Université d'Ottawa | University of Ottawa

ELG3175 Introduction to Communication Systems

Lecture 12-13

Angle Modulation

www.uOttawa.ca

Introduction to Angle Modulation

- In angle modulation, the amplitude of the modulated signal remains fixed while the information is carried by the angle of the carrier.
- The process that transforms a message signal into an angle modulated signal is a nonlinear one.
- This makes analysis of these signals more difficult.
- However, their modulation and demodulation are rather simple to implement.

The angle of the carrier

- Let $\theta_i(t)$ represent the instantaneous angle of the carrier.
- We express an angle modulated signal by:

 $s(t) = A_c \cos(\theta_i(t))$

where A_c is the carrier amplitude.

Instantaneous frequency

 One cycle occurs when θ_i(t) changes by 2π radians, therefore the average frequency of s(t) on the interval t to t+Δt is:

$$f_{\Delta t} = \frac{\theta_i (t + \Delta t) - \theta_i (t)}{2\pi \Delta t}$$

• Therefore the instantaneous frequency is found in the limit as Δt tends towards 0.

$$f_i(t) = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt}$$

Phase modulation

- There are two angle modulation techniques.
 - Phase modulation (PM)
 - Frequency modulation (FM)
- In PM, the phase of the carrier is a linear function of the message signal, m(t). Therefore $s_{PM}(t)$ is:

$$s_{PM}(t) = A_c \cos\left(2\pi f_c t + k_p m(t) + \phi_c\right)$$

where k_p is the phase sensitivity and ϕ_c is the phase of the unmodulated carrier.

• To simplify expressions, we will assume that $\phi_c = 0$. Therefore the angle of a PM signal is given by $\theta_i(t) = 2\pi f_c t + k_p m(t)$.

FM

• For FM, the instantaneous frequency is a linear function of the message:

$$f_i(t) = f_c + k_f m(t)$$

• where k_f is the frequency sensitivity.

$$\theta_i(t) = 2\pi \int_{-\infty}^t f_i(\tau) d\tau = 2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau$$
$$s_{FM}(t) = A_c \cos\left[2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau\right]$$

Instantaneous frequency of a PM signal / Instantaneous phase of an FM signal

• From $s_{PM}(t)$, we find

$$f_i(t)_{PM} = f_c + \frac{k_p}{2\pi} \frac{dm(t)}{dt}$$

From $s_{FM}(t)$, we find

$$\phi_i(t)_{FM} = 2\pi k_f \int_0^{\infty} m(\tau) d\tau$$

t

Figure 4.2 Frequency and phase modulation of square and sawtooth waves.

Example

• Find $s_{FM}(t)$ and $s_{PM}(t)$ if $m(t) = A\cos(2\pi f_m t)$.

- SOLUTION

$$s_{PM}(t) = A_c \cos\left[2\pi f_c t + Ak_p \cos\left(2\pi f_m t\right)\right]$$
$$\int_{-\infty}^{t} A\cos(2\pi f_m \tau)d\tau = \frac{A}{2\pi f_m} \sin(2\pi f_m t)$$
$$s_{FM}(t) = A_c \cos\left[2\pi f_c t + \frac{Ak_f}{f_m} \sin(2\pi f_m t)\right]$$

• The PM and FM of the example are shown here for $A_c = 5$, A = 1, $f_c = 1$ kHz, $f_m = 100$ Hz, $k_p = 2\pi$ rads/V and $k_f = 500$ Hz/V.

t en secondes

Characteristics of Angle Modulated Signals

	PM Signal	FM Signal
Instantaneous phase $\phi_i(t)$	$k_p m(t)$	$2\pi k_f \int_{0}^{t} m(\tau) d\tau$
Instantaneous frequency	$f_c + \frac{k_p}{2\pi} \frac{dm(t)}{dt}$	$f_c + k_f m(t)$
Maximum phase deviation $\Delta \phi_{max}$	$k_p m(t) _{\max}$	$2\pi k_f x(t) _{\max} \text{où}$ $x(t) = \int m(\tau) d\tau$
Maximum frequency deviation Δf_{max}	$\frac{k_p}{2\pi} x(t) _{\max} \begin{array}{l} \text{Où} \\ x(t) = \frac{dm(t)}{dt} \end{array}$	$\left k_{f} m(t) \right _{\max}$
Power	$\frac{A_c^2}{2}$	$\frac{A_c^2}{2}$

Modulation index

• Assume that $m(t) = A_m \cos(2\pi f_m t)$. The resulting FM signals is:

$$s_{FM}(t) = A_c \cos\left(2\pi f_c t + \frac{A_m k_f}{f_m} \sin(2\pi f_m t)\right)$$

• For the FM signal

$$\beta_F = \frac{k_f A_m}{f_m} = \frac{\Delta f_{\max}}{f_m}$$

FM Modulation index

For any m(t) which has bandwidth B_m, we define the modulation index as :

$$\beta_F = \frac{k_f |m(t)|_{\max}}{B_m} = \frac{\Delta f_{\max}}{B_m}$$

Example

• The signal $m(t) = 5 \operatorname{sinc}^2(10t)$.

