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ABSTRACT 

A number of methods have been published to construct checking 

sequences for testing from Finite State Machine-based 

specifications. Many of these methods require the existence of a 

preset distinguishing sequence in the model. In this paper, we 

show that usually an adaptive distinguishing sequence is sufficient 

for these methods to work. This result is significant because 

adaptive distinguishing sequences are strictly more common and 

up to exponentially shorter than preset ones. 

Categories and Subject Descriptors 

D.2.4 [Software Engineering] Software & Program Verification 

– formal methods, validation; D.2.5 [Software Engineering] 

Testing and Debugging – testing tools (data generators, coverage 

testing) 

General Terms 

Reliability, Theory, Verification. 

Keywords 

Model-based testing, finite state machines, checking sequence 

construction, adaptive distinguishing sequences, preset 

distinguishing sequences. 

1. I#TRODUCTIO# 
State-based systems are often specified using Finite State Machine 

(FSM) model or its extensions such as Specification and 

Description Language (SDL) or State-Charts. As a model-based 

testing approach, testing from an FSM has been utilized in a 

number of application domains such as telecommunications 

systems, communications protocols, embedded systems using 

state-based languages, object-oriented systems, web services, 

pattern matching and machine learning. When testing from an 

FSM M it is common to consider a fault model Φ(M) for M 

representing the types of faults that can occur and an 

implementation of FSM M to be tested is taken as an unknown 

FSM � in Φ(M). In order to determine whether a given 

implementation � of M is faulty with respect to M, a checking 

sequence (an input sequence constructed from M by taking into 

consideration Φ(M) the fault model for M) is applied to �. Any 

discrepancy between the expected output sequence and the actual 

output sequence produced by � in response to the application of 

the checking sequence is sufficient to determine that � is a faulty 

implementation of M [1, 2]. 

The methods reported in the literature for constructing a checking 

sequence from an FSM M use a distinguishing sequence [1, 3], a 

set of characterizing sequences [4, 5], or a set of unique 

input/output (UIO) sequences [6, 7]. These methods recognize 

each distinct state in � as a distinct state of M and verify that each 

transition of M is correctly implemented in � [8]. The methods 

that use a set of characterizing sequences or UIO sequences either 

require that there is a reset that is known to have been 

implemented correctly or produce a checking sequence whose 

length is at least exponential in terms of the number of states of M 

and the lengths of the sequences used. 

Among these previous methods, we will consider the ones using a 

distinguishing sequence D of M which is an input sequence for 

which the response of each state of M is distinct. Such methods 

[9, 10, 11, 12, 13] achieve recognition of a state of � as a state of 

M by applying DT (i.e. the distinguishing sequence D followed by 

a transfer sequence T) at that state of � and perform the 

verification of a transition of M from state si to state sj under input 

x in � by 1) transferring � to the state recognized as state si of M; 

2) checking the output produced by � in response to x to be as 

specified in M (to detect an output fault); and 3) recognizing the 

state reached by � after the application of x as state sj of M (to 

detect a transfer fault). Step 3) is realized by applying a DT at the 

state reached by � after the application of x. Step 1) is realized 

indirectly by making sure that the state reached by the application 

of a DT at each state is recognized by applying another D at some 

point in the checking sequence. This facilitates the use of a DT at 

a state such that the state reached by the application of DT is the 

state to which � needs to be transferred (i.e., state recognized as 

the starting state of a transition to be verified).  

For the construction of a checking sequence of an FSM, these 

methods utilize the digraph representation of the FSM and first 

form three sets of paths: set A of state recognition paths which are 

used to recognize each state of the FSM (e.g., α-sequences, α′-

sequences or α-elements in different methods); set B of transition 

verification paths which are used to verify each transition of the 

FSM (e.g., test segments); set C of transfer paths which are used 

to concatenate paths in A and B. Checking sequence generation 

methods place various constraints on the selection of C. Earlier 
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methods use some predefined strategies to reduce the length of 

transfer paths [2, 14]. These strategies do not guarantee that 

transfer paths found yield minimized checking sequences. An 

optimization model has been proposed to solve this problem [9] 

and it is adopted by successive checking sequence generation 

methods [10, 11, 13].  

