
Distributed Delay Constrained Multicast
Routing Algorithm with Efficient Fault Recovery

Hasan Ural and Keqin Zhu
School of Information Technology and Engineering, University of Ottawa,
Ottawa, Ontario, KIN 6N5 Canada

Existing distributed delay constrained multicast routing
algorithms construct a multicast tree in a sequential
fashion and need to be restarted when failures occur
during the multicast tree construction phase or during
an on-going multicast session. This article proposes an
efficient distributed delay constrained multicast routing
algorithm that constructs a multicast tree in a concur-
rent fashion by taking advantage of the concurrency in
the underlying distributed computation. The proposed
algorithm has a message complexity of O(mn) and time
complexity of O(n) in the worst case, where m is the num-
ber of destinations and n is the number of nodes in the
network. It constructs multicast trees with the same tree
costs as the ones constructed by well-known algorithms
such as DKPP and DSHP while utilizing 409 to 1734 times
fewer messages and 56 to 364 times less time than these
algorithms under comparable success rate ratios. The
proposed algorithm has been augmented with a fault
recovery mechanism that efficiently constructs a multi-
cast tree when failures occur during the tree construction
phase and recovers from any failure in the multicast tree
during an on-going multicast session without interrupt-
ing the running traffic on the unaffected portion of the
tree. © 2005 Wiley Periodicals, Inc. NETWORKS, Vol. 47(1),
37–51 2006

Keywords: distributed multicast routing; constrained Steiner
tree; delay constrained multicast tree; fault recovery

1. INTRODUCTION

An important part of the functionality of routing is to select
a route along which sufficient resources should be reserved
to meet various requirements specified by applications, such
as network bandwidth and maximum message delay [5]. This
functionality is fundamental for guaranteeing real-time data
to be delivered to destinations with an acceptable delay. Mul-
ticast routing builds a routing tree (called multicast tree),

Received December 2004; accepted September 2005
Correspondence to: H. Ural; e-mail: ural@site.uottawa.ca
Contract grant sponsor: Natural Sciences and Engineering Research Council
of Canada; contract grant number: RGPIN 976.
DOI 10.1002/net.20090
Published online in Wiley InterScience (www.interscience.wiley.
com).
© 2005 Wiley Periodicals, Inc.

which is rooted from a source node s and contains all nodes in
a set S of m destination nodes in a network of n nodes. The rea-
sons for forming multicast routes on trees stem from the facts
that data can be transmitted simultaneously to various desti-
nations along the branches of the multicast tree; and the num-
ber of copies of the transmitted data can be minimized by
replicating the data only at the forks in the multicast tree.

Algorithms for constructing multicast trees take into con-
sideration two important factors [23, 28]. The first factor is
the constraint (placed by the application performing the mul-
ticast) on the end-to-end delay along the individual paths
from the source to each destination. The second factor is the
requirement for minimizing the cost (e.g., network bandwidth
utilization) of the multicast tree that is the sum of the costs
on the edges in the multicast tree. The minimum cost tree is
called a Steriner tree, and the problem of finding a Steiner
tree is known to be NP-complete [15, 20]. The delay con-
strained minimum cost tree is called a constrained Steiner
tree [17]. The problem of finding a constrained Steiner tree
is also NP-complete [17].

Various algorithms based on heuristics for constructing
constrained Steiner trees (i.e., for solving the source-initiated,
delay constrained multicast routing problem) have been
developed in recent years. In general, these algorithms are
classified [4] as source-based (or centralized) multicast rout-
ing algorithms such as KPP [16, 17], CDKS [33], CKMB
[34], CAO [38], DCMA [39], and BSMA [40] or distributed
multicast routing algorithms such as DKPP [18, 19] and
DSPH [14]. Because the distributed multicast routing algo-
rithms do not require the entire network status information
maintained in the source node, they elude the scalability
problem encountered by the centralized multicast routing
algorithms in very large networks.

However, there are several problems with the existing dis-
tributed delay constrained multicast routing algorithms that
may be classified as minimum spanning tree (MST) based
or shortest path (SP) based. An MST-based algorithm, like
DKPP [19], is a distributed MST algorithm as described
in [13], which mimics Prim’s MST algorithm [9,24] and runs
with a high complexity of O(n3) in the number of messages
and time. Also, an MST-based algorithm has a very low
success rate (which is the number of trials to build a multicast

NETWORKS—2006—DOI 10.1002/net

tree successfully divided by the number of total trials) in con-
structing a delay constrained multicast tree especially under
tight delay constraints. On the other hand, an SP based algo-
rithm, like DSPH [14], is less costly in terms of message and
time complexity [i.e., O(mn) each] than DKPP, but it has a
fatal deficiency; that is, the algorithm will not be able to find
a solution if the delay constraint is less than the maximum
delay of a cost-based shortest path tree. It is obvious that a
delay constrained multicast tree exists as long as the delay
constraint is larger than the maximum delay of a delay-based
shortest path tree. This means that DSPH may not solve the
delay constrained multicast tree problem for a large number
of cases where a delay-constrained multicast tree exists.

A common problem with these algorithms is that they
do not take into account the changes in the topology of the
network (e.g., node failures) [4]. When there is a change in
the network topology during the construction of a multicast
tree, these algorithms fail to complete the construction of
the multicast tree and they have to be restarted. Hence, these
algorithms will likely have a low success rate for the construc-
tion of a multicast tree. Moreover, when there is a change in
the network topology after the multicast tree is built and dur-
ing an on-going multicast session, the application performing
the multicast has to restart the algorithm to rebuild the multi-
cast tree for the changed network topology, which interrupts
the running traffic for all members in the multicast session.
Restarting the process of building a multicast tree could be
considered as a fault recovery approach, called naive fault
recovery approach [35].

In this article, we propose an efficient SP-based distributed
delay constrained multicast routing algorithm that builds the
multicast tree in a concurrent fashion. The proposed algo-
rithm has a very low message and time complexity of O(mn)
and O(n), respectively, and has a near-zero failure rate in
constructing a multicast tree even under very tight delay
constraints without any limitation on the value of delay con-
straints. The simulation results reported in this article show
that the proposed algorithm significantly outperforms the
existing distributed delay constrained multicast routing algo-
rithms, which construct the multicast tree in a sequential
fashion and thus do not take advantage of the concurrency
in the underlying distributed computation. We use the same
comparison method as used in DKPP [19] and DSPH [14],
among many others; that is, comparing the proposed algo-
rithm with the best algorithm in its class instead of the optimal
solution. As indicated in [19], for large networks, finding
optimal solutions is impractical.

We augment the proposed algorithm with a fault recov-
ery approach that considers node failures in a network and
recovers from these failures. Although we only consider the
node failures in the proposed algorithm, the approach can
easily be extended to cover other types of changes in the
topology of the network such as link failures and to cover the
dynamic membership. The proposed fault recovery approach
constructs a multicast tree when failures occur during the con-
struction of a multicast tree and recovers from any failure in
the multicast tree during an on-going multicast session. The

fault recovery actions taken by the proposed approach during
the construction of a multicast tree and during an on-going
multicast session are transparent to applications initiating
and performing the multicast. Moreover, the fault recovery
actions taken during an on-going multicast session reconnect
the disconnected subtree of a multicast tree without interrupt-
ing the running traffic on the unaffected portion of the tree.
The results of the analysis and simulation studies reported in
this article show that the proposed fault recovery approach
not only is effective, but also is efficicnt, which gives better
performance in terms of the number of exchanged messages
and convergence time than the naïve fault recovery approach.

The rest of this article is organized as follows. Section 2
gives the problem definition and presents the proposed al-
gorithm. Section 3 introduces the augmentation of the pro-
posed algorithm with an effective and efficient fault recovery
approach. Section 4 discusses the performance of the pro-
posed algorithm and its augmentation. Section 5 reviews the
related work and Section 6 gives the concluding remarks.

