
Using Model Checking for Reducing the Cost of
Test Generation

Hyoung Seok Hong1 and Hasan Ural2

1 Concordia Institute for Information Systems Engineering,
Concordia University

hshong@ciise.concordia.ca
2 School of Information Technology and Engineering,

University of Ottawa
ural@site.uottawa.ca

Abstract. This paper presents a method for reducing the cost of test
generation. A spanning set for a coverage criterion is a set of entities such
that exercising every entity in the spanning set guarantees exercising
every entity defined by the coverage criterion. The central notion used in
constructing a minimum spanning set is subsumption relation. An entity
subsumes another entity if exercising the former guarantees exercising
the latter. We develop a method for finding subsumption relations which
can be uniformly applied to a family of control flow and data flow oriented
coverage criteria by reducing the problem of determining whether an
entity subsumes another entity to the model checking problem of the
linear temporal logic LTL.

1 Introduction

In structural testing, we are given a coverage criterion defining a set of entities
in the structure of a program and we generate a test suite satisfying the coverage
criterion. A test suite is a set of test sequences and is said to satisfy a coverage
criterion if for every entity defined by the coverage criterion, there is a test
sequence in the test suite exercising the entity. There are a number of coverage
criteria for structural testing and most of them are based on the information
of control flow and data flow. We refer the interested readers to [20, 7, 17] for
surveys of coverage criteria in software testing, protocol conformance testing,
and hardware testing, respectively. Control flow oriented coverage criteria call
for exercising single entities such as statements and branches. Data flow oriented
coverage criteria call for exercising associations between definitions and uses of
variables such as definition-use pairs[16], definition-use chains of fixed length[15],
definition-use chains between inputs and outputs[18, 19], and ordered definition
contexts[11].

For a program and a coverage criterion, the optimal test generation problem
consists of generating a test suite satisfying the coverage criterion with a mini-
mum number of test sequences. In [9, 10], the authors show that the complexity

J. Grabowski and B. Nielsen (Eds.): FATES 2004, LNCS 3395, pp. 110–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:hshong@ciise.concordia.ca
mailto:ural@site.uottawa.ca

Using Model Checking for Reducing the Cost of Test Generation 111

of this problem is NP-hard. Hence approaches for reducing the cost of test gen-
eration should be heuristic. In the software testing literature, several approaches
have been proposed[1, 3, 4, 5, 6, 8, 13, 14]. The main idea of these approaches is to
construct a subset of entities for a coverage criterion such that exercising every
entity in the subset guarantees exercising every entity defined by the coverage
criterion. That is, if a test suite covers every entity in the subset, the test suite
satisfies the coverage criterion. Following the terminology of [13, 14], we call the
subset a spanning set for the coverage criterion. A minimum spanning set al-
lows one to significantly reduce the cost of test generation by focusing only the
entities in the spanning set. For example, experiments in [1] show that for all-
statements and all-branches coverage criteria, the entities of minimum spanning
sets are around 30% of the original entities.

The central notion used in constructing a minimum spanning set is sub-
sumption relation. An entity subsumes another entity if exercising the former
guarantees exercising the latter. Once we have a test sequence exercising an en-
tity, all the entities subsumed by the entity can be safely ignored. In [1, 3, 4, 5,
6, 8, 13, 14], a number of methods have been proposed for finding subsumption
relations. All of them, however, investigate only simple coverage criteria such
as all-statements and all-branches coverage criteria [1, 3, 4, 5, 6, 14] and all-uses
coverage criterion[8, 13, 14] and cannot be generalized to more complicated data
flow oriented coverage criteria.

In this paper, we develop a method for finding subsumption relations which
can be uniformly applied to various coverage criteria ranging from all-statements
and all-branches coverage criteria to data flow oriented coverage criteria pro-
posed by Rapps and Weyuker[16], Ntafos[15], Ural et al.[18, 19], and Laski and
Korel[11]. For each coverage criterion, we reduce the problem of determining
whether an entity subsumes another entity to the model checking problem of
the linear temporal logic LTL[12] in a succinct and rigorous way. We associate
an LTL formula with every entity defined by a coverage criterion. Each formula
has the following property: a path is a test sequence exercising the entity if and
only if the path satisfies the formula. As a direct consequence of this property,
we have that an entity e subsumes another entity e′ if and only if every path
satisfies ψ → ψ′, where ψ and ψ′ are the LTL formulas associated with e and e′,
respectively.

