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Introduction to Angle Modulation 

•  In angle modulation, the amplitude of the 
modulated signal remains fixed while the 
information is carried by the angle of the carrier. 

•  The process that transforms a message signal into 
an angle modulated signal is a nonlinear one.   

•  This makes analysis of these signals more difficult.   
•  However, their modulation and demodulation are 

rather simple to implement. 



The angle of the carrier 

•  Let θi(t) represent the instantaneous angle of the 
carrier. 

•  We express an angle modulated signal by: 

  where Ac is the carrier amplitude.   
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Instantaneous frequency 

•  One cycle occurs when θi(t) changes by 2π radians, 
therefore the average frequency of s(t) on the interval t 
to t+Δt is: 

•  Therefore the instantaneous frequency is found in the 
limit as Δt tends towards 0.  
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Phase modulation 

•  There are two angle modulation techniques.   
–  Phase modulation (PM) 
–  Frequency modulation (FM) 

•  In PM, the phase of the carrier is a linear function of the 
message signal, m(t).  Therefore sPM(t) is: 

   where kp is the phase sensitivity and φc is the phase of the               
unmodulated carrier.   
•  To simplify expressions, we will assume that φc = 0.  Therefore 

the angle of a PM signal is given by θi(t) = 2πfct + kpm(t). 
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FM 

•  For FM, the instantaneous frequency is a linear function 
of the message: 

•  where kf is the frequency sensitivity.  
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Instantaneous frequency of a PM signal / 
Instantaneous phase of an FM signal 

•  From sPM(t), we find 

From sFM(t), we find 
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Example  

•  Find sFM(t) and sPM(t) if m(t) = Acos(2πfmt).  

–  SOLUTION 

sPM (t) = Ac cos 2! fct + Akp cos 2! fmt( )!" #$
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•  The PM and FM of the example are shown here for Ac = 
5, A = 1, fc = 1 kHz, fm = 100 Hz, kp = 2π rads/V and   
kf = 500 Hz/V. 

0 0.005 0.01 0.015 0.02 0.025
-6

-4

-2

0

2

4
6

0 0.005 0.01 0.015 0.02 0.025
-6

-4

-2

0

2

4
6

sPM(t)

sFM(t)

t en secondes

t en secondes

0 0.005 0.01 0.015 0.02 0.025
-6

-4

-2

0

2

4
6

0 0.005 0.01 0.015 0.02 0.025
-6

-4

-2

0

2

4
6

sPM(t)

sFM(t)

t en secondes

t en secondes



Characteristics of Angle Modulated Signals 

PM Signal FM Signal 

Instantaneous phase 
φi(t) 

Instantaneous 
frequency 

Maximum phase 
deviation Δφmax  

                           où  

Maximum frequency 
deviation Δfmax  

                      où  

Power  
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Modulation index 

•  Assume that m(t) = Amcos(2πfmt).  The resulting FM 
signals is: 

 
 
•  For the FM signal 

sFM (t) = Ac cos 2! fct +
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FM Modulation index 

•  For any m(t) which has bandwidth Bm, we define the 
modulation index as : 

!F =
k f |m(t) |max

Bm
=
!fmax
Bm



Example 

•  The signal m(t) = 5sinc2(10t).  

 Find the modulation index for FM modulation with 
 kf = 20 Hz/V. 

–  SOLUTION 

•  Bm = 10Hz, therefore βF = 20×5/10 = 10. 



Narrowband FM 

•  Consider an FM signal : 

 
•  We say that sFM(t) is a narrowband FM signal. 
•  For example, consider when m(t) = Amcos(2πfmt).  
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Narrowband FM 

•  When βF << 1, the FM signal is NBFM. 
•  cos(A+B) = cos(A)cos(B)-sin(A)sin(B).  Therefore 
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NBFM Modulator 
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Wideband FM - WBFM 

•  For an FM signal to be NBFM, βF << 1. 
•  Any signal that is not narrowband is therefore 

wideband. 
•  However, typically βF > 1 for an FM signal to be 

considered wideband.  
•  The bandwidth of WBFM signals is larger than NBFM 

since Δfmax is increased.   



The Fourier series of the WBFM signal 
when m(t) = Amcos2πfmt.  

