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Abstract

We introduce a new way to accurately segment the 3D
femur from pelvic CT scans. The femur is a difficult target for
segmentation due to its proximity to the acetabulum,
irregular shape and the varying thickness of its hardened
outer shell. We overcome these difficulties by (a) dividing the
femur into two rounds of segmentation - one for the femur
head and another for the body — (b) pre-processing the CT
scan to reduce anatomical sources of error (c) two modes of
segmentation — a rough estimation of a contour and another
for fine contours. Segmentations of the CT volume are
performed iteratively, on a slice-by-slice basis and contours
are extracted using the morphological snake algorithm. Our
methodology was designed to require little initialization from
the user and to deftly handle the large variation in femur
shapes, most notably from deformations attributed to cam
femoral-acetabular impingements. Our efforts are to provide
physicians with a new tool that creates patient-specific and
high-quality 3D femur models while requiring much less time
and effort. Femur models segmented with our method had an
average volume overlap error of 2.71 + 0.44% and
symmetric surface distance of 0.28 £ 0.04mm compared to
ground truth models.

Keywords: Segmentation;, Femur, Femoral-Acetabular
Impingements; Hip; Morphological Snake

1 Introduction

In medical imaging, segmentation can be used to extract
contours of organs or bones, which can later be used by
physicians to aid in their diagnosis. Femoral-Acetabular
Impingements (FAIs) refer to a source of hip pain where
deformities exist on the hip bones which deteriorate the
joint’s soft tissue over time. Segmenting a pelvic Computed
Tomographic (CT) scan allows for the creation of patient-
specific hip-bone models. These models can then be used by
physicians to detect the locations and severity of
impingements as well as to aid in the planning of minimally
invasive procedures to correct the condition.

We are motivated by the medical need for patient-specific
3D models of hip bones for the treatment of FAIs. At present,
the most precise results for pelvic bone segmentations from
CT scans come from the intensive manual labeling of voxels.
While providing the most accurate results, manual
segmentation is extremely time-consuming; requiring hours
of work for a single pelvic scan, even with computer assisted
functions. Our goal is to create a machine-driven
segmentation scheme which greatly reduces the time required
to segment the femur from a pelvic CT scan while returning
the sufficiently accurate results required for physicians to
treat FAISs.

There are number of factors which complicate attempts to
segment a femur from a CT pelvic scan. These complications
can be classified as either technical limitations associated
with CT imagery (such as low resolution, artifacts and lack of
color information), patient-specific complications (such as
bone size, varying caput-collum-disphyseal angles and the
potential presence of FAI), or complications particular to
segmenting the femur (such as its close proximity to the

acetabulum, it’s off-tubular shape or the inconsistent density
of its osseous tissue).

Our contribution consists of providing a segmentation
procedure which overcomes or mitigates these complications.
The human hip has bones whose shapes and size can vary
greatly between patients. Regional shape differences are
especially expected for patient’s suffering from hip illnesses,
like FAIs. We resolve to create a practical solution to femur
segmentation which works across a spectrum of shapes and
validate our method on a diverse sampling of patient scans.
Our solution subdivides the femur into two, partially
overlapping regions for segmentation: the femur-head and the
femur-body. For both of these objects, we extract the
contours from cross-sections of the femur as they appear on
singular slices from the CT volume. While we use
Morphological Snakes (Alvarez, Baumela, Henriquez, &
Marquez-Neila, 2010) as our contour extraction method due
to its stability and improved speed, our main contributions
lies in the methods we use to subdivide femur segmentation
into smaller tasks and the pre-processing steps we apply prior
to segmentation. Both the subdivision and the preprocessing
methods stem from our analysis of inter-patient variability in
terms of bone structure and density.

We pre-process the contents of the CT pelvic scan by (a)
cutting-out portions of the acetabulum & filling its space with
a low-gradient fill, (b) upscaling the voxel’s resolution, (c)
performing ceiling thresholding to emphasize voxels
composed of compact bone and (d) applying a flooring
thresholding to flatten the gradients between of soft tissues.

The structure of this paper is a follows: Section 2 contains
background information, Section 3 describes our femur
segmentation strategy, Section 4 contains some results and
discussion and Section 5 contains closing remarks and
directions for future work.

2 Background

2.1 The Hip Joint

The acetabulofemoral joint exists between the pelvis and
the thigh and is composed of two bones; the femur and the
acetabulum. Between these bones are soft tissues, such as the
acetabular labrum and articular cartilage, which protect the
contact surfaces of the bones and facilitate the smooth, pain-
free operation of the joint

Figure 2.1 Pelvic x-ray with highlighted femur (red) and acetabulum (blue)

The upper extremity of the femur has a number of notable
features which affect segmentation:



e The femur head is the rounded end of the femur. Its
surface comes in the closest contact with the pelvic
bones and can generally be approximated with the shape
of a sphere or conchoid

e The pit (or fovea) for the ligament of the head of the
femur is an indentation in the otherwise spherical surface
of the femur-head

e The femur body is the tubular shaft which makes up the
majority of the femur

e The greater trochanter is a large bony-bump at the top
of the body, opposite to the femur head

CT images of the femur-head’s subchondral bone

composition show large density variations, like a very thin

compact shell compared to the much thicker one found in the
femur body. Comparatively, regions of the acetabular rim
covering the femur head are also noticibly denser.

