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Abstract. Given a set of observations of an existing concurrent sys-
tem with repetitive sub-functions, we consider the construction of an
MSC graph representing the functionality of the concurrent system. We
first introduce a formal structure that we call ”lattice of repetitive sub-
functions”. This lattice provides us with a global view of all the repetitive
sub-functions of the system and all the compatible observations. Using
the lattice, we are able to propose an algorithm that constructs the MSC
graph representation of the system functionality in a more general con-
text than in previously published work.

1 Introduction

Often, depictions of individual intended behaviors of a concurrent system are
given by designers as Message Sequence Charts (MSCs) [1,2]. An MSC is a visual
description of a series of message exchanges among communicating processes in
a concurrent system. Figure 1, left, shows an MSC of three processes exchanging
a total of five messages. The message m1 is sent by the process P2 and received
by the process P3, which is represented by an arrow from P2 to P3 and labeled
m1. Each message exchange is represented by a pair of send and receive events.
The local view of the message exchanges of a process (send and receive events
of a process) is a total order, but the global view is a partial order. A tuple
consisting of a local view for each process of the message exchanges depicted
in an MSC uniquely determines that MSC. Thus, an MSC represents a partial
order execution of a concurrent system which stands for a set of linearizations
(total order executions of the system) determined by considering all possible
interleavings of concurrent message exchanges implied by the partial order.

To describe a functionality that is composed of several sub-functionalities,
an MSC graph (a graph with a source and a sink node where edges labeled
by MSCs) can be used. An MSC corresponding to the concatenation of MSCs
along a path from the source node to the sink node in an MSC graph is said to
be in the language of the MSC graph. In the following, Mk means that M is
repeated k times, and M∗ means any number of repetitions of M . Figure 1, right,
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Fig. 1. An MSC of three processes (left) and an example MSC Graph (right)

shows an MSC Graph where the MSC Mp is followed by an arbitrary number of
iterations of the MSC M , followed by the MSC Ms, which defines the language
Mp.M

∗.Ms. In this paper we assume that an MSC in the language of an MSC
graph represents a system functionality from the initial state to the final state,
without going through the initial state again during the execution.

Formal semantics associated with MSCs provides a basis for their analysis
such as detecting timing conflicts and race conditions [3], non–local choices [4],
model checking [5], and checking safe realizability [6,7].

One of the aims of the reverse engineering [8,9] is to recover the design of an
existing system from the run time behavior of its implementation. In this paper,
we consider the reverse engineering of designs of existing concurrent systems from
given sets of observations of their implementations. We assume that we are given
a set O of observations, each observation o ∈ O being an arbitrary linearization
of an MSC m from a set of MSCs that is not given. Some of the sub-functions
of the system can be repetitive, in which case they can be called consecutively
a different number of times in different runs of the system. We assume that a
repetitive sub-function does not start (resp. end) at the initial (resp. final) state,
and that every repetitive sub-function of the system (if any) is represented in
the given set of observations at least twice: once with no occurrence, and once
with two or more consecutive occurrences.

In [10], a method to infer repetitive sub-functions from a given set of ob-
servations is described. However, this method requires restrictive assumptions
regarding the observations. In this paper, we introduce a new concept, the lat-
tice of the repetitive sub-functions, to model a structure indicating all possible
2n combinations of n repetitive sub-functions of the observed system. Using this
concept, we are able to relax the following the assumptions made in [10]:

– Repetitive sub-functions do not have to be iterated the same number of times
in each observation,

– Repetitive sub-functions need not be introduced in a specific order,
– The ordering of the sub-functions need not be totally unambiguous.
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2 Preliminaries

A sub-function that is repeated in an observation will create a repeated pattern in
the MSC corresponding to that observation. However, a simple pattern repetition
is not enough. In order to deduce the existence of a repetitive sub-function, we
need to have an evidence such as different number of iterations of the pattern
within the same context.

Definition 1. An MSC M is the basic repetitive MSC of MSC M ′ if M ′ = Mk

for some k ≥ 2 and there does not exist a basic repetitive MSC of M .

