
Dependence Testing: Extending Data Flow
Testing with Control Dependence

Hyoung Seok Hong1 and Hasan Ural2

1 Concordia Institute for Information Systems Engineering,
Concordia University

hshong@ciise.concordia.ca
2 School of Information Technology and Engineering,

University of Ottawa
ural@site.uottawa.ca

Abstract. This paper presents a new approach to structural testing,
called dependence testing. First we propose dependence oriented cover-
age criteria that extend conventional data flow oriented coverage criteria
with control dependence. This allows one to capture the full dependence
information of a program or specification systematically. We then de-
scribe a model checking-based approach to test generation for depen-
dence testing. It is shown that dependence oriented coverage criteria can
be characterized in the temporal logics LTL and CTL. This enables one
to use any LTL and CTL model checkers as test generators. Finally, we
show that the temporal logic-based characterization can also be used for
reducing the cost of dependence testing.

1 Introduction

In structural testing, we are given a coverage criterion defining a set of entities in
the structure of a program or specification and we generate a test suite satisfying
the coverage criterion. A test suite is a set of test sequences and is said to
satisfy a coverage criterion if for every entity defined by the coverage criterion,
there is a test sequence in the test suite exercising the entity. There are two
main types of structural testing. Control flow testing calls for exercising single
entities such as statements, branches, decisions, and conditions. Data flow testing
calls for exercising associations between definitions and uses of variables such as
definition-use pairs and definition-use chains. These associations capture the
dependence information of a program or specification mainly in terms of data
dependence. Data flow testing has been widely used for program testing[34]
and protocol conformance testing with formal specifications written in SDL and
Estelle whose underlying model is extended finite state machine[11].

This paper presents a new approach to structural testing, called dependence
testing. The main contributions of the paper are three-fold. First, we propose
dependence oriented coverage criteria that extend conventional data flow ori-
ented coverage criteria with control dependence. Our new coverage criteria are

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 23–39, 2005.
c© IFIP 2005



24 H.S. Hong and H. Ural

motivated by the work of Podgurski and Clarke[30] which evaluates data flow
oriented coverage criteria in terms of program dependence. In [30], it is shown
that both data dependence and control dependence are necessary to detect the
propagation of erroneous values caused by faults. It is also shown that although
data flow oriented coverage criteria incorporate limited forms of control depen-
dence, they are not powerful enough to detect the propagation of all of erroneous
values. However, the question of how to extend data flow oriented coverage crite-
ria has remained unanswered. In this paper, we show that the data flow oriented
coverage criteria in [17, 28, 27, 32] can be naturally extended with control depen-
dence. This allows one to capture the dependence information of a program or
specification systematically based on both data dependence and control depen-
dence.

Second, we discuss test generation for dependence testing. Recently there
have been several proposals of model checking-based approaches to test gen-
eration for control flow testing[3, 7, 12, 14, 16, 29] and data flow testing[20, 21].
Model checking[9] is a formal verification technique for determining whether a
system model satisfies a property written in temporal logic and model checkers
such as SMV[26] and SPIN[18] are already used on a regular basis for the verifi-
cation of real-world applications. In addition to being automatic, an important
feature of model checking is the ability of explaining the success or failure of a
temporal logic formula in terms of witnesses or counterexamples, respectively.
The main idea of model checking-based test generation[3, 7, 12, 14, 16, 20, 21, 29]
is to characterize test coverage in temporal logic in such a way that the prob-
lem of test generation is reduced to the problem of finding a set of witnesses or
counterexamples for a set of temporal logic formulas. The capability of model
checkers to construct witnesses and counterexamples enables efficient and scal-
able test generation. In this paper, we extend the model checking-based approach
in [20, 21] for dependence testing. We show that dependence oriented coverage
criteria can be characterized in the temporal logics LTL and CTL so that any
LTL and CTL model checkers can be used as test generators for dependence
testing.

Finally, we show that the temporal logic-based characterization of dependence
oriented coverage criteria can also be used for reducing the cost of dependence
testing. There have been several proposals of approaches to reducing the cost of
control flow testing[1, 4, 5, 6, 8] and data flow testing[15, 24, 25]. The main idea of
these approaches is to construct a subset of entities for a given coverage criterion
such that exercising every entity in the subset guarantees exercising every entity
defined by the coverage criterion. That is, if a test suite covers every entity in the
subset, the test suite satisfies the coverage criterion. Following the terminology
of [24, 25], we call such a subset a spanning set for the coverage criteria. Recently
in [22], the authors show that the problem of finding a minimum spanning set
for a family of data flow oriented coverage criteria can be reduced to the model
checking problem of LTL. In this paper, we extend the results of [22] and show
how LTL model checking can be used for reducing the cost of dependence testing.



Dependence Testing: Extending Data Flow Testing with Control Dependence 25

The remainder of the paper is organized as follows. After introducing pre-
liminary definitions in Section 2, we investigate test coverage, generation, and
reduction for dependence testing in Section 3, 4, 5, respectively. We conclude
the paper with a discussion of future work in Section 6.

2 Preliminaries

This section recalls the basics of LTL and flow graph, which are the logic and
model employed in our approach, respectively.

2.1 Logics: LTL and CTL

In this paper we will make use of both LTL and CTL. We give a brief introduction
to LTL here and refer the interested readers to [9] for the syntax and semantics
of CTL. A formula f in LTL is built from a set AP of atomic propositions, the
standard boolean operators, and the temporal operators X (next time) and U
(until) according to the following grammar: f := p | ¬f | f ∧f | Xf | fUf where
p ∈ AP . We also use the temporal operators F (eventually) and G (always)
defined by Ff ≡ trueUf and Gf ≡ ¬F¬f .