The hip-joint’s task in the human body is to support upper-
body weight- both while standing still and during movement.
Hip movement is enabled by the hip functioning as a ball-
and-socket (Field & Hutchinson, 2008) where the femur head
constitutes the ball and the acetabulum provides the retaining
socket.

2.2 Femoral Acetabular Impingement

Hip impingement, or Femoral-Acetabular Impingment
(FALI), is a pathological condition where there is a deformity
on either of the hip-joint’s bones. This deformity usually
manifests itself as a bony-bump on the acetabular rim (Pincer
impingements) or the femur’s head-neck junction (Cam
impingements) or both. As a result, the hip joint will lose its
ideal ball-and-socket shape which causes abnormal contact
(impingement) between the femur and acetabulum during
normal hip-rotation. In turn, this abnormal contact causes
chaffing of the soft-tissue protecting the two bones,
deteriorating the integrity of the joint over time. FAI is most
often associated with pain during hip flexion, adduction, and
the internal rotation of the femur. If left untreated, a FAI can
lead to cartilage damage, labral tears, early hip arthritis,
hyperlaxity, sports hernias, chronic lower back pain (Hossain
& Andrew, 2008) and an eventual hip replacement surgery.

2.3 Medical Segmentation Methods

Medical images are a popular proving ground for
segmentation methods as the images are usually full of
complex shapes, noise and the extracted shapes have
obvious, life-changing uses.

The original energy minimizing curves, or “snakes” (Kass,
Witkin, & Terzopoulos, 1987), are perhaps the best known
segmentation scheme. Since their introduction in 1987, a
number of modifications/enhancements have been proposed.
These include the addition of a balloon force operator (Cohen
L., 1991), 3D generalizations of the snake model (Cohen &
Cohen, 1993), likening snakes to level-set methods with
geodesic active-contours (Caselles, Kimmel, & Sapiro,
1997), increasing the a snake’s capture range & ability to
evolve into concavities (Xu & Prince, 1998) and add
topological  flexibility ~(Mclnerney &  Terzopoulos,
2000).Model-based segmentation schemes are useful in cases
where part of an object’s information is missing. Early cases
include Active shape models (Cootes, Taylor, Cooper, &
Graham, 1995) and active appearance models (Cootes,
Edwards, & Taylor, Active Appearance Models, 1998) based
around point distribution models.

Similar to energy-minimizing curves are methods which
are region-based rather than boundary-based. A prime
example of this is the Chan-Vese method (Chan & Vese,
2001) (Vese & Chan, 2002) which seeks to minimize the
energy inside a curve through the Mumford-Shaw functional.
At roughly the same time, Diffusion Snakes (Cremers,
Schndrr, Weickert, & Schellewald, 2000) were detailed,
which used prior shapes along with the Mumford Shaw
functional. As an aside, a model-based method which
originally used the kernel density information of shape-priors
(Cremers, Osher, & Soatto, Kernel Density Estimation and
Intrinsic  Alignment for Shape Priors in Level Set
Segmentation, 2006) was modified to also include intensity-
priors or regions inside the boundary (Chen & Radke, 2009).

A number of segmentation strategies have been proposed
focusing on the segmentation of femurs from MRI and CT
scans, although none of these address the much more difficult
task of segmenting hips suffering from FAIls. One such
method required assigning a scan into one of four groups
depending on the anticipated difficulty of segmentation, and
in the worst case, separating the femur and acetabulum using
a combination of the Hueckel operator and orthogonal line
detection (Zoroofi, et al., 2003). Unfortunately, their
techniques returned many moderate and poor results. Another
method involved a significant amount of user-input, requiring
the user to manually surround the femur head with contour
points for a snake method and making manual correction
whenever the snake failed due to soft edges (Magnenat-
Thalmann, Yahia-Cherif, Gilles, & Molet, 2003).

In regards to model-based segmentation methods for femur
bones, coarse-to-fine methods have been used with 3D
meshes (Gilles, Moccozet, & Magnenat-Thalmann, 2006) for
anatomical modeling, MRI scans with low resolutions or
fields of view (Schmid, Kim, & Magnenat-Thalman, 2011),
and statistical shape models (Yokota, Okada, Takao, Sugano,
Tada, & Sato, 2009) have been used to segment diseased
hips. In addition, 2D point-distribution models for ASMs
(Song, Li, Ou, Han, Zhao, & Wang, 2007) have been tested
against healthy hips. Generalized models of hip-bones can
lead to complications when the object of segmentation has a
FAI. This is due to the bony bump being outside the model’s
expected distribution. Conversely, models specifically
tailored for bones with impingements require a very large set
of prior shapes as the location of the bony bumps can be
highly irregular. To return the best segmentation results, a
method which is elastic to the pronounced differences
between bones is required.

2.4 Morphological Snakes

Our segmentation solution selected a 2D implementation of
Morphological Snakes (Alvarez, Baumela, Henriquez, &
Marquez-Neila, 2010) to extract our desired contours. This
method is a recent modification of the well-known Geodesic
Active Contours. The major difference between the two
models is how each method solves the partial differential
equations (PDEs) responsible for curve evolution. While
Geodesic Active Contours expresses these PDEs with a set of
differential operators, Morphological Snakes instead takes
the approach of approximating these terms as the
composition of morphological operators. Specifically, the inf
(infimum) and sup (supremum) operators. This substitution
claims three advantages:

1. Simplicity of Implementation — The level-set is
expressed as a binary piecewise constant function



2. Speed - Execution time in test was shorter, sometimes
by full order of magnitude

3. Stability — No re-initialization of the level set or contour
is required

3 Segmentation of the Femur

3.1 User Initialization

Our segmentation strategy is considered semi-automatic
instead of fully automatic because it requires preliminary
user-interaction in order to achieve its goal. The current stage
of the segmentation process contains all of these interactions,
allowing the following stages to perform automatically.

