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 The femur head is the rounded end of the femur. Its 
surface comes in the closest contact with the pelvic 
bones and can generally be approximated with the shape 
of a sphere or conchoid 

 The pit (or fovea) for the ligament of the head of the 
femur is an indentation in the otherwise spherical surface 
of the femur-head 

 The femur body is the tubular shaft which makes up the 
majority of the femur 

 The greater trochanter is a large bony-bump at the top 
of the body, opposite to the femur head 

CT images of the femur-head’s subchondral bone 
composition show large density variations, like a very thin 
compact shell compared to the much thicker one found in the 
femur body. Comparatively, regions of the acetabular rim 
covering the femur head are also noticibly denser. 

The hip-joint’s task in the human body is to support upper-
body weight- both while standing still and during movement. 
Hip movement is enabled by the hip functioning as a ball-
and-socket (Field & Hutchinson, 2008) where the femur head 
constitutes the ball and the acetabulum provides the retaining 
socket. 

2.2 Femoral Acetabular Impingement 

Hip impingement, or Femoral-Acetabular Impingment 
(FAI), is a pathological condition where there is a deformity 
on either of the hip-joint’s bones. This deformity usually 
manifests itself as a bony-bump on the acetabular rim (Pincer 
impingements) or the femur’s head-neck junction (Cam 
impingements) or both. As a result, the hip joint will lose its 
ideal ball-and-socket shape which causes abnormal contact 
(impingement) between the femur and acetabulum during 
normal hip-rotation. In turn, this abnormal contact causes 
chaffing of the soft-tissue protecting the two bones, 
deteriorating the integrity of the joint over time. FAI is most 
often associated with pain during hip flexion, adduction, and 
the internal rotation of the femur. If left untreated, a FAI can 
lead to cartilage damage, labral tears, early hip arthritis, 
hyperlaxity, sports hernias, chronic lower back pain (Hossain 
& Andrew, 2008) and an eventual hip replacement surgery. 

2.3 Medical Segmentation Methods 

Medical images are a popular proving ground for 
segmentation methods as the images are usually full of 
complex shapes, noise and the extracted shapes have 
obvious, life-changing uses. 

The original energy minimizing curves, or “snakes” (Kass, 
Witkin, & Terzopoulos, 1987), are perhaps the best known 
segmentation scheme. Since their introduction in 1987, a 
number of modifications/enhancements have been proposed. 
These include the addition of a balloon force operator (Cohen 
L. , 1991), 3D generalizations of the snake model (Cohen & 
Cohen, 1993), likening snakes to level-set methods with 
geodesic active-contours (Caselles, Kimmel, & Sapiro, 
1997), increasing the a snake’s capture range & ability to 
evolve into concavities (Xu & Prince, 1998) and add 
topological flexibility (McInerney & Terzopoulos, 
2000).Model-based segmentation schemes are useful in cases 
where part of an object’s information is missing. Early cases 
include Active shape models (Cootes, Taylor, Cooper, & 
Graham, 1995) and active appearance models (Cootes, 
Edwards, & Taylor, Active Appearance Models, 1998) based 
around point distribution models. 

Similar to energy-minimizing curves are methods which 
are region-based rather than boundary-based. A prime 
example of this is the Chan-Vese method (Chan & Vese, 
2001) (Vese & Chan, 2002) which seeks to minimize the 
energy inside a curve through the Mumford-Shaw functional. 
At roughly the same time, Diffusion Snakes (Cremers, 
Schnörr, Weickert, & Schellewald, 2000) were detailed, 
which used prior shapes along with the Mumford Shaw 
functional.  As an aside, a model-based method which 
originally used the kernel density information of shape-priors 
(Cremers, Osher, & Soatto, Kernel Density Estimation and 
Intrinsic Alignment for Shape Priors in Level Set 
Segmentation, 2006) was modified to also include intensity-
priors or regions inside the boundary (Chen & Radke, 2009). 

A number of segmentation strategies have been proposed 
focusing on the segmentation of femurs from MRI and CT 
scans, although none of these address the much more difficult 
task of segmenting hips suffering from FAIs. One such 
method required assigning a scan into one of four groups 
depending on the anticipated difficulty of segmentation, and 
in the worst case, separating the femur and acetabulum using 
a combination of the Hueckel operator and orthogonal line 
detection (Zoroofi, et al., 2003). Unfortunately, their 
techniques returned many moderate and poor results. Another 
method involved a significant amount of user-input, requiring 
the user to manually surround the femur head with contour 
points for a snake method and making manual correction 
whenever the snake failed due to soft edges (Magnenat-
Thalmann, Yahia-Cherif, Gilles, & Molet, 2003). 

