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Abstract

This paper reports the results of a study undertaken to determine the suitability of CASE tools and formal methods for systematic, rapid

generation of functional test cases. In particular, the study involves the use of Message Sequence Charts (MSCs) [International Telecom-

munications Union (ITU-T), Recommendation Z.120: Message Sequence Charts, revised 1996], Speci®cation and Description Language

(SDL) [International Telecommunications Union (ITU-T), Recommendation Z.100: Speci®cation and Description Language, revised 1996]

and Tree and Tabular Combined Notation (TTCN) [International Standards Organization (ISO), OSI Conformance Testing Methodology and

FrameworkÐPart 3: The Tree and Tabular Combined Notation, International Standard 9646-3, 1992] and the use of the Telelogic Tau tool

set [Telelogic Tau tool set, version 3.3, Telelogic AB, Malmo Sweden] which supports all three of these languages. q 2001 Elsevier Science

B.V. All rights reserved.
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1. Introduction

The primary objective of the study was to generate func-

tional tests for a telephone switching system from a set of

user requirements. In an industrial environment, it is unli-

kely that a fully complete and correct set of requirements

will be available before developing software. Usually, there

is an initial set of requirements, and some development

work is done using scenarios developed from those require-

ments as a starting point. As a result of the ®rst phase of

development work, modi®cations are often made to the

requirements. Aside from uncovering errors in the ®rst

version of the requirements, the consideration of excep-

tional cases may lead to new scenarios being developed.

Thus, an initial prototype may lead to additional or modi®ed

requirements.

After a ®rst version of the software is released, developers

repeat the whole process for the next version of software,

which undoubtedly will have additional features requested

by customers. Recommendations for improving the soft-

ware development process have to take into account that

much of industrial software development is inserting new

functionality into existing code.

Hence, we wanted to replicate this iterative and incre-

mental process in our study. Fig. 1 shows the process that

we followed. We are taking a scenario-based approach,

where the scenarios are captured as use cases in Message

Sequence Charts (MSCs) [1]. From an initial set of MSCs,

we developed an executable SDL model [2]. This allowed

us to simulate and validate the model. Simulation allows us

to execute the model interactively, and observe that it

behaves as expected. Validation allows us to explore the

state space of the model to detect properties such as dead-

locks, and unspeci®ed message receptions. Building the

SDL model also enabled us to produce new scenarios that

were added to our set of MSC use cases. Once we were

satis®ed with the model, we then proceeded to generate

abstract TTCN test cases [3] based on the use cases.

A secondary, but equally important objective was to

demonstrate the ability of our ªfast to text/®rst to testº

approach to dramatically compress the test cycle, and so

to improve the time-to-market of the corresponding product.

The advantage of our approach is that it is no longer neces-

sary to convince design engineers of the merits of a formal

description technique. Instead, the test designers are able to

use it at the beginning of the development process so that
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designers have scenarios coded as use cases in MSC form to

validate their designs, often before any code is generated.

This provides a cost-effective infrastructure for scenario-

directed design.

A tertiary objective was to demonstrate to designers the

value of using an FDT-based representation method

supported by an industrial-strength (scalable) CASE tool

set. Eventually, if designers see the cost-effectiveness of

this more formal approach, they will adopt it. We witnessed

that testers already know its value.

During this study, functional tests for a basic call, plus

calls using four call processing features were derived. Two

different models of phone sets were used: a basic set, and a

set with an alphanumeric display screen and various lamps

and feature keys. By employing the CASE tool coverage

analysis features, coverage of all reachable transitions was

ensured. Overall, we were able to relate the coverage of all

reachable transitions to the generation of high quality func-

tional test cases in a reduced time interval.

As an additional outcome of the study, we have identi®ed

recommendations for enhancements to the languages and

tools used in the study. We have also developed and applied

some productivity measures that support the cost-effective-

ness of this approach.

1.1. Related work

Doldi et al. [5] assess the combined use of MSCs, SDL,

and TTCN for generation of abstract conformance test

suites. Their work focuses on conformance testing. Grabow-

ski et al. [6] provide details on the development and use of

the Telelogic ªAutolinkº tool[4], and its use to validate

protocols for ETSI and Ericsson. They show how various

features of the tool were driven by needs for particular

aspects of validation. In a separate report [7], the results

are applied to the testing of the B-ISDN SSCOP protocol,

and some productivity results are provided. A report by

Schmitt et al. [8] focuses on generating conformance tests

using the Telelogic Tau ªAUTOLINKº facility, and gives

results on its performance. Kerbat et al. [9] provide a corre-

sponding report for the development and use of the TVEDA

and TGV tools that are integrated in ObjectGEODE.

Kahlouche et al. [10] conducted an experiment to generate

conformance TTCN tests for a cache coherency protocol.

This study used both MSCs and TTCN, but did not use any

formal description technique to capture a test model in the

sense that we used SDL. Monkewich [11] proposes the use

of a veri®cation and validation process based on SDL that

spans the industrial product cycle from design through to

®eld deployment of a protocol-based implementation,

although requirements analysis is not included. Additional

experience reports for conformance testing of various proto-

cols using MSCs, SDL, and TTCN are available in Cavalli

et al. [12], and PeÂrez et al. [13].

Feijs et al. [14] applied a systematic approach to service

testing (using PSF [15]) that considered the effect of a

service testing architecture the generation of a TTCN test

suite. Most of their work is a manual application of the

process, with limited automation between process

stages. Anlauf [16] has also tried using TTCN for test-

ing of services, using a manual approach. Fischbeck

[17] has used SDL in speci®cation and validation of

ISDN layer 3 protocols for narrowband and broadband

ISDN. This study determined that SDL provides

adequate support for the composition of large speci®ca-

tions, and that there are dif®culties to extend signals,

data, and transitions in derived speci®cations. Karoui et

al. [18] have investigated how to structure an SDL

speci®cation to improve testability. The objective is to

enhance the observability and controllability of an

implementation, so that it can be more easily checked

using data ¯ow testing methodologies.

