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Abstract

The problem of testing from an SDL specification is often complicated by the presence of infeasible paths. This

paper introduces an approach for transforming a class of SDL specification in order to eliminate or reduce the

infeasible path problem. This approach is divided into two phases in order to aid generality. First the SDL specification

is rewritten to create a normal form extended finite state machine (NF-EFSM). This NF-EFSM is then expanded in

order to produce a state machine in which the test criterion may be satisfied using paths that are known to be feasible.

The expansion process is guaranteed to terminate. Where the expansion process may lead to an excessively large state

machine, this process may be terminated early and feasible paths added. The approach is illustrated through being

applied to the Initiator process of the Inres protocol.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Testing is a vital part of the software develop-

ment process. The test process typically is, how-

ever, time consuming, error-prone, and expensive.

While these problems may be overcome, or re-

duced, by introducing test automation, test auto-
mation must be based on some source of

information. One such source of information is a

formal or semi-formal specification.
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Many systems have some internal state that

affects and is affected by the system�s operations.

Such state-based systems are often specified using

an extended finite state machine (EFSM) based

language such as SDL [10]. An SDL specification

may be rewritten to form an EFSM which may act

as the basis for automating or semi-automating
testing [2,12].

When testing from an EFSM based language it

is usual to generate a set of paths through the

EFSM. Test data is then produced to trigger these

paths. Each path contains a sequence of transi-

tions, each of which has a precondition or guard.

As a consequence of this a path p defines a path
ed.
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condition cðpÞ: a condition that an input sequence x
must satisfy in order for x to lead to p being fol-

lowed. Thus, generating test data for a path p in-

volves finding an input sequence that satisfies cðpÞ.
It is possible for a path p to be infeasible: no

input sequence satisfies the condition cðpÞ. This is
a consequence of the preconditions of more than

one transition contributing to cðpÞ: some of these

preconditions may conflict. While it might be

reasonable to expect each transition in a specifi-

cation to be feasible (i.e. can be executed under

some condition that may occur) many specifica-

tions will contain infeasible paths. For example, a

process that starts by trying to establish a con-
nection may have some counter that starts at 0 and

is incremented on each failed attempt. Suppose the

process abandons this attempt to make a connec-

tion if the counter reaches some predefined value

n. Then any path that requires m consecutive failed

attempts, for m > n, is infeasible. The presence of

infeasible paths may lead to there being no test

data that triggers a path chosen in test generation.
The problem of generating tests from an EFSM

may thus be complicated by the presence of

infeasible paths.

This paper introduces a new approach that ex-

pands an EFSM in order to bypass the infeasible

path problem. The procedure is composed of two

phases: building a normal form EFSM (NF-

EFSM) from a specification and expanding the
NF-EFSM to improve testability. The use of an

NF-EFSM aids generality: once a specification has

been transformed into this form the expansion

procedure may be applied. Thus, in order to ex-

tend the results to some other specification lan-

guage such as Z [13,14], VDM [11] or Statecharts

[3], it is sufficient to find some mapping from

specifications in that language to NF-EFSMs.
This paper extends the work of [5–7] on the

refinement of an EFSM for the generation of

executable tests. The work in this paper is most

similar to that in [7]. There are two main differ-

ences. First, [7] does not give an algorithm for

generating tests from a partially expanded EFSM

(PEEFSM), produced where it is not feasible to

fully expand the EFSM. Further, here alternative
approaches are evaluated on the Initiator process

of the Inres protocol.
This paper is organized as follows. Section 2

provides a brief overview of SDL and defines a

normal form EFSM. Section 3 shows the gener-

ation of an NF-EFSM from an SDL specifica-

tion. The expansion procedure, which forms the

core of this paper, is proposed in Section 4.
Section 5 compares the work in this paper to

previous work on expanding EFSMs while Sec-

tion 6 considers the problem of generating tests

from an expanded EFSM (EEFSM) or a partially

expended EFSM. Finally, in Section 7, conclu-

sions are drawn.
2. SDL specifications and normal form EFSMs

SDL is a specification and description language

standardized by the International Telecommuni-

cation Union. An SDL specification is graphical

and symbol-based but its data is described using

abstract data types and ASN.1 [9]. It can be seen

as a set of EFSMs communicating with each other
where each EFSM is described by its process dia-

gram with several logical states and transitions

between them.

Typically, the sequential behaviour of a formal

specification can be represented as an EFSM.

However, the operation within a transition of this

EFSM may contain conditional statements that

determine which behaviour, out of some set of
behaviours, is applied. For example, the operation

might contain an if statement. Such a transition

may be replicated to give one transition for each

behaviour, in order to ensure that each behaviour

is tested. The expanded EFSM is an EFSM where

transitions have no guard related to internal vari-

ables, in other words, they are always executable at

the originating state. However, in order to obtain
executable transitions, some states may have to be

split and some transitions may have to be repli-

cated. The process of expanding an EFSM to

eliminate infeasible paths is the main topic of this

paper. We will now define the notion of a Normal

Form EFSM.

Definition 1. A normal form extended finite state
machine M is the 8-tuple (S,s0,V ,r0,P ,I ,O,T ) where
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• S is the finite set of logical states,

• s0 2 S is the initial state,

• V is the finite set of internal variables,

• r0 denotes the mapping from the variables in V
to their initial values,

• P is the set of input and output parameters,

• I is the set of input declarations,

• O is the set of output declarations,

• T is the finite set of transitions.

The label of a transition t 2 T is defined by the

5-tuple (ss,gI,gD,op,sf ) in which:

• ss is the start state of t;
• gI is the input guard which can be expressed as

the 3-tuple (i,P i,gPi ), where
� i 2 I [ fNILg;
� P i � P ; and
� gPi is the input parameter guard that is either

nil or represented as a logical expression gi-

ven in terms of variables in V 0 and P 0 where
V 0 � V , ; 6¼ P 0 � P i;

• gD is the domain guard and is either nil or rep-

resented as a logical expression given in terms

of variables in V 00 where ; 6¼ V 00 � V ;
• op is the sequential operation which is com-

posed of simple statements such as output state-

ments and assignment statements; and

• sf is the final state of t.

