
Real-Time 3D Fluid Interaction with a Haptic User Interface

Javier Mora*        Won-Sook Lee+

School of Information Technology and Engineering, University of Ottawa

ABSTRACT

Imagine you are playing a videogame in which you
impersonate a wizard who needs to create a potion in order to
enchant your enemies. Through a desktop haptic probe, shaped as
a baton, you are able to stir and feel the magical fluid inside a
bowl. As you follow the potion recipe, you feel how the fluid
changes its viscosity, density, velocity and other properties.
Various hapto-visual user interfaces enable users to interact in
three-dimensions with the digital world and receive realistic
kinesthetic and tactile cues in a computer-generated environment.
So far solid or deformable objects have been experimented for
haptic-tactile feedback. In this paper we innovate by devising
techniques that enable the haptical rendering of shape-less objects,
such as fluids. Focusing on the real-time performance to enhance
the user’s experience, the system imitates the physical forces
generated by the real-time fluid animation, stirring movements
and fluid changes. We achieved real-time 3D fluid and overcame
the challenges that arise during the integration of both haptics and
graphics workspaces, the free-view visualization of 3D fluid
volume, and the rendering of haptic forces. These fluid interaction
techniques with haptic feedback have wide possible applications
including game development and haptic communities.

KEYWORDS: 3D Interaction, Real-time fluid animation, haptics,
input devices, visualization.

INDEX TERMS: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism, —Virtual Reality; I.6.m [Computing
Methodologies]: Miscellaneous

1 INTRODUCTION

Haptics, which refers to the technology which stimulates the
users’ sense of touch, has been increasing in popularity because of
the powerful enhancements that it brings to the 3D human-
computer interaction experience. Haptics allow users to literally
touch and feel characteristics about computer-generated objects
such as texture, roughness, viscosity, elasticity, and many other
properties, and research has mainly been oriented towards the
modeling of solid structures. However, little research has targeted
the haptic rendering of shape-less objects, such as fluids. Fluid
animation is of great popularity in computer graphics and
animation. However, it is difficult to achieve a real-time stable
simulation due to the heavy computation required to solve the
non-linear Navier-Stokes equation.

Our goal is to combine both fields, fluid animation and its
haptic rendering, to offer an interactive experience between 3D
fluid and the user. Our motivation is to produce a system that
brings human-computer interaction to real-time fluid animations,

so that users can appreciate and feel the properties of a fluid
simulation via a haptic interface.

Several applications could rise from this integration.
Videogames, for instance, could be brought to a higher degree of
interaction by providing an interface that enables players to feel
the stirring of fluids in order to achieve a game task. Nintendo’s
recent Wii games [23] are an example of the industry’s interest for
higher interactive applications. Haptics would allow players to
feel the physical properties of in-game objects. In addition,
medical applications could imitate the blood flow in a patient’s
cardiovascular system. In combination with audio and video
displays, this technology may also be used to train people for
tasks requiring hand-eye coordination. It may also be used as
assistive technology for the blind or visually impaired.

We aim to provide the human kinesthetic senses to be
stimulated through computer-controlled forces which convey to
the users a sense of natural feel about 3D fluid while he/she
interacts with it. Our paper focuses on two main issues. Firstly, we
examine how to stably represent a 3D fluid simulation in real-time
and render it on the screen at an acceptable frame rate of
approximately 30 frames per second. Secondly, we examine how
to haptically render the simulated shape-less fluid to the user. The
haptic probe must also interact with the fluid surface and be able
to modify the current flow generated by the simulation. In
addition, we also discuss haptic gesture recognition as an
interactive application for haptic games.

Achieving a high-quality fluid animation in real-time is quite
challenging as it demands constant CPU intensive calculations.
Fluids are inherently complex – in general the surface changes
quickly, and they are influenced by a variety of conditions
(boundaries, aerodynamics etc). Fluids have a lot of detail, and
there is no real constraint (e.g. droplets, waves).  In order to make
a simulation algorithm suitable for an interactive real-time
application, there are several things to consider due to the
limitation of on-site calculation memory size and computation
time. In addition, from the total time available for a single frame,
physically-based simulation (calculation of the dynamics) only
gets a fraction besides other tasks such as graphic and haptic
rendering. In off-line simulations adaptive time-stepping can be
used in situations where stability problems arise. In contrast, a
real-time application runs at a fixed frame rate. The simulation
method must be stable for the given time step size no matter what
happens. External forces and the movement of boundaries can get
almost arbitrarily high. A real-time simulation method needs to be
able to cope with all those situations and must remain stable under
all circumstances. Of course it is not possible to reduce the
computational and spatial complexity so drastically and increase
the stability so significantly without some trade off with the
quality of the result. Therefore, what we require from a real-time
simulation method is visual plausibility and not necessarily scenes
that are undistinguishable from the real world.

