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Introduction to Angle Modulation &

e In angle modulation, the amplitude of the
modulated signal remains fixed while the
information is carried by the angle of the carrier.

e The process that transforms a message signal into
an angle modulated signal is a nonlinear one.

e This makes analysis of these signals more difficult.

e However, their modulation and demodulation are
rather simple to implement.
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The angle of the carrier &

e lLet 6(t) represent the instantaneous angle of the
carrier.

e We express an angle modulated signal by:
s(t) = A, cos(6,(1))

where A. is the carrier amplitude.
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Instantaneous frequency &

e One cycle occurs when 6(t) changes by 2x radians,
therefore the average frequency of s(t) on the interval t
to t+At is:

I

_ O.(t+At)-0.(1)
27T\t

e Therefore the instantaneous frequency is found in the
limit as At tends towards 0.
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Phase modulation &

e There are two angle modulation techniques.
— Phase modulation (PM)
- Frequency modulation (FM)

e In PM, the phase of the carrier is a linear function of the
message signal, m(t). Therefore s,y/(t) is:

Spy (1) = A, cos(Z:y‘ct +k,m(t) + ¢, )

where k, is the phase sensitivity and ¢, is the phase of the
unmodula@ed carrier.

e To simplify expressions, we will assume that ¢. = 0. Therefore
the angle of a PM signal is given by 6(t) = 2af .t + k,m(t).

uOttawa



: »

N\

e For FM, the instantaneous frequency is a linear function
of the message:

Ji@) = fo +kem(?)

where k. is the frequency sensitivity.

0.(t)=2m j’fi (T)dT =27f .t + 27k j‘m(z’)dr

Spy (t) = A, cos| 27f .t + 27k , fm(r)a’r
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Instantaneous frequency of a PM signal /
Instantaneous phase of an FM signal

e From spy(t), we find

fi(t)PM =fc+2_77;

From sg,(t), we find
¢ g = 27k [m(T)dT
0

m(t) —— d/dt

kp dm()
dt
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Figure 4.2 Frequency and phase modulation of square and sawtooth waves.
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Example &

N\

e Find s.y(t) and spy(t) if m(t) = Acos(2af,t).
— SOLUTION
Spy (1) = A, cos| 2m 1 + Ak, cos (27, 1)]

A
27,

j’A cos(27y‘m7;)d7: = sin(2fy”mt)

Ak,

Spag () = A, cos[zfg;z + sin(zjyfmz)]

m
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Characteristics of Angle Modulated Signals ”

PM Signal FM Signal
Instantaneous phase k. m(f) e }m(z’)dt
) ! &
Instantaneous k, dm(t) i
frequency Je Y or dr Je+ fm(t)
Maximum phase k| m(t)], . 270 1 | X(0) [max 001
deviation Ag,,.., K x(t) = f m(T)dt
Maximum frequency D ou -
deviation Af,_, ﬂu(t)'max x(t) = ’Zf) k f | 1(2) | ax
Power Ag Ac2
2 2
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Modulation index &

N\

e Assume that m(t) = A,,cos(2af,t). The resulting FM
signals is:

m

Ak, .
Sey(t) = A cos|2mft+ F sin(2xzf 1)

For the FM signal

i kam n Afmax

Pr o,
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FM Modulation index &

N\

e For any m(t) which has bandwidth B,,, we define the
modulation index as :

- kf Im(r)l Af

= —_

B B

m m
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Example &

e The signal m(t) = 5sinc?(10t).

Find the modulation index for FM modulation with
kf = 20 HZ/V.
— SOLUTION

e B, = 10Hz, therefore - = 20x5/10 = 10.
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Narrowband FM

e Consider an FM signal :

Spy (1) = A, cos| 2f t + 27k, fm(z')dr

t
where Zﬂkf fm(T)dT << ]

We say that s.,(t) is a narrowband FM signal.
e For example, consider when m(t) = A,,cos(2aft).