The user’s input is required in order to demarcate 3D
regions-of-interests (ROIs) within the volume of the CT scan.
We segment the femur head and body semi-independently,
which requires two partially-overlapping ROIs to be
specified before the segmentation procedure can begin in
earnest.

Figure 3.1 Frontal view of the ROI for the femur (left) head (right) body
with split slice in yellow

The first of these ROIs encompasses the whole femur head,
the upper portion of the greater trochanter and neighboring
sections of the acetabulum. We refer to it as ROI}. Its vertical
upper-bound is the topmost slice containing traces of the
femur head while its lower-bound contains the bottom-most
traces of the femur head’s sphericity as shown in Figure 3.1.
In addition to this, a voxel whose location roughly constitutes
the center of the femur head is also attached to this ROI.

The second ROI encloses the more tubular shape of the
femur body up to the top of the greater trochanter as shown
in Figure 3.1. We refer to it as ROI. Attached to ROl is the
index of the slice where the cross-sections of the femur first
appear as two disjoined objects (the greater trochanter and
femur head), which we call Z,.

3.2 Acetabular Rim Removal

The primary driving force behind our segmentation
strategy is the morphological snake algorithm. If a slice
contains a section of the femur, we can envelop it with an
initial contour for the snake method. The snake method will
then be attracted to the femur’s edges and provide us with an
accurate outline of the femur whose volume we can extract.
However, in cases where the femur is near to another object
with strong edges, the snake may mistakenly be attracted to
its edges instead, which leads to much less accurate outlines
of the femur head. This is the case for regions of the femur
head being cupped by the acetabulum.

To neutralize this unwanted source of competing edges, an
“acetabular-removal” step is added to our solution, which is
made easier by the fact that the acetabular rim has much

denser bone than can be found on the femur head (leading to
better defined edges which aid in segmentation). We cut-out
portions of the acetabulum from our source data and replace
the resulting hole with a smooth, muscle-like fill. Our starting
point for this procedure is ROI.

Thresholding

Our first step towards removing the acetabulum is to
perform a thresholding of the image to isolate segments of
compact-bone. Sections of the acetabulum adjacent to the
femur have a shell of compact-bone thick enough to preclude
weak edges. As a result, thresholding a slice with an
appropriate value provides a solid outline of the acetabulum
in one or two connected fragments.

Creating the Mask
After having retrieved a binary-image mapping the location
of compact bone voxels, we create a mask designed to cover
the acetabulum only. To do this, we decompose the
thresholded image into sets of connected white voxels and
filter-out fragments which do not meet the following criteria:
a) A fragment must be composed of a sufficient number of
white voxels

b) A fragment’s location must be on the expected side
(right or left) of the femur head center

c) A fragment must have all of its elements a sufficient
distance away from the femur head center

Any fragments which weren’t filtered-out get imprinted
onto a mask for the acetabulum. Following this, a dilation
operation is applied to the mask with a 3x3 square operator.
This has the advantage of both joining disconnected
fragments and also capturing the softer outline of the
acetabulum which wasn’t captured during the thresholding
step.

The final touches include flood-filling a tertiary color into
the corners of the mask which allows us to distinguish
between the empty area around the mask and the spongy-
bone regions inside the acetabulum.

Filling the Mask Region

The final step of the acetabular removal process consists of
replacing voxels which the mask identifies as belonging to
the acetabulum. From the start, the goal of the acetabular
removal was to eliminate some of the gradient which might
cause the snake segmentation method to return erroneous
results.

@ (b)

(d) O

Figure 3.2 (a) Original Slice of the femur-head (b) Slice of the femur-head

after thresholding (c) Mask identified for acetabulum (d) Identified mask

after dilation & flood-filling (e) Mask-region with black fill (f) Mask region
with low-gradient fill

To this end, we have opted to not replace the acetabulum
with a flat color, but with a low-gradient fill instead. This
low-gradient fill was designed to provide a smooth
appearance at all points of the cut-out acetabulum. It works
as an offshoot of Gaussian smoothing, repurposed to fill in
the acetabuluar cut-out. Low gradient fill starts at the outside
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of the cut-out and works its way in. An additional feature in
the algorithm is that it converge the fill to a muscle-like
intensity in order to prevent the formation of high-gradient
spines along the center of the cut-out. The entire process can
be seen in Figure 3.2.

It is important to note that acetabular removal is not
concerned with segmenting the whole acetabulum. It instead
concentrates on identifying parts of acetabulum which are
near to the femur head and marginalizing their impact over
the snake-based segmentation methods.

3.3 Pre-processing

In addition to acetabular rim removal, we use three pre-
processing methods which generally improve the quality of
our results: upscaling, ceiling thresholding and flooring
thresholding. By default, all three methods are applied prior
to each one of the contour-extraction steps. However, these
functions can also be toggled-off individually and for
individual steps of the segmentation procedure if a user has
reason to believe that it will improve results.

3.3.1 Upscaling

The internal forces acting on a snake’s evolving contour
exist to ensure that the curve remains smooth and well-
rounded. This is desirable for segmenting objects whose
curvature arc slowly. However, when applied to objects with
narrow sections or sharp changes in the direction of edges,
this internal force can be the source of premature termination
of curve evolution or cause the curve to enter the object it is
attempting to segment (He, et al., 2008).