In addition to being applicable to various coverage criteria, our method has
two other distinguishing features. First, the method is language independent
in that the temporal logic formulas employed in the method can be applied
to various kinds of programming languages and requirements specification lan-
guages. Since all the details about algorithms and implementations for finding
subsumption relations are hidden in model checkers, it is not necessary to build
a dedicated tool for each language. Second, the method enables one to reduce
the cost of test generation for large and complex software whose size is limited
by the capabilities of current model checkers. More importantly, we can enjoy
the continuing and rapid advances in the model checking literature.

112 H.S. Hong and H. Ural

The remainder of the paper is organized as follows. Section 2 recalls the basics
of LTL and flow graph, which are the logic and model employed in our method,
respectively. Section 3 defines spanning sets and describes how to construct a
minimum spanning set. Section 4 reduces the problem of finding subsumption
relations to the problem of LTL model checking, which is the main result of the
paper. Finally, Section 5 concludes the paper with a discussion of future work.

2 Preliminaries

Formulas of LTL are built from a set AP of atomic propositions, the standard
boolean operators, and the temporal operators X (next time) and U (until)
according to the following grammar: ψ := p | ¬ψ | ψ ∧ ψ | Xψ | ψUψ where
p ∈ AP . We also use the temporal operators F (eventually) and G (always)
defined by Fψ ≡ trueUψ and Gψ ≡ ¬F¬ψ.

A Kripke structure is a tuple M = (Q, qinit, L,R) where Q is a finite set of
states, qinit ∈ Q is the initial state, L: Q → 2AP is the function that labels each
state with atomic propositions, and R ⊆ Q×Q is the transition relation which
is total, i.e., for every state q, there exists a state q′ such that (q, q′) ∈ R. A path
of a Kripke structure is an infinite sequence π = q0q1... of states such that for
every i ≥ 0, (qi, qi+1) ∈ R. For a position i, π(i) is the i-th element of a path π
and πi is the suffix qiqi+1... of π.

For a path π and an LTL formula ψ, we write π |= ψ to denote that π satisfies
ψ. The satisfaction relation |= is defined inductively as follows:

– π |= p iff p ∈ L(π(0)).
– π |= ¬ψ iff π �|= ψ.
– π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2.
– π |= Xψ iff π1 |= ψ.
– π |= ψ1Uψ2 iff there exists i ≥ 0 such that πi |= ψ2 and πj |= ψ1 for every

0 ≤ j < i.

For a Kripke structure M and an LTL formula ψ, we write M |= ψ if for
every path π such that π(0) = qinit, π |= ψ. The model checking problem of LTL
is to decide if for given M and ψ, it holds that M |= ψ.

A flow graph of a program module is a directed graph G = (V, vs, vf , A)
where V is a finite set of vertices, vs ∈ V is the start vertex, vf ∈ V is the
final vertex, and A ⊆ V × V is a finite set of arcs. The start vertex vs and final
vertex vf represent the single entry and single exit point of a program module,
respectively. A vertex represents a simple statement (such as assignment, input,
and output) or the condition of a conditional or repetitive statement. An arc
represents possible flow of control between statements. A finite path v1...vn of a
flow graph is complete if v1 = vs and vn = vf . A test sequence is a complete path
and a test suite is a finite set of test sequences. Figure 1 shows a flow graph where
v1 is the start vertex and v6 is the final vertex. There are two test sequences
v1v2v3v4v5v6 and v1v2v3v5v6 in Figure 1.

Each variable occurrence in a program module is classified as a definition
or use. A variable x is defined at a vertex v, denoted by d(x, v), if v represents

Using Model Checking for Reducing the Cost of Test Generation 113

v1: input(x, y, z);
v2: max := x;
v3: if (y > x)
v4: then max := y;
v5: max := z ∗ max;
v6: output(max);

����
v6 u(max, v6)
�

����
v5 d(max, v5), u(z, v5), u(max, v5)

��
����
v4d(max, v4), u(y, v4)

����
v3

��
u(x, v3, v4), u(y, v3, v4)

�

u(x, v3, v5), u(y, v3, v5)

����
v2 d(max, v2), u(x, v2)

�

����
v1 d(x, v1), d(y, v1), d(z, v1)

�

Fig. 1. An example of flow graphs

a statement assigning a value to x. A variable x is computation-used (c-used)
at a vertex v, denoted by u(x, v), if v represents a statement referencing x. A
variable x is predicate-used (p-used) at an arc (v, v′), denoted by u(x, v, v′), if v
represents the condition of a conditional or repetitive statement referencing x.
A use is either a c-use or p-use.