Our work differs from the above work in that we used

TTCN for functional testing instead of conformance testing,

and that we have spanned the entire process from require-

ments analysis through to test case generation by using

SDL, MSC, and TTCN, and applied it in an industrial

setting. Lai [19] discusses the gap between academic

research, and the use of advanced test technologies in the

communications industry, and we hope to contribute to clos-

ing that gap.

1.2. Organisation of this paper

This paper is organised as follows. In Section 2, we give

an overview of the study and comment on the distinction

between functional and conformance testing. Next, we

describe some of the features of the Telelogic Tool set, as

they pertain to our study. We then describe details of the

process that we used during the study. In Section 3, we ®rst

provide our productivity results as a guide to developing an

estimation strategy for the future. Next, we provide an

assessment of the languages and methodologies. We

also discuss the effects of exceptions, transient states,

and race conditions on this process. In Section 4, we

comment on our experience with the particular tool set

that was used. Finally, in Section 5, we present some

conclusions and further work.
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2. The study

2.1. Overview of the study

1. We started with system documentation intended for a

customer of Mitel. We also had ®ve sample English

language test scenarios.

2. From the initial information, we created six MSCs

manually (see Appendix A for an example). One MSC

use case is for a basic call; four MSC use cases represent

ªnormalº scenarios for the use of each feature of inter-

est: call forward, call back, call transfer, and conference

call; and the last MSC use case includes a combination

of these features.

3. We then manually developed two SDL models. Both

models contain the basic call functionality. One model

has feature functionality added, while the second model

had set-speci®c information for a feature-rich phone set.

The models are ªtest modelsº in the sense that they are

not intended to model the entire system implementation.

That is, our models were not created with the intention

of eventual code generation. Instead, they contain all

externally visible system behaviour, plus enough inter-

nal behaviour so that the model is executable. See

Appendix B for an example.

4. Once the SDL models are developed, they are veri®ed

using the Tau SDL simulator. The SDL models are

compiled and executed interactively or from scripts.

Tau can produce an MSC that records the simulation

execution (see Appendix C for an example). We

checked that the resulting MSCs were consistent with

the original requirements MSCs. We also tried other

exceptional scenarios to see if our test model would

react properly in these situations.

5. The Tau SDL validator was invoked, to look for situa-

tions such as deadlocks, unspeci®ed message recep-

tions, etc. This step is automated.

6. With the veri®ed SDL test models, we performed cover-

age-based test generation (described in more detail in

Section 2.7). The result was a set of test MSCs that

achieved transition coverage of each SDL models.

7. Our ®rst method of generating tests was to use the

MSCs from step 6 as a guide for interactive test genera-

tion using the TTCN link tool. This turned out not to be

practical except for the simpler of the two SDL models.

8. We used the Autolink and the set of test MSCs from step

6 to generate TTCN dynamic behaviour scenarios. The

MSCs are validated as part of this process.

9. At this point, we examined the TTCN test cases to

determine a set of test steps that are common among

various test cases. Test step MSCs were selected manu-

ally from the MSCs used in step 6, and then entered in

the MSC editor using cut and paste. (The results are

shown in Appendix D). Then, the Autolink test genera-

tion process was rerun to use our library of test steps.

The resulting test cases were much more readable and

modular (see Appendix E for an example). The modu-

larity of the test steps also allows for substitution for

different versions of the feature functionality. For exam-

ple, a test step that goes offhook and checks for dial tone

on a basic phone can be substituted by a test step that

checks various lamps and screens on a feature-rich

phone. We found that a test step usually corresponds

to a single SDL transition from the model, as the transi-

tion is executed as a unit in multiple test cases.

10. The Autolink output was imported into the ITEX tool.

The TTCN link tool automatically generates a set of

declaration tables, and the Autolink output provides

the dynamic behaviour and TTCN constraint values.

2.2. Functional vs. conformance testing

In this study, our objective was to generate functional

tests rather than conformance tests. Conformance testing

typically concentrates on the exchange of protocol messages

both for their expected sequence and content. The goal is to

verify system interoperability by conformance to a standard.

The goal of functional testing is to take a user's view of the

system, and check that customer requirements have been

met. In particular, the actions and reactions of the system

are considered from the user's viewpoint, to ensure that the

system behaves as the user expects.

There is a distinction to be made between taking a ªcusto-

merº viewpoint and an ªend userº viewpoint in functional

testing. While the direct customer of a telephone switch

manufacturer is a company that offers telecommunications

services, the end user is someone who makes phone calls. In

our project, we took the ªend userº view, and considered

only the actions of the switch as could be controlled or

observed from a phone. If we were taking a ªcustomerº

viewpoint, we also would have modelled and checked the

behaviour of the operations and maintenance console for the

switch.

These goals are re¯ected in the speci®c types of actions

taken during testing, and reactions observed from the

system under test. A functional test action might be to go

off hook on a phone set. The corresponding conformance

test action would be to construct and send a protocol

message to the telephone switch as a result of going off

hook. Similarly, a functional testing observation would be

to check that the dial tone is heard, and various lamps and

displays on the phone are updated. The corresponding

conformance testing observation would be to check the

exact sequence and data format of messages that are sent

to the phone as a result of going off hook.

Functional testing also includes the detection of the

presence and absence of persistent events. When taking a

phone off hook, the dial tone should not only be started, but

it should remain on until the user has dialled the ®rst digit.

Then, it should be turned off. We should be able to check
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that the dial tone is on at any time during the appropriate

interval, and that it is off afterward.

It should be stated that both functional and conformance

testing are necessary. Functional testing is more indirect

with respect to the system under test, in that we are using

a phone to construct the protocol messages. With confor-

mance testing, we would construct our own messages

(correct, or not), and send them directly to the system

under test. Conformance testing is to detect that the

exchange of protocol messages is correct and robust with

respect to a standard. Functional testing is to con®rm that

the system behaves as according to customer or user

expectations.

2.3. Overview of the Telelogic Tau tool set

For the purposes of this study, we used the Telelogic Tau

tool set, version 3.3. Some of the tools contained within Tau

are:

² The ORGANISER, for keeping track of user ®les.

² SDT, for working with SDL, the Speci®cation and

Description Language.

² ITEX, for working with TTCN, the Tree and Tabular

Combined Notation.