Due to the comparatively low resolution of the CT slices,
small concavities exist in the in cross-sections of the femur
head and neck which may invoke the detrimental effects of
an evolving snake’s internal forces.

A solution which has improved results is to upscale the
contents of the ROI. In this case, upscaling refers to resizing
a slice’s contents inside the ROI by an integer scale factor,
without using any interpolation. This has the effect of
artificially widening narrow concavities on the femur’s
surface and diluting sharp angles in a cross-sections contour.
Once a final contour has been extracted from an upscaled
ROI, the contour is downscaled by the same scale factor prior
to becoming our final segmentation result.

The downside to this solution is that it increases the
amount of time required to extract a femur contour. This can
be attributed to the size of the evolving contour being
increased, resulting in needing to calculate the external forces
being exerted on the curve by more voxels. However, we find
this trade-off acceptable for small scale-factor values due to
the great improvement in results.

3.3.2 Ceiling Threshold

We apply a ceiling threshold method to highlight bone
voxels while still keeping lower-intensity voxel information
as shown in Figure 3.3. The ceiling threshold value is chosen
to be sufficiently high as to only highlight voxels which are
guaranteed to correspond to compact bones. The highlighted
voxels are nearly guaranteed to stop the snake’s evolving
contour.

Figure 3.3 Slice (left) before ceiling-thresholding (right) after ceiling-
thresholding

3.3.3 Flooring Threshold

We can apply a flooring threshold method to unify the
intensities of soft tissues, as seen in Figure 3.4. Primarily,
this method is used to remove local minima caused by streaks
of fat between muscles in the thigh. It should also be noted
that for any slice of ROl which has a flooring threshold
applied, the acetabular rim removal step can be modified to
omit the low-gradient fill phase. This fill would be floored,
which negates its usefulness.

Figure 3.4 Slice (left) before flooring-thresholding (right) after flooring-
thresholding

3.4 Segmenting the Femur Head ROI

The femur head is near-spherical in  shape.
Correspondingly, a cross-section of the femur-head which
appears in CT slices will appear near-circular. During the
evolution of a snake’s contour, internal forces assure that the
curvature of the contour remains smooth. A side-effect of
these internal forces is that snake methods cannot capture
contours which have sharp corners or narrow protrusions.
The near-circular cross-section of a femur head, ideally
possessing neither of these features, is therefore a good
candidate for snake-based segmentation methods.

Our segmentation strategy for the femur head consists of
two consecutive steps: (a) a “primer-slice” is segmented,
which is the first slice to be processed in the ROl and then
(b) the subsequent slices are segmented, a process which
starts at the primer slice’s neighbours, and cascades
outwards.

3.4.1 Primer Slice Segmentation

We refer to the slice in an ROI which is the first to have its
femoral contour extracted as the “primer” slice. What
differentiates this slice’s segmentation process from the
others is how its initial contour is derived. Unlike the
procedure for other slices, the primer slice has its femur head
contour segmented twice: the first time to attain a rough
contour and the second time to achieve a semi-final fine
contour. This twice-over segmentation is a cost-effective way
to free the user from setting an initial contour.



The rough contour extraction starts with an initial contour
the size of the whole ROI. When used as input for the first
morphological snake pass, this oversized initial contour will
deflate into an approximation of the femur head or body
which may have a few defects. Afterwards the fine contour
extraction commences; the final contour obtained through the
rough segmentation is re-processed to be used as the initial
contour for the fine segmentation.

For the ROIy, the primer slice is chosen to be the slice
which is nearest to the center. Formally, the primer slice Z, is
chosen with Eqg. 3.1, where Z, is the top-most slice of ROl
and Z, is its bottom-most slice:

ANEA

Z, =Z; +round <%) Eq.31

Finding the rough contour

The rough contour extraction serves to find a starting area
for the fine contour extraction. The complete process of
obtaining the final rough contour can be seen in Figure 3.5.
The initial contour for this stage is the largest circle whose
entirety fits inside ROIy’s area. This circle has its center at
the ROI’'s mid-width and mid-height. The circle will also
have a radius equal to the ROI’s mid-width or mid-height;
whichever is smallest. The femur-head is bound to be fully
within the limits of the circle due to the landmarks used to
size the ROIy.

@) (b)
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Figure 3.5 Primer slice for rough segmentation (a) as it originally appears (b)
after acetabular removal (c) with super-imposed initial contour (d) with
superimposed final contour (e) with super imposed circle from Hough
transformation (f) with super-imposed widened circle

This circular initial contour is then evolved using the
morphological ~snake algorithm  (Alvarez, Baumela,
Henriquez, & Méarquez-Neila, 2010). For this first pass, the
snake parameters are set to have a strong, negative balloon
force and a weak edge-attraction force.

Given the circular initial contour and the right parameters,
the morphological snake will return a rough final contour
which approximates the femur head. This contour may
approximate the femur-head’s exterior well or it may contain

a few flaws. For the rough contour, a few protrusions or

depressions from the femur head’s shell is acceptable. What’s

most important to retrieve from the first pass of the
morphological snake algorithm is the general curvature of the
femur head.

