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Abstract— Classification of electroencephalographic (EEG) 

signals is a sophisticated task that determines the accuracy of 

thought pattern recognition performed by computer-brain 

interface (BCI) which, in turn, determines the degree of 

naturalness of the interaction provided by that system. However, 

classifying the EEG signals is not a trivial task due to their non-

stationary characteristics. In this paper, we introduce and utilize 

incremental quantum particle swarm optimization (IQPSO) 

algorithm for incremental classification of EEG data stream. 

IQPSO builds the classification model as a set of explicit rules 

which benefits from semantic symbolic knowledge representation 

and enhanced comprehensibility. We compared the performance 

of IQPSO against ten other classifiers on two EEG datasets. The 

results suggest that IQPSO outperforms other classifiers in terms 

of classification accuracy, precision and recall. 

Keywords—brain-computer interface; quantum particle swarm 

optimization; EEG signal calssification 

I.  INTRODUCTION 

A Brain-Computer Interface (BCI), also known as Brain-
Machine Interface (BMI), is a communication system that lets 
the users to interact with electronic devices by means of control 
signals acquired from electroencephalographic (EEG) activity 
without engaging peripheral nerves and muscles [1]. The 
preliminary motivation for BCI research was to develop 
assistive devices for people with locked-in disabilities. 
Nowadays, researchers are exploring BCI as a novel 
anthropomorphic interaction channel for daily applications 
such as robotics, virtual reality, and games [2]. 

As shown in Fig. 1, a BCI system recognizes a set of 
patterns from signals generated by brain activities in five 
consecutive steps including signal acquisition, signal 
preprocessing, feature extraction, signal classification and 
control interface [3]. Signals generated by neural 
electrochemical activities are captured, amplified and 
digitalized using electrodes, amplifiers, and A/D convertors, 
respectively. The acquired signals are filtered to remove both 
physiological artifacts including electromyography (EMG), 
electrooculography (EOG), and electrocardiography (ECG), 
and non-physiological artifacts such as power line noises. The 
next step is to extract the features of interest from refined 
signals. These features, found in multiple channels, spatially 
and temporally overlap with brain signals from other mental 

activities. Then, classification phase which is the main focus of 
this paper, is performed to classify the user’s intentions using 
discriminative features. Finally, a control interface interprets 
the classified signals into high level commands and provides 
connected devices with those comprehendible commands. 
Further information regarding signal processing techniques in 
BCI systems can be found in [4, 5].  

Classification of EEG signals is a sophisticated task that 
determines the accuracy of intention recognition performed by 
BCI system which, in turn, determines the degree of 
naturalness of the interaction provided by that system. 
However, classifying the EEG signals is not a trivial task. In 
literature, curse of dimensionality and bias-variance tradeoff 
are mentioned as the main classification problems in BCI 
applications. EEG signals contain outliers and have very low 
signal to noise ratio. Also, these signals are often of high 
dimensionality. Another problem is due to the small size of the 
training data. Finally, EEG signals are non-stationary and vary 
over time [6]. A very important aspect of EEG signals is that 
even for a same subject working on a same mental task, the 
signals may vary over sessions. In literature, two sources are 
mentioned for non-stationary characteristics of EEG signals 
[7]. The first source is the difference between patterns acquired 
in calibration sessions and patterns emerging during online 
sessions. The second source is changes in EEG signals due to 
the changes in subject’s concentration, motivation and learning 
curve. These characteristics of EEG signals necessitate 
employing incremental classifiers in BCI applications to let the 
system learn the intention patterns adaptively and online. 
According to [1], adaptive algorithms are very important for 
non-invasive and asynchronous BCI systems. 

In this paper, we introduce and utilize incremental quantum 
particle swarm optimization (IQPSO) algorithm for 
incremental classification of EEG data stream. The proposed 
algorithm models the classifier as a set of explicit rules whose 
antecedents are the range of electrode outputs and consequents 
are mental activities. This model benefits from semantic 
symbolic knowledge representation. IQPSO modifies the 
classifier model based on the newly arrived data and extracted 
knowledge. To do so, it embeds guided initialization and 
reinforcement steps to the ordinary PSO algorithm to support 
incremental learning. Moreover, it benefits from quantum 
behavior that enhances its performance.  



 

Fig. 1. Schematic of a BCI system. 

The paper is organized as follows: in section 2 an overview 
of related works is presented. Section 3 explains our proposed 
method. In section 4, evaluation and experimental results are 
discussed. Finally, section 5 concludes the paper. 