Note that if P i ¼ ;, then gP ¼ NIL. External

events which may trigger state transitions of the

system are represented as input declarations in an

NF-EFSM (they are members of the set I). Input
parameters are the attributes or parameters of

those external events. V contains all of the vari-

ables that occupy some memory in the system.
The label of a transition in an NF-EFSM has

two guards that decide the feasibility of the tran-

sition: the input guard gI and the domain guard gD.
gI is the guard for inputs, or events, from the

environment that must be satisfied in order for the

transition to be executed. An input i is represented
by �?i� which means �input i from the environment�.
Some inputs may carry values of specific input
parameters and gI may guard those values with the

input parameter guard gP , such as p ¼ 1 where p 2
P . The input guard ðNIL; ;;NILÞ represents no
input being required, which makes the transition

spontaneous. gD is the guard, or precondition, on

the values of variables in the system (e.g. v < 4,

where v 2 V ). Note that in order to satisfy the do-

main guard gD of a transition t it may be necessary

to take some specific path to the initial state of t. op
is a set of sequential statements such as v :¼ vþ 1

and !o where v 2 V , o 2 O, and !o means �output o
to the environment (at a specific output port)�.

Clearly, none of the spontaneous transitions in

an NF-EFSM should be without any guards, i.e.,

uncontrollable. This observation leads to the fol-

lowing assumption.

Assumption 1. An NF-EFSM does not have any

transition with gI ¼ ðNIL; ;;NILÞ and gD ¼ NIL.

A transition in an NF-EFSM is conditional if its

domain guard gD is not NIL. A variable used in

the domain guard of a transition in an NF-EFSM

is called a guard variable of the transition. A var-

iable in an NF-EFSM is a control variable if it is a
guard variable of some transition of the NF-

EFSM. A transition in an NF-EFSM is uncondi-

tional if its domain guard gD is NIL.

The operation of a transition in an NF-EFSM

has only simple statements such as output state-

ments and assignment statements, that is, it has no

branching statements such as �if . . . else�,
�case�, �for�, �repeat . . . until�, and �do . . .
while� statements. Therefore, an NF-EFSM has

the following property.

Property 1. When a transition in an NF-EFSM is
executed, all the actions of the operation specified in
its label are performed consecutively and only once.

Definition 2. An NF-EFSM is deterministic if for
every input sequence x there is no more than one

output sequence that may be produced by the NF-

EFSM in response to x.

Definition 3. An NF-EFSM is strongly connected

if for every ordered pair of states ðs; s0Þ there is

some feasible path from s to s0.

Assumption 2. An NF-EFSM is deterministic and

strongly connected.
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Loops may lead to the explosion of the state

space of an EFSM and affect the executability of a

transition. In the following, we analyze loops in an

NF-EFSM and make a few assumptions on loops

in order to simplify the problem studied in this

paper. Future work will consider how these
assumptions may be relaxed.

Let us start with the definition of several terms.

Definition 4. In an NF-EFSM,

• the (global) control state of an NF-EFSM is a

set G ¼ VC [ flogical state variableg where VC
is the set of control variables and the logical
state variable takes a value from S;

• a cycle is a path that starts and ends at the same

state, i.e., its starting and terminating states are

the same;

• a simple cycle or a loop is a cycle in which none

of the states appears more than once, except the

starting state which appears twice;

• a self-loop is a loop that is constructed from one
transition;

• a loop is unconditional if all of its transitions

are unconditional; otherwise, it is conditional.

Note that by definition, any unconditional loop

is an infinite loop: the number of iterations is un-

bounded. There are two types of unconditional

loop.

Definition 5. An unconditional loop is a Type 1

unconditional loop where each iteration of the loop

generates the same global control state subspace.

Such a loop does not cause the state space

explosion of the NF-EFSM. We allow this type of

unconditional loops in an NF-EFSM.

Definition 6. An unconditional loop is a Type 2

unconditional loop if some iteration of the loop

generates a different global control state subspace.

Type 2 unconditional loops will not be allowed

in an NF-EFSM in order to avoid an infinite state

space.
We differentiate between three types of condi-

tional loops.
Definition 7. A conditional loop is a Type 1 con-

ditional loop if the number of iterations of the

loop is not bounded above and each iteration of

the loop generates the same global control state

subspace.

Definition 8. A conditional loop is a Type 2 con-

ditional loop if the number of iterations of the

loop is not bounded above and some iteration of

the loop generates a different global control state

subspace.

Type 1 and Type 2 conditional loops are thus
equivalent to Type 1 and Type 2 unconditional

loops and therefore we allow Type 1 conditional

loops and we do not allow Type 2 condi-

tional loops in an NF-EFSM. Two examples of

Type 2 conditional loops are given in Fig. 1 (here x
and y are assumed to be control variables). The

first example shows the case where the variables

used in the domain guards are not modified. In the
second case there are modifications to the vari-

ables used in the domain guards but here these

modifications cannot contribute to the satisfaction

of the condition to terminate the loop.

Definition 9. A conditional loop is a Type 3 con-

ditional loop if the number of iterations of the

loop is bounded above.

We identify two classes of Type 3 conditional

loops: one class consists of single-transition loops,

i.e., self-loops, and the other class consists of

multiple-transition loops. We will only deal with

single-transition loops; we leave the handling of

NF-EFSMs that have multiple-transition condi-

tional loops with finite iteration for future re-
search.

Definition 10. A Type 3 conditional loop is said to

be well-structured if it is a self-loop.
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Assumption 3. All loops within an NF-EFSM are

either Type 1 unconditional loops, Type 1 condi-

tional loops, or well-structured Type 3 conditional

loops.

Note that a consequence of this assumption is

that every path from the initial state back to the

initial state, that is not a self-loop, returns the

value of each state variable to its initial value.
3. Producing an NF-EFSM from an SDL specifi-

cation

A process diagram in an SDL specification is

an EFSM. A transition from one logical state to

another is described in a series of symbols, each

representing an element of the transition. The

guard of a transition is decided by both input

symbols and decision symbols. In general, a

transition has one input symbol, but may have
several decision symbols. Moreover, there may be

a cyclic path with a decision. To directly generate

an NF-EFSM, the process diagram should be in

the form of Fig. 2(a). If an operation has com-

plex elements such as multiple decision symbols,

cyclic paths, timer operations, saves, and proce-

dure calls it can be flattening using various

techniques [15].
Fig. 2. An SDL process diagram and its representation in the

NF-EFSM. (a) An SDL process diagram. (b) The corre-

sponding NF-EFSM.
Domain propagation may also be used [1].