These methods utilize a preset distinguishing sequence, that is, a 

sequence of inputs which is the same for every state of the FSM 

M. There exists another type of distinguishing sequences, the 

adaptive distinguishing sequences that are rooted decision trees 

where each root to leaf path represents an input sequence that is 

specific to the state represented by the leaf. It has been reported 

that there may not be a preset or adaptive distinguishing sequence 

for every FSM and that to determine the existence of a preset 

distinguishing sequence for a given FSM is PSPACE-complete 

while that of an adaptive distinguishing sequence is of polynomial 

complexity [3]. It has been shown that if an FSM has a preset 

distinguishing sequence, it also has an adaptive one, but the 

converse is not true (see, for example, [3]). In this paper, we note 

that often adaptive distinguishing sequences can be used instead 

of preset ones. We then show that checking sequence construction 

methods utilizing preset distinguishing sequences can easily be 

adapted to work with adaptive distinguishing sequences  leading 

to methods that yield shorter checking sequences and more widely 

useable than when used with preset distinguishing sequences. 

The rest of the paper is organized as follows: Section 2 briefly 

reviews the terminology. Section 3 explains the use of adaptive 

distinguishing sequences for constructing a checking sequence, 

and presents the advantages of their use with respect to using 

preset ones. In Section 4, we review several specific checking 

sequence construction methods and show that they can be easily 

adapted to use adaptive distinguishing sequences instead of preset 

ones. Section 5 concludes the paper. 

2. PRELIMI#ARIES 
We represent a deterministic finite state machine (FSM) M as 

(S, X, Y, δ, λ), where S is a finite set of states with n = |S|, s1 ∈ S is 

the initial state, X is a finite set of inputs with p = |X|, Y is a finite 

set of outputs with q = |Y|, δ is a state transition function that maps 

S × X to S and λ is an output function that maps S × X to Y. These 

two functions are extended to input sequences I ∈ X* in the usual 

manner. A transition from state si to state sj in M is denoted 

tij = (si, sj; x / y).  

An FSM M is considered minimal if, for every pair of states 

si, sj ∈ S, i ≠ j, there is an input sequence I ∈ X*  such that 

λ(si, I) ≠ λ(sj, I). M is considered completely specified, if for each 

input x ∈ X and for each state si ∈ S, δ(si, x) is defined. M can be 

represented by a digraph G = (V, E) where a set of vertices V 

represents the set S of states of M, and a set of directed edges E 

represents all specified transitions of M. Each edge 

e = (vi, vj; x / y) ∈ E, is a state transition from state si to state sj 

with input x ∈ X and output y ∈ Y, where vi and vj are the starting 

and terminating vertices of e (states of t), and input/output (i.e., 

i/o pair) x/y is the label of e, denoted by label(e). G = (V, E) is 

strongly connected, if for each pair of vertices vi, vj ∈ V, there 

exists a path from vi to vj. 

A path P = (n1,n2; x1/y1)(n2,n3; x2/y2)…(nr-1,nr; xr-1/yr-1), r > 1, of 

G = (V, E) is a finite sequence of adjacent (not necessarily 

distinct) edges in E, where each node ni, 1 ≤ i ≤ r, represents a 

vertex of V; n1 and nr are called starting and terminating nodes of 

P, and the input/output sequence (x1/y1)(x2/y2)…(xr-1/yr-1) is called 

label of P. P is represented by (n1,nr; I/O), where I/O is the label 

of P, I = x1x2…xr-1 is called the input portion of I/O, O= y1y2…yr-1 

is called the output portion of I/O. The input portion I of the label 

I/O of path (n1, nr; I/O) will be called the transfer sequence T 

(from n1 to nr). The length of an input sequence I (or input/output 

sequence I/O) is its number of inputs, denoted by |I| (or |I/O|). A 

sequence i1i2…ik is a subsequence of x1x2…xm if there exists ∆, 

0 ≤ ∆ ≤ m–k, such that for all j, 1 ≤ j ≤ k, ij = xj+∆. Subsequence 

i1i2…ik is a prefix of x1x2…xm if ∆ = 0. Subsequence i1i2…ik is a 

suffix of x1x2…xm if ∆ = m–k.  

Let M = (S, X, Y, δ, λ) denote a completely specified, minimal and 

deterministic FSM, which is represented by a strongly connected 

digraph G = (V, E). Let the fault model for M, Φ(M), be the set of 

FSMs each of which has at most n = |S| states and the same input 

and output sets as M. Let � be an FSM of Φ(M). � is isomorphic 

to M if there is a one-to-one and onto function f on the state sets 

of M and � such that for any state transition (si, sj; x / y) of M, 

(f(si), f(sj); x / y) is a transition of �. A checking sequence of M is 

an input sequence starting at the initial state s1 of M that 

distinguishes M from any � of Φ(M) that is not isomorphic to M. 