The final step in the rough contour extraction is to provide
an initial contour for the fine contour extraction. We have
chosen to use a close-fitting circle to this end. To get a circle
from our rough final contour we:

1. Perform a Hough circle transform on the rough final
contour to determine the circle which best approximates
the shape of the femur. We improve our results by using
an elliptical-Gaussian kernel voting scheme similar to
the one used by (Fernandes & Oliveira, 2008). In
addition, we use a narrow-band approach around the
ROIs femur —center point to speed-up the process.

2. Widen the circle’s radius in order to ensure all of the
voxels belonging to the femur-head are included inside
the initial contour

The contour re-initialization has proven useful in scenarios
where distant fragments of the acetabulum linger after the
rim is removed or the greater trochanter’s top appears in the
primer slice. These scenarios can cause small sections of the
contour to remain isolated from the femur head during curve
evolution. Re-initializing the contour through Hough circle
detection allows us to guarantee that all sections of the initial
contour for the fine step are within the same range of the
femur head.

Finding the fine contour

The fine contour segmentation process constitutes the
second-pass of the morphological snake on the primer slice.
During this pass, the snake operation provides us with the
decisive segmentation result for this particular slice. The
detected circle with widened radius is used as our initial
contour.

The snake parameters used in the second pass focus on a
strong attraction force with a weaker deflation force. This is
contrary to the focus of the first snake’s pass. This change is
validated by our knowledge that the initial contour will be
much closer to the desired final contour in the second pass
than the first.

Because of these changes, the snake algorithm will return
results with are tighter to the bone and less-error prone than
those of the rough contour. An example of the final
segmentation of the fine contour can be seen in Figure 3.6

Figure 3.6 Example final segmentations for the femur head detected during
the (left) rough and (right) fine contour extraction

3.4.2 Subsequent slice segmentation

Once the primer slice has been segmented, we can begin
sequentially segmenting the other slices in ROIy. The slices
are queued for segmentation based on their distance from the
primer slice. If the primer slice is noted as Z,, then the next
slices to be segmented will be Z,.; & Z,.,, followed by Z.,
& Z,5, Zyis & Zp3 and so on. Segmenting the whole ROI

5



entails performing individual, sequential segmentations away
from the primer slice in both the superior and inferior
direction, ending when the top-most and bottom-most slices
in the ROI have been segmented.

The method of segmentation for these slices is similar to
the one reported during the fine contour stage. They differ
only in how they obtain their initial contour: we have decided
to base the initial contour of each slice on the final contour of
its neighboring slice. Thus, an un-segmented slice Z; will
base its initial contour on Z;,, if it is above the primer slice
and Z;, if it is below the primer slice. However, before a
neighbor’s final contour can be used as an initial contour, it is
expanded. This expansion is used to safeguard against
moderate differences in shape between neighboring femur-
head cross sections. The flow can be viewed in Figure 3.7 .

(b)

(c) (d)
Figure 3.7 (a) Slice Z; in need of an initial contour (b) Slice Z;.; with final
contour (c) Slice Zi., with dilated final contour (d) Slice Z; using Zi.1’s
dilated final contour as an initial contour

All that remains to obtaining a final contour is to supply
the initial contour to the morphological snake algorithm and
evolve it using the “fine” contour extraction parameters.

3.5 Segmenting the Femur Body ROI

The femur, like most long bones, has as much thicker shell
of compact osseous tissue around its shaft than it does at its
epiphyses (Rizzo, 2001). This results in the slices from the
femur body being easier to segment than those from the
femur head, on account of the compact bone’s high contrast
with the soft tissue that surrounds it. In addition, the femur
body does not have adjacent bones which need to be isolated
due to their proximity, once again unlike the femur head with
the acetabulum.

The femur body, being vertically tubular in shape is
another good candidate for a slice-by-slice segmentation
strategy as was used for the femur head. In fact, the contour
extraction method we use for the femur body follows closely
the one employed for the femur head, with a few minor
exceptions. The biggest of these exceptions being that ROlg
has Zg; a slice where the femur splits into two disjoined
objects. This split will necessitate a single-slice exception on
how initial contours are derived.

Our segmentation strategy for the femur body once again
consists of two consecutive steps: (a) a primer slice has its
rough and fine contour extracted (b) the segmentation of

subsequent slices, where the primer slice’s segmentation
initiates an outward segmentation cascade.

3.5.1 Primer Slice Segmentation

For the ROlg, the primer slice is chosen as the bottom-most
slice, which we refer to as Z, This slice should also
correspond to the bottom-most slice of the whole pelvic scan,
and contain a tubular cross-section of the femur body.

Finding the rough contour

Once again, the rough contour extraction finds a starting
area for the fine contour extraction. The initial contour for
this stage is the largest circle whose entirety fits inside the
ROIg’s area. Once this has been fitted, the morphological
snake algorithm evolves the contours using the same set of
“rough” parameters used on the femur-head’s primer slice.

Given the thick, high-contrast shell of the femur body, the
final contour should be virtually free of defects and quite
close to the result that will be obtained during the fine
contour extraction phase (see Figure 3.8). Slightly jagged
contours are likely to the only visible flaws on the rough
contour, and even these will be reset using the fine step.

Figure 3.8 (left) Initial contour for rough step (right) final contour for rough
step

Finding the fine contour

The fine contour serves the same purpose here that it did
for the femur head: providing the decisive segmentation of
the primer slice. Unlike the femur-head however, the cross-
section of the femur body is not near-circular, meaning we do
not employ a Hough transformation on the rough step’s final
contour to extract the best-fitting circle. Instead, we expand
the rough step’s final contour much as we do for the
sequential slices. The result is a curve which is near evenly-
distanced from the femur body at the primer slice (see Figure
3.9). We use this contour as the fine step’s initial contour

The final contour for the primer slice is obtained when the
morphological snake algorithm is applied to the new initial
contour. Correspondingly, we use the “fine” set of
segmentation parameters to ensure the best results.