Figure 1 shows the high level architecture (HLA) for our
system. It displays the two main stages of our system and
illustrates the data flow for generating hapto-visual 3D flows from
the fluid simulation. These stages are categorized as the
processing stage, and the rendering stage. The processing stage
computes the fluid simulation and the grid deformation, combined

* e-mail: jmora091@uottawa.ca
+ e-mail: wslee@uottawa.ca

75

IEEE Symposium on 3D User Interfaces 2008
8-9 March, Reno, Nevada, USA
978-1-4244-2047-6/08/$25.00 ©2008 IEEE



to form a 3D fluid, at each time-step. The rendering stage consists
of presenting the output to the user via the haptic device, through
haptic rendering, and via the monitor, through graphic rendering.
In section 2 of this paper we present a literature review on haptics
as well as on real-time fluid animations. The integration of
graphics and haptics workspaces is discussed in section 3. In
section 4 we introduce the processing stage of the system. Force
rendering is explained in section 5. Three dimensional fluid
visualization and the results are discussed in section 6 and section
7 respectively. As an application in computer games, a haptic
gesture recognition module is described in section 8. We conclude
in section 9.

Figure 1. Overall flow of our system

2 LITERATURE REVIEW

The amount of literature regarding haptic technology and
rendering has increased substantially in recent years. A more
complete background on haptic rendering and haptics in general
can be found in other articles [22][4][5][31]. Most typical
examples of real-time haptic applications are in games.
Experimental haptic games such as HaptiCast [26] and Haptic
Battle Pong [8] have been generating brainstorming ideas for
assessing haptic effects in game design. In HaptiCast, players
assume the role of a wizard with an arsenal of haptically-enabled
wands which they may use to interact with the game world.
Haptic Battle Pong uses force-feedback to haptically display
contact between a ball and a paddle. However, interaction with the
game environment is limited since players can feel only the
transient forces generated as the paddle strikes the ball. Kauffman
et al. [11] present interesting haptic sculpting tools to expedite the
deformation of B-spline surfaces with haptic feedback and
constraints, but they do not explore any feedback integration with
fluid simulations. Graphic frames usually need to be rendered at
30fps to have a visually plausible effect. However, the suggested
haptic update rate is of 1 KHz [4], which is an important
characteristic of realistic haptic interactions.

There are several competing techniques for liquid simulation
with a variety of trade-offs. These methods originated in the
computational fluid dynamics community, and have steadily been
adopted by graphics practitioners over the past decade. For the
simulation of water in real-time, some main simplified methods
have become popular in recent years. Procedural water is a
procedural method that animates a physical effect directly instead

of simulating the cause of it [7][1]. HeightField approximations
are appropriate if we would only be interested in the animation of
the two dimensional surface of the fluid. Kass and Miller linearize
the shallow water equations to simulate liquids [19]. Particle
systems are another simplification method that would be a good
candidate to represent a splashing fluid or a jet of water
[20][12][28]. For computer animators, the main concern is to
achieve an efficient and visually plausible effect of a stable real-
time fluid interaction, while physical accuracy is of second
priority [14].

2.1 Haptic fluids and our approach
Dobashi and his team [32] created a model that approximates

real-world forces acting on a fishing rod or kayak paddle by doing
part of the math in advance of the simulation: the forces
associated with different water velocities and different positions
for the paddle or fishing lure were pre-calculated and saved in the
database. In addition, their simulation is based on a much larger
setup, including two projection screens and large haptic
equipment. In contrast to this, our intention is to enable to render
real-time fluid calculations on a personal computer or a laptop
with a low-end desktop haptic device. To cope with these resource
limitations, we take an approach in simulating real-time 3D fluids,
by rendering grid-structured deformable 2D layers of fluid
simulation. Here the dynamic simulation is represented based on
textured fluid where Jos Stam's 2D real-time fluid methods
[15][13] are extended to 3D for the fluid parameters. We model
density as a set of particles (centers of grid cells) that move
through a velocity field, described by the Navier-Stokes
equations.