(i.e., the output sequence produced by any such � of Φ(M) is 

different from the output sequence produced by M). In the context 

of testing, this means that in response to this input sequence, any 

faulty implementation � from Φ(M) will produce an output 

sequence different from the expected output sequence, thereby 

indicate the presence of one or more faults.  

Note that under this definition of a checking sequence we do not 

care about the initial state of � since isomorphism does not 

require that the initial states of M and � correspond. Since we 

wish to apply the checking sequence in the state of � that 

corresponds to the initial state of M we can precede it by a process 

that takes M to its initial state irrespective of its current state. Such 

a process can be produced by starting with a homing sequence [8], 

whose output identifies the current state, and then moving to the 

initial state. If we also wish to find initialization faults, where � 

starts in a different state to M, we should start the checking 

sequence with a distinguishing sequence and a number of methods 

do this (see, for example, [13]). 

As stated earlier, the recognition of each distinct state in � as a 

distinct state of M and verification of whether each transition of M 

is correctly implemented in � are based on distinguishing 

sequences for the methods considered in this paper. A preset 

distinguishing sequence D of M is an input sequence such that the 

output sequence produced by M in response to D is different for 

each state of M (i.e., ∀si, sj ∈ S, si ≠ sj; λ(si,D) ≠ λ(sj,D)). A 

distinguishing sequence D of an FSM M is then used as follows:  

Consider a path P of G representing M and the nodes within it. 

Let Q = label(P). 

1. A node ni of P is recognized in Q as state s of M if  

 a) ni is the starting node of a subpath of P whose label is 

DT / λ(s, DT) for some T or 

 b) (nq, ni; T / λ(s′, T)) and (nj, nk; T / λ(s′, T)) are subpaths of 

P, nq and nj are recognized in Q as state s′ of M, and node nk is 

recognized in Q as state s of M. 

2. A transition t = (sp, sq; x / y) is verified in Q if there is a 



subpath (ni, ni+1; xi / yi) of P such that ni is recognized as sp in 

Q, ni+1 is recognized as sq in Q, xi /yi = x / y. 

A subpath used to recognize a state is called a state recognition 

path for that state. The set of all state recognition paths for a given 

M and a D of M is denoted by PS. A subpath used to verify a 

transition is called a transition verification path for that transition. 

The set of all transition verification paths for a given M and a D of 

M is denoted by PT. Paths used to concatenate 

recognition/verification paths are called transfer paths and the 

input portions of their labels are called transfer sequences. For the 

methods considered in this paper, if this path starts from s1, 

recognizes all states of M and verifies all transitions of M, the 

input portion of this path’s label is a checking sequence of M.  

Several checking sequence generation algorithms are based on the 

following result [9]: 

 

Theorem 1. Let Q be an IO-sequence of M starting at v1 (i.e. the 

label of a path P=(n1, nr; Q) of G). If every edge of G is verified in 

Q then Q is a checking sequence of M. 

3. CHECKI#G SEQUE#CES 
A preset distinguishing sequence is an input sequence that can be 

used to distinguish each state of the model. An adaptive 

distinguishing sequence is not really a sequence but a decision 

tree where each root to leaf path represents an input sequence that 

is specific to the state represented by the leaf. Formally, an 

adaptive distinguishing sequence is a rooted tree θ with exactly n 

leaves; the internal nodes are labeled with input symbols, the 

edges are labeled with output symbols, and the leaves are 

uniquely labeled with states of the FSM such that: 1) edges 

emanating from a common node have distinct output symbols, and 

2) for every leaf of θ, if Di and yi are the input and output strings 

respectively formed by the node and edge labels on the path from 

the root to the leaf labeled by state si of the FSM then 

yi = λ(si, Di). We call Di as the (adaptive) distinguishing sequence 

of state si. The length of the sequence is the depth of the tree [3]. 