² An editor for working with Message Sequence Charts

(MSCs).

SDT has a number of sub-tools included within it:

² An SDL graphical editor, for creating and modifying

diagrams.

² An analyser, which checks the syntax and semantics of

the SDL, and converts the SDL to or from the SDL PR

(phrase representation) text format.

² Various code generators, for generating C or C11
code.

² A simulator, which provides interactive execution of an

SDL model. The user can observe progress through the

SDL diagram, or record execution using an MSC.

² A validator, that can perform an exploration of the

potential state space of an SDL model. Situations

such as deadlock, unspeci®ed message receptions,

or values out of range can be detected. The user

can also trace a path through the state space and

have the path recorded as a TTCN behaviour and

constraint description using the ªAutolinkº facility.

This can be passed through to ITEX for generation

of a complete TTCN test suite.

² A coverage tool, which can report on transition coverage

(that is, coverage of state-input signal combinations), and

symbol coverage (that is, coverage of decision branches

within transitions), achieved using either the simulator or

validator tools.

ITEX includes a TTCN test suite editor, syntax and

semantics analyser, a test case execution simulator, and

executable test generators.

SDT and ITEX can be linked in several ways:

² A ªlinkº ®le can be generated by SDT, that ITEX uses to

generate all of the declaration tables (for example, signal

names, points of control and observation, etc.). This link

®le can also be used to synchronise SDT and ITEX for

stepping interactively through a path in the SDL, and

having it recorded as a TTCN test case.

² A path generated by the validator Autolink facility can be

merged into a TTCN test suite contained in ITEX.

2.4. Construction of MSC use cases

Before constructing MSC use cases from the given set of

scenarios (written in English), a test architecture, which

takes into account the nature of the tests and test environ-

ment, must be determined. Because we are taking an end

user view, functional testing of a telephone switch is neces-

sarily an indirect process. In our study, we determined that

the functionality of interest was that the interaction between

a phone set and a switch exhibited the correct behaviour

when using a phone. Therefore, our test actions will be to

take the phone on or off hook, and press keys on the set. Our

test observations will consist of observing the lamps,

displays, and detecting the tones produced by the phone

speaker in the handset.

Another element of indirection comes from the nature of

telephone calls. If we are interested in observing that an

incoming call works properly on our phone set of interest,

another phone must be used to stimulate the switch to

produce the incoming call noti®cation. Fig. 2 illustrates

these situations.

Eventually, what is described in Fig. 2 as ªtest toolº

commands or responses has to become TTCN send and

receive commands to execute tests in the automated execu-

tion environment.

The particular environment, for which the test cases are

targeted, has a TTCN compiler with an ªadaption layerº that

contains information about the speci®c protocol implemen-

ted in the system. That is, the adaption layer converts TTCN

messages to speci®c commands that will drive the protocol

interface to the system under test. Fig. 3 illustrates this

architecture.

The result, from the test case perspective, is that the adap-

tion layer de®nes the legal set of TTCN messages that we

are allowed to use. Therefore, our TTCN test cases must use

those same message names and formats to work with the

automated test execution environment. Since we are gener-

ating the TTCN tests automatically with a tool from an SDL

model, this in turn means that the SDL model must also use

these exact same message names and formats. Fig. 4 shows

this correspondence.

This correspondence goes one step further when MSC use
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cases are used to drive the test generation tool to produce

TTCN test cases automatically. The names of the messages

in the MSC use cases must also correspond with those in the

SDL model, at least at the boundary between the environ-

ment and the system.

MSCs were used as a means of capturing scenarios as use

cases. MSC use cases are excellent for review purposes, as

customers easily understand them. We used the MSC use

cases to con®rm that we had correctly captured scenarios.

The ®rst MSC use case we produced was for a basic normal

call. Fig. 5 shows the type of MSC use case produced for a

basic normal call. We refer to this type of MSC as a

ªrequirements MSCº, as in Appendix A.

Later, we also captured four call processing features, to

determine how dif®cult or easy it is to add functionality

incrementally. The MSC use cases that are produced are

ªsystem levelº MSC use cases in that they capture only

the interactions between the system and the environment.

For our functional testing viewpoint, this means capturing

the interactions between a user and the various phones used

in making phone calls. In particular, the automated execu-

tion environment would take on the role of all the phones,

and therefore we are capturing the interactions between the

test environment interface and the user.

Because the system level MSC use case exactly captures

the commands that we need to send to the automated test

execution environment, it can also be used as a basis to drive

the automated execution of TTCN tests. Each message in

the MSC use case in Fig. 5 was converted into a TTCN send

or receive command by the test generation tool.

2.5. Creating the SDL models

In this study, we developed several iterations and versions

of SDL models. For testing purposes, the SDL models are

not intended to replicate the entire system behaviour of the

switch and phone sets. Instead, each model re¯ects the goals

of requirements capture, and of testing those requirements.

It is possible that the models we produced could be used as

inputs to the detailed design process for further re®nements,

and to include behaviour that is internal to the system.

It was observed that for functional testing, a model should

include:

1. the functionality to be tested;

2. additional behaviour extending to points of control and

observation, for test tool commands;

3. enough internal behaviour to execute the model.

The model does not need to include internal behaviour of

the system that cannot be observed by test equipment, and is

not part of the protocol.

The ®rst version was to produce a model for telephone
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calls with no additional features. While our original MSC

use cases only describe a successful call, once this is

captured in the model, we can start to ask ªwhat if¼?º

questions to examine possible alternatives and exceptions.

This is extremely important because it is likely that the

software development team will implement normal scenar-

ios correctly. It is the exceptional cases where errors are

most likely to be found during testing phases. Therefore,

to produce effective, high-yield tests, we must build excep-

tions into our model. The state-oriented nature of SDL

allows the model builder to systematically ensure that, for

example, incoming calls have been accounted for in every

single state.

Once we had created a model of telephone calls with no

extra features, we developed two more versions of SDL test

models. One was to determine how dif®cult or easy it was to

add additional call-processing features. In essence, this is

adding to the functionality of the telephone switch. Our

second additional model was to investigate adding to the

functionality of the phone set. That is, we added features

such as a display screen, additional function keys, and

multiple lamp indicators. This still impacts the functionality

of the switch, as the switch has the responsibility of control-

ling the operation of these additional features on the phone

set. See Appendix B for an example of this model.