Jos Stam [14] was the first to demonstrate a Navier-Stokes 2D
fluid simulation at interactive rates by using a grid-based
numerical method free from timestep restrictions [30]. This 2D-
based implementation is also shown in their experiment. It is a
major achievement that enables real-time fluid dynamics. We
compute forces from this type of simulation and further explain it
in section 3. Baxter and Lin [30] present a complete thorough
section of related work on fluid-haptic topic. They demonstrate an
interesting method for integrating force feedback with interactive
fluid simulation that represents paint. They also calculate the
force-feedback from the Navier-Stokes equations of fluid motion,
and adapt their fluid-haptic feedback method for use in a painting
application that enables artists to feel the paint based on flat
surface. In our paper, we focus on the force feedback that results
from the interaction with a constrained pool of fluid.

 Karljohan Lundin et al. [17] present a case study where new
modes for haptic interaction are used to enhance the exploration
of Computational Fluid Dynamics (CFD) data. They haptically
represent the air flow around an aircraft fuselage. However, we
are more concerned about addressing a different scenario, in
which the haptic interface interacts with a bounded fluid
simulation that is fast enough to be used in real-time interaction
applications. We explore haptic ambient forces to represent
differences in fluid densities. An ambient force is a global
strength effect that surrounds the haptic probe, regardless of
collision with any surface. In addition, we adapt our method to be
integrated with a spring-net deformable surface, enabling users to
perceive the ripples of interaction in a 3D perspective.

3 HAPTIC AND FLUID INTEGRATION

In order to enable haptic interaction, all objects modeled in the
graphic workspace also need to be modeled on the haptic
workspace. In order for users to feel what they actually see, the
position of these 3D models needs to match and correspond on the
scene.

76



Our main research focus is on realistic and interactive fluid
animation integrated with haptic. So as partly explained in section
2.1, our 3D real-time fluid is realized by high resolution texture-
based representation on a low resolution surface grid where the
fluid is calculated by the Navier-Stokes equations. The
deformable grid is constructed and the textured fluid is extended
to 3D accordingly.

The undulating fluid surface is modeled as a mass-spring
particle system [2] that gets deformed when the user tries to enter
the fluid domain with the haptic device. Force feedback is felt at
this contact point of interaction. Efficiency is achieved by
generating surface ripples that are visually plausible and yet based
on a fairly low-res system of 15x15 particles for a 2D surface.
Then the 3D surface is designed as grid structure of the 2D
surfaces. Once inside the fluid domain, and through the tip of the
haptic device, the user is able to inject substances that fill into a
3D simulation grid of 15x15x15 which still works interactively in
real-time in our experiment with an Intel Pentium powered
processor 3.4GHz CPU with 2GB in RAM. The nodes of this grid
also oscillate their position based on the deformation of the fluid
surface layer. The end-point position of the haptic device will
determine the grid cell from which we read and write density and
velocity values for our rendering calculations. This three-
dimensional deformable grid simulates the fluid based on the
Navier-stokes equation [14], and is further explained in the
following section.

Due to the suggested haptic update rate of 1 KHz [4], the
number of deformable surface particles was kept low to maintain
the stability of the system. In our system, the user interacts with
the environment using an Omni Phantom [27] haptic device, as
shown on Figure 2. Since there are differences between the
graphic workspace and haptic workspace, the integration between
graphic and haptic workspaces is required.

We are interested in rendering immediate force feedback while
maintaining acceptable visual simulation effects. As haptic
interaction requires higher frequency updates, we must limit our
system to a particular grid size in order to retain stability.
However, the graphic workspace and the haptic workspace have
different boundary limitations and coordinate systems. Therefore,
the point of intersection between the haptic probe and the fluid
surface is different in both workspaces. The fluid surface grid size
is defined as an NXN  square, and its coordinates range from
[0…N-1] in both X and Y axis of the deformable surface. If we
want to know which part of the fluid surface was touched, we
need to convert the haptic coordinates into those of the fluid grid.
Therefore, we first convert the haptic coordinates into positive
values, and then scale them with the graphic workspace
boundaries. Based on these conversions, the graphic workspace
and haptic workspace are integrated precisely and it shows
performance in real-time.

 The 3D cursor represents the position of the probe as well as
indicates the user’s point of interaction. We extended this
integration with a deformable surface. The surface deforms with
the touch of a haptic probe and gives back the resulting force
feedback to the users. Even though higher resolutions of the
surface grid provide smoother looks, our experiment shows that a
size of 15X15 particles for the deformable surface is the
maximum setup permitted to support a reasonable stable and fast
real-time simulation. Once we increase the size, the deformable
surface would perform too slowly for real-time purposes.