Adaptive distinguishing sequences have several core advantages 

over preset ones, while achieving the same purpose of state 

identification. The first and most obvious one is that a preset 

distinguishing sequence is also an adaptive one (for which every 

path from the root to the leaf has the same input portion on its 

label), while the reverse is not true. In other words, if an FSM has 

a preset distinguishing sequence, it has an adaptive distinguishing 

sequence as well, but there are FSMs that have adaptive 

distinguishing sequences but do not have a preset distinguishing 

sequence. That simple fact is important because it shows that if 

we can use adaptive distinguishing sequences instead of preset 

ones in a checking sequence generation method, then the method 

can be used on a strictly larger set of FSMs. 

The second advantage of adaptive distinguishing sequences over 

preset ones is deciding their existence. Current algorithms that 

determine whether a given FSM has a preset distinguishing 

sequence require exponential time [1]. Moreover, this is probably 

unavoidable since it is PSPACE-complete to test whether a given 

FSM has a preset distinguishing sequence [3]. On the other hand, 

to decide whether a given FSM has an adaptive distinguishing 

sequence can be achieved in O(pn log n) [3]. In other words, 

deciding whether a checking sequence generation method can be 

used on a given FSM is at least PSPACE-complete when the 

method is based on preset distinguishing sequences, while it can 

take polynomial time1 when the same method is adapted to use 

adaptive distinguishing sequences (this does not speak about the 

complexity of the method itself). 

The third advantage is the length of the resulting sequence. It is 

known that there are FSMs for which the shortest preset 

distinguishing sequence is of exponential length [3], while an 

FSM that has an adaptive distinguishing sequence has one of 

length O(n2) [15]. What is more, Lee and Yannakakis have 

proposed an O(pn2) algorithm to produce an adaptive 

distinguishing sequence of length at most n(n-1)/2 if there is one 

[3]. Hence using adaptive distinguishing sequences can also 

provide up to exponential reduction on the length of the checking 

sequences. 

These advantages imply that if it is possible to adapt a checking 

sequence construction method to use adaptive distinguishing 

sequences instead of preset ones, then 

1. the method will be useable on a strictly larger set of FSMs 

2. deciding whether the method can be used on a given FSM 

will take polynomial time, while it necessarily uses 

exponential time in the worst case with the preset 

distinguishing sequences 

3. constructing a checking sequence will require polynomial 

time in the worst case, while it required exponential time 

in the worst case with preset distinguishing sequences 

4. the method will yield a checking sequence that is no 

longer than the one obtained when using preset 

distinguishing sequence (since at worst the preset 

distinguishing sequence can still be used) and can in the 

best case yield checking sequences that are exponentially 

shorter than the one produced by the same method used 

with preset distinguishing sequences. 

This shows that if a checking sequence generation method can be 

altered to use adaptive distinguishing sequences, then it should be 

adapted and used in this way. In the following, we show that most 

methods can actually be adapted to use adaptive distinguishing 

sequences, and thus should be used this way. 

3.1 Use of Adaptive Distinguishing Sequences  
The intuition behind the use of preset distinguishing sequences is 

that they are “easier” to use because the input sequence is the 

same regardless of the state the implementation is in. However, 

this is only useful when there are several possibilities for the 

current state of the implementation and we want to identify which 

state it is actually in. When building a checking sequence, it is 

usually not required: the checking sequence should trigger the 

expected output from the implementation, that is, the checking 

sequence assumes that the implementation is at a known state at 

all times (and checks that the implementation indeed reacts as if it 

is in that state). Under these conditions, it is easy to see that when 

building the checking sequence, it is usually possible to replace 

any portion of the sequence that uses a (preset) distinguishing 

sequence with the adaptive distinguishing sequence of the state 

the implementation is supposed to be in. 

                                                                 

1 It will take polynomial time unless some other characteristics of 

the FSM required by the method cannot be decided in 

polynomial time. 



We can summarize this fact by stating that any checking sequence 

construction method that is based on distinguishing sequence and 

that does not use this distinguishing sequence for another purpose 

than state verification can be adapted to use adaptive 

distinguishing sequences instead of preset ones, because the 

checking sequence is built a priori and thus must necessarily 

anticipate the state the implementation should be in. Note that the 

checking sequence itself is still a preset sequence even if it uses 

adaptive distinguishing sequences. 

3.2 A Sufficient Condition  
Before discussing checking sequence generation using adaptive 

distinguishing sequences, it is important to provide an appropriate 

formal basis. Since several checking sequence generation 

algorithms are based on Theorem 1 from [9], one possibility is to 

extend this result to the use of adaptive distinguishing sequences 

and we do this in this section. First we extend the notion of 

recognizing nodes to the case where we are using an adaptive 

distinguishing sequence. 

