
Using Adaptive Distinguishing Sequences in

Checking Sequence Constructions
Robert M. Hierons Guy-Vincent Jourdan Hasan Ural Husnu Yenigun

School of Information Systems,
Computing and Mathematics

Brunel University
Uxbridge, Middlesex, UK

School of Information
Technology and Engineering

University of Ottawa
Ottawa, Canada

Faculty of Engineering
 and Natural Sciences

Sabanci University
Istanbul, Turkey

rob.hierons@brunel.ac.uk {gvj, ural}@site.uottawa.ca yenigun@sabanciuniv.edu

ABSTRACT

A number of methods have been published to construct checking

sequences for testing from Finite State Machine-based

specifications. Many of these methods require the existence of a

preset distinguishing sequence in the model. In this paper, we

show that usually an adaptive distinguishing sequence is sufficient

for these methods to work. This result is significant because

adaptive distinguishing sequences are strictly more common and

up to exponentially shorter than preset ones.

Categories and Subject Descriptors

D.2.4 [Software Engineering] Software & Program Verification

– formal methods, validation; D.2.5 [Software Engineering]

Testing and Debugging – testing tools (data generators, coverage

testing)

General Terms

Reliability, Theory, Verification.

Keywords

Model-based testing, finite state machines, checking sequence

construction, adaptive distinguishing sequences, preset

distinguishing sequences.

1. I#TRODUCTIO#
State-based systems are often specified using Finite State Machine

(FSM) model or its extensions such as Specification and

Description Language (SDL) or State-Charts. As a model-based

testing approach, testing from an FSM has been utilized in a

number of application domains such as telecommunications

systems, communications protocols, embedded systems using

state-based languages, object-oriented systems, web services,

pattern matching and machine learning. When testing from an

FSM M it is common to consider a fault model Φ(M) for M

representing the types of faults that can occur and an

implementation of FSM M to be tested is taken as an unknown

FSM � in Φ(M). In order to determine whether a given

implementation � of M is faulty with respect to M, a checking

sequence (an input sequence constructed from M by taking into

consideration Φ(M) the fault model for M) is applied to �. Any

discrepancy between the expected output sequence and the actual

output sequence produced by � in response to the application of

the checking sequence is sufficient to determine that � is a faulty

implementation of M [1, 2].

The methods reported in the literature for constructing a checking

sequence from an FSM M use a distinguishing sequence [1, 3], a

set of characterizing sequences [4, 5], or a set of unique

input/output (UIO) sequences [6, 7]. These methods recognize

each distinct state in � as a distinct state of M and verify that each

transition of M is correctly implemented in � [8]. The methods

that use a set of characterizing sequences or UIO sequences either

require that there is a reset that is known to have been

implemented correctly or produce a checking sequence whose

length is at least exponential in terms of the number of states of M

and the lengths of the sequences used.

Among these previous methods, we will consider the ones using a

distinguishing sequence D of M which is an input sequence for

which the response of each state of M is distinct. Such methods

[9, 10, 11, 12, 13] achieve recognition of a state of � as a state of

M by applying DT (i.e. the distinguishing sequence D followed by

a transfer sequence T) at that state of � and perform the

verification of a transition of M from state si to state sj under input

x in � by 1) transferring � to the state recognized as state si of M;

2) checking the output produced by � in response to x to be as

specified in M (to detect an output fault); and 3) recognizing the

state reached by � after the application of x as state sj of M (to

detect a transfer fault). Step 3) is realized by applying a DT at the

state reached by � after the application of x. Step 1) is realized

indirectly by making sure that the state reached by the application

of a DT at each state is recognized by applying another D at some

point in the checking sequence. This facilitates the use of a DT at

a state such that the state reached by the application of DT is the

state to which � needs to be transferred (i.e., state recognized as

the starting state of a transition to be verified).

For the construction of a checking sequence of an FSM, these

methods utilize the digraph representation of the FSM and first

form three sets of paths: set A of state recognition paths which are

used to recognize each state of the FSM (e.g., α-sequences, α′-

sequences or α-elements in different methods); set B of transition

verification paths which are used to verify each transition of the

FSM (e.g., test segments); set C of transfer paths which are used

to concatenate paths in A and B. Checking sequence generation

methods place various constraints on the selection of C. Earlier

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.

Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

methods use some predefined strategies to reduce the length of

transfer paths [2, 14]. These strategies do not guarantee that

transfer paths found yield minimized checking sequences. An

optimization model has been proposed to solve this problem [9]

and it is adopted by successive checking sequence generation

methods [10, 11, 13].

These methods utilize a preset distinguishing sequence, that is, a

sequence of inputs which is the same for every state of the FSM

M. There exists another type of distinguishing sequences, the

adaptive distinguishing sequences that are rooted decision trees

where each root to leaf path represents an input sequence that is

specific to the state represented by the leaf. It has been reported

that there may not be a preset or adaptive distinguishing sequence

for every FSM and that to determine the existence of a preset

distinguishing sequence for a given FSM is PSPACE-complete

while that of an adaptive distinguishing sequence is of polynomial

complexity [3]. It has been shown that if an FSM has a preset

distinguishing sequence, it also has an adaptive one, but the

converse is not true (see, for example, [3]). In this paper, we note

that often adaptive distinguishing sequences can be used instead

of preset ones. We then show that checking sequence construction

methods utilizing preset distinguishing sequences can easily be

adapted to work with adaptive distinguishing sequences leading

to methods that yield shorter checking sequences and more widely

useable than when used with preset distinguishing sequences.

The rest of the paper is organized as follows: Section 2 briefly

reviews the terminology. Section 3 explains the use of adaptive

distinguishing sequences for constructing a checking sequence,

and presents the advantages of their use with respect to using

preset ones. In Section 4, we review several specific checking

sequence construction methods and show that they can be easily

adapted to use adaptive distinguishing sequences instead of preset

ones. Section 5 concludes the paper.

2. PRELIMI#ARIES
We represent a deterministic finite state machine (FSM) M as

(S, X, Y, δ, λ), where S is a finite set of states with n = |S|, s1 ∈ S is

the initial state, X is a finite set of inputs with p = |X|, Y is a finite

set of outputs with q = |Y|, δ is a state transition function that maps

S × X to S and λ is an output function that maps S × X to Y. These

two functions are extended to input sequences I ∈ X* in the usual

manner. A transition from state si to state sj in M is denoted

tij = (si, sj; x / y).

An FSM M is considered minimal if, for every pair of states

si, sj ∈ S, i ≠ j, there is an input sequence I ∈ X* such that

λ(si, I) ≠ λ(sj, I). M is considered completely specified, if for each

input x ∈ X and for each state si ∈ S, δ(si, x) is defined. M can be

represented by a digraph G = (V, E) where a set of vertices V

represents the set S of states of M, and a set of directed edges E

represents all specified transitions of M. Each edge

e = (vi, vj; x / y) ∈ E, is a state transition from state si to state sj

with input x ∈ X and output y ∈ Y, where vi and vj are the starting

and terminating vertices of e (states of t), and input/output (i.e.,

i/o pair) x/y is the label of e, denoted by label(e). G = (V, E) is

strongly connected, if for each pair of vertices vi, vj ∈ V, there

exists a path from vi to vj.

A path P = (n1,n2; x1/y1)(n2,n3; x2/y2)…(nr-1,nr; xr-1/yr-1), r > 1, of

G = (V, E) is a finite sequence of adjacent (not necessarily

distinct) edges in E, where each node ni, 1 ≤ i ≤ r, represents a

vertex of V; n1 and nr are called starting and terminating nodes of

P, and the input/output sequence (x1/y1)(x2/y2)…(xr-1/yr-1) is called

label of P. P is represented by (n1,nr; I/O), where I/O is the label

of P, I = x1x2…xr-1 is called the input portion of I/O, O= y1y2…yr-1

is called the output portion of I/O. The input portion I of the label

I/O of path (n1, nr; I/O) will be called the transfer sequence T

(from n1 to nr). The length of an input sequence I (or input/output

sequence I/O) is its number of inputs, denoted by |I| (or |I/O|). A

sequence i1i2…ik is a subsequence of x1x2…xm if there exists ∆,

0 ≤ ∆ ≤ m–k, such that for all j, 1 ≤ j ≤ k, ij = xj+∆. Subsequence

i1i2…ik is a prefix of x1x2…xm if ∆ = 0. Subsequence i1i2…ik is a

suffix of x1x2…xm if ∆ = m–k.