In regards to model-based segmentation methods for femur 
bones, coarse-to-fine methods have been used with 3D 
meshes (Gilles, Moccozet, & Magnenat-Thalmann, 2006) for 
anatomical modeling, MRI scans with low resolutions or 
fields of view (Schmid, Kim, & Magnenat-Thalman, 2011), 
and statistical shape models (Yokota, Okada, Takao, Sugano, 
Tada, & Sato, 2009) have been used to segment diseased 
hips. In addition, 2D point-distribution models for ASMs 
(Song, Li, Ou, Han, Zhao, & Wang, 2007) have been tested 
against healthy hips. Generalized models of hip-bones can 
lead to complications when the object of segmentation has a 
FAI. This is due to the bony bump being outside the model’s 
expected distribution. Conversely, models specifically 
tailored for bones with impingements require a very large set 
of prior shapes as the location of the bony bumps can be 
highly irregular. To return the best segmentation results, a 
method which is elastic to the pronounced differences 
between bones is required. 

2.4 Morphological Snakes 

Our segmentation solution selected a 2D implementation of 
Morphological Snakes (Álvarez, Baumela, Henríquez, & 
Márquez-Neila, 2010) to extract our desired contours. This 
method is a recent modification of the well-known Geodesic 
Active Contours. The major difference between the two 
models is how each method solves the partial differential 
equations (PDEs) responsible for curve evolution. While 
Geodesic Active Contours expresses these PDEs with a set of 
differential operators, Morphological Snakes instead takes 
the approach of approximating these terms as the 
composition of morphological operators. Specifically, the inf 
(infimum) and sup (supremum) operators. This substitution 
claims three advantages: 
1. Simplicity of Implementation – The level-set is 

expressed as a binary piecewise constant function 
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obtained for each model. The left femurs from the first three 
patients can be found in Table 4.6 while the right femurs 
from the last three patients are in Table 4.7. The middle 
column of each table contains the renderings of femurs 
segmented with our method while the last row contains 
renderings from manually segmented femurs. All renderings 
were taken from an antero-posterior (AP) position. 

The technique (Stegmaier, Strengert, Klein, & Ertl, 2005) 
used to produce these 2D projections is an example of a 
Digitally Reconstructed Radiograph (DRR) (Sherouse, 
Novins, & Chaney, 1990). DRRs are an approximation of a 
2D x-ray image obtained from CT or MRI data. A DRR’s 
semi-transparent approach to volume rendering allowed us to 
present more depth compared to polygonized surface models. 
 

4.5 Quantitative Segmentation Comparison 

The accuracy of our segmentation method is measured 
numerically in terms of the intersection of voxels covered by 
both models and the distance from the bordering voxels in 
the ground truth model to the nearest bordering voxels in the 
model segmented through our method. The volumetric 
overlap errors (VOEs) of the models can be seen Table 4.8. 
This table displays the global error (VOEg), the average slice 
error (VOES Avg), the slice minimum error (VOES Min) and 
slice maximum error (VOES Max). 

 
Table 4.8 Volumetric overlap error 

ID # VOEg 
(%) 

VOEs Avg. 
± stdev (%) 

VOEs 
Min (%) 

 VOEs 
Max (%) 

1 L 2.51 3.36±6.57 0.80 58.80 
R 2.84 3.88±8.21 0.84 71.30 

2 L 2.90 3.79±5.84 1.11 48.61 
R 3.14 3.99±5.60 1.23 48.17 

3 L 2.22 2.42±1.75 0.86 9.89 
R 2.18 2.51±2.42 0.62 19.38 

4 L 3.26 3.38±1.77 0.68 9.94 
R 3.54 3.92±1.91 1.75 16.59 

5 L 2.41 3.59±8.94 0.74 77.38 
R 2.27 3.12±6.00 0.87 52.47 

6 L 2.62 2.76±1.85 1.24 13.41 
R 2.67 2.88±2.18 1.28 16.06 

Avg. 2.71±0.44 3.30±0.56 1.00±0.33 36.84±25.17 

 
The precision of our extracted contours is displayed in 

Table 4.9 with Symmetric Surface Distances (SSD). This 
table includes the global average (SSDg.avg), an average of 
slice averages (SSDs.avg Avg) and a maximal surface distance 
(SSDmax). 