By using Telelogic Tau's simulated execution facility,

the user can interact with an SDL model, and view

execution graphically. The user can record the execution

as an MSC, and inspect the resulting MSC (henceforth

called the execution MSC) for anomalies. The execution

MSC can also be compared against the equivalent require-

ments MSC to see if it is consistent. This allows the model

builder to con®rm that the model correctly implements the

initial requirements. See Appendix C for an example of an

MSC produced by simulating the SDL model.

The requirements MSCs and the execution MSCs are not

identical though (refer to Appendices A and C). They should

be consistent in the exchange of messages between the

system and environment. But they can differ because of

extra information that results in building the SDL model.

The SDL model contains states and these are automatically

inserted into the execution MSCs. Timers are incorporated

into the SDL model, and their setting, expiry, and cancella-

tion appear in the execution MSCs. Also, we found that

what was originally envisaged as two original messages

were consolidated into a single message with parameters

in the execution MSCs. Finally, the execution MSCs contain

architectural information inside the system, including inter-

nal messages sent between system components. Fig. 6

shows an example of an execution MSC that highlights

differences from the corresponding requirements MSC.

2.6. Validating SDL models using state space exploration

We also checked the SDL models using the state space

validation tool in Tau. The validator checks for deadlocks,

unspeci®ed receptions, and can determine the consistency of

an MSC with the SDL model. The output from the tool for

any anomalies consists of a description of the problem
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found, and an MSC use case that describes what had

happened up to the point when the problem was discovered.

In our study, we ran the validator on our SDL models, and

found that an unspeci®ed reception turned out to be an error

in our SDL model of the call back feature (illustrated in

Fig. 7). The feature is activated after a called party did not

answer a call. It seems that we forgot to have the feature

activation terminate the ringing of the called phone. The

(still ringing) phone was later answered, but the ªanswer

indicationº reception was unspeci®ed at the caller.

R.L. Probert et al. / Computer Communications 24 (2001) 374±393380
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2.7. Coverage-based test generation

The test cases are constructed using a transition coverage

based approach, based on Telelogic Tau's transition cover-

age tool that counted the number of times that a transition

was executed. The tool provides a graphical display of the

set of states within the SDL model. The set of possible

inputs for each state is shown in a tree format. The inputs

are shaded if they have been covered at least once, and are

clear if they have not been covered (refer to Fig. 8). The

numbers below the SDL input symbols show how many

times each transition had been taken.

We started by creating a test case representing a normal

call. We used the coverage tool to display the coverage

achieved by this scenario. In our model, a normal call

achieves about 30% transition coverage.

The strategy was then to choose a ªtargetº state and input

combination, and attempt to create a TTCN test case that

results in covering this particular transition. Fig. 8 shows an

example of a coverage report produced during this process.

After the new TTCN test case had been created, its coverage

information would be merged with prior results, to get a new

view of the current level of coverage. This process was

repeated until all reachable transitions were covered (Fig. 9).

While we use transition coverage of the SDL models as a

coverage metric, we also ensure that the test for each transi-

tion is of a functional nature. That is, the test preamble for a

particular transition is chosen to represent how a user would

®nd themselves in a situation where the transition in the

model would be executed. The same is true for the postam-

ble. The result is a realistic scenario from the user's view-

point, and therefore it is a functional test. While transition

coverage of the SDL model may not be suf®cient for

complete functional coverage, it is certainly necessary

because our model is originally based on user requirements.

The coverage-based approach gave us a series of test

cases that concentrates on exceptional cases. Of the eighteen

test cases we generated for call processing with no features,

there are ®ve cases where timers expire, three cases where

the caller aborts before connecting, one call to a non-exis-

tent number, and eight cases where incoming calls are

rejected with a busy signal.

The coverage-based approach also highlights situations

where it may not be possible to create a reliable test case,

due to transient states or race conditions.

A transient state is one that, from an external view of

the system, lasts for a very short interval. In our SDL

model, ªCall Proceeding,º is a transient state. This state

occurs just after a calling party has dialled the ®nal

digit. The state lasts only as long as the silent period

between dialling the last digit, and hearing ring back, a

busy tone, or the invalid tone. A connection request is

sent to ®nd out if the called party is free or not. In a

phone system that includes routing outside a switch, this

state may last for a substantial amount of time.

However, in a system consisting of extension lines on

a local switch, the time interval is extremely short.

Nevertheless, this is a distinct SDL state, and therefore

the usual transitions handling the user hanging up, and an

incoming call, should be considered as possible. Causing

this to happen would require extremely ®ne timing toler-

ances on the part of the test environment.
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The other type of ªdif®cultº transition is a race condition.

This is often the result of two messages crossing each other

between the two ends of a call. For example, suppose both

parties hang up simultaneously. The release messages may

pass in transit, or one or the other might arrive ®rst. It is

possible that a call processor might receive a release request

in an idle state. If we allow that a release request might be

delayed in transit, for whatever reason, the other party may

have already started a new call and could conceivably be in

any state. Some of the race conditions could be produced

using the SDT simulator, by sending multiple messages

from the environment before allowing the model to proceed

with execution.

An abstract test case can be created for a situation invol-

ving a transient state or a race condition. However, running

such test cases in practice is usually infeasible. Extremely

®ne tolerances for the timing and control of the test equip-

ment would be required because such test cases involve a

particular sequence of messages that must be sent or

received in a particular order within a short interval. This

interval may not have observable cues to de®ne the suitable

range over which messages can be sent. Furthermore, it is

desirable to have test cases that produce consistent test

verdicts when executed repeatedly. Test cases requiring

tolerances close to the speed of the test equipment may

instead produce variable results over several execution

runs. In test plan documentation, it is useful to note that

an abstract test case for a transient state or race condition

was considered (for completeness), but that an executable

test case could not be created. Therefore, a test manager can

expect that all executable test cases can be run.