Let M = (S, X, Y, δ, λ) denote a completely specified, minimal and

deterministic FSM, which is represented by a strongly connected

digraph G = (V, E). Let the fault model for M, Φ(M), be the set of

FSMs each of which has at most n = |S| states and the same input

and output sets as M. Let � be an FSM of Φ(M). � is isomorphic

to M if there is a one-to-one and onto function f on the state sets

of M and � such that for any state transition (si, sj; x / y) of M,

(f(si), f(sj); x / y) is a transition of �. A checking sequence of M is

an input sequence starting at the initial state s1 of M that

distinguishes M from any � of Φ(M) that is not isomorphic to M.

(i.e., the output sequence produced by any such � of Φ(M) is

different from the output sequence produced by M). In the context

of testing, this means that in response to this input sequence, any

faulty implementation � from Φ(M) will produce an output

sequence different from the expected output sequence, thereby

indicate the presence of one or more faults.

Note that under this definition of a checking sequence we do not

care about the initial state of � since isomorphism does not

require that the initial states of M and � correspond. Since we

wish to apply the checking sequence in the state of � that

corresponds to the initial state of M we can precede it by a process

that takes M to its initial state irrespective of its current state. Such

a process can be produced by starting with a homing sequence [8],

whose output identifies the current state, and then moving to the

initial state. If we also wish to find initialization faults, where �

starts in a different state to M, we should start the checking

sequence with a distinguishing sequence and a number of methods

do this (see, for example, [13]).

As stated earlier, the recognition of each distinct state in � as a

distinct state of M and verification of whether each transition of M

is correctly implemented in � are based on distinguishing

sequences for the methods considered in this paper. A preset

distinguishing sequence D of M is an input sequence such that the

output sequence produced by M in response to D is different for

each state of M (i.e., ∀si, sj ∈ S, si ≠ sj; λ(si,D) ≠ λ(sj,D)). A

distinguishing sequence D of an FSM M is then used as follows:

Consider a path P of G representing M and the nodes within it.

Let Q = label(P).

1. A node ni of P is recognized in Q as state s of M if

 a) ni is the starting node of a subpath of P whose label is

DT / λ(s, DT) for some T or

 b) (nq, ni; T / λ(s′, T)) and (nj, nk; T / λ(s′, T)) are subpaths of

P, nq and nj are recognized in Q as state s′ of M, and node nk is

recognized in Q as state s of M.

2. A transition t = (sp, sq; x / y) is verified in Q if there is a

subpath (ni, ni+1; xi / yi) of P such that ni is recognized as sp in

Q, ni+1 is recognized as sq in Q, xi /yi = x / y.

A subpath used to recognize a state is called a state recognition

path for that state. The set of all state recognition paths for a given

M and a D of M is denoted by PS. A subpath used to verify a

transition is called a transition verification path for that transition.

The set of all transition verification paths for a given M and a D of

M is denoted by PT. Paths used to concatenate

recognition/verification paths are called transfer paths and the

input portions of their labels are called transfer sequences. For the

methods considered in this paper, if this path starts from s1,

recognizes all states of M and verifies all transitions of M, the

input portion of this path’s label is a checking sequence of M.

Several checking sequence generation algorithms are based on the

following result [9]:

Theorem 1. Let Q be an IO-sequence of M starting at v1 (i.e. the

label of a path P=(n1, nr; Q) of G). If every edge of G is verified in

Q then Q is a checking sequence of M.