2. THE PROPOSED ALGORITHM

2.1. Preliminaries

Before we present the proposed algorithm, we define
the related terminology by using the notation introduced
in [35]. Formally, the constrained Steiner tree can be defined
as follows: consider a network modeled as a connected,
directed graph G = (V , E), where nodes in node set V rep-
resent network nodes and edges in edge set E represent links.
In addition, there are two values associated with each link
e(e ∈ E): delay D(e) and cost C(e). The link delay D(e)
is the delay a packet experiences on the corresponding link,
the link cost C(e) is a measure of the utilization of the cor-
responding link’s resources. Links are asymmetrical, namely
the cost and delay for the link e = (i, j) and the link e′ = (j, i)
may not be the same.

Then, given a network G = (V , E) with n nodes, a source
node s(s ∈ V), a set of m destination nodes S(S ⊆ V − {s})
called multicast group, and a delay constraint �, a tree T(T ⊆
G) rooted at s that spans S such that (i) for each node v in S, the
delay on the path from s to v is bounded above by �; that is
�e∈P(s,v)D(e) < �, where P(s, v) is the unique path in T from
s to v; and (ii) the tree cost �e∈T C(e) is minimized; is called
a constrained Steiner tree (or delay constrained multicast
tree) [35].

A cost-based shortest path from node v to destination d
is a path from v to d that has the minimum cost. A delay-
based shortest path from node v to destination d is a path
from v to d that has the minimum delay. A delay-constrained
shortest path is one with the minimum cost among all paths
with delays under the delay constraint. A delay (cost)-based
shortest path tree rooted at node s to the set S of destina-
tion nodes is a tree consisting of delay (cost) based shortest
paths from s to each destination d ∈ S. A feasible cost
(delay)-based shortest path from node v to destination d is
a cost (delay) based shortest path from v to d that satisfies the

38 NETWORKS—2006—DOI 10.1002/net

delay constraint. A potentially feasible cost-based shortest
path from node v to destination d is a cost based short-
est path from v to d where the immediate successor w of
v on the path can reach d under the delay constraint; that is,
P(v)+D(v, w)+SD(w, d) < �, SD(w, d) = min delay from
w to d; D(v, w) = delay on the link (v, w); P(v) = delay on
path from s to v in the tree.

2.2. Overview of the Proposed Algorithm

The proposed algorithm takes the following approach to
overcome the shortcomings that exist in DKPP and DSPH
while maintaining the quality of the multicast tree (i.e., tree
cost) as optimal as possible:

1. DKPP only assumes that the link cost to each neighbor
is known to the local node and expands the multicast tree
edge by edge, which causes a high number of messages
and time complexity. Based on the fact that the existing
routing information is available at each node, we will use
this information to derive the information about the cost-
based shortest path from the local node to each node in
the network and make the derived information available
to the local node so that the SP algorithm can be applied.
As in DKPP, it is also assumed that the information about
the delay-based shortest path from the local node to each
node in the network is known to the local node.

DSPH is an SP-based algorithm. However, the mul-
ticast tree is expanded sequentially to cover each desti-
nation. This means that it could take a long time for the
algorithm to complete the construction of a multicast tree.
The proposed algorithm will expand the multicast tree to
cover all destinations in a concurrent manner. The crite-
rion used to expand the multicast tree will be “expand the
tree from the local node along the cost-based shortest path
if the delay constraint is satisfied; otherwise, expand the
tree along the delay-based shortest path.” This is different
from DSPH’s criterion, which is “expand the tree along
the cost-based shortest path from the tree to a destination
node,” that can only be applied sequentially. Also, the
criterion that we will use allows the proposed algorithm
to include a cost-based shortest path to a destination as
much as possible to make the tree cost as low as possible.
It is important to note that conflicts may occur if a node
is invited more than once to join the tree. The solution
is that the node where the conflicts occur will choose its
parent whose accumulated delay from the source node is
minimal to ensure that all destinations that go through this
node will satisfy the delay constraint.

2. DSPH requires that the delay constraint is larger than the
maximum delay of all cost-based shortest paths from the
source to each destination. Thus, DSPH will not be able
to find a delay constrained multicast tree when the delay
constraint is smaller than the maximum delay of the cost-
based shortest paths from the source to each destination,
but larger than the maximum delay of the delay-based
shortest paths from the source to each destination (i.e.,
in the cases that there should exist delay constrained
multicast trees). The proposed algorithm will not have
such a limitation due to the fact that the tree expansion
criterion described in 2 above is used and thus constructs a

delay constrained multicast tree even in those cases where
DSPH fails to construct one.

The proposed algorithm is called Distributed Concurrent
Shortest Path heuristic (DCSP) because it tries to cover all
destinations concurrently. The concurrency in this context
means how the destinations are to be covered, in contrast to
the sequential approach used in the existing distributed delay
constrained multicast routing algorithms where destinations
are covered sequentially one by one.

Informally, given a network G = (V , E), a source node s,
a set of destination nodes S, and a delay constraint �, DCSP
progresses in one or two phases as follows:

2.2.1. Phase I—Setup

1. Starts with a tree containing only the source node s:
2. Selects one of its neighbors as a “best” neighbor for each

destination node to be covered, and expands the tree con-
currently along these best neighbors. The “best” neighbor
for a destination node will be the neighbor along which
there is a potentially feasible cost-based shortest path that
can reach the destination. A potentially feasible cost-
based shortest path from node v to destination d is a
cost-based shortest path from v to d where the immedi-
ate successor w of v on the path can reach d under the
delay constraint; that is, P(v)+ D(v, w)+ SD(w, d) < �,
where SD(w, d) = minimum delay from w to d; D(v, w) =
delay on the link (v, w); P(v) = delay on path from s to v
in the tree. In addition, SC(w, d) = minimum cost from
w to d. Both SD(w, d) and SC(w, d) are available from
a lower level protocol such as a unicast routing protocol
running on the node [14]. So, the “best” neighbor w of
node v is the one satisfying the following constraints: min
SC(w, d) and P(v) + D(v, w) + SD(w, d) < �;

3. If there is no potentially feasible cost-based shortest path
found, adds the destination node under consideration to
the list N of destinations that are not yet covered by the
tree;

4. If a node is included into the tree by more than one parent
node, the node will choose the parent node that has the
smallest accumulated delay from the source node;

5. Repeats steps 2–4 until each node in S is either included
in the tree or included in the list N of destinations which
are not yet covered by the tree.

2.2.2. Phase II—Adjustment

1. Starts from the source node with a tree containing all nodes
S–N that are included in Phase 1;

2. Selects a “best” neighbor for each destination node to
be covered, and expands the tree concurrently along these
best neighbors. The “best” neighbor for a destination node
in this stage will be the neighbor along which there is a
feasible delay based shortest path;

3. If there is no feasible delay-based shortest path found,
adds the destination node under consideration to the list
M of destinations that are not yet covered by the tree;

4. If a node is included into the tree by more than one parent
node, it will choose the parent node that has the smallest
accumulated delay from the source node;

NETWORKS—2006—DOI 10.1002/net 39

5. Repeats steps 2–4 until each node in N is included in the
tree or included in the list M of destinations that are not
yet covered by the tree.

Phase II will be invoked only if Phase I cannot cover all des-
tination nodes in S. Phase II terminates with two possible
outcomes depending on whether the list M of uncovered des-
tinations is empty or not. If M is empty, the algorithm returns
a delay constrained multicast tree. Otherwise, the algorithm
returns a failure. One could then use the given delay infor-
mation to build a delay based shortest path tree that can
be considered as a nonoptimal delay constrained multicast
tree. It can be seen that two phases are required in the pro-
posed algorithm as no backtracking mechanism is used in
case there is no potentially feasible cost-based shortest path
found during the setup of a delay constrained multicast tree.