The semantics of LTL is defined with respect to an infinite path π = σ0σ1...
where for every i ≥ 0, σi is a subset of AP . For a position i, π(i) is the i-th
element of π and πi is the suffix σiσi+1... of π. We write π |= f to indicate that
π satisfies f .

– π |= p iff p ∈ σ0;
– π |= ¬f iff π �|= f ;
– π |= f1 ∧ f2 iff π |= f1 and π |= f2;
– π |= Xf iff π1 |= f ;
– π |= f1Uf2 iff there exists i ≥ 0 such that πi |= f2 and πj |= f1 for every

0 ≤ j < i.

We also interpret LTL over a Kripke structure (Q, qinit, L,R) where Q is a set of
states, qinit ∈ Q is the initial state, L : Q → 2AP labels each state with atomic
propositions, and R ⊆ Q × Q is the total transition relation. We write M |= f
to indicate that for every infinite path π of M such that π(0) = qinit, π |= f .
The model checking problem of LTL is to decide if for given M and f , it holds
that M |= f .

2.2 Model: Flow Graph

Flow graphs are the standard model of programs in conventional program anal-
ysis and testing[2]. Flow graphs have also been used in analyzing and testing
specification languages whose underlying model is extended finite state machine
such as Estelle[32], SDL[33], and statecharts[19] as well as process algebra such
as LOTOS[31].



26 H.S. Hong and H. Ural

A flow graph is a directed graph G = (V, vs, vf , A) where V is a set of nodes,
vs ∈ V is the start node, vf ∈ V is the final node, and A ⊆ V ×V is a set of arcs.
The start node vs and final node vf represent the single entry and single exit
point, respectively. A node represents a simple statement (such as assignment,
input, and output) or the predicate of a conditional or repetitive statement (such
as if and while). An arc represents possible flow of control between statements.
Each variable occurrence is classified as a definition or use. For a variable x
and a node v, x is defined at v, denoted by d(x, v), if x is assigned a value at
v. x is used at v, denoted by u(x, v), if v is referenced at v. A use u(x, v) is a
computation-use (c-use) if v represents a statement and is a predicate-use (p-use)
if v represents a predicate. A path v1...vn is complete if v1 = vs and vn = vf . A
test sequence is a complete path and a test suite is a finite set of test sequences.
Figure 1 shows a simple program and its flow graph where v1 is the start node
and v9 is the final node.

v1: input(num);
v2: if (num > 0) {
v3: plus = true;
v4: sign = ′+′;

}
else {

v5: plus = false;
v6: if (num == 0)
v7: sign = ′0′;

else
v8: sign = ′−′;

}
v9: output(plus, sign);

��

��
v9 u(plus, v9), u(sign, v9)

����
��

��
v8 d(sign, v8)

��

��
v7d(sign, v7)

��

��
v6 u(num, v6)

����

��

��
v5 d(plus, v5)

�
��

��
v3d(plus, v3)

�

��

��
v4d(sign, v4)

�

��

��
v2 u(num, v2)

�� ��

��

��
v1 d(num, v1)

�

Fig. 1. A program and its flow graph

There are two types of program dependence. For two nodes v and v′, we say
that v directly data-affects v′ through variable x (or equivalently, v′ is directly
data-dependent on v through variable x), denoted by v

x→ v′, if x is defined at
v, x is used at v′, and there is a path vv1...vnv′ such that x is not defined vi

for every 1 ≤ i ≤ n. In this case, v1...vn is a definition-clear path with respect
to x. A test sequence exercises v

x→ v′ if vv1...vnv′ is a subpath of the test
sequence where v1...vn is a definition-clear path with respect to x. We say that
v′ postdominates v if every path from v to vf contains v′ and that v directly
control-affects v′ (or equivalently, v′ is directly control-dependent on v), denoted
by v

c→ v′, if v has two successors v1 and v2 such that v′ postdominates v1 but
v′ does not postdominate v2. A test sequence exercises v

c→ v′ if vv1...vnv′ is a
subpath of the test sequence.



Dependence Testing: Extending Data Flow Testing with Control Dependence 27

3 Test Coverage

Let v1, v2, ..., vn be nodes. We say that v1 → v2 → ... → vn is a dependence-
chain if for every 1 ≤ i < n, vi → vi+1 is either a direct data dependence vi

x→
vi+1 or direct control dependence vi

c→ vi+1. Obviously the strongest coverage
criterion based on the dependence information, which we call all-dependence-
chains coverage criterion, is to require that every dependence-chain be exercised.
However, this is in general impossible to achieve since the number of dependence-
chains in a program may be large or even infinite in the presence of loops. In this
section we investigate the data flow oriented coverage criteria in [17, 28, 27, 32],
which capture the dependence information mainly in terms of data dependence,
and extend them with control dependence. This allows one to generate test suites
consisting of a finite and reasonable number of test sequences based on both data
dependence and control dependence.

3.1 Direct Dependences

All-Dependence-Pairs Coverage Criterion. A pair (d(x, v), u(x, v′)) is a
definition-use pair (du-pair) if there is a path vv1...vnv′ such that v1...vn is a
definition-clear path with respect to x. A test suite Π satisfies reach coverage
criterion[17] if every du-pair (d(x, v), u(x, v′)) is exercised by some test sequence
in Π.

It is straightforward to rephrase reach coverage criterion in terms of program
dependence: A test suite Π satisfies reach coverage criterion if every direct data
dependence v

x→ v′ is exercised by some test sequence in Π.
We extend reach coverage criterion with direct control dependence as follows:

A test suite Π satisfies all-dependence-pairs coverage criterion if Π satisfies reach
coverage criterion and every direct control dependence v

c→ v′ is exercised by
some test sequence in Π. In Figure 1, all-dependence-pairs coverage criterion
requires that the following direct data and control dependences be exercised.

