similarity, feature overlap, [Matching (i,j)], is calculated (see
“Experimental Procedures”). The higher the ratio, the more
closely related two data pamphlets are deemed to be.

FIG. 2. Automated peak detection. Automated detection of discrete peaks using boundary detection and integration (contour mapping)
techniques. Examples of an (a) input pamphlet and (b) post-analysis of this same profile, with individual peaks highlighted in alternating colors
to enhance visual discrimination. c, example of the close correspondence of high-confidence peptide sequences identified by CID (yellow) to
pamphlet peaks detected by the software (blue).
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Whereas the overlap of the input datasets shown in Fig. 3a is
only 12.3%, this improves to 77.2% post-alignment (Fig. 3b).

For quantitative peak comparisons, grouped feature inten-
sities are summed. Consistent with earlier reports (20), stand-
ard titration curves recorded for model peptides exhibited
linear signal responses after peak processing and quantifica-
tion, with residual variation mitigated by repeat analyses and
signal averaging (Fig. 4a). Moreover, a good correlation (R2 �

0.84) was observed in scatter log10 plots of peak intensities
measured for �400 peptides reproducibly detected in the two
aligned datasets reported in Fig. 3b, with relatively few outli-
ers and only modest dispersion at lower signal-to-noise ratios
(Fig. 4b). Importantly, �93% of the peaks exhibited 2-fold or
less deviation in observed signal intensities, an established
benchmark of reproducibility used in microarray studies (34),
across a 3–4 order of magnitude dynamic range.

As a general test of sensitivity, we evaluated the ability of
the software to detect modest differences in sample compo-
sition. To this end, we compared the data profiles of a set of
closely related peptide mixtures that differed only in the con-
centration of a single spiked peptide, angiotensin. As ex-

pected, the software revealed both quantitative (Fig. 4c) and
qualitative (inset) differences in sample composition over the
effective dynamic range of the MS instrumentation used in this
study, allowing for detection of 2-fold changes in peptide abun-
dance in an otherwise highly complex proteomic mixture.

We next tested the sensitivity of the platform to spurious
experimental variations stemming from fluctuations in sample
work up. Duplicate aliquots of a protein mixture were pro-
cessed in parallel and analyzed by repeat LC-MS. The result-
ing profiles were found to be highly similar (Supplemental Fig.
S5). We concluded that the platform is relatively robust to arti-
facts stemming from standard sample handing procedures.

Sample Classification

A clinically important end-goal of expression profiling is sam-
ple classification (14). We therefore tested if the software
could highlight differences in the proteomic patterns of liver
extracts derived from two physiologically distinct groups of
inbred mice. The two groups consisted of two fasted mice (C
and D) and three control fed mice (A, B, and F). Fasting is

FIG. 3. Profile alignment and peak
mapping. Nonlinear deviation in peak
patterns recorded in repeat LC-MS
datasets. a, a misalignment problem
presents itself following attempts to
overlay two related data pamphlets.
Peak drift and distortion are more pro-
nounced at the beginning of the analy-
ses. b, data overlap is considerably im-
proved after application of the peak
alignment algorithm.

Informatics Platform for Protein Profiling and Biomarker Discovery

990 Molecular & Cellular Proteomics 3.10

 at U
niv of O

ttaw
a - O

C
U

L on A
ugust 26, 2008 

w
w

w
.m

cponline.org
D

ow
nloaded from

 

http://www.mcponline.org


known to induce substantive biochemical reorganization of
liver metabolism in order to sustain circulating blood glucose
levels. These adaptations are reflected at the protein level
(35). As a general test of reproducibility, each tissue sample
was analyzed in duplicate on two separate days, for a total of
four datasets per sample. Using our software, the abundance
of several hundred peptide peaks was then tracked across
each dataset. By combining data-mining algorithms with sta-
tistical scoring procedures, we aimed to identify robust pro-
teomic signatures that would enable sample classification. To
this end, mouse F was treated as an unknown, with a key task
being to determine its physiological status based solely on the
proteomic patterns alone. All 20 datasets were converted to
pamphlets, aligned, and compared in a comprehensive pair-
wise manner. The typical data overlap observed for the 10

pairs of same day repeat analyses was �75% (Supplemental
Fig. S6a), and only negligibly lower (�72%) for the 20 pairs of
different day repeat datasets.