II. RELATED WORKS 

Lotte, Congedo, Lecuyer, Lamarche and Arnaldi [6] 
categorized the classification techniques applied in BCI 
applications to five major categories including linear classifiers 
(e.g. linear discriminant analysis (LDA) and support vector 
machine (SVM)), artificial neural networks (ANN) (e.g. multi-
layer perceptron (MLP), learning vector quantization neural 
network (LVQ-NN), RBF neural network, probability 
estimating guarded neural classifier (PeGNC), finite impulse 
response neural network (FIRNN), and time-delay neural 
network (TDNN)), nonlinear Bayesian classifiers (e.g. Bayes 
quadratic and hidden Markov model (HMM)), nearest neighbor 
classifiers (e.g. k-nearest neighbors (K-NN)) and ensemble 
classifiers (e.g. boosting, bagging and stacking). Although 
many research works have addressed the classification task in 
BCI applications, only a few have addressed non-stationary 
properties of the BCI signals. 

To address the non-stationary characteristics of EEG 
signals, a few research works exploited a preprocessing step to 
enable the static classifiers to be employed in non-stationary 
environments. Alonso, Corralejo, Álvarez and Hornero [8] 
proposed an adaptive classification framework in which 
extracted features from EEG signals are adaptively processed 
to reduce the small fluctuations between calibration and 
evaluation data. This step lets the framework to utilize static 
classifiers to classify the refined features. HSU [9] proposed a 
two-stage recognition system for continuous analysis of EEG 
signals. First, wavelet transform and Student's two-sample t-
statistics are employed to select and detect the location of the 
active segment in time-frequency domain, and then multi-
resolution fractal feature vectors (MFFVs) are extracted from 
wavelet data. In second phase, a static SVM classifier is 
adopted for robust classification of MFFVs.  

Some other research works have utilized dynamic 
classifiers. Among them, incremental SVM is widely applied 
[10-12]. In some studies, incremental versions of biomimetic 

pattern recognition (BPR) approach are utilized for online EEG 
classification task [13-15]. Kai [13] concluded that incremental 
semi-supervised BPR demonstrates higher accuracy and 
stability than incremental SVM technique. Furthermore, a few 
research exploited HMMs for online classification of single 
trial EEGs during motor imagery tasks [16, 17]. Adaptive 
discriminant analysis is another class of dynamic classifiers 
applied to incremental classification of EEG signals [18-20].  

As far as the authors’ knowledge is concerned, although 
PSO has been employed to address various issues in BCI 
applications such as feature selection [21-24], source 
localization [25, 26], change point detection [27] and adaptive 
signal filtering [28, 29], it has only been employed as static 
classifier, in which PSO has mostly been utilized as training 
algorithm for the neural classifier. PSO-based RBFNN [30] 
and PSO-based recurrent NN [31] are examples of these hybrid 
dynamic classifiers. Karait, Shamsuddin and Sudirman [32] 
introduced a hybrid PSO called adaptive particle swarm 
negative selection (APSNS) for EEG signal classification. It is 
noteworthy that as far as the authors’ knowledge is concerned, 
quantum-behaved PSO has only been applied to EEG feature 
selection task [33, 34].  

III. INCREMENTAL EEG CLASSIFICATION 

A. Quantum-Behaved PSO Algorithm 

PSO algorithm introduced by Eberhart and Kennedy [35] is 
a swarm intelligence based meta-heuristic approach inspired by 
the individual and social behavior of flocking birds. PSO is 
able to reach the globally optimal solution within a few 
iterations. Akay [36] experimentally showed that PSO is 
scalable and its processing time grows at a linear rate with 
respect to the size of the problem. Ordinary PSO algorithm 
consists of a population of candidate solutions called particles. 
Each particle is characterized by its position and velocity 
vectors, and follows its trajectory toward the global optimum 
based on Newtonian mechanics. In a D-dimensional space, 
position and velocity vectors of the ith particle are depicted as 
(1). In the same hyperspace, the rules governing the particle’s 
trajectory are depicted in (2) and (3). 
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Where x and v are position and velocity vectors, 
respectively. w is inertia element utilized to enhance the 
convergence speed and balance between exploitation and 
exploration. φ1 and φ2 are two positive parameters known as 
personal and social cognitive factors, respectively.  xpbi is the 
best personal position that ith particle have seen so far, and xg 
is the position of the best particle seen so far in the swarm 
history. It has been shown that if the upper limits of personal 
and social cognitive parameters are selected properly, the 
position of the ith particle converges to position p computed as 