– direct data dependences: v1
num−→ v2, v1

num−→ v6, v3
plus−→ v9, v5

plus−→ v9, v4
sign−→ v9,

v7
sign−→ v9, v8

sign−→ v9

– direct control dependences: v2
c−→ v3, v2

c−→ v4, v2
c−→ v5, v2

c−→ v6, v6
c−→ v7,

v6
c−→ v8

All-Dependence-Pairs-with-Puses Coverage Criterion. Rapps and
Weyuker’s criteria[28] extend reach coverage criterion by distinguishing between
c-uses and p-uses. A du-pair (d(x, v), u(x, v′)) is a definition-cuse pair (dcu-
pair) if u(x, v′) is a c-use. Otherwise, it is a definition-puse pair (dpu-pair). Let
(d(x, v), u(x, v′)) be a dpu-pair and v′′ be a successor of v′. A test sequence exer-
cises (d(x, v), u(x, v′), v′′) if vv1...vnv′v′′ is a subpath of the test sequence where
v1...vn is a definition-clear path with respect to x. A test suite Π satisfies all-uses
coverage criterion[28] if for every dcu-pair (d(x, v), u(x, v′)), the dcu-pair is ex-
ercised by some test sequence in Π and for every dpu-pair (d(x, v), u(x, v′)) and
every successor v′′ of v′, (d(x, v), u(x, v′), v′′) is exercised by some test sequence
in Π.



28 H.S. Hong and H. Ural

In all-uses coverage criterion, a test sequence exercising (d(x, v), u(x, v′)) re-
flects the direct data dependence v

x→ v′, whereas a test sequence exercising
(d(x, v), u(x, v′), v′′) reflects the dependence-chain v

x→ v′ c→ v′′, that is, the
direct data dependence v

x→ v′ and direct control dependence v′ c→ v′′ at the
same time.

We extend all-uses coverage criterion with direct control dependence as fol-
lows: A test suite Π satisfies all-dependence-pairs-with-puses coverage criterion
if Π satisfies all-uses coverage criterion and every direct control dependence
v

c→ v′ is exercised by some test sequence in Π. In Figure 1, all-dependence-
pairs-with-puses coverage criterion requires that the following dependences be
exercised.

– dcu-pairs: v3
plus−→ v9, v5

plus−→ v9, v4
sign−→ v9, v7

sign−→ v9, v8
sign−→ v9

– dpu-pairs: v1
num−→ v2

c−→ v3, v1
num−→ v2

c−→ v5, v1
num−→ v6

c−→ v7, v1
num−→ v6

c−→ v8

– direct control dependences: v2
c−→ v3, v2

c−→ v4, v2
c−→ v5, v2

c−→ v6, v6
c−→ v7,

v6
c−→ v8

3.2 Indirect Dependences

All-k-Dependence-Chains Coverage Criterion. While reach coverage cri-
terion and all-uses coverage criterion focus on definitions and uses of the same
variable, Ntafos’ criteria[27] emphasize interactions among different variables.
These interactions are captured in terms of sequences of du-pairs. A sequence
[(d(x1, v1), u(x1, v

′
1)) ... (d(xn, vn), u(xn, v′

n))] of du-pairs is a data flow chain (df-
chain)[32] if for every 1 ≤ i < n, v′

i = vi+1, that is, u(xi, v
′
i) and d(xi+1, vi+1)

occur at the same node and hence xi+1 is defined in terms of xi. A path
v1π1v2...vnπnv′

n is an interaction path of a df-chain if for every 1 ≤ i ≤ n, πi is
a definition-clear path with respect to xi. A test sequence exercises a df-chain
if an interaction path of the df-chain is a subpath of the test sequence. A test
suite Π satisfies required k-tuples coverage criterion if every df-chain consisting
of k′ du-pairs, 1 ≤ k′ < k, is exercised by some test sequence in Π.

We rephrase required k-tuples coverage criterion in terms of program de-
pendence: A test suite Π satisfies required k-tuples coverage criterion if every
dependence-chain consisting of k′ direct data dependences, 1 ≤ k′ < k, is ex-
ercised by some test sequence in Π. Since required k-tuples coverage criterion
is based on data dependence, it can only partially capture the dependence in-
formation. For example, consider the nodes v1 and v3 in Figure 1. Although
there is a dependence-chain v1

num−→ v2
c−→ v3 from v1 to v3, required k-tuples

coverage criterion fails to capture this dependence-chain since it contains control
dependence.

We extend required k-tuples coverage criterion with control dependence as
follows: A test suite Π satisfies all-k-dependence-chains coverage criterion if
every dependence-chain consisting of k′ direct dependences, 1 ≤ k′ < k, is
exercised by some test sequence in Π. We note that required 2-tuples coverage
criterion (resp. all-2-dependence-chains coverage criterion) is equivalent to reach
coverage criterion (resp. all-dependence-pairs coverage criterion). In Figure 1, all-



Dependence Testing: Extending Data Flow Testing with Control Dependence 29

3-dependence-chains coverage criterion requires that the following dependence-
chains be exercised1.

v1
num−→ v2

c−→ v3, v1
num−→ v2

c−→ v4, v1
num−→ v2

c−→ v5, v1
num−→ v2

c−→ v6,
v1

num−→ v6
c−→ v7, v1

num−→ v6
c−→ v8,

v2
c−→ v3

plus−→ v9, v2
c−→ v4

sign−→ v9, v2
c−→ v5

plus−→ v9, v2
c−→ v6

c−→ v7,
v2

c−→ v6
c−→ v8,

v6
c−→ v7

sign−→ v9, v6
c−→ v8

sign−→ v9

Let [(d(x1, v1), u(x1, v
′
1)) ... (d(xn, vn), u(xn, v′

n))] be a df-chain. We have that
u(xi, v

′
i) is a c-use for every 1 ≤ i < n and the last use u(xn, v′

n) may be either
a c-use or p-use. By distinguishing between c-uses and p-uses, all-k-dependence-
chains-with-puses coverage criterion may be defined. Due to space limit this
coverage criterion will not be pursued in this paper.