4.6 Discussion 

Table 4.9 shows that our segmentation strategy returns 
average results which are quite close to the ground truth. The 
vast majority of our contours are within 0-1 voxels of the 
ground truth’s contour. This is within the expected variability 
typical for manual segmentations (1-2 voxels) (Kaus, Pekar, 
Lorenz, Truyen, Lobregt, & Weese, 2003). 

The last column of Table 4.9 highlights a model’s least 
accurate contour. Across each one of our models, these least 
accurate contours could be counted to be in one of three 
locations on the femur (a) the crown of the femur head (b) 

the slope of the femur neck directly below the head and (c) 
the narrow concavity between the greater trochanter and the 
femur neck. 

 
Table 4.9 Symmetric Surface Distances 

ID # SSDg.avg ± 
stdev (mm) 

SSDs.avg Avg. ± 
stdev (mm) 

SSDmax 
(mm) 

1 L 0.26±0.42 0.29±0.27 4.83 
R 0.29±0.46 0.33±0.44 6.30 

2 L 0.28±0.41 0.31±0.25 3.49 
R 0.30±0.44 0.32±0.22 4.32 

3 L 0.23±0.38 0.22±0.11 2.76 
R 0.22±0.37 0.22±0.11 2.76 

4 L 0.31±0.43 0.30±0.12 3.42 
R 0.37±0.40 0.37±0.09 3.16 

5 L 0.26±0.45 0.31±0.51 7.36 
R 0.25±0.42 0.28±0.33 4.93 

6 L 0.29±0.38 0.29±0.13 2.16 
R 0.29±0.39 0.29±0.14 2.50 

Avg. 0.28±0.04 0.29±0.04 4.00±1.60 
 
Errors in the first two locations can be visualized in the 

profiles of femur models obtained through our method, seen 
in Table 4.6 and Table 4.7. We attribute errors in these two 
regions to blurred and noisy cross-sections of the bone 
surfaces.  

Errors, in the gap between the greater trochanter and the 
femur neck usually occur when the gap is particularly narrow 
and deep. This issue is native to most snake segmentation 
schemes and can be attributed to the external forces acting on 
the evolving contour cancelling each other out when inside 
narrow concavities (Xu & Prince, 1998). Possible fixes to 
this shortcoming include increasing the upscale factor during 
the pre-processing phase or to alter the external force model 
to better carry the flow of gradients. 

The most recent femur-segmentation strategy against 
which we can compare our quantitative results is (Schmid, 
Kim, & Magnenat-Thalman, 2011). Schmid et al. reported 
and an SSDg.avg of 1.21 ± 0.53mm, a SSDmax of 7.57 ± 2.46 
and a VOEg of 18.02 ± 6.12 % with their high-resolution, low 
field-of-view, MRI scans of the human femurs. The high-
field of view of our scans is a partial contributor to our 
improvement over these results. 

Generally, our segmentation results for the femur body 
better matched the manual segmentation than the results from 
the femur head. This is especially true for the top-most slices 
of the femur head which are the leading location of our 
SSDmax. This is recognized as being due to the tubular 
regions of the femur having a much thicker shell of compact 
bone than can be found around the femur head’s. This 
supplies the snake algorithm with strong stopping criteria 
which halts the curve’s evolution. 

5 Conclusion 

In this paper, we described a method to segment a femur 
from a CT scan. We initiate the segmentation by having the 
user subdivide the femur into two regions (the near-spherical 
head and the vertically tubular body) and used two levels of 
segmentation (rough and fine). A number of pre-processing 
steps are employed on each ROI’s volume to improve the 
shape and accuracy of our methodology, such as replacing 
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sections of the acetabulum with low-gradient fill. Afterwards, 
we segment the femur-head followed by the femur body 
using a sequential set of related morphological snake 
operations. 

We find the qualitative results returned by our method to 
be extremely encouraging given the diverse set of bones on 
which we experimented. We were able to return results 
which were largely within the expected range of error for 
manual segmentations.  The user initialization can take under 
a minute to perform while the segmentation process usually 
took roughly 5-10 minutes to complete on a modern desktop 
computer, which is a staggering improvement over the hours 
it might take a radiologist to manually segment a femur. 

The next step in our research is to implement a 3D 
implementation of morphological snakes to see if we can 
improve results on error-prone locations on the femur. 
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