Consider the visual representation of an MSC M and imagine that we draw a
line through M by crossing each process line exactly once, and without crossing
any message arrows. Such a line divides M into two parts Mp (the part above
the cutting line) and Ms (the part below the cutting line). Mp and Ms can be
shown to be MSCs again. Mp and Ms are what we call a prefix of M and a suffix
of M , respectively.

Definition 2. Two MSCs M1 and M2 are said to infer M to be repetitive within
the context Mp–Ms if all the following are satisfied:

1. M does not have a basic repetitive MSC,
2. M1 = Mp.M

k.Ms for some k ≥ 2 and M2 = Mp.Ms,
3. M is not a suffix of Mp and M is not a prefix of Ms.

Definition 3. A common prefix (resp. suffix) of two MSCs M1 and M2, is an
MSC M , such that M is a prefix (resp. suffix) of both M1 and M2. The maximal
common prefix (resp. suffix) of M1 and M2 is a common prefix (resp. suffix) M
of M1 and M2 with the largest number of events.

3 The Lattice of the Repetitive Sub-functions

The lattice of the repetitive sub-functions is a structure providing all possible
selection of n repetitive sub-functions, including none of them (bottom of the
lattice) and all of them (top of the lattice). We first look at the simple case,
with only one level of repetitive sub-functions, and we then consider the case of
nested repetitive sub-functions.

3.1 The Case Without Nested Repetitive Sub-functions

If two MSCs M1 and M2 infer an MSC M to be repetitive within the context Mp–
Ms, we obtain a regular expression, Mp.M

∗.Ms, which can be seen as a language
whose alphabet is the set of MSCs used in the regular expression ({Mp, Ms, M}
in that case). M1 and M2 are two of the words of that language.

For example, lets consider the following three MSCs, corresponding to a
given set of three observations: M1.M3.M5, M1.M2.M2.M3.M5 and M1.M3.M4.
M4.M4.M5. The first two MSCs infer the language M1.M

∗
2 .M3.M5, while the
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first and third MSCs infer the language M1.M3.M
∗
4 .M5, using the alphabet

{M1, M2, M3, M4, M5}.
Considering the general case of n repetitive sub-functions with no nested

repetitive sub-functions, the general form of the top ”language” (the top of
the lattice), representing the selection of all repetitive sub-function, will be of
the form Mp.M

∗
1 .T1.M

∗
2 .T2.M

∗
3 . . . M∗

n−1.Tn−1.M
∗
n.Ms, where ∀i ≤ n, Mi is a

non empty MSC representing a repetitive sub-function, Ti is a possibly empty
”transition” MSC, Mp is the non-empty prefix and Ms is the non-empty suffix.
Figure 2 shows an example with n = 3.

Because all combinations of the repetitive sub-functions are possible, we can
observe every subset of the set of n Mi’s, to a total of 2n possible different
languages. All of these languages can be ordered by inclusions: ∀L1, ∀L2, L1 ⊆ L2
if and only if ∀w, w ∈ L1 ⇒ w ∈ L2. Then, we are in fact looking at an hypercube
of size n, the elements being the languages, where a language L2 includes a
language L1 if L2 contains all the repetitive sub-functions included in L1.

The bottom ”language” (the bottom of the lattice) is actually a constant,
whose only word is the MSC of the observation with no repetitive sub-function.
All other observations should ”introduce” a new repetitive sub-function. All in
all, n languages will be directly deduced from pairs of observations, and the
others will be inferred.

There are several possible sets of observations that will allow the inference of
the same lattice. In Figure 2, the black dots are deduced from pairs of observa-
tions and the white dots are the languages inferred by inclusion. However, not
all combination of four nodes are valid. For example, the right-most combination
is invalid, since M3 is never inferred (never given in any observation, in fact).

Note that if a ”transition” Ti is empty (that is, Mi and Mi+1 are consecutive)
and if no observation is provided showing both Mi and Mi+1, we cannot order
Mi and Mi+1.