All-IO-Dependence-Chains Coverage Criterion. Ural et al.’s coverage
criteria[32, 33] also emphasize interactions among different variables. While re-
quired k-tuples coverage criterion considers df-chains consisting of a fixed num-
ber of du-pairs, all-IO-df-chains coverage criterion in [32, 33] considers df-chains
consisting of an arbitrary (but finite) number of du-pairs which start with inputs
and end with outputs. In this paper, we define an input as a definition occurring
at an input statement and output as a use occurring at an output statement. For
example, in Figure 1, there are one input d(num, v1) and two outputs u(plus, v9)
and u(sign, v9). The rationale here is to capture the functionality of a module
in terms of the interactions with its environment by identifying the effects of
inputs accepted from the environment on outputs offered to the environment.
Since the number of df-chains from an input to an output may be infinite, we
consider only simple df-chains that are allowed to have at most one occurrence
of each du-pair. A test suite Π satisfies all-IO-df-chains coverage criterion if for
every input i, every output o, and every simple df-chain from i to o, the df-chain
is exercised by some test sequence in Π.

As is done by required k-tuples coverage criterion, all-IO-df-chains coverage
criterion also partially captures the dependence information in terms of only data
dependence. For example, consider the input d(v1, num) and output u(v9, plus)
in Figure 1. There are several dependence chains from v1 to v9, say v1

num−→
v2

c−→ v3
plus−→ v9, but all-IO-df-chains coverage criterion fails to capture those

dependence-chains since they contain control dependence.
We extend all-IO-df-chains coverage criterion with control dependence as

follows: A test suite Π satisfies all-IO-dependence-chains coverage criterion if
for every input i, every output o, and every simple dependence-chain from i to
o, the dependence-chain is exercised by some test sequence in Π. In Figure 1, all-
IO-dependence-chains coverage criterion requires that the following dependence-
chains be exercised.

v1
num−→ v2

c−→ v3
plus−→ v9, v1

num−→ v2
c−→ v4

sign−→ v9, v1
num−→ v2

c−→ v5
plus−→ v9,

1 Dependence-chains consisting of one direct dependence are not shown.



30 H.S. Hong and H. Ural

v1
num−→ v2

c−→ v6
c−→ v7

sign−→ v9, v1
num−→ v2

c−→ v6
c−→ v8

sign−→ v9,

v1
num−→ v6

c−→ v7
sign−→ v9, v1

num−→ v6
c−→ v8

sign−→ v9

3.3 The Relationships Among Coverage Criteria

For two coverage criteria C1 and C2, C1 subsumes C2 if every test suite satisfy-
ing C1 also satisfies C2[28]. By definition, the four data flow oriented coverage
criteria considered in this section are subsumed by their dependence oriented
counterparts. For the other direction, the data flow oriented coverage criteria
except all-uses coverage criterion do not subsume their counterparts.

It is interesting to investigate the relationship between all-uses coverage cri-
terion and all-dependence-pairs-with-puses coverage criterion. Let AP be the set
of arcs starting from a node representing a predicate and AC be the set of arcs
(v, v′) such that v directly control-affects v′. For example, in Figure 1,

AP = {(v2, v3), (v2, v5), (v6, v7), (v6, v8)} and
AC = {(v2, v3), (v2, v4), (v2, v5), (v2, v6), (v6, v7), (v6, v8)}.

It is not hard to see that a test suite exercises every arc in AP if and only if
the test suite exercises every arc in AC . Hence it follows that all-uses coverage
criterion and all-dependence-pairs-with-puses coverage criterion subsume each
other and hence they are equivalent with respect to the subsume relation.

One of the limitations of the subsume relation is that it does not always
guarantee a better fault-detecting ability, that is, C1 subsumes C2 but there
are test suites that satisfy C2 that expose faults while test suites that satisfy
C1 do not expose any faults. The cover and properly cover relations in [13]
address this limitation. For a coverage criterion C, let SD(C) be the multiset
of subdomains such that C requires the selection of one or more input values
from each subdomain in SD(C). C1 covers C2 if for every subdomain D ∈
SD(C2), there is a collection {D1, ...,Dn} in SD(C1) such that D1 ∪ ... ∪ Dn =
D. Roughly speaking, C1 properly covers C2 if C1 covers C2 and, in addition,
the number of times a subdomain D1 in SD(C1) is used to characterize the
subdomains in SD(C2) is at most the number of times D1 appears in SD(C1).
It is not hard to see that if SD(C1) is a superset of SD(C2), then C1 covers
C2 and C1 properly covers C2. We have that the multisets of subdomains for
the dependence oriented coverage criteria defined in this section are supersets of
those for their data flow oriented counterparts. Hence the dependence oriented
coverage criteria cover and properly cover their data flow oriented counterparts
but not vice versa.

4 Test Generation

This section shows how test generation for dependence testing can be formulated
in the temporal logics LTL and CTL. We restrict ourselves to a fragment of LTL
consisting of guarantee formulas. An LTL formula is a guarantee formula if there
is a finite path π such that for every infinite path π′, π · π′ satisfies the formula.



Dependence Testing: Extending Data Flow Testing with Control Dependence 31

The finite prefix π is called a witness of the formula. Intuitively, it is sufficient to
use a finite path to explain the success of a guarantee formula while we need an
infinite path for a general LTL formula. For a set F of guarantee formulas and a
set Π of finite paths, we say that Π is a witness-set of F if for every formula f
in F , there is a finite path in Π that is a witness of f . In the following sections,
we show that test generation for dependence oriented coverage criteria can be
reduced to the problem of finding a witness-set of guarantee formulas.