Domain propagation partitions individual opera-

tors such that their behaviour in a subdomain of

the partition is uniform. Each such operator can

be replaced by a disjunction of behaviours with

preconditions. The following is an example:

y ¼ jxj;

! ððxP 0Þ ^ ðy ¼ xÞÞ _ ððx < 0Þ ^ ðy ¼ �xÞÞ:

Consider the process diagram specified in SDL
of the Initiator process of the Inres protocol [8]

shown in Fig. 3. To build the NF-EFSM, timer

operations are flattened as follows. For a timer T ,
we define a variable T that records the remaining

time to the expiry of T . If there are more than two

timers, we define another variable min timer that

contains the minimum value of all currently active

timeout periods [15]. The timer expiry input of T is
changed to the input T expired and the statement

�undef T �. Undef applied to a variable x makes the

value of x undefined. This is considered to be

equivalent to referencing the variable x to define

some other variable. The application of set to a

timer T is converted to the assignment of the

duration to variable T , and reset applied to timer T
is converted into the statement �undef T �. It is very
difficult to flatten save operations in general. In

this example, a save operation is used to keep the

user data from being lost. In our example, that

operation is removed in the NF-EFSM by

assuming that the input queue from the user is

controlled to send out �IDATreq� signal only when

Initiator is at the connect state. For testing a save

operation of an input, feasible subpaths may be
added to the NF-EFSM as new transitions each of

which starts with some transition having the save

operation and ends with some transition whose

guard has the corresponding input.

The function �succ(v)� toggles between 0 and 1

for the value of a binary variable v. The task

number :¼ succðnumberÞ is flattened as follows:

number ¼ 1 if number ¼ 0;
0 if number ¼ 1:

�

The final NF-EFSM of Initiator process is
shown in Fig. 4.
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4. The expansion procedure

This paper focuses on the problem of producing

an expanded EFSM given a specification of a

deterministic system. The purpose of this expan-

sion is to simplify test generation. In order to
provide generality, the expansion is based on a

two-phase transformation approach as shown in

Fig. 5. The normalization phase of a specification

varies according to its formal model but the

expansion phase of an NF-EFSM is common for

any specification. The motivation for using an NF-
EFSM is as follows. First, the syntax of an NF-

EFSM is independent of the syntax of the speci-

fication language used. Second, every operation of

a transition in an NF-EFSM represents a single

behaviour which can be executed if its guard is

satisfied. In Section 6 it will be shown that this
feature is important when applying data flow

testing. Finally, most of the existing methods for

test generation can be applied directly to an NF-

EFSM even if we do not expand it.

This section describes the procedure that ex-

pands an NF-EFSM to form an expanded EFSM
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Fig. 5. The proposed approach: two-phase expansion (1) nor-

malization, (2) expansion.
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(EEFSM) or a partially expanded EFSM. The

expansion procedure will be illustrated using the

NF-EFSM in Fig. 4 obtained from the SDL

specification of the Initiator process.
4.1. Expansion of an NF-EFSM

4.1.1. Notation

Before giving a detailed description of the

expansion algorithm, we introduce some notation

and functions. First, D denotes the domain con-

structed from all the control variables in V and K
denotes the domain constructed from all the input
parameters in P that are used in the input guards.

The subset ofD allowed at a state will be called the

domain of the state.

Recall that the label of a transition t is
ðss; gI; gD; op; sfÞ where ss is the start state, gI is the
input guard, gD is the domain guard, op is the

sequential operation, and sf is the final state of t.
In this paper, we use the term precondition of a

transition ti, denoted Pi, to mean the domain guard

gD of ti. The term parameter condition of a tran-

sition ti, denoted by ki, is the input parameter

guard gP of ti.
The unary dom operator takes a logical

expression and returns the subdomain of D that

satisfies this condition while the unary cond

operator takes a subdomain of D and returns the

corresponding logical expression. The postcondi-

tion of a transition ti, denoted by Qið�Þ : PðDÞ�
PðKÞ ! PðDÞ, is the function that derives a do-

main in D, according to the operation opi of the
transition ti, given two subdomains of D and K
respectively. dð�Þ : S ! PðDÞ is the domain func-

tion of a state, and sST ð�Þ : T ! S and sFN ð�Þ :
T ! S are the starting state and final state func-

tions of a transition, respectively.

The algorithm requires that all the postcondi-

tion functions and their inverse functions can be

evaluated symbolically in any domain considered.
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4.1.2. Algorithm

Step 1: Partition the domain of a state s that has
at least two conditional transitions originating

from it as follows: Let the conditional transitions

t1; t2; . . . ; tn ðnP 2Þ originating from state s have
preconditions P1; P2; . . . ; Pn respectively.

Each subdomain, fPs
X jX � f1; . . . ; ng ^ X 6¼

fgg is given by

Ps
X ¼ dom

^
i2X

Pi

 !
^

^
i62X

:Pi

 ! !
:

For example, if an operation at a state s is

rewritten as
W

16 i6 3 ðPi ^ QiÞ, a partition of the

domain of state s by the operation is

Ps
f1g;P

s
f2g;P

s
f3g;P

s
f1;2g;P

s
f2;3g;P

s
f1;3g;P

s
f1;2;3g

n o
:

Each Ps
X in the domain of state s can be depicted

as Fig. 6.

The number of disjoint subdomains is at most

2n � 1 but may be fewer because some of them

may be empty.

Then, if the final non-empty disjoint subdo-
mains are Ps

1; . . . ;P
s
m ðm6 2n � 1Þ, split the state s

to s1; . . . ; sm whose domains are Ps
1; . . . ;P

s
m,

respectively.

If this is the first iteration, repeat this step for all

the states from which there are outgoing condi-

tional transitions. After the first iteration, priority

is given to states that are not within any well-

structured loop, if there exist such states; other-
wise, the state to be split is selected among states

that are within well-structured loops.

Step 2: Rearrange transitions related to the split

states. If a state si is split into nðP 2Þ states,

si1 ; . . . ; sin , remove each transition tj going from or

to the state si. Then, for each removed transition tj
Fig. 6. An example of partitioning.
going from the state si to a state sfð6¼ siÞ, make n
temporary transitions going from sik ð16 k6 nÞ to
sf whose labels are the same as that of the removed

transition. For each removed transition tj going to

the state si from a state ssð6¼ siÞ, make n temporary

transitions going from ss to sik ð16 k6 nÞ whose
labels are the same as that of the removed transi-

tion. For each removed transition tj going from

and to the same state si, a self-loop, make n2 tem-

porary transitions going from each sik ð16 k6 nÞ to
each sik0 ð16 k0 6 nÞ whose labels are the same as

that of the removed transition.

Step 3: For each temporary transition ti, there
are only two conditions on the relationship
between dðsST ðtiÞÞ and domPi since sST ðtiÞ is de-

fined by a subdomain P
sST ðtiÞ
X for some X :

dðsST ðtiÞÞ � domPi or dðsST ðtiÞÞ \ domPi ¼ ;.
Therefore, for each temporary transition ti,

make it permanent or discard it depending on the

following cases:

• Case A. If domPi \ dðsST ðtiÞÞ ¼ ; or
QiðdðsST ðtiÞÞ; domkiÞ \ dðsFN ðtiÞÞ ¼ ;, discard ti.