2.3. Details of the Proposed Algorithm

The following eight types of messages are used in DCSP:

open—for starting a multicast connection;
setup—for forming a delay constrained shortest path from

the source node to a destination node;
break—for notifying a node’s parent to break a loop;
reject—for rejecting the invitation to join the tree because

of either the violation of constraints or detection of a
loop;

destination—for adding the destination to the uncov-
ered destination list;

deny—for denying the addition of the destinations to the
tree;

notify—for notifying the source node that a destination
node has been covered;

adjust—for adjusting the tree along the delay-based short-
est path from the source to a destination node.

The pseudocode of DCSP is shown in Appendix 1.
Following are the details of the algorithm:

2.4. Setup Phase

1. When a node receives a request (open message) for start-
ing a multicast connection with parameters S and �, it
becomes the source node s of the multicast connection;
hence, the root node in the multicast tree.
a. The source node then selects a next node among its

neighbors for each destination in the set of destina-
tions under consideration by the source node. Denote
the set of destinations under consideration by a node v
as S′(v). For each destination di ∈ S′(v), a table called
destTable records the following information: state—
the local state for di and via—the “best” neighbor
node along which there is a potentially feasible cost-
based shortest path to reach di. Initially, both fields are
“unknown.” For the source node, all destinations should
be included in the set of destinations under consider-
ation. So, S′(s) = S. Field via for each destination in
destTable is set to the “best” neighbor node.

b. For each selected neighbor (i.e., it appears in field via
of destTable at least once), a setup message is sent to
the neighbor in an attempt to include the neighbor into
the multicast tree. This setup message carries a set of
destinations to be covered via the link to the neigh-
bor and the accumulated delay from the source node s.
The state fields for the corresponding destinations in
destTable are set to “setup.”

2. When a node v receives a setup message, it includes itself
into the tree.
a. If the inclusion of node v into the tree introduces a loop

(i.e., node v is already in the tree), node v breaks the
loop as follows:
• If the accumulated delay along the existing path

from the source node s to all destination nodes to
be covered via the link to node v is within the delay
constraint, then node v sends a reject message to the
sender of the setup message.

• Else if the new accumulated delay from the source
node s to node v via the sender of the setup
message is less than the old accumulated delay,
then node v sends a break message to its parent
to break the existing path and accepts the new
parent.

• Otherwise, node v sends a deny message to the sender
of the setup message, so that the sender can reexpand
the tree to cover those denied destinations.

b. If node v is a destination itself, it sends a notify message
to the source node s.

c. Regardless, whether node v itself is a destination or
not, if there are destinations yet to be considered [i.e.,
S′(v) − {v} isn’t empty], then node v sets field via for
each destination in destTable to the “best” neighbor
node, and sends a setup message to the selected neigh-
bors to include the neighbors into the multicast tree.
This is achieved in a way that is the same as a and
b. Note that if there is no potentially feasible cost-
based shortest path that can be found for a destination,
node v sends a destination message to the source node
to indicate that the destination cannot be covered in
Phase I.

3. When the source node s receives the destination message,
it adds the specified destination node to the uncovered
destination list US.

4. When the source node s receives the notify message, it adds
the received destination node to the covered destination
list CS.

If all destination nodes have been processed, the algo-
rithm checks if the uncovered destination list US is empty.
If US is empty, the algorithm terminates. Otherwise, the
adjustment phase (Phase II) is invoked.

5. When node v receives the break message, it removes the
sender node from the multicast tree. It marks the state of
those destinations in S′(v) that are already in the tree via
the sender node as “broken.” If the sender node is its only
child, then the break message will be forwarded further to
its parent node.

6. When node v receives the reject message, it removes the
sender node from the multicast tree and marks the state
of those destinations in S′(v) that have been set up via the
sender node as “rejected.” If the sender node is its only

40 NETWORKS—2006—DOI 10.1002/net

child, then the reject message will be forwarded further to
its parent node.

7. When node v receives the deny message, it removes the
sender node from the multicast tree, resets the state of
those destinations in S′(v) that are already included in the
tree via the sender node as “unknown,” and marks the link
(v, sender) as “unusable.”

It then expands the tree as in 2.c.

2.5. Adjustment Phase

The algorithm in Phase II is very similar to what is
described in Phase I, except the following differences:

1. The set of destinations under consideration in the source
node is US instead of S.

2. The criterion for choosing the “best” neighbor node for
a destination becomes the neighbor node along which
there is a feasible delay based shortest path.

3. The setup message is replaced with the adjust message.
4. On receiving a break or reject message, if all destination

nodes have been processed and the uncovered destination
list is not empty, algorithm terminates with failure.

The following theorem establishes that DCSP generates a
delay constrained multicast tree.

Theorem 1. When DCSP successfully constructs a multi-
cast tree, the constructed tree is delay constrained.

Proof. In both phases of DCSP, a node v can expand the
multicast tree to node w only if, for each d ∈ S′(v) that is
going to be routed via node w, P(v) + D(v, w) + SD(w, d) <

�. Thus, every node that is included into the multicast tree
must satisfy the delay constraint. If node w is already in the
tree, it is guaranteed that all destinations that have been cho-
sen to be routed via node w will continue to satisfy the delay
constraint because DCSP allows node w to become a child
of node v only if the new accumulated delay value P(w) is
smaller than the older one. Therefore, if the algorithm suc-
cessfully constructs a multicast tree, the constructed tree will
be delay constrained. ■

The performance of DCSP can be analyzed in terms of
the number of message exchanges, the convergence time,
and the cost of the generated multicast trees. The following
theorem shows that in the worst case, DCSP has a lower
message and time complexity than DKPP, and a lower time
complexity than DSPH. The simulation studies reported in
the next section will complement the analysis made here by
comparing DCSP with DKPP and DSPH further in terms of
the number of message exchanges and the convergence time
in the average case. The simulation studies also make the
comparison among these three algorithms in terms of the cost
of the generated multicast trees and the success rate in tree
construction.

Theorem 2. DCSP’s message complexity is O(mn) and time
complexity is O(n) in the worst case.

Proof. During the setup phase, the setup message for
each destination will be sent at most n times. Thus, there
will be at most O(mn) setup messages because there are m
destinations. The notify, destination, and deny messages will
not be sent more than m times because only one notify or
destination or deny message can be sent for each destination.
The break or reject messages can be sent at most n times
along the way to each destination. On the other hand, during
the adjustment phase, all types of messages can be sent no
more than O(mn) times. So, the algorithm runs with a message
complexity of O(mn) messages.

As the algorithm expands the tree to reach all destinations
concurrently, the setup (or adjust) message will reach each
reachable destination in O(n) time during the setup (or adjust-
ment) phase. So, the algorithm runs with a time complexity
of O(n). ■

Compared with DKPP’s message complexity of O(n3) and
time complexity of O(n3) [19], DCSP has a much better mes-
sage and time complexity. DSPH runs with O(mn) messages
and time as it constructs a tree to cover each destination
sequentially. So, DCSP has a better time complexity than
DSPH.

It should be noted that the dynamic membership (i.e.,
set of destination nodes S is changing during a multicast
session) can be handled in the proposed algorithm using
an approach similar to the one used in the existing dis-
tributed delay constrained multicast routing algorithms such
as DSPH [14]. That is, when a destination node is added
as a new member, the source s can expand the tree along
a delay-constrained cost-based shortest path from s to the
destination node. A destination node can be removed if the
node is a leaf node of the tree, or it can be marked as a
nondestination node if the node is a nonleaf node of the
tree.