Figure 3.9 (left) Initial contour for the fine step (right) Final contour for the
fine step

3.5.2 Subsequent Slice Segmentation

With final contour of the primer slice well defined, we
continue with the segmentation of all the other slices in
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ROIlg. Our procedure for doing so is familiar: performing
successive segmentations away from the primer slice.
However, the primer slice for the ROIg is the bottom-most
slice, so we can only iterate upwards.

Thus, an un-segmented slice Z; will always base its initial
contour on Z;,;. However, prior to using Z;.;’s final contour
as Z;’s initial contour, we expand the contour, ensuring that
no sections of the femur body are outside its domain.

However, there exists a single slice in ROlg which requires
exceptional initialization. That slice is Zs; where the greater
trochanter and femur-head first become two, disjoined
objects. The split occurs at the height of intertrochanteric line
and the greater trochanter crowns shortly thereafter. Of the
two objects, we focus on segmenting the greater trochanter as
the femur head has already been segmented from ROIy.

The initial contour for Z is based not only the final
segmentation of slice Z.; in ROIlg, but also from the final
segmentation of slice Zg.; in ROIy. For shorthand’s sake, we
refer to the set of voxels contained within the final contours
of slice Z;,; for ROl as Vy and the set of voxels contained
within the final contours of slice Z,; for ROIg as Vg. By
subtracting the set of voxels in Vi from Vg, we can obtain a
good estimation of the greater trochanter’s cross-section in
slice Z;. Thus we use the largest set of connected voxels of
Vg — V4 to provide and initial contour for slice Z; (See Figure
3.10).

()
Figure 3.10 (a) Final contour for slice Zs., in ROIlg (b) Voxels of set Vg (c)
Final contour for slice Zs.; in ROl (d) Voxels of set VVy (€) Volume for
ROl subtracted from ROI; (f) slice Z with its initial contour

No matter how one of the subsequent slices obtains its
initial contour, it is used as input for the morphological snake
algorithm along with the set of “fine” snake parameters. The
final curve provided by the algorithm becomes our definite
segmentation for ROIg.

3.6 Post-Processing

The final step in our segmentation process is the creation of
a single model for the segmented femur. This is resolved by
calculating the union between the voxels encased by ROIly’s
final contours with voxel’s inside for ROIg’s final contours.
This union will allow us to consolidate the slices which are
only covered by one of the ROIs versus those covered by
both as seen in Figure 3.11. From here, the results can be
viewed as its native collection of voxels or be polygonized
for an improved presentation.

Segmentation
Results for ROIy

S -

Segmentation Final Femur
Results for ROIg Model

Figure 3.11 Sample union of the 3D model from ROIy and the 3D model
from ROIg

4 Results and Discussion

In order to assess the quality of our femur segmentation
strategy, we compare the volume segmented by our semi-
automatic method to the volume of a manual segmentation.
The manual segmentation’s volume was labeled on in a slice-
by-slice, voxel-by-voxel basis using an image -editing
program. It can be considered the “ground truth”
segmentation. Our goal in testing is to obtain semi-automatic
results which are identical, or within human error of this
ground truth.

4.1 Hospital Database

We have collected 20 pelvic scans from a study into FAIs
conducted by the Ottawa General Hospital. Of these scans,
17 were from CAM type patients (7 bilateral and 10
unilateral) and 3 were part of the control group. For each
patient we also have one antero-posterior and one lateral
radiograph. In conjunction, the scans and radiograph have
allowed us to study the variations between patients.

4.2 Testing Database

From these 20 scans we selected 6 that provided as diverse
a sampling as possible and manually segmented both of their
femurs for validation purposes. The clinical characteristics of
these patients can be seen in Table 4.1.

Table 4.1 Clinical characteristics of the six patients whose femurs were
manually segmented

Patient ID # Age Sex FAI Diagnosis
1 39 M Bilateral
2 47 F Left
3 29 F Left
4 33 M Left
5 22 M Right
6 54 M Control

Other than femur size, orientation and the presence of
FAls, our sample set shows a number of other inter-patient
variations which would test the rigour of any femur
segmentation strategy. The most important dissimilarities
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between patients are innevitably located at or near the femur
head. The femur body’s thick, tubular shape lessens the
impact of inter-patient differences as far as segmentation is
concerned.

Figure 4.1 Femur and acetabulum appear (left) well-spaced (right) close at
points

As an example, Figure 4.1 shows a slice where the
boundaries of the femur-head and acetabulum appear quite
close due to blurred edges and CT noise. Any segmentation
strategy will need to separate these two objects.

Figure 4.2 Cross-sections where the femur head appears (left) near-circular
(right) deformed

Strict model-based metthods will have difficulty getting the
contours from the right image in Figure 4.2 as it’s a far cry
from the average femur shape. Any segmentation strategy
which seeks to enforce a sphericity constraint over the femur
head will especially have difficulty here.

Figure 4.3 Concavity between femur head and greater-trochanter is (left)
wide (right) narrow

-
Figure 4.4 Various shapes of the femur head’s fovea

Differential gaps between femur head and greater
trochanter can be seen in Figure 4.3, where the more narrow
of the two is expected cause some snake methods to halt their
curve evolution prematurely. Also worth noting is the higher
prevalence of compact bone in the slice with the narrow
concavity.