(4). Position p can be interpreted as center of gravity towards 
which particles are careen while their kinetic energy declines 
[37]. 
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Sun, Feng and Xu [37] proposed a novel version of PSO 
algorithm (i.e. QPSO) in which particles obey the rules 
governing quantum mechanics rather than Newtonian 
mechanics. In this approach, the quantum state of a particle is 
expressed by a wave function based on Schrodinger’s 
uncertainty principle. Also, the trajectory of a particle is 
modeled using quantum Delta potential well model. In this 
model, it is assumed that a particle moves in a Delta potential 
well in search space, of which the center is point p calculated 
by (4). In order to compute the fitness of an individual particle, 
its exact position is needed. However, in quantum model, only 
the probability density function of the position is available. To 
address this issue, Monte Carlo method is applied to simulate 
the measurement process from wave function. Using this 
technique, particles’ estimated position vector is governed by 
the rule depicted in (5). Sun, Feng and Xu [37] experimentally 
showed that QPSO can outperform ordinary PSO in 
minimizing the benchmark functions. 
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u is a random number between 0 and 1, and g is a control 
parameter greater than ln√2.  

B. Incremental PSO Algorithm 

In order to provide our proposed approach with incremental 
learning capabilities, we adopted the study conducted by 
Hassani and Lee [38] in which they proposed a framework for 
incremental and parallel classification rule discovery using 
PSO algorithm. Their proposed framework consistently 
receives training data chunks and modifies its classification 
model in a way that it can address both old and new data. To 
do so, they have applied two modifications to the ordinary PSO 
algorithm. First, instead of initializing the swarm randomly, 
they employ extracted rules from processed data stream to 
initialize the individuals. This non-random initialization is 
performed using a roulette wheel which selects the rules to be 
copied to the individuals. Those rules with higher support 
count (i.e. number of instances they cover) have better chance 
to be overwritten in initial population. Second, they embedded 
a reinforcement step into the conventional PSO algorithm. This 
step utilizes a tournament selection method to select one 
candidate particle from swarm and one candidate rule from 
classification rule set. In order to select the candidate particle, 
m particles are selected randomly (i.e. m is fairly smaller than 
swarm size), and the weakest of them is considered as the 
candidate. On the other hand, the same method is used to select 
the candidate rule. However, the candidate rule is defined as 
the rule with highest support count among the selected rules. 
Finally, the selected rule is overwritten on the selected particle 
to reinforce the swarm. These two modifications lets the PSO 

to exploit the previously extracted compact knowledge as the 
representative of the old data which, in turn, allow to build the 
classification model only by processing new data in a way that 
the model covers both old and new data. 

C. IQPSO Algorithm for EEG classification 

We utilize an incremental platform similar to the 
framework introduced by Hassani and Lee [38]. As shown in 
Fig. 2, this framework consists of training and testing 
components. The framework continuously receives EEG 
signals. Training component utilizes temporal windows of the 
streamed signals as training data chunks, whereas testing 
component accumulates them in a data repository. In this 
framework, IQPSO algorithm consistently modifies the 
classification model in a way that the model adapts to the 
distribution of new data chunks while it is consistent with the 
distribution of old data. To validate the model, it is tested by 
samples of both old and new data.  

IQPSO represents the classification model as a set of 
explicit IF-THEN prediction rules which benefit from semantic 
symbolic knowledge representation and enhanced 
comprehensibility. Antecedents of each rule are range of 
electrode outputs and consequents are mental activities. We 
apply Michigan approach [39] as individual representation 
scheme, where each individual represents a single classification 
rule. The individual representation is depicted in (6). 
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In this representation, xj is the position vector of the jth 
particle. EL

j,1 and EU
j,1 refer to the lower and upper bounds of 

the ith electrode in jth particle, respectively. n is the number of 
electrodes utilized in process. It is noteworthy that n is equal or 
smaller than the number of physical electrodes due to the 
feature selection phase which may omit the outputs of some 
electrodes. Finally, Ck

j represents the kth mental activity. If n 
electrodes are selected, the length of individual particle will be 
2n+1. The corresponding rule represented by the particle 
shown in (6) is depicted in (7).  