Ak
Sy (t) = A, cos| 2af t+ sin(27f,t)

S (0) = A, cos(2af.t + By sin(f, )
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Narrowband FM &

e When g << 1, the FM signal is NBFM.
e cos(A+B) = cos(A)cos(B)-sin(A)sin(B). Therefore

t
Smy(t) = A.cos ZJy”CHZﬂkffm(r)dr
0

= 4 cos(ny‘ct)cos(Zﬂk f}m(r)dr] ~A sin(2:y‘ct)sin(27dc f}m(r)dr]
0 0

U

A, cos(2f,t)- A, (mk f}m(r)dr] sin(27,.¢)
0

(1f A<<1,cos(A)=1and sin(A) = A.)
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NBFM Modulator &

N\

Bandwidth of NBFM approx. =2B

A cos(2f t) N
@ =®—' Snaemt)

Asin(2xf t)

Trans.

t Hilbert
[m(@)dz \+ |
t 0
m(t) — [()d
0
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Wideband FM - WBFM ”

e For an FM signal to be NBFM, g << 1.

e Any signal that is not narrowband is therefore
wideband.

e However, typically g- > 1 for an FM signal to be
considered wideband.

e The bandwidth of WBFM signals is larger than NBFM
since Af,,., is increased.
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The Fourier series of the WBFM signal
when m(t) = A,,cos2af,t.

N

e We can express the complex envelope of the WBFM signal
using Bessel functions of first kind and order n as

S () = 3 A, (Br)e ™

n=—OO

e And the WBFM signal itself becomes:
Spy (1) = RG{EFM(t)ejzmt}

Re{ S 4, (/»})ef%”mfm“}

S 4.7, (By)cos2(f, +nf, )0
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Spectrum: Examples
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Spectrum of the WBFM signal when m(t)
= A,,cos2aft.

e The spectrum of this signal is:

A 0
Sewn (=5 D IaBeNO = fo=nf)+8(f + fo +1f,,)]

n=-—-0o0

e This expression shows that the FM signal’s spectrum is
made up of an infinite number of impulses at frequencies
f=f+nf,.

e Therefore, theoretically, this WBFM signal has infinite
bandwidth.

e However, the properties of the Bessel function show that
most of these impulses contribute little to the overall
power of the signal and are negligible.

— We define the practical bandwidth as the range of
frequencies which contains at least 99% of the total
power of the WBFM signal.
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The function J,,()
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Properties of J, ()

1) . .
If n is an integer :
J.(p) = J_,(B) for even n
and
J.(B) =-J_,(p) for odd n
2)
when g << 1
Jo(B) = 1
J1(B) = B/2
and

J.(B) =0,n>1

uOttawa

4) ImJ,(p) =0

3) iJ,f(/a’)=1

Nn=-—-00
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Power of the FM signal

e The power of an FM signal is:

Cc

2

PFM=

S =S A, (Br)cos(2a(f, +nf, )0

Nn=-—00

e The power of the above expression is:

Az oo
— 2 Ja(Br)

n=-—00

P=
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Filtering a WBFM signal to limit its

bandwidth.

— B —
S v (8) = (0
HZOOACJ Z(Bp)cosQr(f. +nf,)t) _' . Ifc f

We want to choose B so that the power of x(z)
Is at least 0.99x the power of sp,,(?).

X
x(t)= Y AJ, (Br)cosQa(f. +nf,,))
n=-X
where X 1s the largest integer that satisfies :

B
fc+Xfm5fc+E and fc—)g(‘mzfc_g
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e The power of x(t) is:

K _iJ,?(/a’F)

e Therefore we must choose X so that:

iJ,f(/a’F) >0.99

Px —

e We know that J 2(8-) = J.,°(B¢). Therefore

B +23 T2 (B =099
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Values of J, ()
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n =0.1 =0.2 £=0.5 =1 =2 =3 =5

0 0.997 0.99 0.938 0.765 0.224 -0.2601 -0.178 -0.246
1 0.05 0.1 0.242 0.44 0.577 0.3391 -0.323 0.043
2 0.001 0.005 0.031 0.115 0.353 0.4861 0.047 0.255
3 2x105=0 1.6x104 0.0026 0.02 0.129 0.3091 0.365 0.058
4 0.002 0.034 0.1320 0.391 -0.220
5 0.007 0.0430 0.261 -0.234
6 0.001 0.0114 0.131 -0.014
7 0.0025 0.053 0.217
8 0.018 0.318
9 0.006 0.292
10 0.001 0.207
11 0.123
12 0.063
13 0.029

_




Example &

e The signal m(t) = A,,cos(2xf,t) is to be transmitted
using FM techniques. Find the practical bandwidth if

(a) A, =5V, f, =20 Hz and k; = 4 Hz/V
(b) A, = 10V, f, = 400 Hz and k, = 200 Hz/V.
e SOLUTION

(a) IN this example, g = (5)(4)/(20) = 1. We need to
find X so that S = Jj(/a’F)+2EJj(/5F)20.99

e From the table, if X = 1, S = (0.7652+2x0.442) =
0.9648. If X =2, S = 0.9648+2x0.1152 = 0.9912.
Therefore X = 2 and B = 4f,,.