4.1 Direct Dependences

All-Dependence-Pairs Coverage Criterion. Let def (x) be the disjunction
of nodes at which x is defined. For example, in Figure 1, def (num) ::= v1,
def (plus) ::= v3∨v5, and def (sign) ::= v4∨v7∨v8. For a direct data dependence
v

x→ v′, we associate an LTL formula defined by

ltl(v x→ v′) = F(v ∧ X[¬def (x)U(v′ ∧ Fvf )])

with the property that a finite path π is a test sequence exercising v
x→ v′ if

and only if there are 0 ≤ i < j ≤ k such that π(i) |= v, π(l) |= ¬def (x) for
i < l < j, π(j) |= v′, and π(k) |= vf if and only if π is a witness of ltl(v x→ v′).
For example, consider the direct data dependence v1

num−→ v6 in Figure 1. A test
sequence exercising v1

num−→ v6 is shown in Figure 2, which is also a witness of
F(v1 ∧ X[¬def (num)U(v6 ∧ Fv9)]).

��

��
v1

d(num, v1)

�
��

��
v2

¬def (num)

�
��

��
v5

¬def (num)

�
��

��
v6

u(num, v6)

�
��

��
v7 �

��

��
v9

v9

Fig. 2. A test sequence exercising v1
num−→ v6

For a direct control dependence v
c→ v′, we associate an LTL formula defined

by

ltl(v c→ v′) = F(v ∧ XF(v′ ∧ Fvf ))

with the property that a finite path π is a test sequence exercising v
c→ v′ if and

only if there are 0 ≤ i < j ≤ k such that π(i) |= v, π(j) |= v′, and π(k) |= vf if
and only if π is a witness of the LTL formula ltl(v c→ v′). For example, consider
the direct control dependence v2

c−→ v6 in Figure 1. A test sequence exercising
v2

c−→ v6 is shown in Figure 3, which is also a witness of F(v2 ∧XF(v6 ∧Fv9)).
We characterize all-dependence-pairs coverage criterion in terms of witness-

sets. A test suite Π satisfies all-dependence-pairs coverage criterion if and only
if Π is a witness-set of

⋃

v
x→v′

ltl(v x→ v′) ∪
⋃

v
c→v′

ltl(v c→ v′).



32 H.S. Hong and H. Ural

��

��
v1 �

��

��
v2

v2

�
��

��
v5 �

��

��
v6

v6

�
��

��
v7 �

��

��
v9

v9

Fig. 3. A test sequence exercising v2
c−→ v6

CTL can also be used in the characterization of dependence oriented coverage
criteria. A finite path is a witness of ltl(v x→ v′) if and only if the finite path is
a witness of the CTL formula defined by

ctl(v x→ v′) = EF(v ∧ EX[¬def (x)U(v′ ∧ EFvf )]).

A finite path is a witness of ltl(v c→ v′) if and only if the finite path is a
witness of the CTL formula defined by

ctl(v c→ v′) = EF(v ∧ EXEF(v′ ∧ EFvf )).

All-Dependence-Pairs-with-Puses Coverage Criterion. For a dependence
chain v

x→ v′ c→ v′′, we associate an LTL formula defined by

ltl(v x→ v′ c→ v′′) = F(v ∧ X[¬def (x)U(v′ ∧ XF(v′′ ∧ Fvf ))])

and a CTL formula defined by

ctl(v x→ v′ c→ v′′) = EF(v ∧ EX[¬def (x)U(v′ ∧ EXEF(v′′ ∧ EFvf ))]).

A test suite Π satisfies all-dependence-pairs-with-puses coverage criterion if
and only if Π is a witness-set of

⋃

v
x→v′

ltl(v x→ v′) ∪
⋃

v
x→v′ c→v′′

ltl(v x→ v′ c→ v′′) ∪
⋃

v
c→v′

ltl(v c→ v′).

4.2 Indirect Dependences

All-k-Dependence-Chains Coverage Criterion. For a dependence-chain κ,
we associate an LTL formula defined by

– ltl(κ) = Fltl(κ),
– if κ is v

x→ v′, then ltl(κ) = (v ∧ X[¬def (x)U(v′ ∧ Fvf )]),
– if κ is v

c→ v′, then ltl(κ) = (v ∧ XF(v′ ∧ Fvf )),
– if κ is v

x→ v′ · κ′, then ltl(κ) = (v ∧ X[¬def (x)Ultl(κ′)]),
– if κ is v

c→ v′ · κ′, then ltl(κ) = (v ∧ XF(v′ ∧ Fltl(κ′))).

The CTL formula ctl(κ) is defined in a similar way.

– ctl(κ) = EFctl(κ),
– if κ is v

x→ v′, then ctl(κ) = (v ∧ EX[¬def (x)U(v′ ∧ EFvf )]),
– if κ is v

c→ v′, then ctl(κ) = (v ∧ EXEF(v′ ∧ EFvf )),



Dependence Testing: Extending Data Flow Testing with Control Dependence 33

– if κ is v
x→ v′ · κ′, then ctl(κ) = (v ∧ EX[¬def (x)Uctl(κ′)]),

– if κ is v
c→ v′ · κ′, then ctl(κ) = (v ∧ EXEF(v′ ∧ EFctl(κ′))).

By induction on the number of du-pairs in κ, it can be shown that a finite path
is a test sequence exercising a df-chain κ if and only if the finite path is a witness
of ltl(κ) if and only if the finite path is a witness of ctl(κ).

A test suite Π satisfies all-k-dependence-chains coverage criterion if and only
if Π is a witness-set of

⋃

κ∈DC(1)∪...∪DC(k−1)

ltl(κ)

where DC(n) is a set of dependence-chains consisting of n direct dependences.