3.2 The Case of the Nested Repetitive Sub-functions

Observations containing occurrences of nested repetitive sub-functions will yield
the top element of a structure whose general form is the same as the one given
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Fig. 2. Different sets of observations for the same lattice
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Fig. 3. Two repetitive sub-functions, each one having two nested repetitive sub-
functions

in the previous section. In this general form, a sub-function containing k nested
repetitive sub-functions will have a non empty prefix, a non empty suffix, and
k repetitive sub-functions separated by possibly empty transition MSCs. Thus,
this sub-function alone, with its k nested repetitive sub-functions, defines an
hypercube of size k. Each of the nested repetitive sub-function can itself have
nested repetitive sub-functions and the same idea would apply. That is, we first
consider the ”first level” repetitive sub-functions. With n first level repetitive
sub-functions, we have an initial hypercube of size n, with each repetitive sub-
function defining one ”direction” or one ”face” of the hypercube. Each repetitive
sub-function appears in 2n−1 nodes of the hypercube.

For each first level repetitive sub-function having nested repetitive sub-func-
tions (say k of them), we replace all 2n−1 nodes having that repetitive sub-
function with the corresponding hypercube of size k. We then repeat that process
for each nested level.

The example in Figure 3 shows two repetitive sub-functions M1.M
∗
2 .M∗

3 .M4
(A), M3 itself having two repetitive sub-functions (M3 = M31.M

∗
32.M

∗
33.M34, B)

and M2 having two repetitive sub-functions (M2 = M21.M
∗
22.M

∗
23.M24, C).

4 Recovery of Repetitive Sub-functions

With the help of the lattice, we can derive a repetitive sub-function recovery
algorithm that has fewer assumptions than the ones assumed in [10]. We do
keep the following assumptions from [10]:
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1. The initial observation (without repetitive sub-function calls), and each
repetitive sub-function having nested repetitive sub-functions, has a non
empty, repetitive sub-function free prefix and a non empty, repetitive sub-
function free suffix.

2. Repetitive sub-functions have no common prefix with the part of the MSC
that starts just after them and no common suffix with the part of the MSC
that leads to them.

3. Repetitive sub-functions starting at the same point do not alternate.
4. Every repetitive sub-function is introduced ”individually” by at least one

observation. That is, for every repetitive sub-function M , there is at least
one observation o and a set of observations S such that:
(a) M is repeated at least twice in o
(b) M does not appear at all in any observation of S
(c) Every other repetitive sub-function appearing at least once in at least

one observation in S is also introduced individually within the set of
observations of S.

In other words, it is possible to introduce the repetitive sub-functions one at
a time.

A major difference with [10] is that once a repetitive sub-function has been in-
troduced, it can then be used (or not used), and used any number of times in the
other observations. In the case of nested repetitive sub-functions, the observation
that introduces the nested repetitive sub-function iterates that nested repetitive
sub-function in only one occurrence of the outer repetitive sub-function.

4.1 Description of the Algorithm

We first consider the following simplified case:

– The ordering of the repetitive sub-functions is never ambiguous (there is
always either a non empty transition between two consecutive repetitive
sub-functions, or these repetitive sub-functions are provided incrementally).

– There are no nested repetitive sub-functions.
– There are no unnecessary observations (i.e. we are working with n + 1 ob-

servations to uncover n repetitive sub-functions).

We are going to construct the lattice corresponding to a given set of observations
step by step, starting from the bottom. Initially, we look for observations that
allow us to deduce a single repetitive sub-function (assumption 4 ensures us that
there is at least one). Once we have deduced all these repetitive sub-functions,
we complete that portion of the lattice and infer the top of it. Then, we look for
observations that allow us to deduce just one repetitive sub-function in addition
to the ones that have been already deduced (again, thanks to assumption 4,
there is always one at least). We complete that part of the lattice, infer the top,
etc. until we are done.