(b) Here, g = (10)(200)/(400) = 5. We can show that
X = 6 yields S = 0.994. Therefore B = 12f,,.

I yOttawa
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Carson’s Rule &

e For m(t) = A,cos(2aft), When g is an integer, we
always find that X = g+1.

e Therefore we can estimate that the practical bandwidth
of an FM signal is B = 2(S+1)f,,..

e For any random m(t) with maximum value A,, and
bandwidth B,,, the true bandwidth is difficult to find.

e According to Carson, the worst case is when the
spectrum of m(t) is concentrated around f = B,, (such
as a sinusoid).

e Based on experiments by Carson, the bandwidth of a
WBFM signal, Bg,, can be estimated by

By =2(fp +1)B,, (**%)

| m—
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Generation of WBFM

Signals

e Direct method

— Voltage Controlled Oscillator (VCO)

mit) . VCO

- S0

e Indirect method
- Armstrong’s method

NBFM

A 4

m(t) —

mod @ fc

uOttawa
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Armstrong’s method &

Nonlinearity

-V, = a,vVi+a,vi+asvi+...

= Vi(t) = Sngrm(l).

- Let s\gey(t) = Acos(2af t+2akfm(t)dt) = A.cos(6,(t)).

= Vo(t) = a1Snpem(t)+ @5 nsem(t) + @3S npem(t)...

- v, (t) = a; Accos(6(t))+a, A2cos?(6(t))+az AScos3(6(t)) ...

- v, (t) = a; Accos(6(t))+a, A2/2+(a, A2/2)cos(26(t))+
(3asA2/4)cos(6(t))+(asA>/4)cos(36(t)) ...

- no(t) = 2a(nf,)t+2x(nk;) fm(t)dt (carrier frequency = nf,
and k' = nkctherefore " = npg).

BPF is used to pass the spectral component centred @ f = nf..
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Demodulation of FM signals &

\

e Differentiator plus envelope detection
e Frequency discriminator.
e Frequency counter.
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Differentiator and envelope

detector

d/dt

Sen(?)

x(t)‘

Envelope

| detector

(@0

.

N\
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DC Block

2(H)=Km(¢)




Differentiator and envelope
detector 4

X(f) _ dSFC]Z (t)

d
= (4 cos(6, (1)
- -8 sin(0,0)

= 274, f;(¢t) sin(2iy‘0t + 2Jzkffm(t)dt + JZ’)
= 2, (£, + k ym(o) sin(2af .1 + 24k, [m(o)dr + 7)

J.>>lkm(o)l then 27A (f +km(1)) > 0.
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Example &

N\

e m(t) = cos2x10t, f. = 100, A. = 2, ke = 40 Hz/V.
o Sy(t) = 2cos(27200t+4sin2x10t)
e X(t) = 42(100+40cos2x10t)sin(27100t+4sin2x10t+x)
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Differentiator and envelope
detector =

N\

e Qutput of envelope detector
= y(t) = 27A(f +kdn(t)) = 27A 1. + 27A Kam(t)
— Assuming that m(t) has no DC component (M(f) = 0
for f = 0), then

e QOutput of DC block
- z(t) = 274A ki (t) = Km(t).
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Frequency discriminator

e Similar to differentiator

.

e Input to envelope detector has lower amplitude.

x,(2)

A 4

H,(f)

»
)

E.D

S pag(7)

=
S

» E.D
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FM Modulator

t N\
variable x(t) =4, cos |t "‘fQ (T}t +
General resonant <>| RF oscillator — 0
principle: circuit
m(t)

RF oscillator circuit
(frequency = f,)

(@)
Practical
implementation: ;
Difficulty: frequency . ,;R.I:S\_I il . 3 Oscilr |
stab|l|ty m(t) e circuit FM signal out
Modulation input ?
Suitable for o

narrowband FM only. |

-+ Varactor diodes
Im u O tt awa L.W. Couch II, Digital and Analog Communication Systems, Prentice Hall, 2001.