Our deformable grid based fluid representation is chosen for
several reasons:

(i) It provides efficiency as we are able to visually represent a
high-resolution fluid rendering based on computations from a
lower-resolution deformable grid.

(ii) It is not computationally expensive as it allows us to work
in three-dimensions without disrupting the real-time interaction
requirements of our haptic user interface.

(iii) It provides us with a systematic way of controlling and
matching the input/output domain between the haptic workspace
and the simulation grid.

4 REAL-TIME FLUID SIMULATION

Our fluid animation method is based on the classic Navier-
Stokes Equation. The Navier-Stokes Equation can be presented in
both velocity and density fields [14]:

           
fuvuu

t
uVelocity +∇+∇⋅−=
∂
∂ 2)(: (1)

            Sku
t

Density +∇+∇⋅−=
∂

∂
ρρ

ρ 2)(: (2)

These equations describe the behavior of fluid at one point in a
fluid volume. Here, u is the vector-valued velocity at that point, t
is time, v is the kinematic viscosity of the fluid, f represents the
external force, ρ  represents its density, S represents the external
substance that is being added to the fluid, p  is pressure, k
represents a constant at which density tends to diffuse, “·” denotes
a dot product between vectors, and “∇ ” denotes the vector of
spatial partial derivatives.

The two similar representations of Navier-Stokes equations
indicate that we could solve both velocity and density fields in a
similar fashion. The incompressibility property of fluids
determines that there is an additional constraint, known as the
continuity equation. This serves to ensure the conservation of
mass. It is a constant-density fluid which could be presented as
∇ · u = 0. Due to the application purpose of this paper, we do not
describe too many details about the mathematic principles behind
the Navier-Stokes equations. In Jos Stam's previous work, the
main process for computing density consists of three major steps:
adding force, diffusing fluids, and moving fluids. At initialization,
the fluids are discretized into computational grids. The velocity
field is defined at the center of each cell. For each step, the fluid
solver would calculate the parameters in the equation in order to
make the simulation real-time. His method applies these three
main steps for both the fluid’s density and velocity properties due
to their similarity. The back-tracing method [14] is the main
reason for making the interactive fluid stable and efficient, but it
is also the main reason for causing not high-level accuracy and
unrealistic visual effects. However the visual effects are still quite
acceptable.

We integrate Jos Stam's 2D real-time fluid simulation method
into a deformable surface with depth effect and force feedback in
3D space. When users touch the fluid surface, through the haptic
interface, they can perceive the resulting surface deformations.
When they stir the fluid, they can see changes in the fluid’s
density and velocity and simultaneously feel the resulting force.
The force felt depends on the velocity, direction, density and
viscosity properties. These values are calculated and displayed
each time the graphic workspace is updated.

4.1 Multiple Fluid Simulation
A substance represents a matter with given properties that

enters the base fluid simulation. The injection of a new substance
into the simulation is accompanied by short, transient haptic
impulses which represent force recoil. Our system also allows for
the combination of multiple substances on top of the base fluid.
Therefore, different calculation grids are maintained for each
substance. Each substance has its own characteristics and colors.

77



The resulting rendered force is a weighted combination of each
substance’s grid involved in the mix. Figure 3 shows an initial red
substance which is later mixed with a denser green substance. The
result is a yellowish blend which combines the contributed haptic
properties of both substances.

5 FORCE RENDERING

In contrast with conventional haptic systems, our reaction force
and torque feedback originate from two sources; (i) deformable
surface – that accounts for elastic forces, and (ii) fluid simulation
– provides values for viscosity, density, velocity, and inertia. At a
basic level, a haptic device generates force-feedback based on the
position of the probe’s end-effector and the Haptic Interface Point
(HIP). These two positions are initially the same, but as the player
manipulates the haptic device, the HIP might traverse a collision
surface. A force is then rendered at the haptic device which is
directly proportional to the vector (times the stiffness scalar)
between the device’s end-effector and the position of the HIP. In
Figure 2, the HIP’s position has penetrated a static obstacle (e.g.
the baton has touched a wall of the bowl). Since the end-effector
cannot move to the HIP’s position, a spring force is displayed at
the haptic device and the users can feel a collision response.

Figure 2. Left image shows the Sensable Phantom Omni Haptic
Device. Right thumbnail shows an illustration of the concept behind

haptic force rendering.