3. CHECKI#G SEQUE#CES
A preset distinguishing sequence is an input sequence that can be

used to distinguish each state of the model. An adaptive

distinguishing sequence is not really a sequence but a decision

tree where each root to leaf path represents an input sequence that

is specific to the state represented by the leaf. Formally, an

adaptive distinguishing sequence is a rooted tree θ with exactly n

leaves; the internal nodes are labeled with input symbols, the

edges are labeled with output symbols, and the leaves are

uniquely labeled with states of the FSM such that: 1) edges

emanating from a common node have distinct output symbols, and

2) for every leaf of θ, if Di and yi are the input and output strings

respectively formed by the node and edge labels on the path from

the root to the leaf labeled by state si of the FSM then

yi = λ(si, Di). We call Di as the (adaptive) distinguishing sequence

of state si. The length of the sequence is the depth of the tree [3].

Adaptive distinguishing sequences have several core advantages

over preset ones, while achieving the same purpose of state

identification. The first and most obvious one is that a preset

distinguishing sequence is also an adaptive one (for which every

path from the root to the leaf has the same input portion on its

label), while the reverse is not true. In other words, if an FSM has

a preset distinguishing sequence, it has an adaptive distinguishing

sequence as well, but there are FSMs that have adaptive

distinguishing sequences but do not have a preset distinguishing

sequence. That simple fact is important because it shows that if

we can use adaptive distinguishing sequences instead of preset

ones in a checking sequence generation method, then the method

can be used on a strictly larger set of FSMs.

The second advantage of adaptive distinguishing sequences over

preset ones is deciding their existence. Current algorithms that

determine whether a given FSM has a preset distinguishing

sequence require exponential time [1]. Moreover, this is probably

unavoidable since it is PSPACE-complete to test whether a given

FSM has a preset distinguishing sequence [3]. On the other hand,

to decide whether a given FSM has an adaptive distinguishing

sequence can be achieved in O(pn log n) [3]. In other words,

deciding whether a checking sequence generation method can be

used on a given FSM is at least PSPACE-complete when the

method is based on preset distinguishing sequences, while it can

take polynomial time1 when the same method is adapted to use

adaptive distinguishing sequences (this does not speak about the

complexity of the method itself).

The third advantage is the length of the resulting sequence. It is

known that there are FSMs for which the shortest preset

distinguishing sequence is of exponential length [3], while an

FSM that has an adaptive distinguishing sequence has one of

length O(n2) [15]. What is more, Lee and Yannakakis have

proposed an O(pn2) algorithm to produce an adaptive

distinguishing sequence of length at most n(n-1)/2 if there is one

[3]. Hence using adaptive distinguishing sequences can also

provide up to exponential reduction on the length of the checking

sequences.

These advantages imply that if it is possible to adapt a checking

sequence construction method to use adaptive distinguishing

sequences instead of preset ones, then

1. the method will be useable on a strictly larger set of FSMs

2. deciding whether the method can be used on a given FSM

will take polynomial time, while it necessarily uses

exponential time in the worst case with the preset

distinguishing sequences

3. constructing a checking sequence will require polynomial

time in the worst case, while it required exponential time

in the worst case with preset distinguishing sequences

4. the method will yield a checking sequence that is no

longer than the one obtained when using preset

distinguishing sequence (since at worst the preset

distinguishing sequence can still be used) and can in the

best case yield checking sequences that are exponentially

shorter than the one produced by the same method used

with preset distinguishing sequences.

This shows that if a checking sequence generation method can be

altered to use adaptive distinguishing sequences, then it should be

adapted and used in this way. In the following, we show that most

methods can actually be adapted to use adaptive distinguishing

sequences, and thus should be used this way.

3.1 Use of Adaptive Distinguishing Sequences
The intuition behind the use of preset distinguishing sequences is

that they are “easier” to use because the input sequence is the

same regardless of the state the implementation is in. However,

this is only useful when there are several possibilities for the

current state of the implementation and we want to identify which

state it is actually in. When building a checking sequence, it is

usually not required: the checking sequence should trigger the

expected output from the implementation, that is, the checking

sequence assumes that the implementation is at a known state at

all times (and checks that the implementation indeed reacts as if it

is in that state). Under these conditions, it is easy to see that when

building the checking sequence, it is usually possible to replace

any portion of the sequence that uses a (preset) distinguishing

sequence with the adaptive distinguishing sequence of the state

the implementation is supposed to be in.