We will use ”topLabel” to store the current top of the lattice. Initially, topLa-
bel is the bottom of the lattice (which is simply the MSC of the shortest obser-
vation of the whole set).
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1: topLabel = the MSC of the shortest observation
2: S = set of all observations minus topLabel
3: while S �= ∅ do
4: /* First phase: discovering the next set of repetitive sub-functions */
5: for all observations o ∈ S do
6: Let prefix = MaxCommonPrefix(topLabel, o)
7: Let suffix = MaxCommonSuffix(topLabel, o)
8: if prefix �= null and suffix �= null and prefix.suffix ∈ topLabel then
9: Let M be the portion of the MSC of o between prefix and suffix

10: /* MSC representation of o=prefix.M.suffix */
11: if M1 = basic repetitive MSC(M) then
12: /* M = Mk

1 for some k. We have found prefix.M∗
1 .suffix */

13: Add prefix.M∗
1 .suffix as a successor of topLabel in the lattice

14: Remove o from S
15: end if
16: end if
17: end for
18: /* second phase: reconstruction phase */
19: Close the lattice by combining all the found successors of topLabel.
20: Assign topLabel to the top of the lattice.
21: end while

After the first pass through the while loop, topLabel is a regular expression,
using the repetition(∗). The functions MaxCommonPrefix and MaxCommonSuf-
fix presented in [10] must be adapted as follows: trace along topLabel. Once you
reach a repetition (you reach an M∗), there are two options: either follow M or
skip it altogether. Thanks to assumption 2, you see immediately which way to
go. If M is followed, you can loop through M any number of times. If the trace
ends in the middle of M , then push back the common prefix to the beginning of
that repetitive sub-function M .

Let’s consider the following set of MSCs corresponding to a given set of four
observations as an example:

1. Mp.Mt.Ms 3. Mp.Mt.Mb.Mb.Ms

2. Mp.Ma.Ma.Ma.Ma.Mt.Ms 4. Mp.Ma.Mt.Mb.Mb.Mb.Mc.Mc.Ms

Initially, topLabel = Mp.Mt.Ms In the first pass through, topLabel and obser-
vations 2) find Mp.M

∗
a .Mt.Ms and topLabel and observations 3) find Mp.Mt.M

∗
b .

Ms. The lattice, a square, is closed, and Mp.M
∗
a .Mt.M

∗
b .Ms is inferred as the

top. In the second pass, topLabel = Mp.M
∗
a .Mt.M

∗
b .Ms with observations 4) find

Mp.M
∗
a .Mt.M

∗
b .M∗

c .Ms. The lattice, a cube, is closed, and Mp.M
∗
a .Mt.M

∗
b .M∗

c .
Ms is inferred as the final top.

4.2 Adding the Nested Repetitive Sub-functions

If there are nested repetitive sub-functions, the above algorithm will not find
them. To handle this case, we have to waive the restriction that MaxCommon-
Prefix must not finish inside a repetitive sub-functions. We must trace the max-
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Fig. 4. The algorithm step by step

imal common prefix within the repetitive sub-function. If it finishes inside it, we
trace the maximal common suffix and if it too finishes at the same point in the
repetitive sub-function, then that is the candidate for the starting point of the
nested sub-function.

Thus, the strategy becomes the following: we first iterate the algorithm as
before, until going through the for loop (line 5) does not add new repetitive
sub-functions. At that point, we have identified all the ”first level” repetitive
sub-functions. We then continue the algorithm, this time allowing the max com-
mon prefixes and max common suffixes to stop inside a first level repetitive
sub-function. We iterate until, again, the for loop does not add new repetitive
sub-functions. At that point, we have found all the second level repetitive sub-
functions (repetitive sub-functions inside a repetitive sub-functions). Now, we
allow suffixes and prefixes finishing inside second level repetitive sub-functions
and find third level repetitive sub-functions. We go one until we have exhausted
the set of observations.