Elastic spring forces are controlled by stiffness properties that
are particular to rigid surfaces, like the walls of a bowl. However,
when the probe enters an area of fluid, the force felt is that of a
viscous force rather than a spring force. The fluid does not
actually repel the probe, but just slows down its stirring
movement, according to the density grid computed at the time.
The higher the density contained at a grid cell, the harder it is to
stir through it. The moving fluid also affects the position of the
probe. If the fluid’s velocity field is running to the left and the
user tries to stir to the right, for instance, a higher force feedback
will be felt until the velocity field has adapted itself to the new
input forces. Following the law of inertia, the probe will remain in
movement unless acted upon by an outside force.

The force feedback calculation is based on the results generated
by the equations of an incompressible Navier-Stokes fluid
simulation [14], which enables the generation of forces and
torques for use with haptic devices. The bowl can also be touched
through the haptic interface, giving the player a sense of boundary
limitations for the interaction. The deformable surface uses the
classical fourth-order Runge–Kutta (RK4) method to solve the
ordinary differential equations (ODE) formed by the applied
forces and the constrained spring-network of particles.

The fluid surface is deformed as the haptic probe pushes
through it. This deformation is gradually transmitted and damped
to the lower layers based on their depth and fluid density. After a

certain pop-through force threshold, the probe is able to penetrate
the surface and interact with the inner 3D fluid. As a consequence,
the sense of viscosity can be rendered in any direction of
interaction as the probe moves on the three-dimensional scene. In
order to simplify and increase the stability of the haptic-graphic
simulation, the fluid is contained in a constrained grid
environment. The fluid may not tear apart nor spill over the
container. Some drawbacks of this proposed deformable surface
fluid representation include limitations on the force values that
can be rendered, tradeoffs on real-life physics, and restrictions on
the grid size of the simulation.

6 VOLUMETRIC RENDERING METHODS

The OpenHaptics Toolkit [25] provides high-level haptic
rendering and is designed to be familiar to OpenGL API
programmers. It allows significant reuse of existing OpenGL code
and greatly simplifies synchronization of the haptics and graphics
threads. However, OpenGL does not support a direct interface for
rendering translucent (partially opaque) primitives. Transparency
effects may then be created with the blend feature and carefully
ordering the primitive data. When using depth buffering in an
application, the order in which primitives are rendered is
important. Fully opaque primitives need to be rendered first,
followed by partially opaque primitives in back-to-front order. If
objects are not rendered in this order, the primitives, which would
otherwise be visible through a partially opaque primitive, might
lose the depth test entirely. In order to visualize the fluid
simulation, different techniques were considered for the rendering
process, taking into account the limitations of OpenGL rendering
capabilities. Some of these techniques included:

(i) Filling the 3D grid by rendering a considerable amount of
points in a regular periodic pattern. The color and position of each
point would be determined by a linear combination of their
proximity to each of the closest grid cell density values. The result
is an open-space visualization, similar to floating dust. However,
this reduces performance because of the computations needed for
each point.

(ii) Making use of OpenGL’s fog features. Each of the 3D grid
cubes can be treated as a constrained fog space. The fog density
values match the simulation density values; however, since fog
doesn’t allow for multiple colors, our multi-substance simulation
cannot be represented using this technique.

(iii) Rendering smaller alpha transparent cubes that are sorted
based on their distance to the camera. The density value of a grid
vertex is used as a cue for its color. Each small cube face
interpolates the color of the four vertices that form it. However,
the walls of each inner cube are also visible, which makes the
rendering not as smooth as desirable.

The preferred technique consisted of slicing the 3D grid into
planes that are perpendicular to the line of camera sight, as shown
on Figure 4. We apply gradual alpha transparency to the slices and
sort them based on their distance to the camera. Alpha channels
are dynamically adjusted based on density values during the
simulation. We continuously construct a 3D texture based on the
fluid simulation data, and proceed to texture the slices with this
information. The texture color is based on the density of the fluid
cells. The higher the density, the brighter the color is. A 3D
texture is a series of (width * height * depth * bytes per texel)
bytes where width, height, and depths are powers of 2. The result,
as shown on Figure 5, allows the user to perceive the simulation
in any three-dimensional angle.