We view a flow graph as a Kripke structure. The Kripke structure corre-
sponding to a flow graph G = (V, vs, vf , A) is (V , vs, L, A ∪ {(vf , vf)}) where
L(v) = {v} for every vertex v ∈ V . The tuple (vf ,vf) is necessary to guarantee
that the transition relation be total. We will not distinguish between flow graphs
and their Kripke structures because of their simple correspondence. In addition,
we will identify a test sequence vs...vf with the infinite path vs...vfvfvf

3 Spanning Sets

We adopt the following terminology introduced in [13, 14]. For a flow graph G
and a coverage criterion C, E(G,C) is the set of entities of G required to be
exercised by C. A subset of E(G,C) is a spanning set if exercising every entity in
the subset guarantees exercising every entity in E(G,C). A minimum spanning
set is a spanning set S such that |S| ≤ |S′| for every spanning set S′. It is easy
to see that a test suite exercises every entity in a spanning set if and only if the
test suite satisfies the coverage criterion. For example, for the flow graph shown
in Figure 1 and all-statements coverage criterion, we observe that E(G,C) is
{v1, v2, v3, v4, v5, v6} and {v4} is a spanning set for E(G,C). Indeed, {v4} is a
minimum spanning set. Consider a test suite {v1v2v3v4v5v6}. Since the test suite
exercises v4, it also exercises all the statements v1, v2, v3, v4, v5, v6.

114 H.S. Hong and H. Ural

The central notion used in constructing a minimum spanning set is subsump-
tion relation. An entity subsumes another entity if a test sequence exercising the
former also exercises the latter. Once we have a test sequence exercising an en-
tity, we do not need to generate test sequences exercising the entities subsumed
by the entity. In addition, if an entity is not subsumed by any other entities, a
test sequence exercising the entity should be generated. In the next section, we
will show how to find subsumption relations for various coverage criteria.

We construct a minimum spanning set using two graphs called subsumption
graph and reduced subsumption graph[13, 14]. For a flow graph G and a coverage
criterion C, the subsumption graph is (E(G,C), SR) where SR is the subsump-
tion relation between the entities in E(G,C). Note that the subsumption relation
SR is not a partial order and hence subsumption graphs may have strongly con-
nected components. A reduced subsumption graph is a directed acyclic graph
obtained by collapsing each strongly connected component of a subsumption
graph into one vertex. Let v1, ..., vn be the vertices of the reduced subsumption
graph that have no incoming arcs, that is, the vertices that are not subsumed by
any other vertices. Let V1, ..., Vn be the strongly connected components corre-
sponding to v1, ..., vn, respectively. A minimum spanning set is {v′

1, ..., v
′
n} such

that v′
i ∈ Vi for every 1 ≤ i ≤ n.

4 Subsumption Relations

This section addresses the problem of finding subsumption relations. Figure 2
shows an algorithm for finding subsumption graph in a generic fashion without
being specific about any coverage criteria. For a flow graph G and a coverage
criterion C, we first construct the set E(G,C) of entities (Line 2) and in turn the
set PE of pairs of entities (Line 3). For every pair (e, e′) in PE, we determine
whether e subsumes e′ by model-checking the LTL formula ltl(e) → ltl(e′)
against the flow graphG, where ltl(e) and ltl(e′) are the LTL formulas associated
with e and e′, respectively (Line 5). Theorem 1 proves the correctness of the
algorithm.

Input: a flow graph G and a coverage criteron C
Output: the subsumption graph (E(G, C), SR)

1: SR := ∅;
2: construct the set E(G, C) of entities of G required by C;
3: PE := {(e, e′) | e, e′ ∈ E(G, C), e �= e′};
4: for every pair (e, e′) in PE do
5: model check ltl(e) → ltl(e′) against G;
6: if G |= ltl(e) → ltl(e′) then SR := SR ∪ {(e, e′)};
7: return (E(G, C), SR);

Fig. 2. An algorithm for finding a subsumption graph

Using Model Checking for Reducing the Cost of Test Generation 115

Theorem 1. Assume that the LTL formula ltl(e) has the the following prop-
erty: a path π is a test sequence exercising e if and only if π |= ltl(e). Then we
have that e subsumes e′ if and only if G |= ltl(e) → ltl(e′).