Find the modulation index for FM modulation with $k_f = 20 \text{ Hz/V}$.

- SOLUTION
- $B_m = 10$ Hz, therefore $\beta_F = 20 \times 5/10 = 10$.

Narrowband FM

• Consider an FM signal :

$$s_{FM}(t) = A_c \cos \left[2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau \right]$$

where $\left| 2\pi k_f \int_{-\infty}^t m(\tau) d\tau \right| <<1$

- We say that $s_{FM}(t)$ is a narrowband FM signal.
- For example, consider when $m(t) = A_m \cos(2\pi f_m t)$.

$$s_{FM}(t) = A_c \cos \left(2\pi f_c t + \frac{A_m k_f}{f_m} \sin(2\pi f_m t) \right)$$

$$s_{FM}(t) = A_c \cos \left(2\pi f_c t + \beta_F \sin(2\pi f_m t) \right)$$

Narrowband FM

- When $\beta_F \ll 1$, the FM signal is NBFM.
- cos(A+B) = cos(A)cos(B)-sin(A)sin(B). Therefore

$$s_{FM}(t) = A_c \cos\left[2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau\right]$$

= $A_c \cos(2\pi f_c t) \cos\left(2\pi k_f \int_0^t m(\tau) d\tau\right) - A_c \sin(2\pi f_c t) \sin\left(2\pi k_f \int_0^t m(\tau) d\tau\right)$
 $\approx A_c \cos(2\pi f_c t) - A_c \left(2\pi k_f \int_0^t m(\tau) d\tau\right) \sin(2\pi f_c t)$

(if $A \ll 1$, $\cos(A) \approx 1$ and $\sin(A) \approx A$.)

NBFM Modulator

Bandwidth of NBFM approx. = $2B_m$

Wideband FM - WBFM

- For an FM signal to be NBFM, $\beta_F << 1$.
- Any signal that is not narrowband is therefore wideband.
- However, typically $\beta_F > 1$ for an FM signal to be considered wideband.
- The bandwidth of WBFM signals is larger than NBFM since Δf_{max} is increased.

The Fourier series of the WBFM signal when $m(t) = A_m \cos 2\pi f_m t$.

 We can express the complex envelope of the WBFM signal using Bessel functions of first kind and order n as

$$\widetilde{s}_{FM}(t) = \sum_{n=-\infty}^{\infty} A_c J_n(\beta_F) e^{j2\pi n f_m t}$$

• And the WBFM signal itself becomes:

$$s_{FM}(t) = \operatorname{Re}\{\widetilde{s}_{FM}(t)e^{j2\pi f_c t}\}\$$

=
$$\operatorname{Re}\left\{\sum_{n=-\infty}^{\infty} A_c J_n(\beta_F)e^{j(2\pi f_c t + 2\pi n f_m t)}\right\}\$$

=
$$\sum_{n=-\infty}^{\infty} A_c J_n(\beta_F)\cos(2\pi (f_c + n f_m)t))\$$

Spectrum: Examples

Spectrum of the WBFM signal when $m(t) = A_m \cos 2\pi f_m t$.

• The spectrum of this signal is:

$$S_{FM}(f) = \frac{A_c}{2} \sum_{n=-\infty}^{\infty} J_n(\beta_F) \left[\delta(f - f_c - nf_m) + \delta(f + f_c + nf_m) \right]$$

- This expression shows that the FM signal's spectrum is made up of an infinite number of impulses at frequencies $f = f_c + nf_m$.
- Therefore, theoretically, this WBFM signal has infinite bandwidth.
- However, the properties of the Bessel function show that most of these impulses contribute little to the overall power of the signal and are negligible.
 - We define the practical bandwidth as the range of frequencies which contains at least 99% of the total power of the WBFM signal.

The function $J_n(\beta)$

Properties of $J_n(\beta)$

1) If n is an integer : $J_n(\beta) = J_{-n}(\beta)$ for even n and $J_n(\beta) = -J_{-n}(\beta)$ for odd n

2)

when $\beta << 1$ $J_0(\beta) \approx 1$ $J_1(\beta) \approx \beta/2$ and $J_n(\beta) \approx 0, n > 1$ 4) $Im\{J_n(\beta)\}=0$

3)
$$\sum_{n=-\infty}^{\infty} J_n^2(\beta) = 1$$

Power of the FM signal

• The power of an FM signal is:

$$P_{FM} = \frac{A_c^2}{2}$$

$$s_{FM}(t) = \sum_{n=-\infty}^{\infty} A_c J_n(\beta_F) \cos(2\pi (f_c + nf_m)t))$$

• The power of the above expression is:

$$P = \frac{A_c^2}{2} \sum_{n=-\infty}^{\infty} J_n^2(\beta_F)$$

Filtering a WBFM signal to limit its bandwidth.