•  We can express the complex envelope of the WBFM signal 
using Bessel functions of first kind and order n as 

 
•  And the WBFM signal itself becomes: 
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Spectrum: Examples 
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Spectrum of the WBFM signal when m(t) 
= Amcos2πfmt. 

•  The spectrum of this signal is: 

 
•  This expression shows that the FM signal’s spectrum is 

made up of an infinite number of impulses at frequencies   
f = fc+nfm.   

•  Therefore, theoretically, this WBFM signal has infinite 
bandwidth.   

•  However, the properties of the Bessel function show that 
most of these impulses contribute little to the overall 
power of the signal and are negligible.   
–  We define the practical bandwidth as the range of 

frequencies which contains at least 99% of the total 
power of the WBFM signal. 
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Lecture 6 



Properties of Jn(β) 

If n is an integer : 
  Jn(β) = J-n(β) for even n   
   and 
  Jn(β) =-J-n(β) for odd n   
 
when β << 1 

  J0(β) ≈ 1   
  J1(β) ≈ β/2   
  and 
  Jn(β) ≈ 0, n > 1   
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Power of the FM signal  

•  The power of an FM signal is: 

•  The power of the above expression is: 
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Filtering a WBFM signal to limit its 
bandwidth.  
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Is at least 0.99× the power of sFM(t). 	

	

	

where X is the largest integer that satisfies :	
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•  The power of x(t) is: 

•  Therefore we must choose X so that:  

 
 

•  We know that Jn
2(βF) = J-n

2(βF). Therefore  
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Values of Jn(β)  
n	
 β=0.1	
 β=0.2	
 β=0.5	
 β=1	
 β=2	
 β=3	
 β=5	
 β=10	

0	
 0.997	
 0.99	
 0.938	
 0.765	
 0.224	
 -0.2601	
 -0.178	
 -0.246	

1	
 0.05	
 0.1	
 0.242	
 0.44	
 0.577	
 0.3391	
 -0.323	
 0.043	

2	
 0.001	
 0.005	
 0.031	
 0.115	
 0.353	
 0.4861	
 0.047	
 0.255	

3	
 2×10-5≈0	
 1.6×10-4	
 0.0026	
 0.02	
 0.129	
 0.3091	
 0.365	
 0.058	

4	
 0.002	
 0.034	
 0.1320	
 0.391	
 -0.220	

5	
 0.007	
 0.0430	
 0.261	
 -0.234	

6	
 0.001	
 0.0114	
 0.131	
 -0.014	

7	
 0.0025	
 0.053	
 0.217	

8	
 0.018	
 0.318	

9	
 0.006	
 0.292	

10	
 0.001	
 0.207	

11	
 0.123	

12	
 0.063	

13	
 0.029	




Example 

•  The signal m(t) = Amcos(2πfmt) is to be transmitted 
using FM techniques.  Find the practical bandwidth if 
 (a) Am = 5V, fm = 20 Hz  and kf = 4 Hz/V 
 (b) Am = 10V, fm = 400 Hz and kf = 200 Hz/V.  

•  SOLUTION 
 (a) IN this example, βF = (5)(4)/(20) = 1.  We need to 
find X so that S =                                    .   

•  From the table, if X = 1, S = (0.7652+2×0.442) = 
0.9648.  If X = 2, S = 0.9648+2×0.1152 = 0.9912.  
Therefore X = 2 and B = 4fm. 
 (b) Here, βF = (10)(200)/(400) = 5.  We can show that 
X = 6 yields S = 0.994.  Therefore B = 12fm. 
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Carson’s Rule 

•  For m(t) = Amcos(2πfmt), When β is an integer, we 
always find that X = β+1.   

•  Therefore we can estimate that the practical bandwidth 
of an FM signal is B = 2(βF+1)fm.   

•  For any random m(t) with maximum value Am and 
bandwidth Bm, the true bandwidth is difficult to find.   

•  According to Carson, the worst case is when the 
spectrum of m(t) is concentrated around f = Bm (such 
as a sinusoid).   

