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1 Jointly Gaussian Random Variables

We will use −→x denote (x1, x2, ..., xn)T . Random variables
−→
X = (X1, X2, ..., Xn)T is

said to jointly Gaussian when the jointly PDF f−→x (−→x ) takes the following form:

f−→x (−→x ) = 1

(2π)
n
2 |k|

1
2
e−

1
2 (−→x−−→m)k−1(−→x−−→m)

Where k is a N×N matrix (called the covariance matrix); and−→m = (m1,m2, ...,mn)T

with mi = E[xi].

In particular:

k(i, j) = cov[xi, xj ]

note: cov(xi, xi) = var[xi].

It can be verified that when n = 1, the PDF is the Gaussian PDF is the Gaussian
PDF for single Gaussian random variable.

Now consider the case −→x = (x1, x2)

Case 1: σ1 = σ2

(Circle Contours)

X1

X2

(m1,m2)

Figure 1: σ1 = σ2.

K =
[

σ2 0
0 σ2

]
i.e. cov(x1, x2) = 0
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Case 2: σ1 6= σ2

Condition 1: σ1 > σ2.

σ1 > σ2

(m1,m2)

X2

X1

Figure 2: σ1 > σ2.

Condition 2: σ1 < σ2.

(m1,m2)

σ1 < σ2

X2

X1

Figure 3: σ1 < σ2.

For case 2 with both condtions:

K =
[

σ2
1 0

0 σ2
2

]
σ1 6= σ2
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Case 3: x1 and x2 are not independent

X2

X1

Figure 4: x1 and x2 not independent

K =
[

var[x1] cov[x1, x2]
cov[x2, x1] var[x2]

]
No entry is zero.

2 General Remarks on Jointly Gaussian Random
Variables

1. If k is diagonal matrix, then X1 and X2 are independent (case 1 and case 2).
That is, if two random variables are jointly Gaussian, then uncorelatedness
and independence are equivalent.

2. If several random variable are jointly Gaussian, the each of them is Gaussian.

But, if two random variable are both Gaussian, they may not be jointly Gaussian.

Below is a counter example:

Let (x1, x2) be jointly Gaussian with −→m = (0, 0),

K =
[

1 0
0 1

]

Let fx1, x2(x1, x2) be the jointly PDF of (x1, x2). We Define:

fy1, y2(x1, x2) =
{

2 · fx1, x2(x1, x2), if x1 · x2 > 0,
0, otherwise.

We can verify fy1,y2(x1, x2) is a PDF (i.e. integrated to 1). The random variable
(y1, y2) following distribution fy1,y2 are not join Gaussian, but y1, y2 are Gaussian.
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X1

X2

Figure 5: Figure of the Counter Example.

3 Sample mean, laws of large number and central
limit theorem

Let x1, x2, ...xn be n independent draw of random variable x.(That is x1, x2, ...xn

are independently identically distributed)(iid).

Denote: Mn = 1
n

n∑
i=1

Xi. And Mn is refer to is refer to as the sample

mean of (x1, ...xn)

Remarks:

1. Mn is itself a random variable

2. For large M, we expect that Mn is ”close” to E[X]

Example 1 Let random variable x indicate the outcome of tossing a die
(possibly biased). Let random variable I be defined as:

I =
{

1, if x = 5,
0, otherwise.

Let Mn = 1
n

n∑
i=1

Ii For a given ”M”.

Remarks:

1. Mn is the relative frequency(which we will also denote by fn
5 ) at which ”5” is

seen.

2. E[I]=0 · P [I = 0] + 1 · P [I = 1]
=1 · P [I = 1]
=P [X = 5]
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3. We all knew that fn
5 is ”close” to P [x = 5] for large n.

Theorem: Weak Law of Large Number

Let x1, ...xn be iid with mean µ, then for any E > 0. P [|mn − µ| < ε] > 1− ε
for sufficiently large n.

(Equivalently: limn→∞ P [|mn − µ| < ε] = 1; for any ε > 0)

Apply weak law of large number to the previous example:

limn→∞ P [|fn
5 − P [x = 5]| < ε] = 1

Theorem: Strong Law of Large Number

Let x1, ..., xn be iid with mean u and finite variance then:

P [limn→∞Mn = µ] = 1 For (M1,M2, ...Mn)

Apply Strong law of large number, the previous example we have:

P [limn→∞ fn
5 − P (X = 5)] = 1
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