1 It will take polynomial time unless some other characteristics of

the FSM required by the method cannot be decided in

polynomial time.

We can summarize this fact by stating that any checking sequence

construction method that is based on distinguishing sequence and

that does not use this distinguishing sequence for another purpose

than state verification can be adapted to use adaptive

distinguishing sequences instead of preset ones, because the

checking sequence is built a priori and thus must necessarily

anticipate the state the implementation should be in. Note that the

checking sequence itself is still a preset sequence even if it uses

adaptive distinguishing sequences.

3.2 A Sufficient Condition
Before discussing checking sequence generation using adaptive

distinguishing sequences, it is important to provide an appropriate

formal basis. Since several checking sequence generation

algorithms are based on Theorem 1 from [9], one possibility is to

extend this result to the use of adaptive distinguishing sequences

and we do this in this section. First we extend the notion of

recognizing nodes to the case where we are using an adaptive

distinguishing sequence.

Consider a path P of G representing M and the nodes within it and

let θ be an adaptive distinguishing sequence for M. Let

Q = label(P).

1. A node ni of P is θ-recognized in Q as state sm of M if

 a) ni is the starting node of a subpath of P whose label is

DmT / λ(sm, DmT) and we say that depth(ni) = 0; or

 b) (nq, ni; T / λ(s′, T)) and (nj, nk; T / λ(s′, T)) are subpaths of

P, nq and nj are θ-recognized in Q as state s′ of M, and node

nk is θ-recognized in Q as state sm of M. Here

depth(ni) = 1 + max{depth(nq), depth(nj), depth(nk)}

2. A transition t=(sp, sq; x / y) is θ-verified in Q if there is a

subpath (ni, ni+1; xi / yi) of P such that ni is θ-recognized as sp

in Q, ni+1 is θ-recognized as sq in Q, xi/yi = x/y.

We now adapt results from [9] to prove that it is sufficient to

θ-verify transitions in generating a checking sequence.

Proposition 1. Let Q be an IO-sequence of M starting at v1 and let

θ be an adaptive distinguishing sequence of M. If every edge of G

is θ-verified in Q then for every vertex vj of G we have that

Dj/λ(sj,Dj) is a subsequence of Q.

Proof. By definition, Q is the label of a path P = (n1, nr; Q). Given

state sj of M, let np denote a node of P with minimum depth that is

θ-recognized as sj. Note that there must be at least one such node

since G is strongly connected (hence there is at least one

transition leaving sj) and every edge of G is θ-verified. If

depth(np) > 0 then there exist subpaths (nq, np; T / λ(s′, T)) and

(ni, nk; T / λ(s′, T)) of P such that nq and ni are θ-recognized as

state s′ of M, nk is θ-recognized as sj and depth(np) > depth(nk),

contradicting the minimality of depth(np). Thus, depth(np) = 0 and

so in P the node np is followed by a subpath with label Dj/λ(sj,Dj)

as required.

Proposition 2. Let Q be an IO-sequence of M starting at v1 (i.e.

the label of a path P=(n1, nr; Q) of G) and let θ be an adaptive

distinguishing sequence of M. Let x1…xr-1 be the input portion of

Q. Suppose that every edge of G is θ-verified in Q and Q is also

an IO-sequence of M *= (S*, X, Y, δ*, λ*) from Φ(M) starting at

v1
*. If node ni is θ-recognized in Q as state sj of M then

λ
(δ(v1

*, x1…xi-1), Dj) = λ(δ(v1, x1…xi-1), Dj) = λ(sj, Dj).

Proof. The proof will proceed by induction on depth(ni). The base

case is depth(ni) = 0. Here, ni is followed by a subpath with label

λ(sj,Dj) and so the result follows. Inductive hypothesis: the result

holds for every node of depth less than l and let depth(ni) = l.