4.3 Waiving the Non-ambiguity Condition

Consider the following set of MSCs corresponding to a given set of four obser-
vations:

1. Mp.Ms 3. Mp.Mb.Mb.Mb.Ms

2. Mp.Ma.Ma.Ma.Ms 4. Mp.Ma.Mb.Mc.Mc.Mc.Ms

By applying the algorithm of Section 4.1 we will first find Ma and Mb, but
we don’t know their respective order until later, when we find Mc.

We need to adapt the algorithm so that it records the ambiguity: during
the lattice completion phase (line 19), we may end up with several repetitive
sub-functions starting at the same point. We need thus to enhance our regular
expression and allow alternative. In the example above, the first discovery phase
finds Mp.M

∗
a .Ms and Mp.M

∗
b .Ms, so the first reconstruction phase can’t decide

whether the top should be Mp.M
∗
a .M∗

b .Ms or Mp.M
∗
b .M∗

a .Ms. So we record
Mp.(M∗

a |M∗
b ).Ms.

We thus need to modify MaxCommonPrefix and MaxCommonSuffix again:
now, as we trace inside topLabel, we may reach a point where there are several
choices: take any of the repetitive sub-functions starting there, or move on.
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What we need to do is try all the repetitive sub-functions and follow the one
that works. Two repetitive sub-functions can now have the same prefix, so we
may end up following several repetitive sub-functions at the same time, but
because ultimately all repetitive sub-functions are different, we will be able to
decide which repetitive sub-function we must really follow before the end of the
first iteration. We must record what repetitive sub-functions have been taken
because we can go through several ones at that point, one after the other (the
sub-functions cannot alternate according to assumption 3).

If at least two repetitive sub-functions start from the same point and have
a common prefix, it is possible that MaxCommonPrefix finishes before we have
reached a point allowing to decide which sub-function we are actually following.
Again because all repetitive sub-functions are ultimately distinct, MaxCommon-
Suffix will resolve the problem: it may also end up in the middle of several repet-
itive sub-functions, but the set of repetitive sub-functions found by MaxCom-
monPrefix and the set of repetitive sub-functions found by MaxCommonSuffix
will have at most one sub-function in common (the right one, if there is one).

Finally, to eventually waive the ambiguity, we have to enhance line 11: when
we find a repetitive sub-function, if we have followed ambiguous branches during
MaxCommonPrefix and/or during MaxCommonSuffix, then the order in which
we have followed these branches is the order of the repetitive sub-functions and
the ambiguity is removed.

In the example, after inferring Mp.(M∗
a |M∗

b ).Ms as the current top, in the
next phase we trace it against Mp.Ma.Mb.Mc.Mc.Mc.Ms. We successfully lo-
cate M∗

c , and at that time we waive the Ma|Mb ambiguity and finish with
Mp.M

∗
a .M∗

b .M∗
c .Ms.

Note that in fact, we can finish all the observations and still have ambiguity in
the final top of the lattice. This means that the order of the ambiguous repetitive
sub-functions was never provided. We can report that fact to the user.

4.4 Waiving the No Non-necessary Observations Conditions

So far, each observation adds something at one point. We actually don’t need
that. If an observation is ”redundant”, in that it doesn’t help discovering any
repetitive sub-function, at one point the current ”topLabel” will be able to al-
ready generate that observation. That is, in the algorithm it simply means that
MaxCommonSuffix will consume the complete observation. At that point, we
just need to discard it. Note that a redundant observation can still be useful to
waive ordering ambiguity. If that is the case, then we must simply record the
order before discarding the observation.

5 Conclusion

We have introduced the ”lattice of repetitive sub-functions”, a new formal struc-
ture providing a global view of the compatible observations of a system having
repetitive sub-functions. We have described an algorithm to construct an MSC
graph of the functionality of a system built from a set of observations. The new
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algorithm introduced in this paper is an improvement over the solution presented
in [10] in that some of the most restrictive assumptions on the set of observations
are being waived. The last strong assumption remaining is the assumption 4 of
the Section 4, stating that each repetitive sub-function must be introduced ”in-
dividually”. In future work, we will attempt to waive this assumption as well.
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