 

Fig. 2. Schematics of the proposed incremental platform. 
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The rule depicted in (7) indicates that if the output of the 
first electrode, O1, is between EL

j,1 and EU
j,1, and the output of 

the second electrode, O2, is between EL
j,2 and EU

j,2, and this 
goes on up to the nth electrode, then the subject’s intention is 
the kth mental activity within the predefined finite set of mental 
activities. It is noteworthy that it is not practical to use the 
exact values of electrode outputs within the rule antecedents. 
Moreover, it should be noted that if the value of EL

j,i is smaller 
than the minimum value that can be generated by ith electrode, 
or the value of EU

j,i is greater than the maximum possible value 
of the ith electrode, the corresponding boundary is considered 
as “do not care”. As an example, if the possible minimum and 
maximum values for the ith electrode are 0.1 and 1, 
respectively, and the upper and lower bounds of the 
corresponding electrode is determined as 0.05 and 1.1, then the 
electrode is considered as “do not care”.  The particle’s fitness 
is determined by its F-Score measure as depicted in (8). 
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Precision and recall (i.e. sensitivity) are computed by (9). 
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Where TP refers to the number of positive data objects that 
are correctly classified, FP is the number of negative instances 
that are incorrectly classified, and FN is the number of positive 
objects mislabeled as negative. 

We propose the IQPSO algorithm as depicted in (10). 
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In the proposed algorithm, roulette wheel selection method 
is applied to directly overwrite previously extracted rules to the 
initial swarm. Rules with higher support count have more 
chance to be reused as initial individuals. After guided 
initialization step, quantum-behave PSO discussed in section 
III.A takes over. In each iteration, the reinforcement 
mechanism is applied to substitute the week individuals with 
strong extracted rules. This mechanism utilizes a tournament 
selection method to replace the particles with low support 
count with rules that have higher support count. It is 
noteworthy that the F-Score measure depicted in (8) is used to 
evaluate the particles’ fitness. Finally, after a few iterations, 
new classification rules are returned. These rules cover both 
old and new data.  

IV. EXPERIMENTAL RESULTS 

In order to evaluate the performance of our proposed 
approach, we applied it to two EEG datasets acquired from 
UCI machine learning repository. The first dataset, 
planning/relaxing dataset concerns with the classification of 
two mental stages from recorded EEG signals: planning (i.e. 
during imagination of motor act) and relaxing states. This 
dataset consists of 13 attributes representing values of eight 
EEG electrodes (C3, C4, P3, P4, F3, F4, T3, and T4), two 
reference electrodes (A1 and A2), ground electrode, and two 
EOG electrodes. The class attribute is a binary feature that 
indicates the subject’s current mental state (i.e. whether 
relaxing or planning). This dataset contains 182 data instances. 
The second dataset, EEG eye state dataset, concerns with the 
classification of the subject’s eyes state (i.e. whether close or 
open). The dataset consists of 14 attributes representing the 
values acquired from 14 electrodes (AF3, F7, F3, FC5, T7, P7, 
O1, O2, P8, T8, FC6, F4, F8, and AF4). Furthermore, the 
dataset contains a binary attribute which indicates whether the 
subject’s eyes are open or close. The dataset consists of 14980 
data instances. 

In order to conduct a comparative study on the performance 
of IQPSO algorithm and other classifiers, we applied six 
classifier categories (i.e. five mentioned categories in [6] plus a 
meta-heuristic category) to datasets. As a representative of 
linear classifiers, we used SVM classifier. For ANN category, 
MLP and RBF neural networks are utilized. Naïve Bayesian 
and K-NN classifiers are employed as representatives of 
Bayesian and nearest neighbor (NN) classifier categories, 
respectively. As ensemble classifiers, we exploited AdaBoost, 
bagging and stacking classifiers. Finally, incremental genetic 
algorithm (IGA), Incremental PSO (IPSO) and our proposed 
method, IQPSO are used as meta-heuristic classifiers. It is 
noteworthy that the first five classifier categories are utilized as 
static classifiers. Therefore, we used batch training paradigm 
through their learning process. In order to evaluate the 
performance of the static classifiers, we exploited WEKA data 
mining software which provides the researchers with stable 
implementations of the mentioned classifiers. The parameters 
of these classifiers are set on default values of the WEKA.  

On the other hand, the classifiers within meta-heuristic 
category are all incremental classifiers. We applied the 
techniques proposed by Bakirli, Birant and Kut [40], and 
Hassani and Lee [38] to implement the IGA and IPSO 



classifiers, respectively. These classifiers are implemented in 
visual C#. Net programming language. In order to provide the 
meta-heuristic classifiers with data stream, we split the datasets 
to a few data chunks in chronological order considering 
predetermined window sizes, and then send them to the 
classifiers in consecutive time steps. We consider 25% of the 
first dataset size (45 instances), and 1% of the second dataset 
size (150 instances) as temporal window sizes. For all three 
meta-heuristic classifiers, the population size and iteration 
number are set to 25 and 100, respectively. In IPSO, personal 
and social cognitive parameters are both set to 2. Also, 
dynamic inertia term as depicted in (11) is utilized.  
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Where w is inertia, wmax and wmin are inertia boundaries, T is 
the total number of iterations, and t is the current iteration. In 
experiments, the inertia boundaries are set to 0.1 and 0.9. For 
our proposed algorithm, IQPSO, minimum support count is set 
to 1% of the size of the current windows size. Also, the control 
parameter g is set to 2ln√2.  