Since depth(ni) > 0 there exist subpaths (nq, ni; T / λ(sm, T)) and

(np, nk; T / λ(sm, T)) of P such that nq and np are θ-recognized as

sm, nk is θ-recognized as sj and depth(ni) is greater than depth(nk),

depth(np), and depth(nq).

By Proposition 1 we know that M* has n states and θ is an

adaptive distinguishing sequence for M*. By the inductive

hypothesis we know that λ
(δ(v1

*, x1…xq-1), Dm) =

λ(δ(v1, x1…xq-1), Dm) = λ(sm, Dm) and λ*(δ*(v1
*,x1…xp-1), Dm) =

λ(δ(v1, x1…xp-1), Dm) = λ(sm, Dm) and so δ
*(v1

*,x1…xq-1)

=δ*(v1
*,x1…xp-1) and δ(v1,x1…xq-1) = δ(v1,x1…xp-1). Thus,

δ
*(v1

,x1…xi-1) = δ(v1
*,x1…xk-1) and δ(v1,x1…xi-1) = δ(v1,x1…xk-1).

By the inductive hypothesis, we have that

λ
(δ(v1

*,x1…xi-1), Dj) = λ(δ(v1,x1…xi-1), Dj) = λ(sj, Dj) and so the

result follows.

Theorem 2. Let Q be an IO-sequence of M starting at v1 (i.e. the

label of a path P = (n1, nr; Q) of G) and let θ be an adaptive

distinguishing sequence of M. If every edge of G is θ-verified in

Q then Q is a checking sequence of M.

Proof. Let M* be an element of Φ(M) with initial state represented

by v1
* such that Q is an IO-sequence of M* and let x1…xr denote

the input portion of Q. By Proposition 1 we know that M* has n

states s1
*, …, sn

* such that for all 1≤i≤n we have that

λ
*(si

*,Di) = λ(si,Di). It is sufficient to prove that under these

conditions we have that for every transition (si, sj; x/y) of M we

have that (si
*, sj

; x/y) is a transition of M; from this we can

deduce that M and M* are isomorphic. Given transition (si, sj; x/y)

of M there is a corresponding edge (np, np+1; x/y) of P such that np

is θ-recognized as si in Q and np+1 is θ-recognized as sj in Q. By

Proposition 2 we know that λ
(δ(v1

*,x1…xp-1), Di) =

λ(δ(v1,x1…xp-1), Di) = λ(si, Di) and λ*(δ*(v1
*,x1…xp), Dj) =

λ(δ(v1,x1…xp), Dj) = λ(sj, Dj) and so (si
*, sj

*; x/y) is a transition of

M* as required.

We have proved a result equivalent to Theorem 1 from [9] that

gives a sufficient condition for a test sequence produced using

adaptive distinguishing sequence to be a checking sequence. We

can thus extend checking sequence generation algorithms that are

based on this result to allow adaptive distinguishing sequences

and in Section 4 we explain how this can be done.

4. THE PROPOSED METHODS

4.1 The HE#64 Method
In the method proposed by Hennie [2], henceforth called HEN64,

the states are recognized in a specific order which takes a

permutation of states s1 to sn such that a preset distinguishing

sequence D followed by a (possibly empty) transfer sequence T is

applied at si and si+1 = δ(si, DT), for all i, 1 ≤ i ≤ n–1, and for

sn+1 = s1, D is applied. Thus, one state recognition path is formed

as the only element of PS. Then, the transition verification path for

each (sj, sk; x/y) is formed by applying a (possibly empty) transfer

sequence T1 from a state si to state sj-1 and then applying D

followed by a (possibly empty) transfer sequence T2 to reach sj

and finally applying xD where si is the terminating state of the

only path in PS or a transition verification path in PT.