3. AUGMENTING DCSP WITH FAULT RECOVERY

3.1. Overview of the Proposed Augmentation

Like the existing distributed multicast routing algorithms,
DCSP assumes that there are no network topology changes
during the construction of a multicast tree and the on-going
multicast session. If the network topology changes, DCSP
will fail to complete the delay constrained multicast tree.
DCSP depends on a naive fault recovery approach, which
simply waits for applications to restart the algorithm from
scratch. This makes DCSP, like DKPP and DSPH, take longer
time to complete when failures occur.

Our aim is to design an effective and efficient fault
recovery approach, which will perform the fault recovery
transparent to the applications, will not interrupt the running
traffic on the unaffected portion of the multicast tree, and

NETWORKS—2006—DOI 10.1002/net 41

will shorten the time to recover from node failures that may
occur during the construction of a multicast tree or during an
on-going multicast session. We also want the fault recovery
approach to be integrated into DCSP such that the augmented
DCSP recovers from node failures by adaptively construct-
ing a delay constrained multicast tree whenever node failures
occur.

In addition, we want DCSP augmented with the fault
recovery approach, called henceforth Adaptive distributed
Concurrent Shortest Path heuristic (ACSP), to generate delay
constrained multicast trees whose quality is as good as that
of DCSP in terms of tree cost, and perform as well as DCSP
in terms of message complexity. Note that, in general, these
two goals conflict with each other. That is, it is generally
anticipated that extra messages will be needed to be able to
perform fault recovery.

The basic idea underlying our fault recovery approach is to
avoid rebuilding the entire multicast tree again by localizing
the recovery actions to the failed portion of the multicast tree.
To implement this idea there should be a mechanism to com-
municate the information about the failed subtree to the nodes
that are participating in the computation so that this informa-
tion can be taken into account by these nodes during the rest
of the tree construction process. A straightforward approach
is to flood the network with this information. However, flood-
ing requires O(n2) messages just for the notification of the
node failure alone. In ACSP, the failed subtree is not allowed
to flood the network with fault information that is propagated
instead through the regular tree setup and follow-up messages
as needed.

ACSP progresses in the same way as DCSP with respect
to the main steps of the algorithm except that ACSP checks
between the major steps if any tree node has failed. When a
node failure is detected, ACSP removes the subtree rooted at
the failed node and notifies the source node s with the id’s of
the destination nodes that were covered by the removed sub-
tree. Hence, the source node s is enabled to add these removed
destination nodes when all the remaining destination nodes
have been added to the multicast tree. It is important to note
that loops may be introduced into the multicast tree due to
the changes in the network topology. ACSP detects the exis-
tence of a loop by checking if a node (say v) to be added is
already in the tree. The loop removal is achieved by choos-
ing a path from the source node s to node v, which has the
minimum delay. This strategy ensures that all existing paths
from the source node s to destinations that go through node
v still satisfy the delay constraint. If the new parent of v has
the minimum delay from the source node s, node v accepts
the new parent and breaks itself from its previous parent.
Otherwise, node v rejects the new parent. Hence, the loop is
removed in either case. In addition, ACSP continues to check
node failures and takes recovery steps to repair the multi-
cast tree if node failures occur during an on-going multicast
session.

Informally, given a network G = (V , E), a source node s,
a set of destination nodes S, and a delay constraint �, ACSP
progresses in one or two phases as follows:

3.1.1. Phase I—Setup. The same as in Phase I of DCSP
except the following additional step (new step 5) that is
inserted between steps 4 and 5 of Phase I of DCSP:

5. Checks if a tree node fails. When a failure is detected,
removes the subtree rooted at the failed node and
returns the destination nodes covered by the subtree
back to the list of destinations to be covered by the tree;

3.1.2. Phase II—Adjustment. The same as in Phase II of
DCSP except the following additional step (new step 5) that
is inserted between steps 4 and 5 of Phase II of DCSP:

5. Checks if a tree node fails. When a failure is detected,
removes the subtree rooted at the failed node and
returns the destination nodes covered by the subtree
back to the list of destinations to be covered by the tree;

3.2. Details of the Augmentation

Besides the eight types of messages in DCSP, a new type
of message is used in ACSP, which is remove—for removing
a subtree from the tree.

It is assumed that node failures are detected by a lower
level protocol. Following are the details of ACSP where the
augmentation of DCSP is given in bold:

3.3. Setup Phase

1. and 2. The same as Steps 1 and 2 of the algorithm for
Phase I of DCSP.

3. When the source node s receives the destination message,
it adds the specified destination node to the uncovered
destination list US if no feasible path can be found or to
the failed destination list FS if a node failure occurred.

If all destination nodes have been processed, the algo-
rithm checks if US and FS are empty. If this is the
case, the algorithm terminates. If FS is nonempty, it
expands the tree as in 1. Otherwise, the adjustment phase
(Phase II) is invoked.

4. When the source node s receives the notify message, it adds
the received destination node to the covered destination
list CS.

If all destination nodes have been processed, the algo-
rithm checks if US and FS are empty. If this is the
case, the algorithm terminates. If FS is nonempty, it
expands the tree as in 1. Otherwise, the adjustment phase
(Phase II) is invoked.

5. 6. and 7. The same as Steps 5, 6, and 7 of the algorithm
for Phase I of DCSP.

8. When node v in the tree detects that its child node y
fails, v removes y from the tree.

9. When node v in the tree detects that its parent node fails
or receives the remove message, node v removes itself
from the tree. If node v is not a leaf node, it will forward
the remove message to all of its children. If node v is a
destination node, it sends a destination message to the
source node s so that the source node s will add the
destination node back to FS.

42 NETWORKS—2006—DOI 10.1002/net

FIG. 1. An example for ACSP Algorithm.

3.4. Adjustment Phase

The algorithm in Phase II is very similar to what is
described in Phase I, except the following differences:

1. The set of destinations under consideration in the source
node is US instead of S.

2. The criterion for choosing the “best” neighbor node for a
destination becomes the neighbor node along which there
is a feasible delay based shortest path.

3. The setup message is replaced with the adjust message.
4. On receiving a break or reject message, if all destination

nodes have been processed and the uncovered destination
list is not empty, the algorithm terminates with failure.

An example network shown in Figure 1 is used to illustrate
the algorithm. For clarity of the diagrams, the same integer
number is used to represent both cost and delay values. Node s
is the source node and the dark nodes b, h, and i are destination
nodes. � is 14 and node e fails after node e is covered.

1. Step 1: when node s receives an open message, it becomes
the first node in the tree (see Fig. 1b).

2. Step 1.1: node s calculates the initial destTable as shown
in Figure 1c.

3. Step 1.2: node s sends a setup message to both node a and
e based on Figure 1c.

4. Step 2: when node a and e receive the setup message,
both node a and e will be included in the multicast tree

(see Fig. 1d). Nodes a and e will update destTable as in
Figure 1e and f.

5. Suppose that node e fails. So. node e will be removed from
the multicast tree. while node a will send a setup message
to node b and c.

6. Upon receiving the setup message from node a, node b
and c will be included in the multicast tree (Step 2). Also,
node b is going to send a notify message to the source node
s and node c will send a setup message to node h.

7. Upon receiving the setup message from node c, node h
will be included in the multicast tree (Step 2). Also, node
h is going to send a notify message to the source node s.

8. The source node s will detect that destination node i is
still not covered. So, the algorithm will enter Phase II and
node i will be covered by the path s, d, and i.

9. The final multicast tree for the example is shown in
Figure 1b.

The correctness of ACSP is established by the following
theorems.

Theorem 3. The delay-constrained multicast tree built by
ACSP is free from loops.