Creating reliable test cases for an automated execution

environment that involves either race conditions or transient

states is extremely dif®cult, if not impossible. It requires

extremely ®ne tolerance for timing and control of the test

equipment that is used.

3. Results of the study

3.1. Productivity results

Before presenting our productivity results, it is necessary

to describe how many people were involved and how much

product, tool, and methodology knowledge they had. We

had one product expert working with two students. The

product expert had recently taken courses on the tools and

methods, and one of the students learned these while doing

the project. The other had prior experience with the use of

the tools and methodology, and with telephone switch testing.

During the three months of the project, the students

were able to devote most of their time for two months

to the project, but during one month, the students were

concentrating on other academic work. Fig. 10 shows a

project time line containing the time taken for various

elements of the project (BC� basic call and DP�
display phone).

The real time length of the project was 78 days, which

includes ®ve days for project planning, and 23 days for

project reporting (including metrics collection).

For test case generation using the coverage-based

approach, we have some additional statistics. We found

that it takes a larger amount of time to create the ®rst test

case, but the time interval becomes progressively shorter.

The ®rst test case took 40 min to produce. The shortest

interval to produce an additional test case was only 2 min.

On average, it took about 15 min per test case. The test case

generation was done over a three-day period, as noted in the

above table.

For both the basic call, and the display phone, 18 test

cases were produced to meet the coverage criteria. For the

SDL that integrated all of the features, 51 test cases were

produced to meet the coverage criteria.

We found that while producing a TTCN test case using

the Tau tool is quick, adding test steps (a manual process) is

much more time-consuming. We felt the effort was justi®ed

to produce test cases that were far more readable, and

modular.

These productivity results compare very favourably with

the internal Mitel average in terms of time. In addition, the

test cases have a measurable extent of coverage. This

measurement capability enabled a systematic approach to

test development and project management.

3.2. Suitability of the standard languages: MSCs, SDL, and

TTCN

In general, we found that all three of the standard
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languages were suitable to meet our goals. However, the

following issues arose in our study.

3.3. Message sequence charts

1. Enforced system structure. By its nature, an MSC may

enforce a system structure. This is the result of having a set

of de®ned actors among which messages are exchanged.

One could hide the internal structure by having an MSC

that describes only the interaction between the system and

the environment. The validator uses this type of MSC to

generate TTCN test cases. However, this MSC style can

appear to be quite different visually from an MSC that

includes the internal structure. This leads to the next issue.

2. Determining consistency of MSCs. Answering the

question, ªAre these two MSCs consistent?º turns out to

be non-trivial. If two MSCs have different levels of abstrac-

tion, it can be dif®cult to determine if they are consistent.

We found that this step could not be done automatically, and

therefore had to be done by manual inspection.

In situations where some message reordering is permis-

sible, two MSCs may be consistent but not identical. The

use of the MSC 96 ªco-regionº feature could be used to

address this issue.

One important type of comparison is to compare a

requirements MSC with an execution MSC produced during

the simulated execution of the SDL model. However, these

MSCs can appear to be quite different. We found that in the

process of creating an SDL model, we made various design

decisions that were not anticipated at the requirements level.

For example, we initially assumed that there might be sepa-

rately named messages to either accept or reject a connec-

tion request. In the SDL model, we decided to de®ne a

single connection response message, and include a para-

meter that indicated whether or not a connection was

accepted (and if not, why).

Another issue arises if states are included in the

requirements MSC. If they are, the set of states may

change as a result of design decisions. For example, we

had assumed that there would be two distinct states:

ªwait for ®rst digitº, and ªwait for subsequent digitº.

The distinction is that the dial tone has to be turned off

between these two states. However, in the SDL model,

we decided to combine the two states, and use a counter

to keep track of how many digits had been dialled. This

counter was useful in another context, namely, deter-

mining if the ®nal digit had been dialled or not.

However, the execution MSC now has a different set

of states from the requirements MSC.

It is also likely that exceptional conditions, in particular,

time-outs, are also not included in the requirements MSCs.

The starting, expiry, and cancellation of timers are also

actions that may be included in the execution MSCs but

not in the original requirements MSCs.

Fig. 6 shows examples of the differences that we have just

described. The ®gure shows an execution MSC, and high-

lights the attributes that are different from a requirements-

style MSC. In particular, states have been added, and timers

are started and cancelled. Also, where a requirements MSC

would most likely have two actors (ªenvironmentº and

ªsystemº), the illustrated execution MSC shows the system

substructure.

It is apparent that the two types of MSCs could have

considerable variations between them, so determining if

the execution MSC represents a correct implementation of

a requirements MSC is non-trivial, and must be done using a

manual inspection process.

3.4. Speci®cation and description language

We also found that SDL is quite suitable for the capture of

our test models. While it takes longer to learn SDL to the

point where one can produce a syntactically and semanti-

cally correct design, the basics of SDL are easily grasped for

review purposes.

The issues related to SDL that were raised during our

study were:

1. Forced ordering of actions and outputs within a transi-

tion. Inside an SDL transition, there could be a number of

output messages sent. While these messages may be sent to

various locations, it is possible that several messages may be

sent to the same process. On a feature-rich phone set, a

single input event may result in multiple actions.

For example, suppose that a single transition when going

off hook has two outputs to the same phone: one to turn on a

lamp, and the other to update a screen. When a TTCN test

case is generated automatically from this transition, the

result is:

! offhook

? lamp on

? screen update

The dif®culty is that the strictly sequential nature of a

transition in SDL imposes an ordering on the sending of

the messages to the phone set. For user oriented functional

testing, the order is irrelevant, because the user is only inter-

ested that both results happen within a suitable interval.

When TTCN is generated from this transition, it is assumed

that the two messages would arrive in the order indicated.

However, for the purpose of the test speci®cation, we

really do not want to impose a speci®c ordering on these

events. We do not want to fail the test case if these two

events are detected in the opposite order. All we want to

do is to detect that after we go offhook, the two events

happen in any order.

Furthermore, if the speci®cation is being used as a basis

for the detailed design, and eventual implementation, the

ordering is being imposed as an unnecessary constraint for

the designer. There should be a way to indicate that these

two events must happen during the transition, but that the

designer is free to choose the order. This would allow the
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designer to optimise the implementation for performance,

memory, etc., and still conform to the speci®cation.