•  Based on experiments by Carson, the bandwidth of a 
WBFM signal, BFM, can be estimated by  

mFFM BB )1(2 += β (***)	




Generation of WBFM 
Signals 
•  Direct method 

–  Voltage Controlled Oscillator (VCO) 

•  Indirect method 
–  Armstrong’s method 

m(t)	
 VCO	
 sFM(t)	


m(t)	
 NBFM	

mod @ fc	
 nonlinearity	


BPF	

@ nfc	
 sWBFM(t)	


@ nfc	




Armstrong’s method 
•  Nonlinearity 

–  vo = a1vi+a2vi
2+a3vi

3+… 
–  vi(t) = sNBFM(t). 
–  Let sNBFM(t) = Accos(2πfct+2πkf∫m(t)dt) = Accos(θi(t)). 
–  vo(t) = a1sNBFM(t)+ a2s2

NBFM(t)+ a3s3
NBFM(t)…  

–  vo(t) = a1 Accos(θi(t))+a2 Ac
2cos2(θi(t))+a3 Ac

3cos3(θi(t)) … 
–  vo(t) = a1 Accos(θi(t))+a2 Ac

2/2+(a2 Ac
2/2)cos(2θi(t))+ 

(3a3Ac
3/4)cos(θi(t))+(a3Ac

3/4)cos(3θi(t)) … 
–  nθi(t) = 2π(nfc)t+2π(nkf)∫m(t)dt (carrier frequency = nfc 

and kf’ = nkf therefore βF’ = nβF).  
•  BPF is used to pass the spectral component centred @ f = nfc. 



Demodulation of FM signals 

•  Differentiator plus envelope detection 
•  Frequency discriminator. 
•  Frequency counter. 



Differentiator and envelope 
detector 

sFM(t)	
 d/dt	

x(t)	
 Envelope 	


detector	

DC Block	
y(t)	
 z(t)=Km(t)	




Differentiator and envelope 
detector 
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Example 

•  m(t) = cos2π10t, fc = 100, Ac = 2, kf = 40 Hz/V. 
•  sFM(t) = 2cos(2π200t+4sin2π10t) 
•  x(t) = 4π(100+40cos2π10t)sin(2π100t+4sin2π10t+π) 
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Differentiator and envelope 
detector 

•  Output of envelope detector 
–  y(t) = 2πAc(fc+kfm(t)) = 2πAcfc + 2πAckfm(t) 
–  Assuming that m(t) has no DC component (M(f) = 0 

for f = 0), then  
•  Output of DC block 

–  z(t) = 2πAckfm(t) = Km(t). 



Frequency discriminator 

•  Similar to differentiator 
•  Input to envelope detector has lower amplitude. 
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FM Modulator 
 

RF oscillator 
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0

cos
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c cx t A t d
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resonant 
circuit 

General 
principle: 

Practical 
implementation: 

Difficulty: frequency 
stability. 

Suitable for 
narrowband FM only. 

L.W. Couch II, Digital and Analog Communication Systems, Prentice Hall, 2001. 	




Indirect Wideband Angle Modulator 

Frequency multiplier: 
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Direct Wideband Angle Modulator 

L.W. Couch II, Digital and Analog Communication Systems, Prentice Hall, 2001. 	


how it operates?  consider it without feedback first 
why is feedback required? 
why is frequency divider required? 



Balanced Discriminator: Block 
Diagram 

L.W. Couch II, Digital and Analog Communication Systems, Prentice Hall, 2001. 	




Balanced Discriminator: Circuit 
Diagram 

L.W. Couch II, Digital and Analog Communication Systems, Prentice Hall, 2001. 	




Phased Locked Loop (PLL) 
Detector 

( ) [ ]sin ( )in in c inv t A t t= ω +ϕ
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PLL Detector: Linear Model 
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Comparison of AM and FM/PM 
•  AM is simple (envelope detector) but no noise/

interference immunity (low quality). 
•  AM bandwidth is twice or the same as the 

modulating signal (no bandwidth expansion). 
•  Power efficiency is low for conventional AM. 
•  DSB-SC & SSB – good power efficiency, but 

complex circuitry. 
•  FM/PM – spectrum expansion & noise immunity. 

Good quality. 
•  More complex circuitry. However, ICs allow for 

cost-effective implementation. 



Important Properties of Angle-
Modulated Signals: Summary 
•  FM/PM signal is a nonlinear function of the 

message. 
•  The signal’s bandwidth increases with the 

modulation index. 
•  The carrier spectral level varies with the 

modulation index, being 0 in some cases. 
•  Narrowband FM/PM: the signal’s bandwidth is 

twice that of the message (the same as for AM). 
•  The amplitude of the FM/PM signal is constant 

(hence, the power does not depend on the 
message). 