Proof. For a loop to exist in the multicast tree, there must
be a node that has two parent nodes. In ACSP, each time a
node receives a setup message for joining the tree, the node
checks if it is already in thc tree. If it is not in the tree yet, it

NETWORKS—2006—DOI 10.1002/net 43

will join the tree and set the sender of the setup message as its
parent node. Otherwise, it will either reject the setup message
or accept the setup message but break from its existing parent
node first. Thus, in either case, each node has one and only
one parent node and therefore the delay-constrained multicast
tree built by ACSP is free from loops. ■

Theorem 4. When ACSP successfully constructs a multi-
cast tree, the constructed tree is delay constrained.

Proof. The proof is similar to the proof of Theorem 1.■

As in the case of DCSP, the performance of ACSP can
be analyzed in terms of the number of message exchanges,
the convergence time, and the cost of the generated multicast
trees. It was established by Theorem 1 that, without node
failures, DCSP runs with O(mn) message and O(n) time com-
plexity in the worst case. That is, in the worst case, DCSP
has a lower message and time complexity than DKPP, and a
lower time complexity than DSPH. However, because each
node failure will make DCSP rerun, DCSP will have O(kmn)

message and O(kn) time complexity if there are k − 1 node
failures during a multicast session. The following theorem
establishes that in the worst case, ACSP performs as good as
DSPH in terms of the message and time complexity. The sim-
ulation studies reported in the next section will complement
the analysis here by comparing ACSP with DCSP further in
terms of the number of message exchanges and the conver-
gence time in the average case. The simulation studies also
make the comparison among these two algosrithms in terms
of the cost of the generated multicast trees and the success
rate in tree construction.

Theorem 5. Suppose that k − 1 is the total number of node
failures occurring in the network during the construction of
a delay constrained multicast tree and during the on-going
multicast session thereafter. Then ACSP’s message complex-
ity is O(kmn) and time complexity is O(kn) in the worst case.

Proof. In the presence of k − 1 node failures, ACSP is
forced to try k times to complete the construction of a delay
constrained multicast tree. Each time, in the worst case, O(n)

setup messages will be sent for each destination because there
are n nodes in the network. Thus, in the worst case, a total
of O(mn) setup messages will be sent because there are m
destinations in the network.

Because only one destination message can be sent for each
destination, the total number of destination messages sent
will not be more than m.

In the worst case, O(n) break or reject messages can be
sent along the way to each destination.

Because remove messages can only be sent once along
each edge of the subtree rooted at the failed node, a total of
O(n) remove messages can be sent, in the worst case.

Therefore, the algorithm’s message complexity is O(kmn).
The setup message will reach all destinations in O(n) time

for each of the k trials of completing a delay-constrained

multicast tree. Therefore, the algorithm’s time complexity
is O(kn). ■

4. PERFORMANCE ANALYSIS

Two series of simulations have been performed to com-
pare the performance of DCSP with DKPP and DSPH, and the
performance of ACSP with DCSP. These simulations were
carried out by applying DCSP, DKPP, DSPH, and ACSP
to networks generated by Waxman’s approach [37] and by
using the setup proposed in [35]: the nodes in a network
are randomly distributed over a rectangular coordinate grid.
Each node is placed at a location with integer coordinates.
The Euclidean metric is then used to determine the distance
between each pair of nodes. A link between two nodes u
and v is added with a probability that is given by the func-
tion P(u, v) = β exp(−d(u, v)/αL), where d(u, v) is the
distance from u to v, L is the maximum distance between
any two nodes, and 0 < α ≤ 1, 0 < β ≤ 1. Larger val-
ues of β result in graphs with higher link densities, while
small values of α increase the density of short links relative
to longer ones. The α and β values used in our simula-
tion study are 0.7 and 0.7, respectively. The cost of a link
(u, v) in the graph is the distance between nodes u and v
on the rectangular coordinate grid. The delay of a link is
assigned to a value that is uniformly distributed over the
range between 0 and 60. Graphs are generated and tested
until the graph is a two-connected network, which has at least
two paths between any pair of nodes. The random graphs do
have some of the characteristics of an actual network. It has
been shown by simulation that the performance of a multicast
routing algorithm when applied to a real network is almost
identical to its performance when applied to a random two-
connected network [22]. The number of messages exchanged,
the convergence time and the cost of the generated multicast
trees are measured by their average value in a total of 100
simulation runs on a network with 200 nodes. � is set to
dmax + (i/8)dmax where dmax = max({du | for any u ∈ S :
du is the delay on the delay based shortest path from s to u})
and i is an integer between 1 and 15.

In this study, an exchanged message is only counted once
from its sender to its receiver regardless of the number of
intermediate nodes as long as the algorithm running on such
a node does not interpret the message. Also, the conver-
gence time is calculated by taking one message exchange as
a time unit, not the CPU time, for any of the algorithms that
were implemented in C and run on a Solaris 5, Sun SPARC
workstation. Note that, although within one time unit, there
may be several message exchanges occurring in the network,
multiple message exchanges within the same time unit are
considered as one message exchange when calculating the
convergence time.

4.1. DCSP versus DKPP and DSPH

The first group of simulations are conducted by fixing the
delay at i = 3 and letting the size of a multicast group change

44 NETWORKS—2006—DOI 10.1002/net

FIG. 2. Success rate versus group size when delay is fixed at i = 3.

from 5 to 60 in order to see how the algorithms perform when
the group size changes. Figures 2–5 show the success rate,
tree cost, number of messages, and time versus group size.
From Figure 2, we can see that under the delay constraint of
i = 3. DSPH has a near-zero percent success rate for almost
all group sizes. This is a serious problem for DSPH, which
means that DSPH is not useful when the delay constraints are
tight. As a result, DSPH cannot be compared in the following
three figures for tree cost, number of messages and time, and
therefore. DSPH is not plotted in these three figures. Figure 3
shows that when compared with the tree cost of SPTd, which
could be considered as the delay constrained multicast tree
without any optimization on tree costs, DKPP and DCSP give
a reduction of 20%. This shows that the optimization of the
cost of multicast trees is worthwhile.

From Figure 3, we also see that the tree costs generated
by DCSP and DKPP are almost identical. However, there is
a big difference between DCSP and DKPP in terms of the
number of messages and time, as can be seen in Figure 4
and Figure 5, respectively. The number of messages used by
DKPP is between 705 and 987 times more than that by DCSP,
while the time required by DKPP is between 82 to 110 times
more than that by DCSP. Figure 2 indicates that the larger the
group size, the worse the success rate of DKPP, while DCSP
almost has 100% success rate for all group sizes. So, it can be
concluded that the performance of DCSP is much better than
that of DKPP in terms of success rate, number of messages,
and time.

The second group of simulations are conducted by fixing
the group size at 20 nodes and letting the delay change from
i = 1 to 15 to see how the algorithms perform when the

FIG. 3. Tree cost versus group size when delay is fixed at i = 3.

FIG. 4. Number of messages versus group size when delay is fixed
at i = 3.

delay constraint changes. Figures 6–9 show the success rate,
tree cost, number of messages, and time versus the delay
constraints, respectively. Figure 7 shows that the costs of
multicast trees generated by DCSP are as close to optimal
as DKPP. However, the number of messages used by DKPP
is between 409 and 1734 times more than that by DCSP (see
Fig. 8), while the time needed by DKPP is between 56 and 364
times more than that by DCSP (see Fig. 9). Also, with respect
to the success rate observed in our simulation study as shown
in Figure 6, DKPP may fail to construct a multicast tree under
tight delay constraints, while DCSP can always successfully
construct a delay constrained multicast tree. As for the tree
cost, Figure 7 shows that the cost of multicast trees generated
by DSPH is better than both DKPP and DCSP. But, the suc-
cess rate of DSPH is very low under the tight delay constraint,
which undermines the optimality of its tree costs. Further, the
time complexity of DSPH is much higher than that of DCSP,
while DCSP has similar number of messages exchanged to
that of DSPH. In summary, compared with DKPP, DCSP had
better performance in terms of number of messages, time, and
success rate, while producing equal quality of multicast trees
in terms of tree cost. Compared with DSPH, DCSP has the
advantage in time and success rate, while performing as well

FIG. 5. Time versus group size when delay is fixed at i = 3.