All-IO-Dependence-Chains Coverage Criterion. A test suite Π satisfies
all-IO-dependence-chains coverage criterion if Π is a witness-set of

⋃

i

⋃

o

⋃

κ∈SDC(i,o)

ltl(κ)

where SDC(i, o) is a set of simple dependence-chains from input i to output o.

5 Test Reduction

This section shows how the problem of test reduction for dependence testing can
be formulated as the LTL model checking problem.

5.1 Subsumption Graph

For a flow graph G and a coverage criterion C, E(G,C) is the set of entities of G
required to be exercised by C. A subset of E(G,C) is a spanning set if exercising
every entity in the subset guarantees exercising every entity in E(G,C). Hence
a test suite exercises every entity in a spanning set if and only if the test suite
satisfies the coverage criterion. A minimum spanning set is a spanning set S such
that |S| ≤ |S′| for every spanning set S′. The central notion used in constructing
a minimum spanning set is subsumption relation. An entity subsumes another
entity if a test sequence exercising the former also exercises the latter. Once
we have a test sequence exercising an entity, we do not need to generate test
sequences exercising the entities subsumed by the entity. In addition, if an entity
is not subsumed by any other entities, a test sequence exercising the entity should
be generated.

We construct a minimum spanning set using subsumption graph and reduced
subsumption graph. For a flow graph G and a coverage criterion C, the subsump-
tion graph is (E(G,C), SR) where SR is the subsumption relation between the
entities in E(G,C). Note that the subsumption relation SR is not a partial or-
der and hence subsumption graphs may have strongly connected components. A



34 H.S. Hong and H. Ural

reduced subsumption graph is a directed acyclic graph obtained by collapsing
each strongly connected component of a subsumption graph into one node. Let
v1, ..., vn be the nodes of the reduced subsumption graph that have no incoming
arcs, that is, the nodes that are not subsumed by any other nodes. Let V1, ..., Vn

be the strongly connected components corresponding to v1, ..., vn, respectively.
A minimum spanning set is {v′

1, ..., v
′
n} such that v′

i ∈ Vi for every 1 ≤ i ≤ n.
Figure 4 shows an algorithm for finding a subsumption graph in a generic

fashion without being specific about any coverage criteria. For every pair (e, e′)
of entities, we determine whether e subsumes e′ by model-checking the LTL
formula ltl(e) → ltl(e′) against the flow graph G, where ltl(e) and ltl(e′) are
the LTL formulas associated with e and e′, respectively. The correctness of the
algorithm can be understood as follows. Let e, e′ ∈ E(G,C). e subsumes e′ if and
only if for every finite path π, π is a test sequence exercising e implies π is a test
sequence exercising e′ if and only if for every finite path π, π is a witness of ltl(e)
implies π is a witness of ltl(e′) if and only if for every finite path π, π is a witness
of ltl(e) → ltl(e′) if and only if for every infinite path π, π |= ltl(e) → ltl(e′) if
and only if G |= ltl(e) → ltl(e′).

Input: a flow graph G and a coverage criterion C
Output: the subsumption graph (E(G, C), SR)

1: construct the set E(G, C) of entities of G required by C;
2: SR := ∅;
3: for every pair (e, e′), e, e′ ∈ E(G, C), e �= e do
4: model check ltl(e) → ltl(e′) against G;
5: if G |= ltl(e) → ltl(e′) then /* e subsumes e′ */
6: SR := SR ∪ {(e, e′)};
7: return (E(G, C), SR);

Fig. 4. An algorithm for constructing a subsumption graph

For example, consider all-dependence-pairs coverage criterion in Figure 1.
The set of entities required to be covered are shown in Figure 5.(a). By model-
checking the formula ltl(e) → ltl(e′) for every pair (e, e′) of entities, we con-
struct the subsumption graph. We then construct the reduced subsumption
graph by collapsing each strongly connected component in the subsumption
graph into one node. Figure 5.(b) shows the reduced subsumption graph. Fi-
nally we construct a minimum spanning set by selecting one entity from each of
the strongly connected components {v3

plus−→ v9, v4
sign−→ v9, v2

c−→ v3, v2
c−→ v4},

{v7
sign−→ v9, v6

c−→ v7}, and {v8
sign−→ v9, v6

c−→ v8} that have no incoming arcs.

5.2 Subsumption Forest

In the above algorithm, the total number of model checking performed is
O(|E(G,C)|2) both in the best case and worst case. Note that the subsump-
tion graph is used to identify all possible minimum spanning sets. If we are only



Dependence Testing: Extending Data Flow Testing with Control Dependence 35

v1
num−→ v2

v1
num−→ v6

v3
plus−→ v9

v5
plus−→ v9

v4
sign−→ v9

v7
sign−→ v9

v8
sign−→ v9

v2
c−→ v3

v2
c−→ v4

v2
c−→ v5

v2
c−→ v6

v6
c−→ v7

v6
c−→ v8

�

�

�

�
v1

num−→ v2

�� ��

�

�

�

�

v3
plus−→ v9, v4

sign−→ v9,

v2
c−→ v3, v2

c−→ v4

�

�

�

�

v1
num−→ v6, v5

plus−→ v9,

v2
c−→ v5, v2

c−→ v6

�� ��

�

�

�

�

v7
sign−→ v9,

v6
c−→ v7

�

�

�

�

v8
sign−→ v9,

v6
c−→ v8

(a) E(G, C) (b) reduced subsumption graph

Fig. 5. The reduced subsumption graph for Figure 1 and all-dependence-pairs coverage

criterion

interested in one minimum spanning set rather than all possible ones, we can
significantly reduce the total number of model checking to O(|E(G,C)|) in the
best case using the new algorithm shown in Figure 6. The intuition behind the
algorithm is that if ei subsumes ej (Line 10) then we do not consider ej any
more between Lines 5 and 12, which reduces the number of model checking that
needs to be performed. It is not hard to see that the result of the new algorithm
is a spanning forest of the subsumption graph (E(G,C), SR). Moreover, the root
nodes of the spanning forest comprise a minimum spanning set.