Consider a path P of G representing M and the nodes within it and 

let θ be an adaptive distinguishing sequence for M. Let 

Q = label(P). 

1. A node ni of P is θ-recognized in Q as state sm of M if  

 a) ni is the starting node of a subpath of P whose label is 

DmT / λ(sm, DmT) and we say that depth(ni) = 0; or 

 b) (nq, ni; T / λ(s′, T)) and (nj, nk; T / λ(s′, T)) are subpaths of 

P, nq and nj are θ-recognized in Q as state s′ of M, and node 

nk is θ-recognized in Q as state sm of M. Here 

depth(ni) = 1 + max{depth(nq), depth(nj), depth(nk)} 

2. A transition t=(sp, sq; x / y) is θ-verified in Q if there is a 

subpath (ni, ni+1; xi / yi) of P such that ni is θ-recognized as sp 

in Q, ni+1 is θ-recognized as sq in Q, xi/yi = x/y. 

We now adapt results from [9] to prove that it is sufficient to 

θ-verify transitions in generating a checking sequence. 

 

Proposition 1. Let Q be an IO-sequence of M starting at v1 and let 

θ be an adaptive distinguishing sequence of M. If every edge of G 

is θ-verified in Q then for every vertex vj of G we have that 

Dj/λ(sj,Dj) is a subsequence of Q.  

 

Proof. By definition, Q is the label of a path P = (n1, nr; Q). Given 

state sj of M, let np denote a node of P with minimum depth that is 

θ-recognized as sj. Note that there must be at least one such node 

since G is strongly connected (hence there is at least one 

transition leaving sj) and every edge of G is θ-verified. If 

depth(np) > 0 then there exist subpaths (nq, np; T / λ(s′, T)) and 

(ni, nk; T / λ(s′, T)) of P such that nq and ni are θ-recognized as 

state s′ of M, nk is θ-recognized as sj and depth(np) > depth(nk), 

contradicting the minimality of depth(np). Thus, depth(np) = 0 and 

so in P the node np is followed by a subpath with label Dj/λ(sj,Dj) 

as required. 

 

Proposition 2. Let Q be an IO-sequence of M starting at v1 (i.e. 

the label of a path P=(n1, nr; Q) of G) and let θ be an adaptive 

distinguishing sequence of M. Let x1…xr-1 be the input portion of 

Q. Suppose that every edge of G is θ-verified in Q and Q is also 

an IO-sequence of M *= (S*, X, Y, δ*, λ*) from Φ(M) starting at 

v1
*. If node ni is θ-recognized in Q as state sj of M then  

λ
*(δ*(v1

*, x1…xi-1), Dj) = λ(δ(v1, x1…xi-1), Dj) = λ(sj, Dj). 

 

Proof. The proof will proceed by induction on depth(ni). The base 

case is depth(ni) = 0. Here, ni is followed by a subpath with label 

λ(sj,Dj) and so the result follows. Inductive hypothesis: the result 

holds for every node of depth less than l and let depth(ni) = l. 

Since depth(ni) > 0 there exist subpaths (nq, ni; T / λ(sm, T)) and 

(np, nk; T / λ(sm, T)) of P such that nq and np are θ-recognized as 

sm, nk is θ-recognized as sj and depth(ni) is greater than depth(nk), 

depth(np), and depth(nq).  

By Proposition 1 we know that M* has n states and θ is an 

adaptive distinguishing sequence for M*. By the inductive 

hypothesis we know that λ
*(δ*(v1

*, x1…xq-1), Dm) = 

λ(δ(v1, x1…xq-1), Dm) = λ(sm, Dm) and λ*(δ*(v1
*,x1…xp-1), Dm) = 

λ(δ(v1, x1…xp-1), Dm) = λ(sm, Dm) and so δ
*(v1

*,x1…xq-1) 

=δ*(v1
*,x1…xp-1) and δ(v1,x1…xq-1) = δ(v1,x1…xp-1). Thus, 

δ
*(v1

*,x1…xi-1) = δ*(v1
*,x1…xk-1) and δ(v1,x1…xi-1) = δ(v1,x1…xk-1). 