Proof. e subsumes e′ if and only if for every path π, π is a test sequence exercising
e implies π is a test sequence exercising e′ if and only if for every path π,
π |= ltl(e) → π |= ltl(e′) if and only if for every path π, π |= ltl(e) → ltl(e′) if
and only if G |= ltl(e) → ltl(e′).

In the above algorithm, the total number of model checking performed is
O(|E(G,C)|2) both in the best case and worst case. Note that the subsumption
graph (E(G,C), SR) is used to identify all possible minimum spanning sets. If
we are only interested in one minimum spanning set rather than all possible ones,
we can significantly reduce the total number of model checking to O(|E(G,C)|)
in the best case using the new algorithm shown in Figure 3. It is not hard to
see that the result of the new algorithm is a spanning forest of the subsumption
graph (E(G,C), SR). Moreover, the root nodes of the spanning forest comprise
a minimum spanning set.

Input: a flow graph G and a coverage criteron C
Output: a spanning forest (E(G, C), SF) for the subsumption graph (E(G, C), SR)

1: SF := ∅;
2: construct the set E(G, C); let E(G, C) = {e1, ..., en};
3: for i := 1 to n do L[i] := ei; marked[i] := false;
4: for i := 1 to n do
5: if marked[i] = false then
6: for j := 1 to n, j �= i do
7: if marked[j] = false then
8: model check ltl(L[i]) → ltl(L[j]) against G;
9: if G |= ltl(L[i]) → ltl(L[j]) then
10: SF := SF ∪ {(L[i], L[j])};
11: marked[j] := true;
12: return (E(G, C), SF);

Fig. 3. An algorithm for finding a spanning forest of the subsumption graph

In the following sections, for each coverage criterion, for each entity e in
E(G,C), we will define the LTL formula ltl(e) and show its property that a
path π is a test sequence exercising e if and only if π |= ltl(e).

4.1 Statements and Branches

All-Statements Coverage Criterion. We say that a test sequence π exercises
a vertex v if there is i ≥ 0 such that π(i) = v. A test suite Π satisfies all-
statements coverage criterion if every vertex of a flow graph is exercised by a
test sequence in Π. For a vertex v, we associate an LTL formula defined by

116 H.S. Hong and H. Ural

v1: F(v1 ∧ Fv6)
v2: F(v2 ∧ Fv6)
v3: F(v3 ∧ Fv6)
v4: F(v4 ∧ Fv6)
v5: F(v5 ∧ Fv6)
v6: F(v6 ∧ Fv6)

����v4

�
�

�
�

�

�
�

�

�

�����

�

�����

	
����v3

����v5

����v2

����v6

����v1

�	

�	

�

� ��

�
����

�� �
����

���
�
�
����
�
�
��� �

�
�
����

�
�
���

����v4

�� ��v1, v2, v3, v5, v6

�

(a) LTL formulas (b) subsumption graph (c) reduced subsumption graph

Fig. 4. All-statements coverage criterion for Figure 1

ltl(v) = F(v ∧ Fvf)

with the property that a path π is a test sequence exercising a vertex v if and
only if there are 0 ≤ i ≤ j such that π(i) |= v and π(j) |= vf if and only if
π |= F(v ∧ Fvf). Figure 4.(a) shows the vertices and their LTL formulas for the
flow graph in Figure 1. By model-checking the formula ltl(v) → ltl(v′) for every
pair (v, v′) of vertices, we obtain the subsumption graph shown in Figure 4.(b).
We then collapse the strongly connected component {v1, v2, v3, v5, v6} into one
vertex and obtain the reduced subsumption graph shown in Figure 4.(c). Finally
we find a minimum spanning set {v4}.