• Case B. If domPi � dðsST ðtiÞÞ and QiðdðsST ðtiÞÞ;
domkiÞ � dðsFN ðtiÞÞ, make ti unconditional.

• Case C. If domPi � dðsST ðtiÞÞ and QiðdðsST ðtiÞÞ;
domkiÞ 6� dðsFN ðtiÞÞ and QiðdðsST ðtiÞÞ; domkiÞ\
dðsFN ðtiÞÞ 6¼ ;,
� If domP 0

i � dðsST ðtiÞÞ then make ti uncondi-
tional.

� If domP 0
i+dðsST ðtiÞÞ then make ti conditional

with domain guard P 0
i .
Here P 0
i ¼ dðsST ðtiÞÞ \ Q�1

i ðdðsFN ðtiÞÞÞ.
Note that Pi and ki are the precondition and the

parameter condition of ti respectively, and Qið�Þ is
the postcondition of transition ti.
Step 4: If the initial state is split, determine

which of the split states is now the initial state.

Remove all states that cannot be reached from the

initial state. Then, if Condition A or Condition B

is satisfied, terminate. Otherwise, return to Step 1.

• (Condition A. Complete termination) There are

no conditional transitions.

• (Condition B. Reasonable termination) All the
remaining conditional transitions in the present

PEEFSM are conditional transitions construct-



R.M. Hierons et al. / Computer Networks 44 (2004) 681–700 689
ing well-structured loops in the original NF-

EFSM, and further expansion is considered,

by the user, to be impractical or unnecessary

because sufficient unconditional transitions are

obtained to satisfy the selected test coverage
criterion.

The following property is an immediate conse-

quence of the restrictions placed on loops.

Property 2. Every NF-EFSM may be expanded to
form a finite EEFSM.

4.1.3. Justification

The algorithm attempts to construct an EEFSM

from a given NF-EFSM by partitioning the do-

main of each state with the preconditions of its

conditional transitions. When a state s is split in

order to change outgoing conditional transitions

into unconditional ones, several conditional tran-

sitions may be generated from the transitions that
end at s. So, the algorithm may have to split some

states repeatedly until one of the termination con-

ditions of Step 4 is satisfied. The repetitive splitting

of states for building the EEFSM may yield a large

EEFSM. In some cases it may not be practical to

produce the complete EEFSM and here the rea-

sonable termination condition (Condition B) al-

lows the tester to terminate the expansion.
Fig. 7 shows an example of the reasonable

termination with a well-structured loop. In this
Fig. 7. An example for Condition B. (a) A part o
figure and the following figures, gI ¼
ðNIL; ;;NILÞ, gD ¼ NIL, and gP ¼ NIL are rep-

resented by blanks and NIL or empty components

are also represented by blanks. In addition, dotted

arrows are used to indicate that the transition is

conditional. From state sb, two conditional tran-
sitions tb (a self-loop ‘), and tc originate. In the

first iteration of the algorithm, sb is split to sb1 and
sb2 according to the preconditions of tb and tc.
Then, the transition tb is replicated to four tem-

porary transitions whose starting and terminating

states are sb1 and sb1 , sb1 and sb2 , sb2 and sb1 , and sb2
and sb2 , respectively. Among those temporary

transitions, tb1 and tb2 become conditional. After
the first iteration of the algorithm, there is a well-

structured loop ‘0 instead of ‘. The well-structured
loop will be modified repeatedly until it is even-

tually changed to a transition at the n-th iteration.

However, if n is large, it may be appropriate to use

the reasonable termination condition. The PEE-

FSM generated by the first iteration satisfies the

reasonable termination condition and the decision
to terminate is made by the user or some heuristic.

Section 6 will consider the problem of generating

tests from a PEEFSM.

4.2. An example

Consider the NF-EFSM given in Fig. 4. The

application of the expansion algorithm to this NF-
EFSM progresses as follows:
f an NF-EFSM, (b) after the first iteration.
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At Step 1, the domain of state wait is parti-

tioned according to the disjoint preconditions of

two conditional transitions, P1 ¼ ðcounter < 4Þ
and P2 ¼ ðcounterP 4Þ. So wait is split as follows:

wait1: (counter < 4)
wait2: (counterP 4)

Since this is the first iteration, the domain of

state sending is also partitioned according to the

preconditions, P1 ¼ ðcounter < 4Þ, P2 ¼ ðcounter
P 4Þ, P3 ¼ ðnumber ¼ 0Þ, and P4 ¼ ðnumber ¼ 1Þ
from conditional transitions t61, t62, t7, t8, t9; and
t10, as follows. Among 15ð¼ 24 � 1Þ candidate
subdomains, there are four non-empty subdo-

mains and thus the state sending is split to form the

following four states:

sending1: ðcounter < 4 ^ number ¼ 0Þ
sending2: ðcounter < 4 ^ number ¼ 1Þ
sending3: ðcounterP 4 ^ number ¼ 0Þ
sending4: ðcounterP 4 ^ number ¼ 1Þ

At Step 3, 18 temporary transitions become

unconditional ones (Case B), 12 become condi-

tional ones (Case C), and the other ones are dis-

carded (Case A). At the end of this step, a

PEEFSM of Initiator process is generated as

shown in Fig. 8, where the labels of transitions are
Fig. 8. On expanding process of Initiato
not shown in order to aid simplicity. In this

example, the copies of a transition are distin-

guished by the use of labels.

At Step 4, Conditions A and B are not satisfied

because there are conditional transitions, t5a and

t5b which do not originate from the starting state of
any well-structured loop. We still have 12 condi-

tional transitions and we start the second iteration

of the algorithm.

In the second iteration of the algorithm, at Step

1, connect is selected and this is partitioned

according to the preconditions P1 ¼ ðnumber ¼ 0Þ
and P2 ¼ ðnumber ¼ 1Þ. This gives the following

two states:

connect1: ðnumber ¼ 1Þ
connect2: ðnumber ¼ 0Þ

At Step 3, 10 temporary transitions become

unconditional (Case B) and the others are dis-

carded (Case A). As a consequence of state

splitting the transitions t5a and t5b became uncon-
ditional. At the end of this step, a PEEFSM of

the Initiator process is generated as shown in

Fig. 9.

At Step 4, Condition A is not satisfied but

Condition B may be satisfied because t5a and t5b
have been changed to unconditional transitions.

While this process may continue to produce an
r process: after the first iteration.



Fig. 9. On expanding process of Initiator process: after the second iteration.
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EEFSM, it will terminate here in order to illustrate

issues regarding generating tests from PEEFSMs.
5. Comparisons with previous work

Two papers [5,6] presented test generation

methods from a Z specification and a lSZ speci-
fication, respectively. They partitioned the domain

of the input or the internal memory according to

the preconditions of the operations. Test cases, for

control flow testing, are generated from the resul-

tant EFSM. However, these approaches are spe-

cific to the specification language used.