Figure 7 shows a subsumption forest for Figure 1 and all-dependence-pairs
coverage criterion. We construct a minimum spanning set by finding the root
nodes of the subsumption forest: {v3

plus−→ v9, v7
sign−→ v9, v8

sign−→ v9}.

Input: a flow graph G and a coverage criterion C
Output: a spanning forest (E(G, C), SF )

1: let E(G, C) be {e1, ..., en};
2: SF := ∅;
3: for i := 1 to n do
4: marked[i] := false;
5: for i := 1 to n do
6: if marked[i] = false then
7: for j := 1 to n, j �= i do
8: if marked[j] = false then
9: model check ltl(ei) → ltl(ej) against G;
10: if G |= ltl(ei) → ltl(ej) then /* ei subsumes ej */
11: SF := SF ∪ {(ei, ej)};
12: marked[j] := true;
13: return (E(G, C), SF );

Fig. 6. An algorithm for constructing a spanning forest



36 H.S. Hong and H. Ural

�

�

�

�
v1

num−→ v2

� �

�

�

�

�
v3

plus−→ v9

�����
			
�

�

�

�
v4

sign−→ v9

�

�

�

�
v2

c−→ v3

�

�

�

�
v2

c−→ v4

�

�

�

�
v1

num−→ v6

�����
			
�

�

�

�
v5

plus−→ v9

�

�

�

�
v2

c−→ v5

�

�

�

�
v2

c−→ v6

� �

�

�

�

�
v7

sign−→ v9

��

�

�

�
v6

c−→ v7

�

�

�

�
v8

sign−→ v9

��

�

�

�
v6

c−→ v8

Fig. 7. The subsumption forest for Figure 1 and all-dependence-pairs coverage criterion

6 Conclusions and Future Work

We have presented an approach to structural testing, called dependence test-
ing. For test coverage, we have extended data flow oriented coverage criteria
with control dependence in order to capture the dependence information of a
program or specification in terms of both data dependence and control depen-
dence. For test generation, we have showed that dependence oriented coverage
criteria can be characterized in temporal logic in such a way that test gen-
eration can be reduced to the problem of finding witnesses for LTL or CTL
formulas. For test reduction, we have showed that the LTL-based characteri-
zation can also be used for reducing the cost of dependence testing. It will be
interesting to empirically study the extent to which dependence testing actu-
ally provides tests which are more effective at identifying errors, provides bet-
ter reliability for programs under test, or exhibits a better cost ratio for test
development.

Our approach can be applied to more accurate models of programs. Tradi-
tionally, test generation has been performed upon flow graphs. Since a flow graph
preserves only the control flow and ignores the values of data variables, it is often
the case that the size of state space is not a concern. However, test generation
is increasingly performed upon more accurate models that respect the values of
data variables such as reachability graphs and abstract state graphs obtained
by abstract interpretation. In this case, the size of state space is the primary
concern and model checking has been proven to be effective for controlling the
state explosion problem. We plan to conduct case studies to see how large and
complex programs can be handled by our approach when reachability graphs or
abstract state graphs are used.

Our approach can also be applied to requirements specifications written in
state-based specification languages such as extended finite state machines, stat-
echarts, and SDL. Test generation for such specifications is very different from
that for programs since the specification languages typically provide a rich set



Dependence Testing: Extending Data Flow Testing with Control Dependence 37

of language constructs for modeling hierarchy, concurrency, and communica-
tions. Our approach is language-independent in the sense that the temporal
logic formulas employed in the approach can be immediately used for vari-
ous specification languages. In fact, the differences among specification lan-
guages (for example, synchronous computational model in statecharts versus
asynchronous computational model in SDL and communications through event
broadcasting in statecharts versus communications through message queues in
SDL) only affect the rules for translating specifications into input to model
checkers.

Acknowledgments

This research is supported in part by Natural Sciences and Engineering Research
Council (NSERC) of Canada under grant RGPIN 976.

References

1. H. Agrawal, “Dominators, Super Blocks, and Program Coverage,” Proceedings of
the 21st ACM Symposium on Principles of Programming Languages, pp. 25-34,
1994.

2. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers, Principles, Techniques, and
Tools, Addision-Wesley, 1986.

3. P. Ammann, P. Black, and W. Majurski, “Using Model Checking to Generate Tests
from Specifications,” in Proceedings of the 2nd IEEE International Conference on
Formal Engineering Methods, pp. 46-54, 1998.

4. A. Bertolino, “Unconstrained Edges and Their Application to Branch Analysis and
Testing of Programs,” The Journal of Systems and Software, 20(2):125-133, Feb.
1993.

5. A. Bertolino and M. Marré, “Automatic Generation of Path Covers Based on the
Control Flow Analysis of Computer Programs,” IEEE Transactions on Software
Engineering, 20(12):885-899, Dec. 1994.

6. A. Bertolino and M. Marré, “How Many Paths are Needed for Branch Testing?”
The Journal of Systems and Software, 35(2):95-106, Nov. 1996.

7. D. Beyer, A.J. Chlipala, T.A. Henzinger, R. Jhala, and R. Majumdar, “Generating
Tests from Counterexamples,” Proceedings of the 26th International Conference on
Software Engineering, pp. 326-335, 2004.

8. T. Chusho, “Test Data Selection and Quality Estimation Based on the Concept of
Essential Branches for Path Testing,” IEEE Transactions on Software Engineering,
13(5):509-517, May 1987.