All-Branches Coverage Criterion. We say that a test sequence π exercises
an arc (v, v′) if there is i ≥ 0 such that π(i) = v and π(i+1) = v′. A test suite Π
satisfies all-branches coverage criterion if every arc of a flow graph is exercised
by a test sequence in Π. For an arc (v, v′), we associate an LTL formula defined
by

ltl(v, v′) = F(v ∧ X(v′ ∧ Fvf))

with the property that a path π is a test sequence exercising an arc (v, v′) if and
only if there are 0 ≤ i < j such that π(i) |= v, π(i + 1) |= v′, π(j) |= vf if and
only if π |= F(v ∧ X(v′ ∧ Fvf)). Figure 5 shows the arcs, their LTL formulas,
and reduced subsumption graph for the flow graph in Figure 1. We have two
minimum spanning sets {(v3, v4), (v3, v5)} and {(v4, v5), (v3, v5)}.

4.2 Definition-Use Pairs

Rapps and Weyuker[16] propose a family of data flow oriented coverage criteria
that require certain pairs between definitions and uses of the same variable be
exercised. Let x be a variable, v be a vertex, and w be a vertex v′ or arc (v′, v′′).

– A finite path v, v1, ..., vn, w is a definition-clear path from v to w with respect
to x if x is not defined at vi for every 1 ≤ i ≤ n.

Using Model Checking for Reducing the Cost of Test Generation 117

(v1, v2): F(v1 ∧ X(v2 ∧ Fv6))
(v2, v3): F(v2 ∧ X(v3 ∧ Fv6))
(v3, v4): F(v3 ∧ X(v4 ∧ Fv6))
(v3, v5): F(v3 ∧ X(v5 ∧ Fv6))
(v4, v5): F(v4 ∧ X(v5 ∧ Fv6))
(v5, v6): F(v5 ∧ X(v6 ∧ Fv6))

�� ��(v1, v2), (v2, v3), (v5, v6)

�� ��(v3, v4), (v4, v5)

�

�� ��(v3, v5)

�

Fig. 5. All-branches coverage criterion for Figure 1

– For a definition d(x, v) and use u(x,w) of the same variable x, d(x, v) reaches
u(x,w) if there is a definition-clear path from v to w with respect to x. If w
is a vertex, the pair (d(x, v), u(x,w)) is called definition-cuse pair (dcu-pair).
Otherwise, the pair is called definition-puse pair (dpu-pair).

– A definition-use pair (du-pair) is either a dcu-pair or dpu-pair.

In Figure 1, we observe that (d(max, v2), u(max, v5)) is a du-pair whose
definition-clear path is v2v3v5, while (d(max, v2), u(max, v6)) is not because
there is no definition-clear path from v2 to v6 with respect to max.

Identifying du-Pairs. We note that the set of du-pairs of a flow graph can be
identified using the conventional data flow analysis algorithm for the reaching-
definition problem[2]. Recently, in [9, 10], the authors show that the set of du-
pairs can also be identified using CTL model checking.

All-Uses Coverage Criterion. We say that a test sequence π exercises a du-
pair (d(x, v), u(x,w)) if π is of the form π1 ·π2 ·π3, where π2 is a definition-clear
path from v to w with respect to x. A test suite Π satisfies all-uses coverage
criterion if every du-pair (d(x, v), u(x,w)) of a flow graph is exercised by a test
sequence in Π. Let def(x) be the disjunction of all vertices at which x is defined.
For example, in Figure 1, def(x) ::= v1, def(y) ::= v1, def(z) ::= v1, def(max)
::= v2 ∨ v4 ∨ v5. For a du-pair (d(x, v), u(x,w)), we associate an LTL formula
defined by

– if the pair is a dcu-pair, i.e., w is a vertex v′,
ltl(d(x, v), u(x, v′)) = F(v ∧ X[¬def(x)U(v′ ∧ Fvf)])

– if the pair is a dpu-pair, i.e., w is an arc (v′, v′′),
ltl(d(x, v), u(x, v′, v′′)) = F(v ∧ X[¬def(x)U(v′ ∧ X(v′′ ∧ Fvf))])

with the property that a path π is a test sequence exercising a dcu-pair (d(x, v),
u(x, v′)) if and only if there are 0 ≤ i < j ≤ k such that π(i) |= v, π(l) |= ¬def(x)
for i < l < j, π(j) |= v′, and π(k) |= vf if and only if π |= F(v∧X[¬def(x)U(v′∧
Fvf)]). The same property also holds for dpu-pairs. Figure 6 shows the du-pairs,
their LTL formulas, and the reduced subsumption graph for the flow graph in
Figure 1.