78



Figure 3. 3D interaction when user mixes multiple fluid substances

Figure 4. Volumetric rendering using 3D Texture slices

Figure 5. Fluid domain perceived from different angles

7 RESULTS

Screenshots are shown in Figure 6. They present the fluid being
stirred by the haptic device. We can see that the intensity of the
color represents the density value of a cell. In addition, the fluid
follows the velocity field that is being generated by the probe
movements. Figure 6 also shows the velocity field that guides the
movement of forces across the surface. After removing the probe
out of the bowl, the fluid keeps moving itself and gradually
reduces its waviness. In the same manner, if the user lets loose of
the haptic device while still inside the fluid, the probe will
continue to follow the flow’s path. Performance is maintained at
speed since the simulation is not volumetric but rather based on
discreet extensions of two-dimensional layers.

 In order to better appreciate the quality of haptic rendering, the
user is able to mix and toggle between different force rendering
modes. Each of these modes may be enabled or disabled
according to the user’s preferences. These force modes focus on
particular aspects of the force feedback. The deformable-surface
mode enables the user to feel the ripples on the fluid surface. The

viscosity mode challenges the user to move around dense fluid.
The flow mode guides the haptic probe, hence the user’s hand,
through the velocity field so that the user perceives the formed
currents. The flow-resistant mode enables the user to modify the
velocity field by applying forces that resist the current flow. As a
result, the system serves as an experimental framework to analyze
haptic experiments for fluid simulations. Forces can also be
visually appreciated by looking at the color of the baton during
the simulation. These colors are dynamically modified according
to the rendered forces. Users are able to associate the physical
force feeling with the visual cue: a green shaded baton for light
forces, a yellow color for moderate forces, and red for strong
forces.

Figure 6. These screenshots show the fluid being stirred by the
haptic probe. The different colors represent the different levels of

fluid density. 2D version of Velocity field (bottom) shows the
resulting current flow of the interaction.

8 ENHANCED USER INTERACTION APPLICATION – HAPTIC
GESTURE RECOGNITION

This section describes how this haptic fluid interactive system
can be enhanced by integrating it with gesture recognition. A
possible application can be a game situation such as the player
impersonates the role of a witch. Following a specific recipe, a
magic potion needs to be created. It would require the right
ingredients, mixed at the right moment, with the proper stirring
movements and force. Once the player succeeds, the system is
able to trigger customized modifications to the fluid properties.
The fluid might change color, viscosity and elasticity parameters
among other characteristics. The decision might be made through
a haptic motion recognition module as one of possible ways that
will allow game developers to take full advantage of the high
degree-of-freedom input capabilities of modern haptic devices.
Haptic devices provide more valuable parameters (force, torque,
velocity, etc.) than conventional graphics users interfaces. It does
not only allow us to recognize 3D coordinates, but also to use
force-feedback data as extractable features. These parameters are
used to raise the recognition rate of user motions. For instance, a
harsh circular movement will be recognized differently than a
gentle circular movement. Even though these are both circular
movements, different forces were applied.

79



Haptic biometric behavioral applications [21] show the
importance of force and torque for the purpose of recognition. We
present how to recognize a few simple figures, also known as
gestures, which would trigger the right potion spell, for instance,
three consecutive circular motions or the shape of a star. This
would reduce the complexity of the task, and therefore it would be
more feasible for the recognition to be performed in real-time,
parallel to the haptics and graphics fluid simulations. This module
follows Dopertchouk’s concepts of motion recognition [24] and is
organized in three major steps: Creation and storage of the master
gesture templates, normalization of the strokes, and recognition of
the shapes. The gesture templates are recorded from predefined
sample haptic inputs. We read the proxy position of the haptic
device and store the 4D coordinates as a sequence of points in the
workspace, mainly x, y, z and force data. When players stir the
potion mix, some of the gesture shapes may be different in size,
speed, or position. Even thought the shape results might look
similar to the naked eye, these shapes would look like completely
unrelated sets of coordinates to the computer. Therefore, we need
to normalize the captured strokes.

First, we need to scale the gesture to a predetermined size (e.g.
1 unit). We do this by finding the length and dimensions of the
gesture, and dividing its coordinates by the scaling factor. Second,
we need to put the individual points in the gesture at a uniform
distance. We do this through a dynamic time warping algorithm
[21]. Since we are interested in the geometric shape, it would be
irrelevant to know how fast or slow the gesture was drawn.
Finally, we need to center the gesture at the origin of the
coordinate system through a translation matrix.