In principle, one could use either quantitative patterns or
qualitative (present/absent) differences in peptide abundance
to discriminate between the samples. For the purpose of
diagnostic development, it may be preferential to focus on the
latter (5, 6, 15, 36). A good way to calibrate the software was
to see if it could reveal modest differences in protein abun-
dance between individual mice within the two groups, as
some biological variation is expected (37). Indeed, pair-wise
comparisons of all intra-group datasets revealed greater dif-
ferences in the proteomic patterns of individual mice (Supple-
mental Fig. S6b) than could be explained by experimental
variation alone. With this added confidence, we then tested

FIG. 4. Peak quantification. a, linear-
fit standard curves of average measured
peak intensities in triplicate analyses of
five different synthetic peptides across a
dilution series. Peptide identity is indi-
cated in the inset, with ion charge state
shown in brackets. b, scatter (log10) plot
analysis of the intensities of �400 peaks
detected in two repeat LC-MS analyses,
showing the reproducibility of peak
quantification over a range of peak inten-
sities. Two-fold error bars are high-
lighted in yellow. c, detection and quan-
tification of 2-fold titrations of a single
marker peptide, angiotensin (m/z �
1,297), spiked into serum. Average
measured peak intensity is shown, with
trace background signal indicated by a
dashed line. Inset, Pamphlet overlay re-
veals the spiked angiotensin peak (red
pixels) amid peptides common to both
the spiked (yellow) and control (blue)
samples.
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whether the software generated patterns could be used to
correctly classify mouse F. Indeed, the profile separation was
pronounced (Fig. 5), allowing for its unambiguous assignment
to the control (fed) group. Not only were each of the mouse F
data profiles more similar “on average” to the control mice (A
and B) than to the fasted mice (C and D), they were more alike
in every single comparison.

In these experiments, the separation between the two
classes of mice was obvious. In the more realistic setting
wherein the separation of profiles is not so clear-cut, we
suggest the application of suitable statistical criteria to make
the distinction. In this regard, the most powerful statistical test
is likely the t test, although different methods (e.g. ANOVA)
could also be applied. The key issue of consideration in this
setting is whether the “average” proteomic pattern for any
given sample is significantly distinct to allow discrimination
between the respective classes. In this case, application of
the t test indicates a highly significant distinction to be in-
ferred (p 
 10–6; 
0.000001).

We made use of this relatively straight-forward procedure
for its simplicity, speed and ability to handle multiway classi-
fications, but alternative classification procedures and algo-
rithms may be more effective in certain data-mining scenar-
ios. Again, these algorithms can be readily incorporated as
stand-alone modules within the platform. When the pheno-
typic difference (in terms of proteomic profiles) between
classes is less pronounced, it is reasonable to expect that the
two curves plotted in Fig. 5 could sometimes cross. However,
our software can still handle this scenario, provided that the
intra-group variations are sufficiently small to detect statisti-
cally significant differences in comparisons between the two
respective classes. The reason for this lies in the fact that the
classification algorithm was used not only to process the data
shown in Fig. 5, but also to take into account additional
possible sources of experimental and biological variability as
reported in Supplemental Fig. S6.

We note that the matching score of an unknown test data-

set against all other datasets obtained for a particular class
(for example, all profiles acquired for the group of fed mice)
can likewise be regarded as a “point” in high-dimensional
space (typically known as the “feature space” in pattern rec-
ognition literature, where the dimension is the number of
samples within a group). Generating such a point for each
dataset (that is, for both the fed and starved mice) gives rise
to two clusters of points in the space, one for each class. If the
two clusters are sufficiently separable in space or exhibit
relatively confined covariance structure, robust classifiers can
be readily obtained using established, rigorous criteria, allow-
ing ready classification of the unknown sample F even when
the two curves shown in Fig. 5 cross. Of course, if these
clusters are not sufficiently distinct, for instance due to severe
intra-class profile variations, virtually all classification schema
would be expected to fail. So, in the end, any data-mining
approach will be data driven.