By the inductive hypothesis, we have that 

λ
*(δ*(v1

*,x1…xi-1), Dj) = λ(δ(v1,x1…xi-1), Dj) = λ(sj, Dj) and so the 

result follows. 

 

Theorem 2. Let Q be an IO-sequence of M starting at v1 (i.e. the 

label of a path P = (n1, nr; Q) of G) and let θ be an adaptive 

distinguishing sequence of M. If every edge of G is θ-verified in 

Q then Q is a checking sequence of M. 

 

Proof. Let M* be an element of Φ(M) with initial state represented 

by v1
* such that Q is an IO-sequence of M* and let x1…xr denote 

the input portion of Q. By Proposition 1 we know that M* has n 

states s1
*, …, sn

* such that for all 1≤i≤n we have that 

λ
*(si

*,Di) = λ(si,Di). It is sufficient to prove that under these 

conditions we have that for every transition (si, sj; x/y) of M we 

have that (si
*, sj

*; x/y) is a transition of M*; from this we can 

deduce that M and M* are isomorphic. Given transition (si, sj; x/y) 

of M there is a corresponding edge (np, np+1; x/y) of P such that np 

is θ-recognized as si in Q and np+1 is θ-recognized as sj in Q. By 

Proposition 2 we know that λ
*(δ*(v1

*,x1…xp-1), Di) =  

λ(δ(v1,x1…xp-1), Di) = λ(si, Di) and λ*(δ*(v1
*,x1…xp), Dj) = 

λ(δ(v1,x1…xp), Dj) = λ(sj, Dj) and so (si
*, sj

*; x/y) is a transition of 

M* as required. 

 

We have proved a result equivalent to Theorem 1 from [9] that 

gives a sufficient condition for a test sequence produced using 

adaptive distinguishing sequence to be a checking sequence. We 

can thus extend checking sequence generation algorithms that are 

based on this result to allow adaptive distinguishing sequences 

and in Section 4 we explain how this can be done. 

4. THE PROPOSED METHODS 

4.1 The HE#64 Method 
In the method proposed by Hennie [2], henceforth called HEN64, 

the states are recognized in a specific order which takes a 



permutation of states s1 to sn such that a preset distinguishing 

sequence D followed by a (possibly empty) transfer sequence T is 

applied at si and si+1 = δ(si, DT), for all i, 1 ≤ i ≤ n–1, and for 

sn+1 = s1, D is applied. Thus, one state recognition path is formed 

as the only element of PS. Then, the transition verification path for 

each (sj, sk; x/y) is formed by applying a (possibly empty) transfer 

sequence T1 from a state si to state sj-1 and then applying D 

followed by a (possibly empty) transfer sequence T2 to reach sj 

and finally applying xD where si is the terminating state of the 

only path in PS or a transition verification path in PT. 

This method can be adapted to adaptive distinguishing sequences 

[3]. When an adaptive distinguishing sequence is used, then the 

path that will be used to recognize the states will be formed 

exactly in the same manner. The only difference will be that 

instead of DT, DiT will be applied at each state si, where Di is the 

adaptive distinguishing sequence of si. The use of D within the 

transition verification paths will also be replaced by adaptive 

distinguishing sequences. More explicitly, the transition 

verification path for a transition (sj, sk; x/y) will be formed by 

applying a (possibly empty) transfer sequence T1 from a state si to 

state sj-1 and then applying Dj-1 followed by a (possibly empty) 

transfer sequence T2 to reach sj and finally applying xDt where si 

is the terminating state of the only path in PS or a transition 

verification path in PT, and Dt is the adaptive distinguishing 

sequence of the state st = δ(si, x). 

4.2 The UWZ97 Method 
The method proposed by Ural et al. [9], henceforth called 

UWZ97, first forms so called state recognition path candidates as 

concatenations of the application of D followed by a T at each 

state until the application of the last D is a replication of an earlier 

application of D at the same state in the concatenated path. Some 

of these n state recognition path candidates can be a suffix of 

other state recognition path candidates. In fact, a state recognition 

path candidate which is not suffix of another state recognition 

path candidate is taken to be a state recognition path (i.e., an 

element of PS), and is called an α-sequence in [9]. The number of 

α-sequences is therefore k ≤ n. Transition verification paths are 

formed by applying D after the transition’s input. UWZ97 finds a 

shortest sequence containing all α-sequences and transition 

verification paths connected (possibly) by transfer paths.  