2. Single input queues for an SDL process. The semantics

for an SDL model are that each process has a single input

queue. Therefore, if a message with the same name can be

received from two locations, there is no way to determine

the origin of the message. One can use SDL process identi-

®ers, or add message parameters to resolve this dif®culty.

3. Signal routes on which a signal can be both sent and

received. There is a signal routing issue, when a signal route

can both send and receive a signal with the same name. If an

SDL process sends this signal, the user would expect it to be

sent over the associated signal route. This does not happen.

Instead, the process winds up sending the signal to itself.

This is usually not what is intended. The only way to send

the signal out of the process and along the signal route is to

use a TO or VIA clause.

4. Signal routing clauses: TO versus VIA. The set of

connections to the environment determines the set of points

of control and observation to the system. Care has to be

taken so that these connections to the environment are

consistent with how TTCN interprets them. SDL allows

two ways for directing a signal. The user may specify a

particular route or channel, using a VIA clause. Alterna-

tively, the user may select a particular SDL process as a

destination by using a TO clause. However, TTCN only

allows signals to be sent over de®ned points of control

and observation (PCOs). A PCO is the endpoint of an

SDL channel that connects to the environment. Therefore

a TTCN test case can only specify a channel, and not a

process. If the SDL model can only function in simulation

by sending messages using a TO clause, there is no corre-

sponding TTCN construct.

3.5. Tree and tabular combined notation

The use of TTCN of express functional tests was an

unusual use of TTCN, which has primarily been used for

conformance testing. Recently, ITU has opened several new

questions involving extensions to the de®nition, capabil-

ities, and applicability of TTCN and Concurrent TTCN,

including the ability to specify functional testing and perfor-

mance testing. We see our work as contributing to this work

on extending and improving upon the current versions of

TTCN.

The issues with TTCN for the purpose of constructing

functional test suite are:

1. Forced ordering of events. In conjunction with SDL's

forced ordering of events, it may also be that the test envir-

onment may not detect events in the same order as they

occur at the system. For example, if a phone has to have a

lamp turned on, and the screen display updated, it may be

very quick to detect the state of the lamp (on, off, or ¯ash-

ing). Determining and checking the contents of a screen

display may be more time consuming. Therefore, recogni-

tion of events at the test environment may differ in order

from their initiation by the system. For functional testing,

TTCN needs to have a provision to detect a concurrent set of

events. For example, there may be four elements of a phone

to be veri®ed: the audible tone, the main lamp, the screen

display, and the line lamp. It should be possible to declare

that checking the current state of these events is not depen-

dent on any particular order. Instead, they should all occur

within a speci®ed time after the event that initiated them.

Specifying all possible orderings is generally not reason-

able, since this grows at a factorial rate (e.g., ®ve concurrent

events have 120 possible orderings).

SDL considerations aside, TTCN does allow us to expli-

citly provide a number of alternative event orderings. But,

we found that on the phone set with many display features,

there were typically four update messages for each action

performed. Because the number of orderings is factorial,

there are 24 possible orderings of four events. Specifying

each of these every time is not a usable solution.

There needs to be a mechanism in both TTCN and SDL to

specify the following:

! offhook

? screen | main lamp | line lamp | dial tone

where the interpretation is that the events separated by verti-

cal bars could happen in any order, but without intervening

messages and before subsequent actions.

2. Generation of TTCN alternative paths. This point is

related to the last one in that the root cause is that we want to

leave some message orderings unspeci®ed because a group

of them could happen in any order. In this case, we are

discussing the process of generating tests, and how to

account for such unordered events.

We are using MSCs to guide the test generator, but the

MSC contains only a single ordering of possible events

(although the co-region feature of MSC-96 allows multiple

orderings). Using the example from the previous section, if

the MSC happened to have a particular ordering of the

messages to a phone's display screen, the two lamps, and

the tone generator, the test generator needs to recognise that

other alternative orderings are possible. The test generator

typically adds a TTCN ªotherwiseº clause that would cause

the test case to fail if any messages other than the one

desired arrive at any particular time. But, if there are three

other messages that could arrive, and do not represent a

violation of desired behaviour, then this needs to be consid-

ered by the test generator. The TTCN test case that results

should ideally add alternatives that will also lead to a pass

verdict.

The tool we were using overcame part of this dif®culty by

using the state space search mechanism for identifying alter-

natives. However, instead of taking each alternative branch

to its conclusion, if an alternative message arrived, the

verdict of the test case was immediately declared to be

ªinconclusiveº. The result is that we would still have to

generate separate test cases for each possible ordering.
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But, at least with this approach, valid behaviour would not

result in a test case assigning a verdict of fail.

3. Persistent events. There is a question of exactly what

events we should be detecting for the purposes of functional

testing. In our SDL model, we have messages such as

ªdialToneOnº and ªdialToneOff.º The intention is that

after a ªdialToneOnº message occurs, the dial tone does

remain on, and that test equipment can now detect its

presence. Similarly, after a ªdialToneOffº message, we

are assuming that the test equipment can now detect the

absence of the dial tone.

The use of ª-Onº and ª-Offº messages allows for

interpretation as non-persistent message receptions, or the

start of a persistent state. TTCN has the model of non-

persistent message receptions, so our SDL model can be

interpreted as consistent with this approach. However, the

detection of persistent states is an element of functional

testing that TTCN has to be able to handle.

4. Experience with Telelogic Tau

Tau provides two methods of generating TTCN tests. The

ªAutolinkº tool generates TTCN dynamic behaviour based

on an MSC scenario. The ªTTCN linkº tool allows the user

to interactively act as the environment by sending messages

to the system; the tool determines the system responses.

The TTCN link tool also generates all of the TTCN

declarations that can be determined from the SDL model.

This tool must be used for this purpose for either method of

test generation. This type of information includes the names

of messages, the number and type of ®elds for each message,

etc.