Sequence Validation

To validate our peak matching procedures, we evaluated
the peptide sequence identities deduced for the peaks
matching across different datasets. In a sense, this is an
ultimate test of our methodology, because failure of any step
(e.g. peak detection, alignment, matching, or even the data-
base search itself) would result in nonuniform identifications.
Of 647 peaks matched across the mouse samples (Level 2
pamphlets), �200 were sequence identified (p 
 0.05) in more
than half the samples. Encouragingly, the vast majority (�93%)
of the matched peaks were assigned the same sequence iden-
tity across the different datasets, confirming the reliability of the
software to accurately track identical peaks between samples.
The few exceptions consisted of either an occasional mismatch
(
2%), possibly due to errors by the database search algo-
rithm, or to dual sequence assignments (�5%), most likely
because the peak detection or alignment algorithms had ar-
tifactually fused two adjacent but distinct peaks.

FIG. 5. Sample classification. Com-
prehensive pair-wise comparisons of
peak overlap (Matching) between the
data pamphlets derived for mouse F and
each of the two defined groups of mice
(fed, mice A and B; fasted, mice C and
D).
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Repetition Improves Data Consistency

One might have expected greater similarity between repeat
LC-MS pamphlets (ideally 100%), suggesting other deficien-
cies in our methodology. Conceptually, this lack of reproduc-
ibility represents a barrier to biomarker discovery, because it
seems unlikely that one could distinguish between closely
related samples (e.g. �95% peak overlap), when experimen-
tal reproducibility is 
80%. Clearly the issue is statistical in
nature, because it is impossible to repeat an LC-MS experi-
ment with �100% reproducibility (16, 38).

To gauge the extent to which experimental repetition might
compensate for this problem, we developed the concept of a
Mother Pamphlet (J,K,L), a data matrix combining key ele-
ments (scan number, m/z, and signal intensity) that define all
the features reproducibly detected at least K times in an Level
L pamphlet generated from J repeat datasets. For example, a
Mother Pamphlet (4,2,3) contains only those peaks detected
in common in any two of four related input Level 3 pamphlets.
Based on this new measure, each of the four profiles recorded
for mouse F did, in fact, exhibit considerably better peak
overlap (�99%) to a Mother Pamphlet (3,1,1) constructed
from the remaining three other datasets (Supplemental Fig.
S7a). That is, virtually all of the peaks detected in one pam-
phlet were likewise found in at least one of the other datasets.
Hence, even limited repetition reveals essentially all of the
principle peptide peaks that define a sample.

We expanded on this concept by establishing the common-
ality of proteomic patterns within a group of related mice. We
compared a Mother Pamphlet (4,4,1) encompassing all peaks
reproducibly detected in all four mouse F datasets to a more
inclusive Mother Pamphlet (8,2,3) created for all eight data-
sets derived for the other two fed mice. As expected, a high
degree of similarity (90.5%) was still detected (Supplemental
Fig. S7b), with the modest residual variation due, in part, to
biological variation between individuals (37).

Biomarker Identification

By logical extension, one should be able to detect peptides
that differ reproducibly between sample groups by comparing
Mother Pamphlets. To pinpoint reproducible differences in the
proteomic patterns of the fed and fasted mice classes, we
prepared and compared a Mother Pamphlet (12,5,3) from all
12 fed mouse datasets, considering only those peaks repro-
ducibly detected at least five times, to a more stringent
Mother Pamphlet (4,4,1) prepared from each of the two fasted
mice datasets (Fig. 6, a and b). As expected, unique peptides
were reproducibly detected in the fasted mouse states (Fig.
6c). A subset of these putative biomarkers were identified by
CID sequencing and found to map to enzymes belonging to
metabolic functions known to be elevated in the fasting state
(35). For instance, three peptides mapped to betaine-homo-
cysteine S-methyltransferase, an enzyme involved in homo-
cysteine metabolism; two matched to the fatty-acid binding

protein L-FABP, which is linked to the transport of lipids in
liver; and two mapped to 10-formyltetrahydrofolate dehydro-
genase, which mediates de novo biosynthesis of purine.
Hence, the profiling procedures revealed biologically relevant
changes in the abundance of physiological significant biomar-
kers (albeit relatively abundant enzymes) with absolute spec-
ificity and sensitivity.

