Lectures of June 20th, 2006
Scribe: Min Shi, Vivekananthan Suganthan

1 Jointly Gaussian Random Variables

We will use \vec{x} denote $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$. Random variables $\vec{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ is said to jointly Gaussian when the jointly $\operatorname{PDF} f_{\vec{x}}(\vec{x})$ takes the following form:

$$
f_{\vec{x}}(\vec{x})=\frac{1}{(2 \pi)^{\frac{n}{2}}|k|^{\frac{1}{2}}} e^{-\frac{1}{2}(\vec{x}-\vec{m}) k^{-1}(\vec{x}-\vec{m})}
$$

Where k is a $N \times N$ matrix (called the covariance matrix); and $\vec{m}=\left(m_{1}, m_{2}, \ldots, m_{n}\right)^{T}$ with $m_{i}=E\left[x_{i}\right]$.

In particular:

$$
\begin{array}{r}
k(i, j)=\operatorname{cov}\left[x_{i}, x_{j}\right] \\
\text { note: } \operatorname{cov}\left(x_{i}, x_{i}\right)=\operatorname{var}\left[x_{i}\right] .
\end{array}
$$

It can be verified that when $n=1$, the PDF is the Gaussian PDF is the Gaussian PDF for single Gaussian random variable.

Now consider the case $\vec{x}=\left(x_{1}, x_{2}\right)$
Case 1: $\sigma_{1}=\sigma_{2}$

Figure 1: $\sigma_{1}=\sigma_{2}$.

$$
K=\left[\begin{array}{ll}
\sigma^{2} & 0 \\
0 & \sigma^{2}
\end{array}\right] \quad \text { i.e. } \operatorname{cov}\left(x_{1}, x_{2}\right)=0
$$

Case 2: $\sigma_{1} \neq \sigma_{2}$
Condition 1: $\sigma_{1}>\sigma_{2}$.

Figure 2: $\sigma_{1}>\sigma_{2}$.

Condition 2: $\sigma_{1}<\sigma_{2}$.

Figure 3: $\sigma_{1}<\sigma_{2}$.
For case 2 with both condtions:

$$
K=\left[\begin{array}{ll}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right] \quad \sigma_{1} \neq \sigma_{2}
$$

Case 3: x_{1} and x_{2} are not independent

Figure 4: x_{1} and x_{2} not independent

$$
K=\left[\begin{array}{ll}
\operatorname{var}\left[x_{1}\right] & \operatorname{cov}\left[x_{1}, x_{2}\right] \\
\operatorname{cov}\left[x_{2}, x_{1}\right] & \operatorname{var}\left[x_{2}\right]
\end{array}\right] \quad \text { No entry is zero. }
$$

2 General Remarks on Jointly Gaussian Random Variables

1. If k is diagonal matrix, then X_{1} and X_{2} are independent (case 1 and case 2). That is, if two random variables are jointly Gaussian, then uncorelatedness and independence are equivalent.
2. If several random variable are jointly Gaussian, the each of them is Gaussian.
$\boldsymbol{B u t}$, if two random variable are both Gaussian, they may not be jointly Gaussian. Below is a counter example:

Let $\left(x_{1}, x_{2}\right)$ be jointly Gaussian with $\vec{m}=(0,0)$,

$$
K=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Let $f x_{1}, x_{2}\left(x_{1}, x_{2}\right)$ be the jointly PDF of $\left(x_{1}, x_{2}\right)$. We Define:

$$
f y_{1}, y_{2}\left(x_{1}, x_{2}\right)= \begin{cases}2 \cdot f x_{1}, x_{2}\left(x_{1}, x_{2}\right), & \text { if } x_{1} \cdot x_{2}>0 \\ 0, & \text { otherwise }\end{cases}
$$

We can verify $f_{y_{1}, y_{2}}\left(x_{1}, x_{2}\right)$ is a PDF (i.e. integrated to 1). The random variable $\left(y_{1}, y_{2}\right)$ following distribution $f_{y_{1}, y_{2}}$ are not join Gaussian, but y_{1}, y_{2} are Gaussian.

Figure 5: Figure of the Counter Example.

3 Sample mean, laws of large number and central limit theorem

Let $x_{1}, x_{2}, \ldots x_{n}$ be n independent draw of random variable x .(That is $x_{1}, x_{2}, \ldots x_{n}$ are independently identically distributed)(iid).

Denote: $M_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. And M_{n} is refer to is refer to as the sample mean of $\left(x_{1}, \ldots x_{n}\right)$

Remarks:

1. M_{n} is itself a random variable
2. For large M, we expect that M_{n} is "close" to $E[X]$

Example 1 Let random variable x indicate the outcome of tossing a die (possibly biased). Let random variable I be defined as:

$$
I= \begin{cases}1, & \text { if } x=5 \\ 0, & \text { otherwise }\end{cases}
$$

Let $M_{n}=\frac{1}{n} \sum_{i=1}^{n} I_{i}$ For a given "M".

Remarks:

1. M_{n} is the relative frequency (which we will also denote by f_{5}^{n}) at which " 5 " is seen.
2. $\mathrm{E}[\mathrm{I}]=0 \cdot P[I=0]+1 \cdot P[I=1]$

$$
\begin{aligned}
& =1 \cdot P[I=1] \\
& =P[X=5]
\end{aligned}
$$

3. We all knew that f_{5}^{n} is "close" to $P[x=5]$ for large n .

Theorem: Weak Law of Large Number

Let $x_{1}, \ldots x_{n}$ be iid with mean μ, then for any $E>0 . P\left[\left|m_{n}-\mu\right|<\epsilon\right]>1-\epsilon$ for sufficiently large n .

$$
\text { (Equivalently: } \lim _{n \rightarrow \infty} P\left[\left|m_{n}-\mu\right|<\epsilon\right]=1 \text {; for any } \epsilon>0 \text {) }
$$

Apply weak law of large number to the previous example:

$$
\lim _{n \rightarrow \infty} P\left[\left|f_{5}^{n}-P[x=5]\right|<\epsilon\right]=1
$$

Theorem: Strong Law of Large Number

Let x_{1}, \ldots, x_{n} be iid with mean u and finite variance then:

$$
P\left[\lim _{n \rightarrow \infty} M_{n}=\mu\right]=1 \quad \text { For }\left(M_{1}, M_{2}, \ldots M_{n}\right)
$$

Apply Strong law of large number, the previous example we have:

$$
P\left[\lim _{n \rightarrow \infty} f_{5}^{n}-P(X=5)\right]=1
$$