All-Defs Coverage Criterion. For a definition d(x, v), define DUPAIR
(d(x, v)) as the set of du-pairs whose definition is d(x, v). We say that a test se-
quence π exercises a definition d(x, v) if π exercises a du-pair in DUPAIR(d(x, v)).

118 H.S. Hong and H. Ural

(d(x, v1), u(x, v2)): F(v1 ∧ X[¬def(x)U(v2 ∧ Fv6)])
(d(x, v1), u(x, v3, v4)): F(v1 ∧ X[¬def(x)U(v3 ∧ X(v4 ∧ Fv6))])
(d(x, v1), u(x, v3, v5))): F(v1 ∧ X[¬def(x)U(v3 ∧ X(v5 ∧ Fv6))])
(d(y, v1), u(y, v4)): F(v1 ∧ X[¬def(y)U(v4 ∧ Fv6)])
(d(y, v1), u(y, v3, v4)): F(v1 ∧ X[¬def(y)U(v3 ∧ X(v4 ∧ Fv6))])
(d(y, v1), u(y, v3, v5)): F(v1 ∧ X[¬def(y)U(v3 ∧ X(v5 ∧ Fv6))])
(d(z, v1), u(z, v5)): F(v1 ∧ X[¬def(z)U(v5 ∧ Fv6)])
(d(max, v2), u(max, v5)): F(v2 ∧ X[¬def(max)U(v5 ∧ Fv6)])
(d(max, v4), u(max, v5)): F(v4 ∧ X[¬def(max)U(v5 ∧ Fv6)])
(d(max, v5), u(max, v6)): F(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])

�� ��(d(x, v1), u(x, v2)), (d(z, v1), u(z, v5)), (d(max, v5), u(max, v6))

�

�

�

�
(d(x, v1), u(x, v3, v4)),

(d(y, v1), u(y, v4)),
(d(y, v1), u(y, v3, v4)),

(d(max, v4), u(max, v5))

�

�
�

�
�

(d(x, v1), u(x, v3, v5)),
(d(y, v1), u(z, v3, v5)),

(d(max, v2), u(max, v5))

�

Fig. 6. All-uses coverage criterion for Figure 1

A test suite Π satisfies all-defs coverage criterion if every definition d(x, v) of
a flow graph is exercised by a test sequence in Π. For a definition d(x, v), we
associate an LTL formula defined by

ltl(d(x, v)) =
∨

(d(x,v),u(x,w))∈DUPAIR(d(x,v))

ltl(d(x, v), u(x,w))

with the property that a path π is a test sequence exercising d(x, v) if and only if
π exercises a du-pair in DUPAIR(d(x, v)) if and only if π |= ltl(d(x, v)). Figure 7
shows the definitions, their LTL formulas, and the reduced subsumption graph
for the flow graph in Figure 1.

4.3 Required k-Tuples

Ntafos[15] emphasizes interactions between different variables. Such interactions
are captured in terms of sequences of du-pairs.

– A sequence [d(x1, v1), u(x1, w1), ... d(xn, vn), u(xn, wn)] of du-pairs is a data
flow chain (df-chain)[18] if for every 1 ≤ i < n, wi = vi+1, that is, u(xi, wi)
and d(xi, vi+1) occur at the same vertex and hence the definition d(xi, vi+1)
is given in terms of u(xi, wi). Note that u(xi, wi), 1 ≤ i < n, is a c-use and
the final use u(xn, wn) may be either a c-use or p-use.

– A df-chain consisting of k − 1 du-pairs, k ≥ 2, is a k-definition/reference
interaction (k-dr interaction) in the terminology of [15].

Using Model Checking for Reducing the Cost of Test Generation 119

d(x, v1): ltl(d(x, v1), u(x, v2)) ∨ ltl(d(x, v1), u(x, v3, v4)) ∨ ltl(d(x, v1), u(x, v3, v5))
d(y, v1): ltl(d(y, v1), u(y, v4)) ∨ ltl(d(y, v1), u(y, v3, v4)) ∨ ltl(d(y, v1), u(y, v3, v5))
d(z, v1): ltl(d(z, v1), u(z, v5))
d(max, v2): ltl(d(max, v2), u(max, v5))
d(max, v4): ltl(d(max, v4), u(max, v5))
d(max, v5): ltl(d(max, v5), u(max, v6))

�� ��d(x, v1), d(y, v1), d(z, v1), d(max, v5)

�� ��d(max, v4)

�

�� ��d(max, v2)

�

Fig. 7. All-defs coverage criterion for Figure 1

– A path v1π1w1...vnπnwn is an interaction path of a df-chain if for every
1 ≤ i ≤ n, viπiwi is a definition-clear path from vi to wi with respect to xi.