Case Study: Blood Profiling

The use of blood-borne markers is widespread in clinical
practice (3, 39). Although imposing severe limitations in dy-
namic range due to the overabundance of albumin, blood
represents an attractive resource for clinical biomarker dis-
covery as it is readily accessible using relatively noninvasive
procedures (3, 9). Indeed, Liotta and colleagues have estab-
lished the potential diagnostic value of proteomic serum pro-
filing (39). We therefore evaluated the ability of our platform to
detect modest differences in the proteomic patterns of dupli-
cate serum samples, one of which had been spiked with
troponin (a well-studied marker of myocardial infarction) prior
to analysis. As expected, several unique peaks were repro-
ducibly detected in the spiked serum and could readily be
assigned to troponin as they were likewise detected in anal-
yses of troponin alone (Supplemental Fig. S8). Although lim-
ited in scope, this pilot study attests to the generality of our
profiling platform for biomarker screening.

DISCUSSION

Proteomics has the potential to provide unprecedented
insight into the molecular changes that accompany physio-
logical transitions, including those preceding clinical presen-
tation (14, 15, 24, 36, 40, 41). Global proteomic surveys offer
particularly powerful classification value because each profile
is composed of hundreds to thousands of data points (10, 40).
While gene expression profiling has been fruitful in this regard
(42), protein profiling holds more promise because of the
intrinsic advantages of proteins in clinical pharmacology. Pro-
tein profiling is also preferable to candidate testing in biomar-
ker discovery because it is not restricted by limited prior
knowledge about disease or drug action. Furthermore, it en-
dows researchers with the ability to investigate biochemical
adaptations from a systems perspective (43) and can accel-
erate the validation and annotation of ongoing genome se-
quencing projects (44).

While gel-free LC-MS-based profiling methods offer re-
markable analytical speed and sensitivity (17), its variability
has limited its general suitability for biomarker discovery (16).
In an attempt to overcome this, several research groups have
developed innovative chemical labeling strategies designed
to improve the reliability of quantitative inferences that can be
made by LC-MS (19). In addition, an “accurate mass and
elution time” profiling method based on ultra-high perform-
ance LC-MS systems has been reported (22). While effective,
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FIG. 6. Biomarker discovery. Comparison of mouse liver proteomic patterns. a, overlap of a Mother Pamphlet (12,5,3) derived for the
datasets of the fed mice (A, B, and F; blue peaks) with a Mother Pamphlet (4,4,1) generated for mouse C (pink). Yellow peaks represent
candidate biomarkers detected exclusively (and reproducibly) in the mouse C profiles. b, as in a, but showing peaks detected in the mouse
D datasets. c, strong similarity in the biomarker patterns detected for mouse C (yellow) and mouse D (blue).
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the impact of these approaches on the clinical domain has
been restricted to date, in part due to the considerable ded-
icated instrument time, technical expertise, and costs asso-
ciated with multisample analyses (38).

To overcome these limitations, we have developed and
validated a complementary informatics strategy designed to
derive reliable qualitative and quantitative protein profiling
data using established, broadly applicable LC-MS proce-
dures. The software described here corrects for spurious
deviation between experiments, permitting meaningful com-
parisons of proteomic datasets for the purpose of identifying
differential protein expression between samples. It also auto-
mates large-scale pattern recognition and mining of pro-
teomic datasets for the purpose of sample classification and
biomarker discovery. The Mother Pamphlet strategy, in par-
ticular, allows detection of reproducible differences in pro-
teomic patterns, improving proteome coverage and dynamic
range.