Hierons et al. [6] refine the EFSM by data

abstraction, which is similar to the first iteration of
our algorithm. It does not go further because the

repetitive refining may not terminate. However, as

discussed in Section 4.1.3, the algorithm in this

paper is guaranteed to terminate under the

assumptions made and it may be terminated where

further expansion may make the number of states

excessive. The approach of Hierons et al. [6] may

also introduce non-determinism which is not
inherent in the system. This complicates test gen-

eration.

Recent work by Uyar and Duale has considered

the problem of eliminating the infeasible path

problem for EFSMs where it is known that all

operation and guards are linear [16]. The assump-
tions made in this paper are quite different: rather

than assume linearity, restrictions are placed on

the structure of the EFSM.

Henniger transforms an Estelle specification to

form an equivalent EEFSM [4]. The transforma-

tion is feasible under the assumption that the

control variables have finite domains. However, it

first generates a very large FSM: for every state in
the EFSM and every combination of values for the

control variables, it produces a state in the

EEFSM. This EEFSM is then minimized. Natu-

rally, this approach may suffer from the state space

explosion problem.
6. Test generation

This section will consider the problem of gen-

erating a test to satisfy the all-uses criterion. The

all-uses criterion considers definitions and uses of

variables. An assignment x :¼ e is a definition of x

and a use of each variable referenced by e. Out-

puts and guards are uses of the variables refer-

enced. A path is definition clear with respect to a
variable x if it contains no definitions of x after its

first transition. Then a feasible du-pair consists of

an ordered pair (t1,t2) of transitions where there is

some variable x that is defined at t1 and used at t2
such that there is a feasible definition-clear path

with respect to x that starts with t1 and ends with
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t2. The all-uses coverage is the proportion of fea-

sible du-pairs executed in testing. The all-uses

criterion is satisfied if and only if all feasible du-

pairs are covered in testing.

Due to the feasibility of all paths in an EEFSM,

test generation from an EEFSM is straightfor-
ward. If we have a PEEFSM which is constructed

by using the reasonable termination condition,

there are some conditional transitions. In this case,

it is possible to use one of the following solutions:

1. Try to generate test paths which do not traverse

conditional transitions.

2. Resume the expansion algorithm to get the
complete but potentially very large EEFSM.

3. If test generation is based on a given test cover-

age criterion such as all-uses, a PEEFSM may

be transformed to an EEFSM that is smaller

than the complete EEFSM. Such an EEFSM

is not equivalent to the original NF-EFSM,

but it has a set of unconditional paths starting

at the initial state that, between them, satisfy
the test coverage criterion.

The first approach may be a reasonable and

practical solution. However, this may lead to a low

test coverage. We will now compare these ap-

proaches for the Initiator process of the Inres

protocol. Table 1 contains a summary of the

results of the comparison, which will now be
described in more detail.

The above result was obtained from the Initia-

tor process of the Inres protocol shown in Fig. 4.

After two iteration of the expansion algorithm,

Condition B was satisfied and the PEEFSM shown

in Fig. 9 was generated. We used this PEEFSM as

a target for comparison. The result shows the

number of the required du-pairs that are deter-
mined to be executable, where a du-pair is said to
Table 1

The number of du-pairs determined to be executable

The number of NF-EFSM PE

(aft

Du-pairs 61 164

Executable du-pairs (unconditional) 6 (9.8%) 21

Executable du-pairs (NF-EFSM basis) 6 (9.8%) 13
be executable if there is a triple (unconditional

preamble path starting from the initial state,

unconditional def-clear path, unconditional post-

amble path going to the terminating state) for the

du-pair. These three paths may be combined to

form an unconditional path that covers the du-pair
and returns to the initial state. As shown in Fig. 4,

8 of the 16 transitions in the NF-EFSM of the

Initiator process are conditional. We can easily

determine that 6 out of 61 du-pairs are executable.

The PEEFSM generated after the second iter-

ation has 164 du-pairs, and only 21 du-pairs are

determined to be executable among those. The

expansion has lead to seven additional du-pairs
being determined to be executable. After the fifth

iteration, we have the complete EEFSM which has

389 executable du-pairs. It should be noted that

164 du-pairs in the PEEFSM and 389 du-pairs in

the EEFSM contain multiple copies of the 61 du-

pairs in the NF-EFSM. It is sufficient to have one

executable copy of each du-pair.

The second solution, which corresponds to the
third column in Table 1, involves producing an

EEFSM. In some cases this may be considered to

be justified by the test requirements or risk.

The last solution is not a general solution: a

transformation method that targets the test crite-

rion is applied. Essentially, the PEEFSM is

transformed by adding unconditional paths with

the intention of making the test criterion satisfi-
able with unconditional paths. A transformation

method is proposed in this section. It generates a

much smaller EEFSM, which has only 196 exe-

cutable du-pairs, than the complete EEFSM. The

transformed EEFSM allows the all-uses criterion

to be satisfied using unconditional paths (see the

4th column of Table 1).

In the following two subsections, we discuss test
coverage and test generation. Since test generation
EFSM Complete Transformed

er 2nd iteration) EEFSM EEFSM

389 196

(12.8%) 389 (100%) 196 (100%)

(21.3%) 61 (100%) 61 (100%)
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for control flow test was discussed in [6], here we

focus on data flow test generation. Section 6.2

gives a method for generating tests from a PEE-

FSM produced by the reasonable termination

condition.

6.1. Test coverage

Where a function is used within the definition of

an operation, and this has a number of separate

behaviours, the transition need not be split when

generating the NF-EFSM. However, domain

propagation may be applied to split the transition

in order to increase test coverage. Consider the
�succð�Þ� function in the Initiator process. This can

be written by using conditional statements or by

using the modular function. In the first case, do-

main propagation should be applied, while in the

second case, domain propagation is not necessary

if the modular function is a built-in function of the

description tool for SDL. In the example, we as-

sumed that the function was written in the first
form.

It is worth noting that when rewriting an EFSM

to an NF-EFSM, a transition is split where it has a

number of separate behaviours with conditions.

This assists data flow testing when the transition�s
operation has a number of sub-behaviours which

differ in either the variables referenced or the

variables defined. For example, suppose a transi-
tion t whose domain guard is gD, has the operation
defined by if ðx > 0Þ y :¼ a; else z :¼ b;. In

forming an NF-EFSM, t is split into two transi-

tions: t1 whose domain guard is x > 0 ^ gD and

operation is y :¼ a; and t2 whose domain guard is

x6 0 ^ gD and operation is z :¼ b;. This eliminates

a potential problem in data flow testing: if t is not
split, the data dependencies exercised by executing
t within a test sequence may depend upon the

value of x when t is executed. It may thus appear

that a data dependence has been exercised, due to

a path being traversed, when this data dependence

has not been covered.