In Figure 1, we observe that [d(x, v1), u(x, v2)] is a 2-dr interaction that has
v1v2 as its interaction path and [d(x, v1), u(x, v2), d(max, v2), u(max, v5)] is a
3-dr interaction that has v1v2v3v5 as its interaction path.

Identifying k-dr Interactions. Let κ = [d(x1, v1), u(x1, w1), ... d(xk−1, vk−1),
u(xk−1, wk−1)]. By definition, κ is a k-dr interaction if and only if (d(x1, v1),
u(x1, w1)) is a du-pair, w1 = v2, and [d(x2, v2), u(x2, w2), ... d(xk−1, vk−1),
u(xk−1, wk−1)] is a (k−1)-dr interaction. This leads to a recursive algorithm for
identifying the set of k-dr interactions.

Required k-Tuples Coverage Criterion. We say that a test sequence π
exercises a k-dr interaction κ if π is of the form π1 · π2 · π3, where π2 is an
interaction path of κ. A test suite Π satisfies required k-tuples coverage criterion
if every k-dr interaction of a flow graph is exercised by a test sequence in Π. For
a k-dr interaction κ, k ≥ 2, we associate an LTL formula inductively defined by

– ltl(κ) = Fltl(κ),
– if κ is [d(x, v), u(x, v′)] · κ′, then ltl(κ) = (v ∧ X[¬def (x)Ultl(κ′)]),
– if κ is [d(x, v), u(x, v′)], then ltl(κ) = (v ∧ X[¬def (x)U(v′ ∧ Fvf)]),
– if κ is [d(x, v), u(x, v′, v′′)], then ltl(κ) = (v∧X[¬def (x)U(v′∧X(v′′∧Fvf))]).

By induction on the number of du-pairs in κ, it can be shown that a path π is
a test sequence exercising a k-dr interaction κ if and only if π |= ltl(κ). Figure 8
shows the 3-dr interactions, their LTL formulas, and the reduced subsumption
graph for the flow graph in Figure 1.

4.4 IO-df-Chains

Ural et al.[18, 19] also emphasize interactions between different variables. While
required k-tuples coverage criterion considers df-chains consisting of a fixed num-
ber of du-pairs, all-IO-df-chains coverage criterion in [18, 19] considers df-chains

120 H.S. Hong and H. Ural

[d(x, v1), u(x, v2), d(max, v2), u(max, v5)]:
F(v1 ∧ X[¬def(x)U(v2 ∧ X[¬def(max)U(v5 ∧ Fv6)])])

[d(y, v1), u(y, v4), d(max, v4), u(max, v5)]:
F(v1 ∧ X[¬def(y)U(v4 ∧ X[¬def(max)U(v5 ∧ Fv6)])])

[d(z, v1), u(z, v5), d(max, v5), u(max, v6)]:
F(v1 ∧ X[¬def(z)U(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])])

[d(max, v2), u(max, v5), d(max, v5), u(max, v6)]:
F(v2 ∧ X[¬def(max)U(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])])

[d(max, v4), u(max, v5), d(max, v5), u(max, v6)]:
F(v4 ∧ X[¬def(max)U(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])])

�� ��[d(z, v1), u(z, v5), d(max, v5), u(max, v6)]

	

�
�[d(x, v1), u(x, v2), d(max, v2), u(max, v5)],

[d(max, v2), u(max, v5), d(max, v5), u(max, v6)]

�

	

�
�[d(y, v1), u(y, v4), d(max, v4), u(max, v5)],

[d(max, v4), u(max, v5), d(max, v5), u(max, v6)]

�

Fig. 8. 3-dr interaction coverage criterion for Figure 1

consisting of an arbitrary (but finite) number of du-pairs which start with inputs
and end with outputs. In this paper, we define an input as a definition occurring
at an input statement and output as a use occurring at an output statement.
The rationale here is to capture the functionality of a module in terms of the
interactions with its environment by identifying the effects of inputs accepted
from the environment on outputs offered to the environment. Let d(x, v) be a
definition and u(x′, w) be a use.