We want to choose *B* so that the power of x(t)Is at least 0.99× the power of $s_{FM}(t)$.

 $x(t) = \sum_{n=-X}^{X} A_c J_n(\beta_F) \cos(2\pi (f_c + nf_m)t)$ where X is the largest integer that satisfies : $f_c + X f_m \le f_c + \frac{B}{2} \quad \text{and} \quad f_c - X f_m \ge f_c - \frac{B}{2}$

• The power of *x*(*t*) is:

$$P_x = \frac{A_c^2}{2} \sum_{n=-X}^X J_n^2(\beta_F)$$

• Therefore we must choose X so that:

$$\sum_{n=-X}^{X} J_n^2(\beta_F) \ge 0.99$$

• We know that $J_n^2(\beta_F) = J_{-n}^2(\beta_F)$. Therefore

$$J_0^2(\beta_F) + 2\sum_{n=1}^X J_n^2(\beta_F) \ge 0.99$$

Values of $J_n(\beta)$

n	β=0.1	β=0.2	β=0.5	<i>β</i> =1	β=2	β=3	<i>β</i> =5	<i>β</i> =10
0	0.997	0.99	0.938	0.765	0.224	-0.2601	-0.178	-0.246
1	0.05	0.1	0.242	0.44	0.577	0.3391	-0.323	0.043
2	0.001	0.005	0.031	0.115	0.353	0.4861	0.047	0.255
3	2×10⁻⁵≈0	1.6×10 ⁻⁴	0.0026	0.02	0.129	0.3091	0.365	0.058
4				0.002	0.034	0.1320	0.391	-0.220
5					0.007	0.0430	0.261	-0.234
6					0.001	0.0114	0.131	-0.014
7	$< d \cdot$					0.0025	0.053	0.217
8							0.018	0.318
9							0.006	0.292
10		X					0.001	0.207
11								0.123
12								0.063
13								0.029

Example

- The signal m(t) = A_mcos(2πf_mt) is to be transmitted using FM techniques. Find the practical bandwidth if
 (a) A_m = 5V, f_m = 20 Hz and k_f = 4 Hz/V
 (b) A_m = 10V, f_m = 400 Hz and k_f = 200 Hz/V.
- SOLUTION

(a) IN this example, $\beta_F = (5)(4)/(20) = 1$. We need to find X so that $S = J_0^2(\beta_F) + 2\sum J_n^2(\beta_F) \ge 0.99$.

• From the table, if X = 1, $S = (0.765^2 + 2 \times 0.44^2) = 0.9648$. If X = 2, $S = 0.9648 + 2 \times 0.115^2 = 0.9912$. Therefore X = 2 and $B = 4f_m$.

(b) Here, $\beta_F = (10)(200)/(400) = 5$. We can show that X = 6 yields S = 0.994. Therefore $B = 12f_m$.

Carson's Rule

- For $m(t) = A_m \cos(2\pi f_m t)$, When β is an integer, we always find that $X = \beta + 1$.
- Therefore we can estimate that the practical bandwidth of an FM signal is $B = 2(\beta_F + 1)f_m$.
- For any random m(t) with maximum value A_m and bandwidth B_m , the true bandwidth is difficult to find.
- According to Carson, the worst case is when the spectrum of m(t) is concentrated around f = B_m (such as a sinusoid).
- Based on experiments by Carson, the bandwidth of a WBFM signal, B_{FM} , can be estimated by

$$B_{FM} = 2(\beta_F + 1)B_m$$
 (***)

Generation of WBFM Signals

- Direct method
 - Voltage Controlled Oscillator (VCO)

$$m(t) \longrightarrow VCO \longrightarrow s_{FM}(t)$$

- Indirect method
 - Armstrong's method

$$m(t) \longrightarrow \begin{array}{c} \text{NBFM} \\ \text{mod } @ fc \end{array} \longrightarrow \begin{array}{c} \text{nonlinearity} \longrightarrow \begin{array}{c} \text{BPF} \\ @ nf_c \end{array} \longrightarrow \begin{array}{c} S_{WBFM}(t) \\ @ nf_c \end{array}$$