6.2. Test generation for data flow test

When we generate a manageable size EEFSM,

test generation for data flow testing is straight-
forward because all paths are executable in that

EEFSM. We simply find a set of paths satisfying

the required test selection criterion. If instead we

have a PEEFSM we may be able to transform that

PEEFSM into a transformed EEFSM according

to a specific test criterion and generate test cases
satisfying that criterion. Naturally, the transfor-

mation applied will depend upon properties of the

specification: we cannot expect there to be an

algorithm that achieves this for all specifications.

This section gives a transformation that, under the

conditions outlined earlier and the one given be-

low, allows the all-uses criterion to be satisfied.

Future work will consider alternative conditions
and corresponding transformation algorithms.

Assumption 4. Suppose that well-structured Type

3 loop ‘ starts and ends at state s. Then every path,

from the initial state to s, initialises each state

variable v, mentioned by the guard of ‘, to a

constant.

The above guarantees that the value for the

state variables in V mentioned in the guard of ‘ is
defined by the path taken. However, different

paths may lead to different values for these vari-

ables.

The transformation algorithm is iterative. Each

iteration involves choosing some state s1 with one

or more conditional transitions leaving it and, on
the basis of this, transforming the PEEFSM by

splitting s1 and replacing the conditional transi-

tions with paths generated by the unfolding of the

conditional loops at s1. This is outlined in Fig. 10.

We will now explain how the state, considered

in the current iteration, is chosen. When a state s is
split in forming the PEEFSM, a set fs1; . . . ; sng of

states is formed. Possibly, some states are
unreachable and so are deleted. At least one of the

states in fs1; . . . ; sng will be reached by no condi-

tional transitions from other elements of fs1; . . . ;
sng. Such a state s1 is called a head state. It is

straightforward to see that there is some state s of
the original EFSM with corresponding head state

s1 in the PEEFSM that is reachable, from the

initial state, using one or more unconditional
paths. Such a state may be found through a

breadth-first search starting at the initial state s0.



Fig. 10. Transformation of conditional transitions in a PEEFSM.
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Such a head state s1, and the corresponding set fs1;
. . . ; sng, is then considered.

At s1, there may be m well-structured loops
which will be called ‘1; . . . ; ‘m. Further, at state s1,
there are m conditional transitions going to s2; . . . ;
sn0 ðn0 6 nÞ that are copies of the m well-structured

loops and we call these t1; . . . ; tm. In addition, there

may be unconditional transitions to1; . . . ; t
o
w origi-

nating from s1 and unconditional transitions (or

paths) T1; . . . ; Tu terminating at s1. Those transi-

tions are drawn shaded because their transforma-
tion is not shown in Fig. 10(b).

The transformation algorithm replaces ‘1; . . . ;
‘m and t1; . . . ; tm by several unconditional paths.

The paths added are designed to allow the all-uses

criterion to be satisfied using these paths in place

of the conditional transitions between the states in

fs1; . . . ; sng.
Since s1 will be reached using paths from fT1;

. . . ; Tug, if the postconditions of T1; . . . ; Tu are not

the same, the transformation algorithm splits s1
into s11; . . . ; s1r according to the postconditions of

T1; . . . ; Tu. Unconditional paths P1; . . . ; Pz ðzPmÞ
are then constructed; these replace ‘1; . . . ; ‘m and

t1; . . . ; tm as shown in Fig. 10(b). Here Assumption

4 is important since it guarantees that the values of

the state variables, mentioned in the guards of the
loop, are fully defined by a path Ti and thus the

process of unfolding the loops generates uncon-

ditional paths.

The transformation procedure proceeds as fol-

lows. First, the chosen head state s1 is split

according to the postconditions of some uncon-

ditional paths going to s1 (Step 1). The PEEFSM

may have to be rearranged again due to the states
split at Step 1 (Step 2). Then, the procedure adds a

set of unconditional paths that cover all du-pairs

that are not covered by the paths of unconditional
transitions in the PEEFSM (Steps 3 and 4). The

final transformed EEFSM is completed by

removing isolated states and transitions that enter

and leave isolated states.

Step 1: Let s1 be a head state that has one or

more conditional transitions leaving it and that is

reachable, by unconditional paths, from the initial

state. Let T1; . . . ; Tu denote unconditional paths
that reach s1. Let T1; . . . ; Tu have distinct post-

conditions Q1; . . . ;Qu with respect to the set V 0 of

control variables mentioned in the guards of the

self-loops from s1. Then, partition the domain of s1
into dom ðQ1Þ; . . . ; dom ðQuÞ.
Step 2: Execute the algorithm in Section 4.2.2

from Step 2 with the reasonable termination con-

dition.
Step 3: Let ‘i ð16 i6m0Þ denote a well-struc-

tured loop in the present PEEFSM which starts at

a state s1j ð16 j6 rÞ. For every unconditional

transition tok ð16 k6wÞ originating from s1j, add a

path going from s1j to sFN ðtokÞ by concatenating ‘i
and tok if there is a path starting with tok within

which a variable defined in ‘i is used without being

re-initialized previously.
Step 4: Let S1 ¼ fs11; . . . ; s1rg, and S2 ¼ fs2;

. . . ; sng. Let ‘i ð16 i6m0Þ denote a well-struc-

tured loop in the present PEEFSM which starts

from a state s1j 2 S1 and whose replicated con-

ditional transition ti terminates at sl 2 S2. Let ‘i1
and ‘i2 ð16 i1; i2 6m0Þ denote two well-structured

loops in the present PEEFSM which start from

s1j and whose replicated conditional transitions
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ti1 and ti2 terminate at sl1 ; sl2 2 S1 respectively.

Then, construct a minimal number of paths

composed of possible combination of the loop(s)

to satisfy the following requirements:

1. There must be at least one path that starts with
‘i and goes from s1j to a state in S2.

2. There must be at least one path that ends with a

copy of ‘i (possibly ti) and goes from a state in

S1 to sl.
3. There must be at least one path that contains a

subpath composed of the concatenation ð‘i; ‘iÞ
and goes from a state in S1 to a state in S2.

4. There must be at least one path that contains a
subpath composed of a concatenation ð‘i1 ; ‘i2Þ
that goes from a state in S1 to a state in S2, if,
for an unconditional path Tk ð16 k6 uÞ used

at Step 1, the postcondition of Tk followed by

‘i1 implies P ‘
i2
_ P ti2 , where P

‘
i2
and P ti2 are the pre-

conditions of ‘i2 and ti2 respectively.