NETWORKS—2006—DOI 10.1002/net 45

FIG. 6. Success rate versus delay when group size = 20.

in terms of number of messages exchanged. The better tree
cost of DSPH is obtained at the cost of a very poor success
rate.

4.2. ACSP versus DCSP

The performance of ACSP is compared with that of DCSP
in the average case under the condition that a node fail-
ure occurs during the construction of a delay constrained
multicast tree or during an on-going multicast session. This
comparison is carried out in a setup proposed by [35]. Accord-
ingly, DCSP uses the naïve fault recovery approach; that is,
DCSP has to be rerun from scratch when a node failure occurs.
Two types of simulations were conducted by injecting node
failures into the networks: one type is for the case when node
failures occur during the construction of a multicast tree, and
the other type is for the case when node failures occur during
an on-going multicast session. For the first type of simula-
tion, at most one node failure is allowed to occur during the
construction of the multicast tree. The timing for a node fail-
ure is randomly selected so it could occur randomly among
the different stages of the construction of the multicast tree.
The failed node is randomly selected among the nodes in the
multicast tree built so far that are neither the source node nor
the destination nodes when node failure occurs. This is moti-
vated by the fact that the failure of the source node means that
there will be no multicast tree to be built and the failure of
a destination node means that the constructed multicast tree
will not be comparable with other multicast trees that cover

FIG. 7. Tree cost versus delay when the group size = 20.

FIG. 8. Number of messages versus delay when group size = 20.

all the destination nodes. For the second type of simulation,
DCSP has to be rerun to rebuild the entire multicast tree
when a node failure occurs during an on-going multicast ses-
sion. Again, the failed node is randomly selected among the
nodes in the multicast tree during a multicast session. Because
DCSP will be rerun when a node failure occurs while ACSP
will always return a multicast tree no matter whether a node
failure occurs or not, it is expected that ACSP will have a bet-
ter success rate than DCSP. The results of the performance
analysis given in this section should be interpreted with the
understanding that a single node failure is considered when
running the simulations.

Figures 10–12 show the simulation results when � is set to
dmax +(3/8)dmax where dmax = max({du | for any u ∈ S : du

is the delay on the shortest path from s to u}), and the group
size changes between 5 and 60 in 200-node networks. In
the figures, suffix “−c” means during the construction of
a multicast tree, suffix “−m” means during the on-going
multicast session and “SPT-d” means the delay based SPT.
The delay based SPT could be considered as the delay con-
strained multicast trees without any optimization on tree
costs. Figure 10 shows that the costs of the trees generated by
ACSP are almost identical to those by DCSP. This result is
very encouraging. DCSP calculates the multicast tree based
on the consistent current network topology information after
it reruns while ACSP might use different network topology
information for different parts of a delay constrained multi-
cast tree. Intuitively, it could be expected that the costs of the
trees generated by ACSP should be noticeably higher than
those by DCSP. But, the simulation results show that it is not

FIG. 9. Time versus delay when group size = 20.

46 NETWORKS—2006—DOI 10.1002/net

FIG. 10. Tree cost versus group size when node failure occurs.

the case. It is also shown in Figure 10 that the delay con-
strained multicast tree algorithms generate trees with much
better cost performance than the algorithms without consid-
ering optimization on the tree cost such as SPT-d (note that
in Fig. 10 the top curve is for SPT-d, whereas the bottom
curve is for the other algorithms). This means that it is worth
using the delay constrained multicast tree algorithms rather
than using SPT-d directly. Figure 11 shows that the num-
ber of messages required by DCSP is up to 28% more than
that required by ACSP during the construction of a delay
constrained multicast tree, and is up to 70% more than that
required by ACSP during the on-going multicast session. This
result is surprising as we know that doing fault recovery nor-
mally costs extra number of messages. Intuitively, one would
expect that because DCSP is very efficient in using mes-
sages, any fault recovery approach that tries to merge the list
of uncovered destinations in the failed subtree with the list
of uncovered destinations in the participating node will have
a higher number of messages than DCSP even though DCSP
has to run twice. Contrary to this expectation, ACSP has a
significantly better performance than DCSP in terms of the
number of messages. This is due to the fact that ACSP uses
the approach that refrains from sending messages on node
failure. The previous analysis shows that the delay on send-
ing node failure messages does not have a negative effect
on the quality of the generated multicast trees. Figure 12

FIG. 11. Number of messages versus group size when node failure occurs.

FIG. 12. Time versus group size when node failure occurs.

shows that the convergence time required by DCSP is up to
27% more than that by ACSP during the on-going multicast
session. It confirms what has been expected. Through the
localized recovery approach taken by ACSP, it is expected
that the convergence time can be reduced by ACSP.

5. RELATED WORK

In addition to the centralized and distributed QoS-based
multicast routing algorithms mentioned in the Introduction,
there are also many QoS-based protocols that have been pro-
posed in the literature, such as YAM (or spanning join) [6],
QoSMIC [11], and QMRP [8]. They are all based on the
multiple-paths approach [26]; that is, the protocols will
generate multiple paths between the existing multicast tree
and a destination node and then the protocol will pick the
best one based on certain QoS criteria to connect the des-
tination node into the tree. The multiple-paths approach is
mainly used to trade message overheads and system resources
for high success rate. Other work includes the delay con-
strained group multicast routing problem [21], which finds
a set of constrained Steiner trees for each member in a mul-
ticast group, the multiple QoS constraints multicast routing
problem [10, 27, 36] which finds the multicast trees satisfy-
ing multiple QoS constraints and load balancing in various
networks for load distribution [12, 30]. An excellent survey
on many QoS-based algorithms is given in [32].

Algorithms have also been proposed to address the
dynamic multicast routing problem [7, 32, 37] where the
multicast group can be dynamic, that is, new destination
nodes (i.e., group members) may be added to the group, and
existing destination nodes may be removed from the multicast
group. The algorithm in [31] is a centralized dynamic multi-
cast routing algorithm with the rearrangements of the tree,
while the algorithm proposed in [1] is a distributed algorithm
that is able to consider the membership changes during the
tree building period and the concurrent multiple membership
changes. In addition to the dynamic group membership, the
dynamic multicast routing environment can also mean the
network topology changes [25]. For example, a new node is

NETWORKS—2006—DOI 10.1002/net 47

added, an existing node or link fails, or the cost values asso-
ciated with links change. So, some fault recovery approaches
are required in such a dynamic multicast routing environ-
ment. To distinguish the network topology dynamics from the
group membership dynamics, we call the multicast routing
problem that takes the topology changes into consideration
as the topology dynamic multicast routing problem.

Several fault recovery approaches for unconstrained
multicast routing problem have been proposed in the litera-
ture. The one specified in [2,3] uses the approach in which the
disconnected subtree is flushed and all members in the sub-
tree attempt to rejoin the tree individually, which may cause
a substantial increase in network traffic as the control mes-
sages are propagated through the network. The one described
in [29] uses a “reversing tree edges” method to reconnect the
disconnected subtree with the multicast tree to reduce the
traffic of control messages. It is stated in [29] that reconnect-
ing the subtree using this approach may not always generate
loop free multicast trees, so their protocol flushes the sub-
tree in these situations. Both approaches described above are
for the receiver-initiated multicast routing algorithms, specif-
ically the core based tree (CBT) protocol as opposed to the
sender-initiated multicast routing algorithm studied in this
article. The fault recovery approach proposed in this article
adopts the approach taken in [35] to the proposed algorithm
for constructing a multicast tree in a concurrent fashion. Ref-
erence [35] gives an algorithm and its related fault recovery
approach, which build a multicast tree sequentially one path
at a time. In contrast, the algorithm and its fault recovery
approach proposed in this article build all paths in a multicast
tree concurrently.