This method can be adapted to adaptive distinguishing sequences

[3]. When an adaptive distinguishing sequence is used, then the

path that will be used to recognize the states will be formed

exactly in the same manner. The only difference will be that

instead of DT, DiT will be applied at each state si, where Di is the

adaptive distinguishing sequence of si. The use of D within the

transition verification paths will also be replaced by adaptive

distinguishing sequences. More explicitly, the transition

verification path for a transition (sj, sk; x/y) will be formed by

applying a (possibly empty) transfer sequence T1 from a state si to

state sj-1 and then applying Dj-1 followed by a (possibly empty)

transfer sequence T2 to reach sj and finally applying xDt where si

is the terminating state of the only path in PS or a transition

verification path in PT, and Dt is the adaptive distinguishing

sequence of the state st = δ(si, x).

4.2 The UWZ97 Method
The method proposed by Ural et al. [9], henceforth called

UWZ97, first forms so called state recognition path candidates as

concatenations of the application of D followed by a T at each

state until the application of the last D is a replication of an earlier

application of D at the same state in the concatenated path. Some

of these n state recognition path candidates can be a suffix of

other state recognition path candidates. In fact, a state recognition

path candidate which is not suffix of another state recognition

path candidate is taken to be a state recognition path (i.e., an

element of PS), and is called an α-sequence in [9]. The number of

α-sequences is therefore k ≤ n. Transition verification paths are

formed by applying D after the transition’s input. UWZ97 finds a

shortest sequence containing all α-sequences and transition

verification paths connected (possibly) by transfer paths.

When adaptive distinguishing sequences are used, the state

recognition path candidates will be formed by using the adaptive

distinguishing sequences of the corresponding states instead of the

preset distinguishing sequence. In other words, the state

recognition path candidate for state si will have the label

Di1Ti1Di2Ti2Di3…Dik, where 1 ≤ ij ≤ n, i1 = i, 1 ≤ j ≤ k, such that

sij+1 = δ(sii, DijTij). If a state recognition path candidate is a suffix

of another candidate, then it will be eliminated and the remaining

candidates will similarly be called as α-sequences. The transition

verification path of a transition (sj, sk; x/y) will have the label

xDiTi where si = δ(sj, x).

4.3 The HIU06 Method
The method proposed by Hierons and Ural [13], henceforth called

HIU06, is an enhanced version of the method in [9]. There are

three main differences between HIU06 and UWZ97. The first one

is that, while forming state recognition path candidates as

concatenations of the application of D at each state, HIU06

permits the application of the last D in the concatenation to be a

replication of an earlier application of D at the same state not

necessarily in the same concatenated path. Therefore, some of the

n state recognition path candidates can terminate once the last D

in the concatenation is found to be a replication of an earlier

application of D at the same state in another concatenated path,

yielding a shorter state recognition path as an element of PS.

Similar to UWZ97, some state recognition path candidates can be

a suffix of other state recognition path candidates and hence can

be dropped when forming PS. The elements of PS formed in this

manner are called α′-sequences in [13]. The number of

α′-sequences is k ≤ n. The second difference relates to the

optimization algorithm used and involves a change that allows

optimization to occur over a larger set of checking sequences.

Using adaptive sequences does not have any complicating effect

on forming α′-sequences. Similar to the case of UWZ97, the state

recognition path candidate for state si will have the label

Di1Ti1Di2Ti2Di3…Dik, where 1 ≤ ij ≤ n, i1 = i, 1 ≤ j ≤ k, such that

sij+1 = δ(sii, DijTij). α′-sequences will be obtained by eliminating

those candidates that are a suffix of another candidate.

The third difference between UWZ97 and HiU06 is that, although

a transition verification path is similarly formed by applying a D

after the transition’s input, a state recognition path is allowed to

overlap a transition verification path, as long as the overlap is on

the entire length of D. The method decides whether this

overlapping should be used or not while forming the checking

sequence. When adaptive distinguishing sequences are used, the

transition verification path of a transition (sj, sk; x/y) will have the

label xDiTi where si = δ(sj, x). If there is an α′-sequence that starts

from si, the occurrence of Di at the beginning of this α′-sequence

may or may not be overlapped with the Di at the end of the

transition verification path of (sj, sk; x/y). The method will decide

this as it tries to optimize the length of the checking sequence

produced.