5. There must be at least one path that contains a

subpath composed of a concatenation ð‘i2 ; ‘i1Þ
and goes from a state in S1 to a state in S2, if,
for an unconditional path Tk ð16 k6 uÞ used

at Step 1, the postcondition of Tk followed by

‘i2 implies P ‘
i1
_ P ti1 , where P

‘
i1
and P ti1 are the pre-

conditions of ‘i1 and ti1 .

Note that paths found to satisfy points 3–5 may

also cover a number of the requirements in points
1 and 2. Observe that due to Assumption 4, these

additional paths are unconditional.

Step 5: Remove all conditional transition be-

tween the states in S1 [ S2.
Fig. 11. Types of du-pair
Step 6: Remove the states that cannot be

reached from any other states or do not have any

outgoing transitions. Then, remove all the transi-

tions whose originating or terminating states do

not exist. If there are no well-structured loops,

terminate; otherwise go to Step 1.
Steps 3 and 4 of the algorithm show the kinds

of du-pairs we should consider when constructing

unconditional paths to cover the required du-

pairs. Since a well-structured loop has a �use� and
a �def � of its guard variable, all distinct du-pairs

whose defs and/or uses are in well-structured

loops must be included in the paths to be con-

structed.
Fig. 11 depicts the types of du-pairs which have

to be considered. Fig. 11(a) is an example of

PEEFSMs that can be generated at Step 3 of the

transformation algorithm. If the guard variable of

well-structured loops ‘1 and ‘2 is x, ‘1 and ‘2 have
uxð‘1Þ and dxð‘1Þ, and uxð‘2Þ and dxð‘2Þ, respec-

tively, where dxðtÞ and uxðtÞ are a def and a use of a

variable x in a transition (or a path) t respectively.
When an unconditional transition to1 originating

from s1, the state of ‘1 and ‘2, has uxðto1Þ, we have

to consider du-pairs ðdxð‘1Þ; uxðto1ÞÞ and ðdxð‘2Þ;
uxðto1ÞÞ. This type of du-pair, called Type A, is

considered by Step 3 of the algorithm.

Every unconditional path T1 terminating at s1
has dxðT1Þ and there are feasible du-pairs ðdxðT1Þ;
uxð‘1ÞÞ and ðdxðT1Þ; uxð‘2ÞÞ. The first requirement of
Step 4 handles this type of du-pair, which is called

Type B.

Requirement 2 of Step 4 introduces paths

that allow the data definitions from some li to
s to be considered.



Fig. 12. An example for Step 4. (a) EFSM, (b) PEEFSM (after the first iteration) and (c) the transformed EEFSM.
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propagate onto uses through the inclusion of a

path ending in li.
The repetition of a well-structured loop

yields feasible du-pairs such as ðdxð‘1Þ; uxð‘1ÞÞ
and ðdxð‘2Þ; uxð‘2ÞÞ. This type of du-pair, called

Type D, is considered by requirement 3 of Step

4. Finally, a combined traversal of two differ-
ent well-structured loops may also yield feasible

du-pairs such as ðdxð‘1Þ; uxð‘2ÞÞ and ðdxð‘2Þ;
uxð‘1ÞÞ. Requirements 4 and 5 of Step 4 con-

sider this type of du-pairs, which is called Type

E. Fig. 12 shows an example of the transfor-

mation.
Fig. 13. The transformed EEFSM of Initiator process
The PEEFSM generated from the NF-EFSM

given in Fig. 12(a), with the reasonable termina-

tion condition, is shown in Fig. 12(b). The state

from which well-structured loops start is sb1 . We

have one unconditional path T1 ¼ ta going to sb1 ,
and sb1 is not split. Therefore, we only have to

consider the transformation of well-structured
loops. We skip Step 3 because there is no uncon-

ditional transition originating from sb1 . At Step 4,

we consider unconditional paths going from sb1 to
sb2 . Some of the paths to be added must start with

and end with tb and tc and they must have subpaths

ðtb; tbÞ and ðtc; tcÞ. Since the postcondition of tatb1
for test generation satisfying all-uses criterion.



Table 2

The du-pairs in the transformed EEFSM of Initiator process

Variable Defined Used Def-clear path Variable Defined Used Def-clear path

Counter t1 t3 t1,t3a T t1 t2 t1,t2a
Counter t3 t3 t3a,t3b T t1 t3 t1,t3a
Counter t3 t4 t3d ,t4 T t1 t12 t1,t12a
Counter t5 t7 t5b,t7c T t3 t2 t3d ,t2b
Counter t5 t9 t5a,t9a T t3 t3 t3a,t3b
Counter t7 t7 t7a,t7b T t3 t4 t3d ,t4
Counter t7 t8 t7b,t8b T t3 t12 t3d ,t12b
Counter t7 t9 t7c,t9c T t5 t61 t5a,t61a
Counter t7 t10 t7b,t10b T t5 t62 t5b,t62a
Counter t9 t7 t9b,t7a T t5 t7 t5b,t7c
Counter t9 t8 t9d ,t8b T t5 t9 t5b,t9a
Counter t9 t9 t9a,t9b T t5 t14 t5b,t14b
Counter t9 t10 t9d ,t10b T t7 t61 t7f ,t61b
Number t2 t5 t2a,t5b T t7 t62 t7b,t62b
Number t2 t62 t2a,t5b,t62a T t7 t7 t7a,t7b
Number t2 t7 t2a,t5b,t7c T t7 t8 t7b,t8b
Number t2 t8 t2a,t5b,t7c,t9c,t7d ,

t9d ,t8b
T t7 t9 t7c,t9c

Number t2 t9 t2a,t5b,t7c,t9c T t7 t10 t7b,t10b
Number t61 t5 t61a,t5b T t7 t14 t7b,t14d
Number t61 t62 t61a,t5b,t62a T t9 t61 t9h,t61b
Number t61 t7 t61a,t5b,t7c T t9 t62 t9d ,t62b
Number t61 t8 t61a,t5b,t7c,t9c,t7d ,

t9d ,t8b
T t9 t7 t9b,t7a

Number t61 t9 t61a,t5b,t9a T t9 t8 t9d ,t8b
Number t62 t5 t62a,t5a T t9 t9 t9a,t9b
Number t62 t61 t62a,t5a,t61a T t9 t10 t9d ,t10b
Number t62 t7 t62a,t5a,t7g T t9 t14 t9d ,t14d
Number t62 t8 t62a,t5a,t7g,t9g,t7h,