We compare two different approaches for the haptic recognition
of the gestures: Dot Product and Neural Network. Simple shape
recognition was performed through the implementation of a neural
network-based recognition engine, using an approach similar to
others [16][18], whom also provide good introductions to neural
networks. A similar feature extraction procedure was used.
However, haptic proxy positions were converted to directional
vectors (e.g. Right: 1,0,0; 1,0,0; …). A back-propagation
algorithm was used to train the neural network with a few basic
shapes, run as many epochs and find the minimum sum-of-squares
error (SSE) [6] constraint. However, this method proved to be
cumbersome to perform in respect to the additional marginal
benefit that we would get in the recognition phase. It would be
more time-consuming to integrate a new predefined gesture into
the system, as the network would need to be retrained. Therefore a
simple Dot Product method is chosen for our recognition system.
Since both our gesture templates and captured strokes have the
same number of points after normalization, we model our gestures
as normalized vectors. These are 4XN dimensional vectors, where
N is the number of points in the gesture. Using this technique, if
you compare two normalized vectors that are exactly the same,
the result will be one. The result will be a value slightly less than
one for vectors that point in more-or-less the same direction, and
the result will be a low number for vectors that point in different
directions.

This worked well for simple shape matching and it did not slow
down any of the haptic fluid nor the deformable surface
computations. From a set of three basic motions (e.g., circle, V
shape, and S shape), this module was able to reach recognition
rates above 95% for both recognition approaches. In our game
scenario, the dot product approach seemed effective enough to
recognize potion shapes. Neural networks also provided
acceptable gesture recognition rates, but the time allocated for
network retraining is cumbersome and tedious for gaming
purposes.

9 CONCLUSION

We have shown a novel 3D human-computer system based on
haptic-fluid interaction. It is the fluid simulation with the
deformable surface together with the force feedback of the haptic
device that requires very high-speed interaction rate. The system
is stable and efficient. In addition, the realistic looking fluid
rendering and haptic feedback have been successfully achieved.
Our main contribution is to extend the Human-Computer interface
into real-time 3D fluid interaction with force feedback. In
summary, the proposed solution consists of the following
techniques:

(i) Use of a textured deformable grid to represent the state of
the simulation and model the fluid motion based on the Navier-
Stokes equations [15]. We achieved successfully the 3D extension
of Jos Stam’s [14] 2D real-time fluid animation.

(ii) Rendering of 3D fluid in any camera viewport. We cut
slices parallel to the camera viewport, and apply a 3D texture
based on the fluid’s density values. Use alpha blending to achieve
a volumetric rendering effect.

(iii) Matching of haptic and graphic coordinates through a
mapping function to achieve haptic input/output and maximize
workspace area.

(iv) Rendering of a set of haptic effects based on the velocity
field and density values of the fluid simulation in order to achieve
the sense of a moving shape-less object.

These fluid interaction techniques with haptic feedback have
wide possible applications including game development and
haptic communities. Haptic gesture recognition, as an application
for haptic games, was also experimented. OpenGL was used to
implement the graphic framework of the system. We made use of
lighting, blending, and shading effects to appreciate the animated
fluid ripples. A bowl model was created on Autodesk 3D Studio
Max [3] and imported into the scene. OpenHaptics API was used
to model the haptic interactivity of the tool. The system performed
on an Intel Pentium powered processor with 3.4GHz CPU and
2GB in RAM. A Sensable Phantom Omni [27] device was used as
our haptic device. It would be interesting to keep exploring the
haptic gesture recognition phase of the project to produce more
various effects on the fluid with game scenario. The orientation
and workspace of the Phantom series of haptic devices allow the
users to make natural, human gestures using a stylus. Even the
idea of waving a haptic stylus through the air in order to cast
spells is appealing in that it makes the player feel as if they really
are wizards. This is a feature-in-progress, but current results look
promising.

REFERENCES

[1] A. Fournier and W. T. Reeves. A simple model of ocean waves. In
Proc. SIGGRAPH, pages 75–84, 1986.

[2] A. Nealen, M. Muller, R. Keiser, E. Boxerman, Carlson M..
Physically based deformable models in computer graphics. In
Eurographics: State of the Art Report. (2005)

[3] Autodesk, http://autodesk.com
[4] C .  B a s d o g a n .  Hapt ic  Render ing  Tutor ia l ,

http://network.ku.edu.tr/~cbasdogan/Tutorials/haptic_tutorial.html
(2007)

[5] C.H. Ho, C. Basdogan, M. Srinivasan. Efficient point-based
rendering techniques for haptic display of virtual objects.
Teleoperators and Virtual Environments, pp.477-491, (1999)

[6] C. M. Bishop. Neural Networks for Pattern Recognition, Oxford
Press, USA, (1995)

[7] D. Hinsinger, F. Neyret, and M.P. Cani. Interactive animation of
ocean waves. In Proc. ACM SIGGRAPH/Eurographics Symp.
Comp. Anim., pages 161–166, 2002.