When adaptive distinguishing sequences are used, the state 

recognition path candidates will be formed by using the adaptive 

distinguishing sequences of the corresponding states instead of the 

preset distinguishing sequence. In other words, the state 

recognition path candidate for state si will have the label 

Di1Ti1Di2Ti2Di3…Dik, where 1 ≤ ij ≤ n, i1 = i, 1 ≤ j ≤ k, such that 

sij+1 = δ(sii, DijTij). If a state recognition path candidate is a suffix 

of another candidate, then it will be eliminated and the remaining 

candidates will similarly be called as α-sequences. The transition 

verification path of a transition (sj, sk; x/y) will have the label 

xDiTi where si = δ(sj, x). 

4.3 The HIU06 Method 
The method proposed by Hierons and Ural [13], henceforth called 

HIU06, is an enhanced version of the method in [9]. There are 

three main differences between HIU06 and UWZ97. The first one 

is that, while forming state recognition path candidates as 

concatenations of the application of D at each state, HIU06 

permits the application of the last D in the concatenation to be a 

replication of an earlier application of D at the same state not 

necessarily in the same concatenated path. Therefore, some of the 

n state recognition path candidates can terminate once the last D 

in the concatenation is found to be a replication of an earlier 

application of D at the same state in another concatenated path, 

yielding a shorter state recognition path as an element of PS. 

Similar to UWZ97, some state recognition path candidates can be 

a suffix of other state recognition path candidates and hence can 

be dropped when forming PS. The elements of PS formed in this 

manner are called α′-sequences in [13]. The number of 

α′-sequences is k ≤ n. The second difference relates to the 

optimization algorithm used and involves a change that allows 

optimization to occur over a larger set of checking sequences. 

Using adaptive sequences does not have any complicating effect 

on forming α′-sequences. Similar to the case of UWZ97, the state 

recognition path candidate for state si will have the label 

Di1Ti1Di2Ti2Di3…Dik, where 1 ≤ ij ≤ n, i1 = i, 1 ≤ j ≤ k, such that 

sij+1 = δ(sii, DijTij). α′-sequences will be obtained by eliminating 

those candidates that are a suffix of another candidate.  

The third difference between UWZ97 and HiU06 is that, although 

a transition verification path is similarly formed by applying a D 

after the transition’s input, a state recognition path is allowed to 

overlap a transition verification path, as long as the overlap is on 

the entire length of D. The method decides whether this 

overlapping should be used or not while forming the checking 

sequence. When adaptive distinguishing sequences are used, the 

transition verification path of a transition (sj, sk; x/y) will have the 

label xDiTi where si = δ(sj, x). If there is an α′-sequence that starts 

from si, the occurrence of Di at the beginning of this α′-sequence 

may or may not be overlapped with the Di at the end of the 

transition verification path of (sj, sk; x/y).  The method will decide 

this as it tries to optimize the length of the checking sequence 

produced. 

5. CO#CLUSIO#S 
A checking sequence generated from an FSM M is guaranteed to 

lead to failures if the implementation FSM � has no more states 

than M. Many checking sequence generation methods are based 

on the use of a preset distinguishing sequence D that distinguishes 

the states of M, despite the negative computational complexity 

results regarding distinguishing sequences. 

This paper has investigated the use of adaptive distinguishing 

sequences. One of the benefits of using an adaptive distinguishing 

sequence, rather than a preset distinguishing sequence, is that 

there are FSMs for which there exists an adaptive distinguishing 

sequence but no preset distinguishing sequence and the converse 

is not the case. Further, in contrast to preset distinguishing 

sequences, there are polynomial time algorithms that decide 

whether M has an adaptive distinguishing sequence and, if it does, 

generates such an adaptive distinguishing sequence. 

We have argued that when a checking sequence is being 

produced, adaptive distinguishing sequences can be used in place 

of preset distinguishing sequences. In addition, recent checking 

sequence generation algorithms are based on a sufficient 

condition by Ural et al. [9]. We have proved that the 

corresponding result holds for adaptive distinguishing sequences. 

We have also explained how several checking sequence 



generation algorithms can be altered so that they use adaptive 

distinguishing sequences. 

Future work will consider other checking sequence generation 

algorithms. It will also involve implementing these new 

algorithms, that use adaptive distinguishing sequences, and 

evaluating them on FSMs. 
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