4.1. Autolink, and the SDT validator

The Autolink tool is incorporated within the SDT valida-

tor tool. It allows the user to generate the dynamic behaviour

part of a TTCN test case. The behaviour is directed by a

ªsystem-levelº MSC. Essentially, a system-level MSC is the

same as a requirements-level MSC. The particular restric-

tion for a system-level MSC is that there are only actors for

the SDL environment, and for the SDL system. There

should be no system substructure.

Generating the dynamic behaviour is a two step process.

The ®rst step is to verify that the MSC is consistent with the

SDL system. This is done using a state space exploration of

the system. Once the MSC has been veri®ed, then the

TTCN dynamic behaviour and constraints are generated.

If there are valid alternatives at any point in the

dynamic behaviour description, they are added as alter-

nate TTCN branches with an ªinconclusiveº verdict. A

default table is set up so that any invalid behaviour

inconsistent with the MSC will produce a ªfailº verdict.

Only behaviour corresponding exactly to the MSC will

result in a ªpassº verdict.

The following is the type of test case produced by the

Autolink tool, with the state space exploration turned on:

1 initialPartOfNormalPhoneCall

phone1 ! keyFinalDigit

phone1 ? ringbackOn

phone2 ? alertingOn

1 restOfTestCase PASS

phone2 ? alertingOn INC

In this case, the requirements MSC assumes that the caller

will hear the ringing tone before the called party's phone

rings. However, it is equally possible that the called party's

phone may ring ®rst. Because this is not an exact

correspondence to the MSC, the alternative is ¯agged as

ªinconclusiveº.

In using the validator, the most dif®cult aspect was in

running state space exploration. There are three kinds of

explorations available: exhaustive, bit-state, and random

walk. It turns out that exhaustive exploration is not practical

in most cases (see [20] or [21]). The random walk is the

user-friendliest. It asks how many random walks the user

wishes to take through the state space, and how many steps

(i.e., the search depth) to take in each walk. We found the

bit-state exploration the most dif®cult to use. This type of

exploration comes with a large number of parameters that

affect the size of the state space. Despite a good deal of

experimentation, we were unable to ®nd a set of parameters

that would result in a state space exploration that terminated

in a reasonable amount of time, which we arbitrarily

decided to be 10 min. We could turn the state space explora-

tion off during the test generation phase, which resulted in

creating a test path that exactly mirrors the MSC without

considering valid alternatives.

If the state space exploration is turned off, then the

following test case results:

1 initialPartOfNormalPhoneCall

phone1 ! KeyFinalDigit

phone1 ? ringbackOn

phone2 ? alertingOn

1 restOfTestCase PASS

In this case, only behaviour corresponding exactly to the

MSC will be put into the test case. Since the default

?OTHERWISE statement is associated with a ªfailº verdict,

a valid alternative may cause an unwanted test case failure.

On the other hand, this test case is generated instantly.

It also turned out that our state space exploration settings

prevented the generation of test cases that involved transient

states or race conditions. While these sorts of tests are unre-

liable in an actual test environment, we were still forced to

leave these out of our test suite.

If one is running the validator for the purpose of checking

the SDL speci®cation, we were more tolerant of running

explorations for long periods of time. The results were

impressive: we found ®ve bugs in the SDL speci®cation
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that had already been simulated extensively. The validator

searches the state space for deadlocks and unspeci®ed

receptions. We did not have any deadlocks (having timers

in our SDL model took care of that), but we did have a

number of unspeci®ed receptions. In one case, this was

due to the omission of an action that should have been

performed earlier.

We also found several situations that sparked some

debate: the SDL environment could send an offhook

message while a phone was in an offhook state. We had

no message reception speci®ed, since with a working

telephone, one cannot produce this effect. However, we

did not want to go as far as calling this an impossible situa-

tion, in case there might be some sort of equipment defect

that might send two offhook messages without an interven-

ing onhook message. As a tester, one must be sceptical of

claims that a situation will never happen.

The validator provides a navigation tool that allows one

to interactively explore the state space. We found this was a

user-friendly way to interact with the SDL speci®cation.

Care must be taken with de®ning the set of messages that

the environment is allowed to send. For example, if a

message carries two parameters, then for the purposes of

the validator, different values for the parametersÐand

different combinations of valuesÐrepresent messages that

are considered to be different. The greater the number of

message and parameter combinations, the larger the result-

ing state space will be.

When a state space exploration is run, and anomalies are

found, a set of reports is generated. The user can double-

click on a report indication to produce an MSC that illus-

trates how the problem was detected. This is extremely

helpful for identifying and correcting problems.

Overall, we were impressed with the capabilities of the

validator. The only dif®culty in using it is determining an

appropriate set of state space exploration parameters, espe-

cially to balance the extent of the exploration versus the

time required to complete the validation.

4.2. The ITEX TTCN link

The purpose of this facility is twofold. The ®rst is for the

TTCN tool ITEX to read the static system architecture from

the SDL model. The result is that ITEX can automatically

generate the part of the TTCN test suite relating to the static

system architecture. The second purpose is to establish a

communication link between the simulated execution of

an SDL model, and the interactive test case generator.

This allows the user to execute the SDL model interactively,

and record the steps taken as a TTCN test case.

In the ®rst mode, the user can generate automatically the

set of TTCN declaration tables from the SDL speci®cation.

These include de®nitions of points of control and observa-

tion (PCOs) (in SDL, these are connections to the environ-

ment), and the de®nition of protocol data units (PDUs),

which are taken from the SDL signal de®nitions. This

stage is necessary, no matter which method is used to gener-

ate the behaviour descriptions.

The user can also use the link to semi-automatically

generate TTCN behaviour descriptions. The SDL model is

synchronised with ITEX to keep the SDL model in the

equivalent state. Once synchronisation occurs, the user

can interactively supply input from the environment, and

the link will automatically determine the set of valid

responses. The advantage is that the alternatives are gener-

ated without the state space exploration. As long as synchro-

nisation is maintained the alternatives are generated rapidly.

The disadvantage is that synchronisation is either slow (it

needs to be repeated if the user changes anything, including

converting the constraint names to something meaningful)

or impossible.