Finally, Figure 4.4 ilustrates a wide array of foveas. Some
of which are nearly straight, other are angular concavities
while others still appear as deep dimples.

4.3 Testing Conditions

All of our scans were acquired using a GE Lightspeed Plus.
For each one of them, the slices have a resolution of 512 by
512 voxels, where each voxel had a physical dimension of
0.68 x 0.68 x 1.25 mm.

As for parameters used during the preprocessing step, we
started off with an upscale factor of 2. The resolutions of the
resized-slices were sufficiently large that the evolving snake
was better able to map the concavities on the interior of the
greater trochanter. In addition, the upscale factor gave a nicer
edge to some of the sharp turns in the femur head’s exterior.

During the acetabular removal step, we used a default
threshold value of 316 HU (for all tested femurs) to highlight
voxels which belonged to the acetabulum’s hard shell. Across
all six CT scans, we found that this value did well to
emphasize the acetabulum’s bones without accidentally
accentuating the voxels for soft-tissue between the
acetabulum and femur head.

We also applied a flooring threshold exclusively to the
slices in ROIlg with default value of 127 HU in order to
flatten the intensities of muscle and fat voxels near the bone.

We used a default value of 201 HU (once again, for all the
tested femurs) during the ceiling threshold step to highlight
voxels corresponding to compact osseous tissue. After some
experimentation, we discovered that lowering the ceiling
threshold for the top-most slices of the femur head would
occasionally improve results. For this reason we use a
threshold value of 144 HU for the top-most 25% of slices
above the primer slice. This accounts for the top-most 12.5%
of the whole femur head ROI.

The rough and the fine contour extractions methods use
two different sets of procedures, as well as input parameters.
The rough method uses an edge-based balloon stopping
criterion whereas the fine method uses an image intensity-
based balloon stopping criterion. The parameters for the
former can be found in Table 4.2 and the latter in Table 4.3.

Table 4.2 Test parameters for Morphological snake with edge-threshold-
balloon (Rough Contours)

o N ETB EDT

0.0 100 0.1 1.000

Table 4.3 Test parameters for morphological snake with snake-balloon-
difference-radius (Fine Contours)

c N DR EDT

0.0 100 12 0.001

For these parameters, G(I) is the level-set method the
contours are trying to minimize, o is the standard deviation of
the Gaussian convolution applied to the original image, N is
the maximum number of iterations, EDT is the threshold for
G(I) during the speed propagation procedure, ETB is the
threshold for G(I) during the balloon propagation procedure,
and DR is the difference magnitude with respect to the
central pixel value that propagates the balloon.

4.4  Qualitative Segmentation Comparison

The images found in Table 4.4 and Table 4.5 originate
from our patient #3’s left hip, which was diagnosed with a
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cam impingement. The CT scan on which the images are
based is composed of 126 slices which spanned from the top
of the patient’s sacrum to the roughly a 1cm below her minor
trochanters.

Table 4.4 Comparison of our segmentation method results for the femur head
with those from a manual segmentation

Table 4.6 VVolumetric renderings of the first tree patients’ left femurs

Our Method

Ground Truth Difference

Head
Top

Head
Mid

Head
Bottom

A side-by-side comparison of segmentation results
obtained through our method and those obtained though
manual segmentation can be seen in Table 4.4 for the femur
head and Table 4.5 for the femur body.

Table 4.5 Comparison of our segmentation method results for the femur
body with those from a manual segmentation

Our Method Ground Truth Difference

Greater
Troch.

Minor
Troch

Femur
Body

The left column contains the final contour of our method
for a particular slice. Volume highlighted in white represents
voxels which inside the final contour evolved by
morphological snakes.

The middle column contains the volume which is
considered the ground truth segmentation. Volume
highlighted in white was manually segmented on a slice-by-
slice, voxel-by-voxel basis with an image editing program.

The right column shows how well these two segmentations
overlap. Voxels shown in black indicate identical results for
both segmentations. Green voxels indicated voxels which
were a member of the ground truth segmentation but not of
our segmentation while red voxels indicate the opposite.

ID # Our Method Ground Truth

1 . .

2 ! !

3 w b
Table 4.7Volumetric renderings of the last three patients’ femurs

ID # Our Method Ground Truth

4 E !

5 ! !

6 ! !

In order to provide a more complete visual assessment of
how the models obtained through our method compare to the
ground truth models, 3D volume renderings have been
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obtained for each model. The left femurs from the first three
patients can be found in Table 4.6 while the right femurs
from the last three patients are in Table 4.7. The middle
column of each table contains the renderings of femurs
segmented with our method while the last row contains
renderings from manually segmented femurs. All renderings
were taken from an antero-posterior (AP) position.

The technique (Stegmaier, Strengert, Klein, & Ertl, 2005)
used to produce these 2D projections is an example of a
Digitally Reconstructed Radiograph (DRR) (Sherouse,
Novins, & Chaney, 1990). DRRs are an approximation of a
2D x-ray image obtained from CT or MRI data. A DRR’s
semi-transparent approach to volume rendering allowed us to
present more depth compared to polygonized surface models.

4.5 Quantitative Segmentation Comparison

The accuracy of our segmentation method is measured
numerically in terms of the intersection of voxels covered by
both models and the distance from the bordering voxels in
the ground truth model to the nearest bordering voxels in the
model segmented through our method. The volumetric
overlap errors (VOESs) of the models can be seen Table 4.8.
This table displays the global error (VOE,), the average slice
error (VOEs Avg), the slice minimum error (VOEs Min) and
slice maximum error (VOEs Max).