6. CONCLUDING REMARKS

In this article, we have proposed an efficient distributed
delay constrained multicast routing algorithm that constructs
a multicast tree to cover all destination nodes in a concurrent
manner. It has been observed that the existing algorithms have
several deficiencies. An MST based algorithm like DKPP
runs with a high complexity of O(n3) in the number of mes-
sages and time, and has a very low success rate in constructing
a delay constrained multicast tree especially under tight delay
constraints. On the other hand, an SP based algorithm like
DSPH has a lower complexity of O(mn) in the number of
messages and time, but has a fatal deficiency; that is, the
algorithm will not be able to find a solution if the delay
constraint is less than the maximum delay of a cost based
shortest path tree. Second, both algorithms try to construct
the multicast tree sequentially without taking advantage of
the concurrency in the underlying distributed computation.
Last, both algorithms have to be restarted when node failures
occur during the multicast tree construction period or during
the on-going multicast session.

The proposed algorithm (DCSP) builds the multicast tree
in a concurrent manner that results in a very low time com-
plexity of O(n). It also has a low complexify of O(mn) in the
number of messages, high success rate, and high quality of

multicast trees in terms of tree costs. Compared with DKPP,
the proposed algorithm gives better performance in terms of
the success rate, the tree cost, the number of exchanged mes-
sages, and the convergence time. It is interesting to see that
the high complexity of DKPP does not translate into bet-
ter quality of trees (i.e., smaller tree cost). Compared with
DSPH, the proposed algorithm solves the delay constrained
multicast tree problem in the cases where DSPH is not able
to. Also, it gives better performance in terms of convergence
time and performs as well in terms of the number of message
exchanges. Both advantages could be critical to some real-
time applications, which require the construction time for a
multicast tree to be short and the delay constraint to be tight.

The proposed algorithm is augmented with a fault recov-
ery approach (ACSP) that takes into account the changes in
the topology of the network. The augmented algorithm can
recover from node failures during construction of a delay
constrained multicast tree, and during an on-going multicast
session without requiring rebuilding of the entire multicast
tree. Furthermore, compared with algorithms such as DCSP
that use the naïve fault recovery approach, the augmented
algorithm (ACSP) gives better performance in terms of the
number of exchanged messages and convergence time when
applied to a network where node failures occur.

A natural extension of our DCSP is a delay constrained
dynamic multicast routing algorithm [called Distributed
Dynamic Concurrent Shortest path heuristic (DDCS)]. This
extension deals with the case where the dynamic group mem-
bership changes could occur during the construction of a
multicast tree or after a multicast routing tree is constructed. It
is assumed that the network could be organized in a hierarchi-
cal structure such that an existing delay constrained multicast
subtree can join the new group as a whole subgroup without
rebuilding the subtree. If a single new destination wants to
join the multicast tree, it will send a join message to the source
node of the tree. The source node then initiates the process to
expand the tree to cover the new destination node in the same
way as it covers a set of destination nodes. The criterion that
will be used to expand the multicast tree will be “expand the
tree from the local node along the cost-based shortest path to
a destination node if the delay constraint is satisfied; other-
wise expand the tree along the delay-based shortest path to
the destination node.” This process can be completed in O(n)

messages and time.
If a subtree of new destination nodes wants to join the

multicast tree, the root node of the subtree will send a join
message to the source node of the tree. The join message
will carry the maximum delay time in the subtree (say �′)
requesting to join the tree. The source node then initiates the
process to expand the tree to cover the new subtree of desti-
nation nodes in the same way as it tries to cover a single new
destination node, except that the delay constraint becomes
�–�′ instead of �. If an existing destination node wants to
leave the multicast tree, it sends a leave message towards the
source node along the tree and the nodes on the path will
be removed until a fork node or another destination node is
reached.

48 NETWORKS—2006—DOI 10.1002/net

ACKNOWLEDGMENTS

The authors thank the anonymous referees for their useful
suggestions, Dr. G. Luo of Nortel Networks for many insight-
ful discussions, and Prof. X. Jia at City University of Hong
Kong, Prof. D.S. Reeves at North Carolina State University,
and Prof. B.M. Waxman at Southern Illinois University for
providing their simulation software to us.

APPENDIX 1: PSEUDO-CODE OF
DCSP ALGORITHM

/* local = local node */

variables:
/* s = source node */
/* D = accumulated delay from the source */
/* S′ = destinations under consideration */
/* destTable = node to destination table */
/* via - selected neighbor node */
/* for reaching the destination */
/* state - local state for the destination */
/* RouteC = route table by cost */
/* RouteD = route table by delay */
/* Both RouteC and RouteD have */
/* next - next hop node */
/* cost - the distance to a destination */
/* delay - the delay to a destination */
/* destS = set of destination nodes */
/* US = list of destinations to be covered */
/* CS = list of destinations covered */

initialize:
D := 0:
Set via and state in destTable as unknown;

PHASE I: Setup
/* Transaction 1: */
on receiving open(S, �):

s := local;
add s to the tree;
D := 0:
S′ := S;
/* Transaction 1.1: select neighbors for expansion */
for each di ∈ S′ and

destTabel(di).state = unknown do
destTabel(di).via := neighbor ni via which
there is a potentially feasible cost based
shortest path reaching di:

end
/* Transaction 1.2: expand the tree */
for each nj : ∃ di ∈ S′, nj = destTable(di).via do

destS := {di|nj = destTable(di).via, di ∈ S′}
D′ = D + delay(local, nj);
send setup(destS, D′, s. S. �) to nj,
destTable(di).state := setup;

end

/* Transaction 2: */
on receiving setup(destS, D, s. S, �)

destS := setup.destS;
/* Transaction 2.1: loop checking */
if node local is already in the tree then

/* 2.1.1: reject the setup request */
if ∀ dest∈destS. D + RouteD(dest).delay < �

then
send reject() to sender;
S′ := S′ ∪ destS;

/* 2.1.2: accept the new setup request and
break from the old tree */

else if setup.D < D then
send break() to parent;
add node local to the tree:
D := setup.D;
S′ := S′ ∪ destS;

/* 2.1.3: the delay constraint may be violated thus
deny the setup request */

else
send deny(destS) to sender;

endif
else /* It is ok to add node local to the tree */
/* Transaction 2.2: destination reached */

add node local to the tree;
D := setup.D;
If ∃dest ∈ destS, local = dest then

send notify(dest) to s;
S′ := S′-{dest};

endif
endif
/* Transaction 2.3: select neighbors for expansion and

expand the tree. */
execute Transaction 1.1 and 1.2:
/* no neighbor found */
for each di ∈ S′:destTable(di). via = unknown
do

destS := {di}
send destination(destS) to s;
destTable(di).state := infeasible;

end

/* Transaction 3: */
on receiving destination(destS)

add destS to US
if CS ∪ US = S then

if US = Ø then stop;
else enter phase II;
endif

endif

/* Transaction 4: */
on receiving notify(dest)

add dest to CS
if CS ∪ US = S then

if US = Ø then stop;
else enter phase II;
endif

endif

NETWORKS—2006—DOI 10.1002/net 49

/* Transaction 5: */
on receiving break()

remove sender from the tree
for each di: destTable(di).via = sender do

destTable(di).state := broken;
end

if local has no child in the tree then
send break() to parent;

endif

/* Transaction 6: */
on receiving reject()

remove sender from the tree
for each di: destTable(di).via = sender do

destTable(di).state := rejected;
end
if local has no child in the tree then

send reject() to parent;
endif

/* Transaction 7: /*
on receiving deny(destS)

remove sender from the tree
for each di: destTable(di).via = sender do

destTable(di).state := unknown;
end
set state of (local, sender) as unusable;
execute Transaction 2.3.