80



[8] D. Morris, J. Neel, K. Salisbury. Haptic Battle Pong: High-Degree-
of-Freedom Haptics in a Multiplayer Gaming Environment. In
Experimental Gameplay Workshop, GDC (2004)

[9] D. Nilsson, H. Aamisepp. Haptic hardware support in a 3D game
engine. Master thesis, Department of Computer Science, Lund
University, May (2003)

[10] F. Conti, F. Barbagli, D. Morris, C. Sewell. CHAI: An Open-Source
Library for the Rapid Development of Haptic Scenes. Paper
presented at IEEE World Haptics, Italy, (2005)

[11] F. Dachille, H. Qin, A. Kaufman. Novel haptics-based interface and
sculpting system for physics-based geometric design. Computer-
Aided Design, Vol. 33, pp.403-420 (2001)

[12] J. O’Brien and J. Hodgins, Dynamic simulation of splashing fluids,
In Computer Animation 95, pages 198–205. (1995)

[13] J. Stam. Interacting with smoke and fire in real time. In:
Communications of the ACM, Volume 43, Issue 7, pp.76-83. (2000)

[14] J. Stam. Real-Time Fluid Dynamics for Games. In Proceedings of
the Game Developer Conference, March (2003).

[15] J. Stam. Stable Fluids. In: SIGGRAPH 99 Conference Proceedings,
Annual Conference Series, pp.121-128. (1999)

[16] K .  B o u k r e e v .  M o u s e  g e s t u r e s  r e c o g n i t i o n ,
http://codeproject.com/cpp/gestureapp.asp (2007)

[17] K. Lundin, M. Sillen, M. Cooper, A. Ynnerman. Haptic visualization
of computational fluid dynamics data using reactive forces. In.
Proceedings of the International Society for Optical
Engineering,(2005)

[18] K. Murakami, H. Taguchi. Gesture Recognition using Recurrent
Neural Networks. In Proceedings: Conference on Human Factors in
Computing Systems, pp.237 - 242, (1991)

[19] M. Kass, G. Miller. Rapid, Stable Fluid Dynamics for Computer
Graphics. ACM Computer Graphics (SIGGRAPH ’90), 24(4):49–57,
August 1990.

[20] M. Müller, D. Charypar, M Gross. Particle-Based Fluid Simulation
for Interactive Applications, In Proceedings of SCA 03, pages 154-
159. (2003)

[21] M. Orozco, A. El Saddik. Haptic: The New Biometrics-embedded
Media to Recognizing and Quantifying Human Patterns. I n
proceedings of 13th Annual ACM International Conference on
Multimedia (ACMMM 2005), Singapore, November 06-12, (2005)

[22] M. Srinivasan and C. Basdogan. Haptics in Virtual Environments:
Taxonomy, Research Status, and Challenges. In Computer and
Graphics, 21(4), pp.393-404, (1997).

[23] Nintendo Wii, http://wii.com
[24] O. Dopertchouk. Recognition of Handwritten Gestures,

http://gamedev.net/reference/articles, (2007)
[25] OpenHaptics Toolkit. Available at: sensable.com/products-

openhaptics-toolkit.htm
[26] S. Andrews, J. Mora, J. Lang, W.S. Lee. HaptiCast: A Physically-

Based 3D Game with Haptic Feedback. In Proceedings of
FuturePlay (2006)

[27] Sensable Technologies, http://sensable.com
[28] S. Premoze et.al, Particle based simulation of fluids, Eurographics

03, pages 401-410. (2003)
[29] V. Blanz and T. Vetter. A morphable model for the synthesis of 3D

faces. In Proceedings of SIGGRAPH ‘99, 187-194 (1999).
[30] W. Baxter, M.C. Lin. Haptic Interaction with Fluid Media.

Proceedings of Graphics Interface. Vol. 62, pp.81-88, Canada (2004)
[31] W. Mark, M. Randolph, J.V. Finch, R.M. Verth, Taylor II. Adding

Force Feedback to Graphics Systems: Issues and Solutions.
SIGGRAPH’96, pp. 447-452, August (1996)

[32] Y. Dobashi, M. Sato, S. Hasegawa, T. Yamamoto, M. Kato, T.
Nishita. A Fluid Resistance Map Method for Real-time Haptic
Interaction with Fluids. Proceedings of ACM VRST’06. pp. 91-99
(2006)

81