Table 4.8 Volumetric overlap error

the slope of the femur neck directly below the head and (c)
the narrow concavity between the greater trochanter and the
femur neck.

Table 4.9 Symmetric Surface Distances

ID # SSD, 4y SSDj v AVg. £ SSD1ax

stdev (mm) stdev (mm) (mm)
1 | L |0.26+042 0.29+0.27 4.83
R | 0.29+0.46 0.33+0.44 6.30
2 | L |0.28+041 0.31+0.25 3.49
R | 0.30+0.44 0.32+0.22 4.32
3 | L |0.23+0.38 0.22+0.11 2.76
R | 0.22+0.37 0.22+0.11 2.76
4 | L |0.31+0.43 0.30+0.12 3.42
R | 0.37+0.40 0.37+0.09 3.16
5 | L |0.26+0.45 0.31+0.51 7.36
R | 0.25+0.42 0.28+0.33 4.93
6 | L |0.29+0.38 0.29+0.13 2.16
R | 0.29+0.39 0.29+0.14 2.50

Avg. 0.28+0.04 0.29+0.04 4.00+1.60

ID# | VOE, | VOE,Avg. | VOE, VOE,
(%) +stdev (%) | Min (%) | Max (%)
1L 251 3.3616.57 | 0.80 58.80
R | 284 3.88t8.21 | 0.84 71.30
2 |[L | 290 3.79+5.84 | 1.11 48.61
R |3.14 3.99+560 | 1.23 48.17
3| L [222 242175 | 0.86 9.89
R |2.18 2514242 | 0.62 19.38
4 |L | 326 3.38t1.77 | 0.68 9.94
R | 354 3.92¢191 | 1.75 16.59
5 | L | 241 3.59+8.94 | 0.74 77.38
R | 227 3.12¢6.00 | 0.87 52.47
6 | L |262 2.76£1.85 | 1.24 13.41
R | 2.67 2.882.18 | 1.28 16.06
Avg. | 2713044 | 3.30056 1.00:0.33 | 36.84£25.17

The precision of our extracted contours is displayed in
Table 4.9 with Symmetric Surface Distances (SSD). This
table includes the global average (SSD,..), an average of
slice averages (SSD; . Avg) and a maximal surface distance
(SSDmux)'

4.6 Discussion

Table 4.9 shows that our segmentation strategy returns
average results which are quite close to the ground truth. The
vast majority of our contours are within 0-1 voxels of the
ground truth’s contour. This is within the expected variability
typical for manual segmentations (1-2 voxels) (Kaus, Pekar,
Lorenz, Truyen, Lobregt, & Weese, 2003).

The last column of Table 4.9 highlights a model’s least
accurate contour. Across each one of our models, these least
accurate contours could be counted to be in one of three
locations on the femur (a) the crown of the femur head (b)

Errors in the first two locations can be visualized in the
profiles of femur models obtained through our method, seen
in Table 4.6 and Table 4.7. We attribute errors in these two
regions to blurred and noisy cross-sections of the bone
surfaces.

Errors, in the gap between the greater trochanter and the
femur neck usually occur when the gap is particularly narrow
and deep. This issue is native to most snake segmentation
schemes and can be attributed to the external forces acting on
the evolving contour cancelling each other out when inside
narrow concavities (Xu & Prince, 1998). Possible fixes to
this shortcoming include increasing the upscale factor during
the pre-processing phase or to alter the external force model
to better carry the flow of gradients.

The most recent femur-segmentation strategy against
which we can compare our quantitative results is (Schmid,
Kim, & Magnenat-Thalman, 2011). Schmid et al. reported
and an SSDg g Of 1.21 + 0.53mm, a SSDp, 0of 7.57 + 2.46
and a VOE, of 18.02 + 6.12 % with their high-resolution, low
field-of-view, MRI scans of the human femurs. The high-
field of view of our scans is a partial contributor to our
improvement over these results.

Generally, our segmentation results for the femur body
better matched the manual segmentation than the results from
the femur head. This is especially true for the top-most slices
of the femur head which are the leading location of our
SSDmax. This is recognized as being due to the tubular
regions of the femur having a much thicker shell of compact
bone than can be found around the femur head’s. This
supplies the snake algorithm with strong stopping criteria
which halts the curve’s evolution.

5 Conclusion

In this paper, we described a method to segment a femur
from a CT scan. We initiate the segmentation by having the
user subdivide the femur into two regions (the near-spherical
head and the vertically tubular body) and used two levels of
segmentation (rough and fine). A number of pre-processing
steps are employed on each ROI’s volume to improve the
shape and accuracy of our methodology, such as replacing
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sections of the acetabulum with low-gradient fill. Afterwards,
we segment the femur-head followed by the femur body
using a sequential set of related morphological snake
operations.

We find the qualitative results returned by our method to
be extremely encouraging given the diverse set of bones on
which we experimented. We were able to return results
which were largely within the expected range of error for
manual segmentations. The user initialization can take under
a minute to perform while the segmentation process usually
took roughly 5-10 minutes to complete on a modern desktop
computer, which is a staggering improvement over the hours
it might take a radiologist to manually segment a femur.

The next step in our research is to implement a 3D
implementation of morphological snakes to see if we can
improve results on error-prone locations on the femur.
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