Indirect Wideband Angle Modulator

Frequency Frequency

Output

Input Je nf,
Narrowband Frequency BP
angle modulator Xn filter

Local
oscillator Frequency
Frequency multiplier: fo
e :
Vin(1) i% Nggiiiréeear V(1) - Bafril ﬁsfss i Vo) _
' |
|

J.Proakis, M.Salehi, Communications Systems Engineering, Prentice Hall, 2002

2 _ 1 lcos 2(¢
oS w(t)—5[1+cos(21p(ﬂ)] # 7 (2w(1))
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Direct Wideband Angle Modulat

or

m(t)
Modulating
signal in
Crystal
oscillator LPF —»@
Josc =S /N
Frequency
divider B VCO -
+N
WBFM
=
signal
L.W. Couch II, Digital and Analog Communication Systems, Prentice Hall, 2001. out

how it operates? consider it without feedback first
why is feedback required?
why is frequency divider required?
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Balanced Discriminator: Block
Diagram

Tuned circuit Envelope
#1 @ f detector

Tuned circuit #1
characteristic

Tuned circuit #2
characteristic \

+ ¥

f] | l)()Lll([ )

|
: Overall frequency-to-
I voltage characteristic

|

0
> Tuned circuit > Envelope
#2 @ f, detector

L.W. Couch II, Digital and Analog Communication Systems, Prentice Hall, 2001.
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Balanced Discriminator: Circuit

Dianram
- Tuned circuit #1
S T T S e e e e e |
| |
N

—Wv- — 9
| |
l |
I |
l - |
| Ll T~ C| | — g
l |
l |

O '} I |
l |
N o NSl e [ Sl e e it o 4

vl(t) _______ vout([)

e, e |
| |

O | |
| |
l L, sl : — é
: -
| |
| |
| |
' LIl 2
—Wv : LT O
|

Tuned circuit #2

L.W. Couch II, Digital and Analog Communication Systems, Prentice Hall, 2001.
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Phased Locked Loop (PLL)

Detector

Vin(?) Phase detector
te—— (PD)

V(1) Low-pass
S filter (LPF)

vo(?)
Voltage-controlled
-

oscillator (VCO)

Vin (t) 5 Am Sin[mct + (Pin (t)]

Vo (t) = 4, cos[wct + cpo(t)]

v (1) = Alez sin[@,, (1) - 9o(£) ]+ (2w, )term

Informally,
d
Wyco (7) =E(®ct+%(t))= W, + 0w, (7) O (1) = @y (7)
1 d
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PLL Detector: Linear Model &
CPin(i: Ae() b v (¢)

Po (f; I

A

2

0 (£) = 222 Gin g (1) - 9y (0] +

/

— @ (1‘\ o (1)

LPF V(1)
Ll
VCO
-
A A, .
=) |2 (0) =7 sin[en () -]~
+(2w,. )term 44 =
c = =2 (0 ()= 90(1)) = KyAa()

dt_ D VAN AN

uOttawa
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Vylt) = EE[CPm (t) - Ag(t) | = o (¢)

N



Comparison of AM and FM/PM

e AM is simple (envelope detector) but no noise/
interference immunity (low quality).

e AM bandwidth is twice or the same as the
modulating signal (no bandwidth expansion).
e Power efficiency is low for conventional AM.

e DSB-SC & SSB - good power efficiency, but
complex circuitry.

e FM/PM - spectrum expansion & noise immunity.
Good quality.

e More complex circuitry. However, ICs allow for
cost-effective implementation.
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Important Properties of Angle- &

Modulated Signals: Summary

FM/PM signal is a nonlinear function of the
message.

The signal’ s bandwidth increases with the
modulation index.

The carrier spectral level varies with the
modulation index, being 0 in some cases.

Narrowband FM/PM: the signal’ s bandwidth is
twice that of the message (the same as for AM).

The amplitude of the FM/PM signal is constant
(hence, the power does not depend on the

message).
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