Armstrong's method

- Nonlinearity
 - $v_o = a_1 v_i + a_2 v_i^2 + a_3 v_i^3 + \dots$
 - $v_i(t) = s_{NBFM}(t).$
 - Let $s_{NBFM}(t) = A_c \cos(2\pi f_c t + 2\pi k_f \int m(t) dt) = A_c \cos(\theta_i(t))$.
 - $v_o(t) = a_1 s_{NBFM}(t) + a_2 s_{NBFM}^2(t) + a_3 s_{NBFM}^3(t) \dots$
 - $v_o(t) = a_1 A_c \cos(\theta_i(t)) + a_2 A_c^2 \cos^2(\theta_i(t)) + a_3 A_c^3 \cos^3(\theta_i(t)) \dots$
 - $v_o(t) = a_1 A_c \cos(\theta_i(t)) + a_2 A_c^2 / 2 + (a_2 A_c^2 / 2) \cos(2\theta_i(t)) + (3a_3 A_c^3 / 4) \cos(\theta_i(t)) + (a_3 A_c^3 / 4) \cos(3\theta_i(t)) \dots$
 - $n\theta_i(t) = 2\pi (nf_c)t + 2\pi (nk_f) \int m(t)dt$ (carrier frequency = nf_c and $k_f' = nk_f$ therefore $\beta_F' = n\beta_F$).
- BPF is used to pass the spectral component centred @ $f = nf_c$.

Demodulation of FM signals

- Differentiator plus envelope detection
- Frequency discriminator.
- Frequency counter.

Differentiator and envelope detector

Differentiator and envelope detector

$$\begin{aligned} x(t) &= \frac{ds_{FM}(t)}{dt} \\ &= \frac{d}{dt} \Big(A_c \cos(\theta_i(t)) \Big) \\ &= -\frac{d\theta_i(t)}{dt} A_c \sin(\theta_i(t)) \\ &= 2\pi A_c f_i(t) \sin(2\pi f_c t + 2\pi k_f \int m(t) dt + \pi) \\ &= 2\pi A_c \Big(f_c + k_f m(t) \Big) \sin(2\pi f_c t + 2\pi k_f \int m(t) dt + \pi) \end{aligned}$$

 $f_c >> |k_f m(t)|$ then $2\pi A_c(f_c + k_f m(t)) > 0$.

Example

- $m(t) = \cos 2\pi 10t$, $f_c = 100$, $A_c = 2$, $k_f = 40$ Hz/V.
- $s_{FM}(t) = 2\cos(2\pi 200t + 4\sin 2\pi 10t)$
- $x(t) = 4\pi(100+40\cos 2\pi 10t)\sin(2\pi 100t+4\sin 2\pi 10t+\pi)$

 $2\pi A_c(f_c + k_f m(t))$

Differentiator and envelope detector

- Output of envelope detector
 - $y(t) = 2\pi A_c(f_c + k_f m(t)) = 2\pi A_c f_c + 2\pi A_c k_f m(t)$
 - Assuming that m(t) has no DC component (M(f) = 0 for f = 0, then
- Output of DC block

$$- z(t) = 2\pi A_c k_f m(t) = K m(t).$$

Frequency discriminator

- Similar to differentiator
- Input to envelope detector has lower amplitude.

FM Modulator

Indirect Wideband Angle Modulator

J.Proakis, M.Salehi, Communications Systems Engineering, Prentice Hall, 2002

Direct Wideband Angle Modulator

how it operates? consider it without feedback first why is feedback required? why is frequency divider required?

Balanced Discriminator: Block Diagram

L.W. Couch II, Digital and Analog Communication Systems, Prentice Hall, 2001.

Balanced Discriminator: Circuit

Dianram

L.W. Couch II, Digital and Analog Communication Systems, Prentice Hall, 2001.

Phased Locked Loop (PLL) Detector

$$v_{in}(t) \qquad Phase detector (PD) \qquad v_1(t) \qquad Low-pass filter (LPF) \qquad v_2(t) \qquad filter (LPF) \qquad filter (LPF) \qquad v_2(t) \qquad filter (LPF) \qquad filter (LPF) \qquad filter (LPF) \qquad v_2(t) \qquad filter (LPF) \qquad$$

Comparison of AM and FM/PM

- AM is simple (envelope detector) but no noise/ interference immunity (low quality).
- AM bandwidth is twice or the same as the modulating signal (no bandwidth expansion).
- Power efficiency is low for conventional AM.
- DSB-SC & SSB good power efficiency, but complex circuitry.
- FM/PM spectrum expansion & noise immunity. Good quality.
- More complex circuitry. However, ICs allow for cost-effective implementation.

Important Properties of Angle-Modulated Signals: Summary

- FM/PM signal is a nonlinear function of the message.
- The signal's bandwidth increases with the modulation index.
- The carrier spectral level varies with the modulation index, being 0 in some cases.
- Narrowband FM/PM: the signal's bandwidth is twice that of the message (the same as for AM).
- The amplitude of the FM/PM signal is constant (hence, the power does not depend on the message).