In order to have a quantitative analysis of the performance 
of the mentioned classifiers, we considered classification 
accuracy, precision, recall, F-score and processing time as 
evaluation measures. Accuracy is computed by dividing the 
summation of true positives and true negatives to the total 
number of instances. F-score, precision and recall are 
calculated using (8) and (9), respectively. These measures are 
acquired using 10-fild cross validation technique. Processing 
time is the average required time for building the classification 
model for each fold. Evaluation results are shown in Table I. 

In terms of processing time, as indicated in Table I, K-NN, 
Naïve Bayesian, and stacking classifiers outperform the others 
regarding the first dataset. Also, for the second dataset, K-NN 

classifier shows the least processing time. Considering both 
datasets, it can be concluded that K-NN classifier outperforms 
other classifiers in terms of processing time. Moreover, as 
results indicate, SVM, AdaBoost, stacking, and IQPSO 
classifiers reach the best classification performance in terms of 
accuracy, precision, recall and F-score measures regarding the 
first dataset. However, for the second dataset, K-NN and 
IQPSO outperform other classifiers. All in all, the results 
suggest that: 

 IQPSO demonstrates acceptable processing time for 
online learning which can be enhanced by using parallel 
processing techniques.  

 IQPSO is the only classifier that achieves the maximum 
classification accuracy, precision, recall and F-score 
measures in both datasets. 

V. CONCLUSION 

In this paper, for the first time, we introduced and utilized 
incremental quantum particle swarm optimization (IQPSO) 
algorithm for incremental classification of EEG data stream. 
IQPSO builds the classification model as a set of explicit rules 
which benefits from semantic symbolic knowledge 
representation and enhanced comprehensibility. The proposed 
algorithm benefits from incremental learning capability and 
quantum-oriented enhancements, simultaneously. We 
compared the performance of IQPSO against ten other 
classifiers that have been applied to BCI applications on two 
EEG datasets. The results suggest that IQPSO outperforms 
other classifiers in terms of classification accuracy, precision 
and recall. Also, it demonstrates acceptable processing time for 
online learning. As future works, we are planning to boost the 
processing time by utilizing parallel processing techniques. 
Furthermore, we are planning to enhance the algorithm to deal 
with the real world BCI applications by embedding semi-
supervised learning capabilities. 

TABLE I.  COMPARISON BETWEEN PSO AND OTHER CLASSIFIERS REGARDING CLASSIFICATION PERCISION 

Dataset Measure 

Classifier 

Linear ANN Bayesian NN Ensemble Meta-heuristic 

SVM MLP RBF Naïve K-NN AdaBoost Bagging Stacking IGA IPSO IQPSO 

I 

Accuracy 0.713 0.624 0.646 0.669 0.619 0.713 0.696 0.713 0.621 0.696 0.713 

Precision  0.713 0.702 0.697 0.709 0.734 0.713 0.710 0.713 0.693 0.710 0.713 

Recall 1.000 0.822 0.891 0.907 0.729 1.000 0.969 1.000 0.815 0.969 1.000 

F-score 0.832 0.757 0.782 0.796 0.732 0.832 0.820 0.832 0.749 0.820 0.832 

Process time 0.09s 1.31s 1.28s 0.01s 0.01s 0.05s 0.13s 0.01s 4.12s 1.57s 1.48s 

II 

Accuracy 0.551 0.548 0.559 0.468 0.968 0.668 0.892 0.551 0.614 0.892 0.968 

Precision  0.753 0.539 0.554 0.519 0.968 0.674 0.892 0.304 0.652 0.892 0.968 

Recall 0.551 0.548 0.559 0.468 0.968 0.668 0.892 0.551 0.614 0.892 0.968 

F2 0.392 0.536 0.462 0.388 0.968 0.655 0.892 0.392 0.632 0.892 0.968 

Process time 6.55s 145s 98s 0.28s 0.02s 3.5s 11.3s 0.14s 15.23 5.20 5.12 
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