Using this approach, we have shown that informatics meth-
ods can reveal biologically significant changes in tissue pro-
tein patterns, allowing for sample classification without being
overly sensitive to experimental noise (e.g. the particular day
an LC-MS experiment was performed). The data strongly
suggest that the software can serve as the basis for system-
atic molecular investigation of disease or therapeutic action.
Many experimental variations can be envisaged, including
strategies to monitor dynamic changes in the levels of pro-
tein post-translational modifications in response to stimuli.
Importantly, this informatics platform can also accommo-
date the use of isotope-based chemical labeling methods
(19, 29) to further enhance the accuracy of the quantitative
measurements.

The threshold-like data filtering criteria used here can be
implemented as a semi-quantitative measure of peptide
abundance (for instance, by comparing the presence/ab-
sence of peak detection at different pamphlet filter levels). In
this study, we performed a series of control experiments
showing that integrated peptide peak intensities nicely corre-
late with abundance (Fig. 4). Thus, in order to compare the
levels of peptides between classes, one only needs to revisit
the appropriate Mother Pamphlets and compare the intensi-
ties corresponding to peptides of interest. Indeed, we set
forth with the long-term aim of developing the software as the
basis for routinely quantifying differences (relative ratios or
fold-changes in protein abundance) in peak intensities across
even the most complex proteomic patterns. Implementation
of this feature is now a relatively straightforward programming
issue because there are no substantive mathematical difficul-
ties, and we hope to address this desirable functionality in the
next generation of the software. The utility of various methods
of data normalization on the reliability of the inferences made
from proteomic comparisons also needs to be more exten-
sively evaluated. Of course, one is still unlikely to be able to
detect all possible biomarkers due to limitations in protein and

peptide extraction and variations inherent to the experiments
themselves—namely, dynamic range confines and extremes
in biological complexity and/or variability.

The alignment process can be computationally demanding,
particularly for larger sample sizes. In the mouse tissue pro-
filing example provided, instead of a larger full-scale set of
400 alignments (5 mice*4 Pamphlets � 20 datasets, resulting
in 202 � 400 matched pairs), the alignment problem can be
stratified by first creating 5 Mother Pamphlets for each indi-
vidual mouse (i.e. 4 mice*42 � 64 alignments) and then align-
ing the 5 Mother Pamphlets (52 � 25 matchings), totaling 89
alignments, with a corresponding increase in processing
speed. Nevertheless, we have found that comparisons of
upward of 100 individual datasets are quite manageable and
are taxing only for the highest feature extraction pamphlet
levels. Given the modular design of the software and depend-
ing on the design of experiments and available hardware,
different and more appropriate computational methods to
address this possible constraint can also be implemented if
needed. Likewise, the brute force M-N algorithm could also
be sped up, but since this computation scales linearly with the
number of experiments and since the application of the algo-
rithm (5 levels per analysis, with each taking �1 min of CPU
time, as compared with the 60–90 min typically required for
most LC-MS analyses) is not a limiting factor, there is no
pressing need at this point to optimize it further.

It should be noted that a key aspect of the profiling strategy
outlined here is the ability to detect and evaluate candidate
biomarkers without the need for carrying out time-consuming
CID. Proteins of interest, such as those whose levels change
reproducibly as a result of an experimental perturbation or
which help differentiate between clinical samples, can then be
identified in targeted follow-up sequencing experiments.
While similar concepts have recently been introduced by oth-
ers (18, 22, 45), our approach has major advantages in that it
builds on established experimental techniques and existing
instrumentation that are broadly available throughout the bio-
medical research community. Nonetheless, our toolkit can
exploit the improved dynamic range, resolution, and mass
accuracy of newer generation MS instrumentation. Moreover,
although high-abundance proteins were preferentially de-
tected in the mouse profiling experiments reported here (in
part due to the limited dynamic range of the instrumentation
used), we expect that proteome coverage can be significantly
improved by using basic subcellular fractionation and affinity
enrichment techniques prior to LC-MS (1, 2). By uncoupling
sequence identification from peptide quantitation, a markedly
expanded number of samples can be analyzed in a single day,
increasing the precision and throughput of quantitative pro-
teomic measurements, resulting in a better accounting of
biological variation.
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