REFERENCES

[1] F. Adelstein, G. Richard, and L. Schwiebert, Distributed
multicast tree generation with dynamic group membership,
Comput Commun 26 (2003), 1105–1128.

[2] A. Ballardie, Core based trees (CBT version 2) multicast rout-
ing protocol specification, RFC 2189, Internet Engineering
Task Force, September 1997.

[3] A. Ballardie, B. Cain, and Z. Zhang, Core based trees (CBT
version 3) multicast routing protocol specification. Internet
Draft drafl-ietf-idmr-cbt-spec-v3-01, Internet Engineering
Task Force, August 1998.

[4] F. Bauer and A. Varma, Distributed algorithms for multicast
path setup in data networks, IEEE/ACM Trans Networking
4 (1996), 181–191.

[5] D. Bertsekas and R. Gallager, Data networks, 2nd ed.,
Prentice-Hall, Englewood Cliffs, NJ, 1992.

[6] K. Carlberg and J. Crowcroft, Building shared trees using a
one-to-many joining mechanism, ACM SIGCOMM Comput
Commun Rev 27 (1997), 5–11.

[7] D. Chakraborty, G. Chakraborty, and N. Shiratori, A dyna-
mic multicast routing satisfying multiple QoS constraints, Int
J Network Manage 5 (2003), 321–335.

[8] S. Chen, K. Nahrstedt, and Y. Shavitt, A QoS-aware multicast
routing protocol, IEEE J Selected Areas Commun 18 (2000),
2580–2592.

[9] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction
to algorithms, MIT, Cambridge, MA, 1992.

[10] Y. Cui, K. Xu, and J. Wu, Precomputation for multi-
constrained QoS routing in high-speed networks, Proc IEEE
INFOCOM, 2003, pp. 1414–1424.

[11] M. Faloutsos, A. Banerjea, and R. Pankaj, QoSMIC: Quality
of service sensitive multicast internet protocol, Proc ACM
SIGCOMM 1998, pp. 144–153.

[12] B. Fortz and M. Thorup, Optimizing OSPF/IS-IS weights in
a changing world, IEEE J Selected Areas Commun 4 (2002),
756–767.

[13] R.G. Gallager, P.A. Humblet, and P.M. Spira, A distributed
algorithm for minimum-weight spanning trees, ACM Trans
Prog Lang Syst 5 (1983), 66–77.

[14] X. Jia, A distributed algorithm of delay-bounded multicast
routing for multimedia applications in wide area networks,
IEEE/ACM Trans Networking 6 (1998), 828–837.

[15] R.M. Karp, “Reducibility among combinatorial problems,”
Complexity Computer Communications, R.E. Miller and
J.W. Thatcher (Editors), Plenum Press, New York, 1972,
pp. 85–103.

[16] V.P. Kompella, J.C. Pasquale, and G.C. Polyzos, “Multicas-
ting for multimedia applications,” Proc IEEE INFOCOM,
1992, pp. 2078–2085.

[17] V.P. Kompella, J.C. Pasquale, and G.C. Polyzos, Multicast
routing for multimedia communication, IEEE/ACM Trans
Networking 1 (1993), 286–292.

[18] V.P. Kompella, J.C. Pasquale, and G.C. Polyzos, “Two dis-
tributed algorithms for the constrained Steiner tree problem,”
Proc 2nd International Conference on Computer Communi-
cations and Networking, 1993, pp. 343–349.

[19] V.P. Kompella, J.C. Pasquale, and G.C. Polyzos, Opti-
mal multicast routing with quality of service constraints,
J Network Syst Manage 2 (1996), 107–131.

[20] L. Kou, G. Markowsky, and L. Berman, A fast algorithm for
Steiner trees, Acta Informatica 15 (1981), 141–145.

[21] C.P. Low and X. Song, On finding feasible solutions for delay
constrained group multicast routing problem, IEEE Trans
Comput 51 (2002), 581–588.

[22] C.A. Noronha and F.A. Tobagi, “Evaluation of multicast
routing algorithms for multimedia streams,” Proc IEEE Inter-
national Telecommunication Symposium, Rio de Janeiro,
Brazil, August 1994, pp. 390–397.

[23] Sanjoy Paul, Multicasting on the internet and its applications,
Kluwer Academic Publishers, Norwell, MA, 1998.

[24] R. Prim, Shortest connection networks and some generaliza-
tions, Bell Systems Tech J 36 (1957), 1389–1401.

[25] M. Ramalho, Intra- and inter-domain multicast routing pro-
tocols: A survey & taxonomy, IEEE Commun Surveys Tuto-
rials, Electronic Mag: http://www.coinsoc.org/pubs/suiveys
3 (2000), pp. 2–25.

[26] N. Rao and S. Batsell, “QoS routing via multiple paths
using bandwidth reservation,” Proc IEEE INFOCOM, 1998,
pp. 11–18.

[27] A. Roy, N. Banerjee, and S. Das, “An efficient multi-
objective QoS-routing algorithm for wireless multicasting,”
Proc IEEE 55th Vehicular Technology Conference, 2002,
pp. 1160–1164.

[28] H.F. Salama, D.S. Reeves, and Y. Viniotis, Evaluation of
multicast routing algorithms for real-time communication on
high-speed networks, IEEE J Selected Areas Commun 15
(1997), 332–345.

50 NETWORKS—2006—DOI 10.1002/net

[29] L. Schwiebert and R. Chintalapati, Improved fault recovery
for core based trees, Comput Commun 23 (2000), 816–824.

[30] J. Song, S. Kim, M. Lee, H. Lee, and T. Suda, “Adaptive load
distribution over multipath in MPLS networks,” Proc IEEE
ICC, 2003, pp. 233–237.

[31] R. Sriram, G. Manimaran, and C.S.R. Murthy, A rearrange-
able algorithm for the construction of delay-constrained
dynamic multicast trees, IEEE/ACM Trans Networking 7
(1999), 514–529.

[32] A. Striegel and G. Manimaran, A survey of QoS multicasting
issues, IEEE Commun Mag 6 (2002), 82–87.

[33] Q. Sun and H. Langendoerfer, “Efficient multicast rout-
ing algorithm for delay-sensitive applications,” Proc 2nd

Int. Workshop on Protocols for Multimedia Systems
(PROMS’95), 1995, pp. 452–458.

[34] Q. Sun and H. Langendoerfer, An efficient delay-constrained
multicast routing algorithm, J High-Speed Networks 7
(1998), 43–55.

[35] H. Ural and K. Zhu, “Fault recovery for a distributed SP-
based delay constrained multicast routing algorithm,” Proc
IEEE IPDPS’02, 2002, pp. 242–251.

[36] Y. Wang, Z. Wang, and L. Zhang, “Internet traffic engineering
without full mesh overlaying,” Proc IEEE INFOCOM, 2001,
pp. 565–571.

[37] B.M. Waxman, Routing of multipoint connections, IEEE J
Selected Areas Commun 6 (1988), 1617–1622.

[38] R. Widyono, The design and evaluation of routing algo-
rithms for real-time channels, Technical Report TR-94-
024, Tenet Group, University of California at Berkeley,
1994.

[39] B. Zhang, M.M. Krunz, and C. Chen, A fast delay-
constrained multicast routing algorithm, Proc IEEE ICC,
2001, pp. 2676–2680.

[40] Q. Zhu, M. Parsa, and J.J. Garcia-Luna-Aceves, “A source-
based algorithm for delay-constrained minimum-cost multi-
casting,” Proc IEEE INFOCOM, 1995, pp. 377–385.

NETWORKS—2006—DOI 10.1002/net 51