t9h,t8a
p t0 t1 t0,t1

Number t62 t9 t62a,t5a,t9e p t0 t3 t0,t1,t3a
olddata t5 t7 t5b,t7c p t0 t5 t0,t1,t2a,t5b
olddata t5 t9 t5b,t7c,t9c p t0 t7 t0,t1,t2a,t5b,t7c

p t0 t9 t0,t1,t2a,t5b,t9a
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(which is x ¼ 1) implies the disjunction of the

preconditions of tc1 and tc2 (which is x < 4), it is

necessary to have subpath ðtb; tcÞ. Similarly, it is

necessary to have subpath ðtc; tbÞ. Accordingly, we

added three unconditional paths P1; P2; and P3 to

generate a final EEFSM as shown in Fig. 12(c).
Where the conditional transitions have simple

arithmetic operations, a minimal number of paths

satisfying those requirements can easily be con-

structed. After the final transformed EEFSM is

built, test cases satisfying the all-uses criterion can

be generated in a straightforward manner. In the

transformed EEFSM, we may have more states

and transitions but still have the same number of
distinct du-pairs. Some test cases generated from

the transformed EEFSM may be longer than the

minimized test cases generated from the complete

EEFSM because in the transformed EEFSM,

some fixed paths are used. However, the difference

in length between the two is less than the number
of the transitions constructing the fixed path and

the number of test cases is identical.

6.3. An example

We generate test cases satisfying the all-uses

criterion for the PEEFSM of the Initiator process

shown in Fig. 9. The PEEFSM has 10 conditional
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transitions which were well-structured loops in the

NF-EFSM. Using the transformation algorithm

given in the previous subsection, those condi-

tional transitions are transformed to uncondi-

tional paths as follows. Transitions t3a and t3b,
starting from the state wait1 are transformed
to a path ðt3a; t3b; t3c; t3dÞ if the only uncondi-

tional path T1 ¼ t1 going to wait1 is considered.

Note that every path going to sending2 sets the

relevant control variable counter to 0. Then we

construct the minimal number of paths satisfying

the requirements as follows. Although there are

unconditional transitions t14b and t62a starting from

sending2, there is no path starting from that state
where the guard variable counter is used without

being re-initialized previously. Therefore, we ad-

ded no path at Step 3. Both t7b and t9b have to be

executed three times to satisfy the preconditions of

t7d and t9d respectively. At Step 4, therefore, the

paths have to be composed of the concatenation

of four transitions by combining those transitions.

At least one of the paths must start with t7 and at
least one must start with t9. At least one path must

end with t7 and at least one must end with t9. The
paths must also contain each subpath composed

of the concatenation ðt7; t7Þ, ðt9; t9Þ, ðt7; t9Þ, and

ðt9; t7Þ. We construct two unconditional paths

ðt9a; t9b; t7a; t7bÞ and ðt7c; t9c; t7d ; t9dÞ for those con-
Table 3

A set of complete paths satisfying all-uses criterion in the

transformed EEFSM of Initiator process

P1 t0, t1, t12a
P2 t0, t1, t3a, t3b, t3c, t3d , t4
P3 t0, t1, t3a, t3b, t3c, t3d , t2b, t13b
P4 t0, t1, t3a, t3b, t3c, t3d , t12b
P5 t0, t1, t2a, t5b, t14b
P6 t0, t1, t2a, t5b, t9a, t9b, t7a, t7b, t8b
P7 t0, t1, t2a, t5b, t9a, t9b, t7a, t7b, t10b
P8 t0, t1, t2a, t5b, t9a, t9b, t7a, t7b, t14d
P9 t0, t1, t2a, t5b, t9a, t9b, t7a, t7b, t62b, t13a
P10 t0, t1, t2a, t5b, t7c, t9c, t7d , t9d , t8b
P11 t0, t1, t2a, t5b, t7c, t9c, t7d , t9d , t10b
P12 t0, t1, t2a, t5b, t7c, t9c, t7d , t9d , t62b, t13a
P13 t0, t1, t2a, t5b, t62a, t5a, t7g, t9g, t7h, t9h, t8a
P14 t0, t1, t2a, t5b, t62a, t5a, t7g, t9g, t7h, t9h, t61b, t13b
P15 t0, t1, t2a, t5b, t62a, t5a, t9e, t9f , t7e, t7f , t61b, t13b
P16 t0, t1, t2a, t5b, t62a, t5a, t61a, t5b, t62a, t5a, t14
P17 t0, t1, t2a, t5b, t62a, t5a, t61a, t5b, t7c, t9c, t7d , t9d , t8b
P18 t0, t1, t2a, t5b, t62a, t5a, t61a, t5b, t9e, t9f , t7e, t7f , t10b
ditional transitions. Note that here the labels for

the copies of t7 and t9 are not intended to corre-

spond to those in Fig. 9. For the transitions

t7a; t9a; t7c, and t9c, we construct two unconditional

paths ðt9e; t9f ; t7e; t7f Þ and ðt7g; t9g; t7h; t9hÞ similarly.

The final transformed EEFSM of Initiator process
is shown in Fig. 13.

All the feasible definition-clear paths for all the

du-pairs of the NF-EFSM are derived as shown in

Table 2. Those for the input parameters are left

out for simplicity because they are defined and

used in the same transition.

From the derived definition-clear paths for all

the du-pairs, a set of feasible complete paths sat-
isfying the all-uses criterion in the transformed

EEFSM is generated as shown in Table 3.
7. Conclusions

This paper has considered the problem of test-

ing a state-based system based on a specification in
a formal language. The approach applied has two

phases. In the first phase the specification is

transformed into a normal form extended finite

state machine. This phase has been developed for

SDL. In the second phase, the NF-EFSM is

transformed in order to reduce or eliminate the

infeasible path problem in order to aid testing.

Splitting the process into these two phases aids
generality: in order to extend the approach to

some other specification language it is sufficient to

define a mapping from that language to NF-

EFSMs.

When the output of the second phase is

an Expanded EFSM, all paths in this EEFSM

are feasible. Test generation may then be based

around choosing an appropriate set of paths which
guarantee that the test criterion is satisfied, and

then finding test data to exercise these paths.

In some cases the EEFSM will be too large and

instead the second phase terminates with a par-

tially expanded EFSM. Where this is the case, test

generation is more complex. However, the PEE-

FSM may be further transformed on the basis of

the test criterion used: the further expansion is
targeted at elements of the test criterion that are

not currently satisfiable using unconditional tran-
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sitions. This paper has given such a transformation

algorithm, for the all-uses criterion, that operates

under certain conditions. Future work will con-

sider alternative conditions and corresponding

transformation algorithms.
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