9. E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking, The MIT Press, 1999.

10. L.A. Clarke, A. Podgurski, D.J. Richardson, and S.J. Zeil, “A Formal Evaluation of
Data Flow Path Selection Criteria,” IEEE Transactions on Software Engineering,
15(11):1318-1332, Nov. 1989.

11. R. Dssouli, K. Saleh, E. Aboulhamid, A. En-Nouaary, and C. Bourhfir, “Test Devel-
opment for Communication Protocols: towards Automation,” Computer Networks,
31(7):1835-1872, June 1999.



38 H.S. Hong and H. Ural

12. A. Engels, L. Feijs, and S. Mauw, “Test Generation for Intelligent Networks Using
Model Checking,” in TACAS ’97, Vol. 1217 of LNCS, pp. 384-398, Springer-Verlag,
1997.

13. P.G. Frankl and E.J. Weyuker, “A Formal Analysis of the Fault-Detecting Ability
of Testing Methods,” IEEE Transactions on Software Engineering, 19(3):202-213,
Mar. 1993.

14. A. Gargantini and C. Heitmeyer, “Using Model Checking to Generate Tests from
Requirements Specifications,” in Proceedings of ESEC/FSE ’99 pp. 146-162, 1999.

15. R. Gupta and M.L. Soffa, “Employing Static Information in the Generation of Test
Cases,” Software Testing, Verification and Reliability, 3(1):29-48, 1993.

16. M.P. Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj, and J. Gao, “Auto-
Generating Test Sequences Using Model Checkers: A Case Study,” Proceedings
of the 3th International Workshop on Formal Approaches to Testing of Software,
Vol. 2931 of LNCS, pp. 44-62, Springer, 2003.

17. P.M. Herman, “A Data Flow Approach to Program Testing,” Australian Computer
Journal, 8(3):92-96, Nov. 1976.

18. G.J. Holzmann, “The Model Checker SPIN,” IEEE Transactions on Software En-
gineering, Vol. 23, No. 5, pp. 279-295, May 1997.

19. H.S. Hong, Y.G. Kim, S.D. Cha, D.H. Bae, and H. Ural, “A Test Sequence Selection
Method for Statecharts,” Journal of Software Testing, Verification, and Reliability,
10(4):203-227, Dec. 2000.

20. H.S. Hong, I. Lee, O. Sokolsky, and H. Ural, “A Temporal Logic Based Theory
of Test Coverage and Generation,” TACAS ’02, Vol. 2280 of LNCS, pp. 327-341,
Springer, 2002.

21. H.S. Hong, S.D. Cha, I. Lee, O. Sokolsky, and H. Ural, “Data Flow Testing as
Model Checking,” Proceedings of the 25th International Conference on Software
Engineering, pp. 232-242, 2003.

22. H.S. Hong and H. Ural, “Using Model Checking for Reducing the Cost of Test
Generation,” Proceedings of the 4th International Workshop on Formal Approaches
to Testing of Software, LNCS, Springer, 2004.

23. J.W. Laski and B. Korel, “A Data Flow Oriented Program Testing Strategy,” IEEE
Transactions on Software Engineering, 9(5):347-354, May 1983.

24. M. Marré and A. Bertolino, “Unconstrained Duas and Their Use in Achieving All-
uses Coverage,” Proceedings of the International Symposium on Software Testing
and Analysis, pp. 147-157, 1996.

25. M. Marré and A. Bertolino, “Reducing and Estimating the Cost of Test Coverage
Criteria,” Proceedings of the 18th International Conference on Software Engineer-
ing, pp. 486-494, 1996.

26. K.L. McMillan, Symbolic Model Checking − an Approach to the State Explosion
Problem, Kluwer Academic Publishers, 1993.

27. S.C. Ntafos, “On Required Element Testing,” IEEE Transactions on Software En-
gineering, 10(11):795-803, Nov. 1984.

28. S. Rapps and E.J. Weyuker, “Selecting Software Test Data Using Data Flow Infor-
mation,” IEEE Transactions on Software Engineering, 11(4):367-375, Apr. 1985.

29. S. Rayadurgam and M.P. Heimdahl, “Coverage Based Test Generation Using
Model Checkers,” Proceedings of the 8th Annual IEEE International Conference
on the Engineering of Computer Based Systems, pp. 83-91, 2001.

30. A. Podgurski and L.A. Clarke, “A Formal Model of Program Dependences and Its
Implications for Software Testing, Debugging, and Maintenance,” IEEE Transac-
tions on Software Engineering, 16(9):965-979, Sept. 1990.



Dependence Testing: Extending Data Flow Testing with Control Dependence 39

31. H. van der Schoot and H. Ural, “Data Flow Oriented Test selection for LOTOS,”
Computer Networks, 27(7):1111-1136, 1995.

32. H. Ural and B. Yang, “A Test Sequence Generation Method for Protocol Testing,”
IEEE Transactions on Communications, 39(4):514-523, Apr. 1991.

33. H. Ural, K. Saleh, and A. Williams, “Test Generation Based on Control and Data
Dependencies within System Specifications in SDL,” Computer Communications,
23(7):609-627, Mar. 2000.

34. H. Zhu, P.A. Hall, and J.H.R. May, “Software Unit Test Coverage and Adequacy,”
ACM Computing Surveys, 29(4):366-427, Dec. 1997.


	Introduction
	Preliminaries
	Logics: LTL and CTL
	Model: Flow Graph

	Test Coverage
	Direct Dependences
	Indirect Dependences
	The Relationships Among Coverage Criteria

	Test Generation
	Direct Dependences
	Indirect Dependences

	Test Reduction
	Subsumption Graph
	Subsumption Forest

	Conclusions and Future Work