5. CO#CLUSIO#S
A checking sequence generated from an FSM M is guaranteed to

lead to failures if the implementation FSM � has no more states

than M. Many checking sequence generation methods are based

on the use of a preset distinguishing sequence D that distinguishes

the states of M, despite the negative computational complexity

results regarding distinguishing sequences.

This paper has investigated the use of adaptive distinguishing

sequences. One of the benefits of using an adaptive distinguishing

sequence, rather than a preset distinguishing sequence, is that

there are FSMs for which there exists an adaptive distinguishing

sequence but no preset distinguishing sequence and the converse

is not the case. Further, in contrast to preset distinguishing

sequences, there are polynomial time algorithms that decide

whether M has an adaptive distinguishing sequence and, if it does,

generates such an adaptive distinguishing sequence.

We have argued that when a checking sequence is being

produced, adaptive distinguishing sequences can be used in place

of preset distinguishing sequences. In addition, recent checking

sequence generation algorithms are based on a sufficient

condition by Ural et al. [9]. We have proved that the

corresponding result holds for adaptive distinguishing sequences.

We have also explained how several checking sequence

generation algorithms can be altered so that they use adaptive

distinguishing sequences.

Future work will consider other checking sequence generation

algorithms. It will also involve implementing these new

algorithms, that use adaptive distinguishing sequences, and

evaluating them on FSMs.

6. ACK#OWLEDGME#TS
This work has been supported in part by grants from the Natural

Sciences and Engineering Research Council of Canada, the

Ontario Centers of Excellence, and Sabanci University.

7. REFERE#CES
[1] Gill, A. Introduction to the Theory of Finite-State Machines,

McGraw-Hill, NewYork, 1962.

[2] Hennie, F.C. Fault detecting experiments for sequential

circuits. Proc. 5th. Symp. Switching Circuit Theory and

Logical Design, Princeton, N.J., 1964, 95-110.

[3] Lee, D., Yannakakis, M. Testing finite state machines: state

identification and verification. IEEE Trans. on Computers, 43

(1994), 306-320.

[4] Chow, T. Testing software design modeled by finite-state

machines. IEEE Trans. on Software Eng. SE-4, (1978),

178-187.

[5] Fujiwara, S., Bochmann, Gv., Khendek, F., Amalou, M.,

Ghedamsi, A. Test selection based on finite state models. IEEE

Trans. on Software Eng. 17, 6 (1991), 591-603.

[6] Sabnani, K.K., Dahbura, A.T. A protocol test generation

procedure. Computer �etworks 15, 4 (1988), 285-297.

[7] Dahbura, A.T., Sabnani K.K., Uyar, M.U. Formal methods for

generating protocol conformance test sequences. Proceedings

of the IEEE, 78 (1990), 1317-1325.

[8] Lee, D., Yannakakis, M. Principles and methods of testing

finite state machines – a survey. Proceedings of the IEEE, 84,

8 (1996), 1089–1123.

[9] Ural, H., Wu, X., Zhang, F. On minimizing the length of

checking sequence. IEEE Trans. on Computers, 46 (1997),

93-99.

[10] Hierons, R.M., Ural, H. Reduced length checking sequences.

IEEE Trans. On Computers, 51, 9 (2002), 1111-1117.

[11] Chen, J., Hierons, R.M., Ural, H., Yenigun, H. Eliminating

redundant tests in checking sequences. In Proc. of IFIP

TestCom'05, Montreal, Quebec, 2005, 146-158.

[12] Tekle, K.T., Ural, H., Yalcin, C.M., Yenigun, H.

Generalizing redundancy elimination in checking sequences.

Proc. of ISCIS'05, Istanbul, Turkey, 2005, 915-926.

[13] Hierons, R.M., Ural, H. Optimizing the length of checking

sequences. IEEE Trans. on Computers, 55, 5 (2006), 618-629.

[14] Gonenc, G. A method for the design of fault detection

experiments. IEEE Trans. on Computers, 19 (June 1970),

551-558.

[15] Sokolovskii, M.N. Diagnostic experiments with automata.

Kibernetika, 6 (1971), 44-49.