The SDT-ITEX link produced the following type of test

case:

1 initialPartOfNormalPhoneCall

phone1 ! keyFinalDigit

phone1 ? ringbackOn

phone2 ? alertingOn

1 restOfTestCase PASS

phone2 ? alertingOn

phone1 ? ringbackOn

1 restOfTestCase PASS

This method produces the ªbestº test case of the three

methods, in the sense that all valid branches are explored

to their ultimate end. However, we found that the TTCN

link cannot handle ªlargeº SDL models. For large models,

the Autolink method had to be used instead.

4.3. Comments on the two test generation methods

Of the two test generation methods, the Autolink method

appears to be superior, because it could handle larger

models beyond the capability of the TTCN link. Even with-

out the state space exploration, the Autolink can still gener-

ate useful test cases extremely quickly, although the quality

of the test cases is improved when the state space explora-

tion is on. However, the TTCN link is still required for

generating the declaration tables. For this purpose only,

we did not reach any limitations on the size of the SDL

model.

There is one item that should be added to the test cases

generated by either method. When a path goes through a

state space node where a timer expires, the interval for the

timer does not make its way into the test case. For example,

in a test case where the user goes offhook, and expects to

eventually hear an announcement, the behaviour appears as

follows:

phone1 ! offhook

phone1 ? dialToneOn

phone1 ? dialToneOff

phone1 ? announcementOn
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Between the line where the dial tone is on, and the dial

tone is off, the offhook timer is expected to expire. There is

no indication in the test case that we are waiting for a timer,

which could be approximately 30±60 s long. Furthermore,

the automatic default table states that if any message is not

received before a time-out, the test case should be termi-

nated with an inconclusive verdict. (This is the default, but it

can be easily changed to ªfailº.) Furthermore, if the dial

tone goes off before we expect, this would not be caught

in this test case. A test case timer should be inserted for any

SDL timer expiration, but this is included in neither the

Autolink, nor in the TTCN link.

4.4. From abstract to executable tests

The scope of our study was to produce only abstract TTCN

test cases. However, we did try to keep in mind that the

eventual goal is to produce executable tests. In particular,

we tried to ensure that we did not do anything that would

knowingly increase the dif®culty of converting the abstract

tests to executable tests, for an automated environment where

the TTCN can be compiled and executed. In particular, we

were concerned about the actual test commands available in

the test execution environment. A test execution system has a

restricted set of messages that can be sent or received,

depending on the system or protocol to be tested. From the

point of view of test creation in TTCN, the effect is to ®x in

advance the speci®c set of messages that are allowed.

Therefore, if we propose to generate the TTCN test cases

directly from the SDL speci®cation, it follows that the SDL

speci®cation must use the exact names for signals that are

de®ned by the actual test environment. Alternatively, one

could create a text editing script to substitute the actual

message names for those in the SDL model. This would

be necessary for the TTCN compiler on the test environment

to accept the test suite.

There are also the issues of assigning (using our example)

speci®c phone lines in place of ªphone1º etc. This not only

related to TTCN points of control or observation. In dialling

a phone call, the test case must use the actual digits to call

the other phone. The dial command has to substitute, for

example, ª2102º (an actual extension number) in place of

ª2º (an abstract phone number). Furthermore, the phone

display would read ª2101 CALLINGº instead of ª1 CALL-

INGº. We used the generic command ªdisplayDateTimeº

for an idle phone that displays the current date and time. In

the actual test environment, we would want to check that the

actual correct date and time are displayed.

While the actual conversion of the abstract test suite to an

executable test suite was outside the scope of this study, we

did keep these potential issues in mind.

5. Conclusions

Based on our experience with this project, we have

developed a number of recommendations:

1. Our approach provides a means of considerably

enhancing the productivity of test design engineers. We

were able to generate a correct, value-added, TTCN test

case every 15 min, which is considerably faster than with

a manual approach.

2. Our approach provides a systematic means of improving

the quality of designs. Using the state space exploration

found a bug in the functionality in a model that had

previously undergone extensive simulation. More signif-

icantly, this bug could have been found long before

detailed design, and coding.

3. The process should be integrated with the design process,

so that both designers and testers can take advantage of

having an executable model at an early stage.

4. The correct metrics framework for our project only

became clear towards the end of the project. We believe

that our experience will now allow us to de®ne better

metrics that are usable throughout the process.

A direction we are pursuing is to incorporate an object

model into this process. We noted earlier that MSCs impose

a structure on the system being described. In the software

development process, it is the step of developing an object

model that results in the system structure needed by the

MSCs. In either a legacy environment, or when commercial

off-the-shelf components are used, the system structure will

be strongly in¯uenced by the objects that are already avail-

able. At the same time, the MSCs are an excellent means of

capturing interactions between objects. The integration of

an object model would be helpful not only in a technical

sense, but would also bring the design community into the

process. There are bene®ts for the use of an object model for

test design, which are similar to those for software design.

When design components are assembled, corresponding test

components can be assembled as well to keep the test suite

current. An object model also allows easier modi®cation of

test suites as functionality is added, modi®ed, or removed in

subsequent iterations of the development process.
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Appendix A. Requirement MSC

The following is an example of a ªrequirementsº

MSC. The main property of this MSC is that the only actors

are the environment and the system. There is no system

substructure.

For brevity, it is assumed in this MSC that there are only

two digits in a phone extension number. The ®rst parameter

refers to the phones; phone 1 has the dialling number `11'

and phone two has the dialling number `22'.

Appendix B. SDL model

Here is our SDL model for the call processing part of one

side of a basic phone call, and with various display features

on the phone sets.

The procedure calls on the transitions can be swapped to

change from a basic phone with no features, to one with

several display lamps and a screen.
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Appendix C. Simulation MSC

The following MSC is an example of one produced by simulated execution of an SDL model. It includes system substruc-

ture, timers, and SDL states.
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Appendix D. MSC for test generation, including steps

The following shows an MSC composed of sub-MSCs. An example of one of the sub-MSCs is shown on the right. The sub-

MSCs are used to indicate to the Autolink test generator that a sub-MSC will form a TTCN test step.

Appendix E. TTCN test case, including test steps

The following is a TTCN test case generated by the MSC in Appendix D.
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The following is one of test steps contained above. The test generator creates this table based on the sub-MSC in

Appendix D.
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