– d(x, v) affects u(x′, w) if either x = x′ and (d(x, v), u(x′, w)) is a du-pair or
there is a use u(x, v′) such that (d(x, v), u(x, v′)) is a du-pair and there is a
definition d(x′′, v′), given in terms of u(x, v′), that affects u(x′, w).

– (d(x, v), u(x′, w)) is an affect-pair if d(x, v) affects u(x′, w). By definition,
(d(x, v), u(x′, w)) is an affect-pair if and only if there is a df-chain [d(x1, v1),
u(x1, w1), ... d(xn, vn), u(xn, wn)] such that d(x1, v1) = d(x, v) and u(xn, wn)
= u(x′, w).

Among the particular affect-pairs of interest are those starting with inputs
and ending with outputs, which we call io-pairs. In Figure 1, there are three
inputs d(x, v1), d(y, v1), d(z, v1) and one output u(max, v6). Consider the in-
put d(x, v1) and output u(max, v6). We observe that d(x, v1) affects u(max, v6)
through the df-chain [d(x, v1), u(x, v2), d(max, v2), u(max, v5), d(max, v5),
u(max, v6)].

Identifying Simple df-Chains. For a definition d(x, v) and use u(x′, w), we
use CHAIN (d(x, v), u(x′, w)) to denote the set of df-chains κ = [d(x1, v1),
u(x1, w1), ... d(xn, vn), u(xn, wn)] such that d(x1, v1) = d(x, v) and u(xn, wn) =
u(x′, w). In general, there may be multiple occurrences of the same du-pair in

Using Model Checking for Reducing the Cost of Test Generation 121

κ thereby causing the possibility of an infinite number of df-chains in CHAIN
(d(x, v), u(x′, w)). In order to put an upper bound on the size of CHAIN (d(x, v),
u(x′, w)), we consider its subset SCHAIN (d(x, v), u(x′, w)) consisting of simple
df-chains that are allowed to have at most one occurrence of each du-pair. By
definition, κ is a simple df-chain in SCHAIN (d(x, v), u(x′, w)) if and only if
d(x1, v1) = d(x, v), u(xn, wn) = u(x′, w), (d(x1, v1), u(x1, w1)) is a du-pair, and
[d(x2, v2), u(x2, w2), ... d(xn, vn), u(xn, wn)] is a simple df-chain that does not
contain the first du-pair (d(x1, v1), u(x1, w1)). This leads to a recursive algo-
rithm for identifying the set of simple df-chains.

All-IO-df-Chains Coverage Criterion. A test suite Π satisfies all-IO-df-
chains coverage criterion if for every io-pair (i, o), every simple df-chain in
SCHAIN (i, o) is covered by a test sequence in Π. For a simple df-chain κ
in SCHAIN (i, o), we associate the LTL formula ltl(κ). For example, in Fig-
ure 1, there are three io-pairs (d(x, v1), u(max, v6)), (d(y, v1), u(max, v6)), and
(d(z, v1), u(max, v6)). Figure 9 shows the simple chains for the io-pairs, their
LTL formulas, and the reduced subsumption graph.

[d(x, v1), u(x, v2), d(max, v2), u(max, v5), d(max, v5), u(max, v6)]:
F(v1 ∧ X[¬def(x)U(v2 ∧ X[¬def(max)U(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])])])

[d(y, v1), u(y, v4), d(max, v4), u(max, v5), d(max, v5), u(max, v6)]:
F(v1 ∧ X[¬def(y)U(v4 ∧ X[¬def(max)U(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])])])

[d(z, v1), u(z, v5), d(max, v5), u(max, v6)]:
F(v1 ∧ X[¬def(z)U(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])])

�� ��[d(z, v1), u(z, v5), d(max, v5), u(max, v6)]

�
�

�
�

[d(x, v1), u(x, v2),
d(max, v2), u(max, v5),
d(max, v5), u(max, v6)]

�

�
�

�
�

[d(y, v1), u(y, v4),
d(max, v4), u(max, v5),
d(max, v5), u(max, v6)]

�

Fig. 9. All-IO-df-chains coverage criterion for Figure 1

4.5 Ordered Definition Contexts

Laski and Korel[11] emphasize that a vertex or arc may contain uses of several
different variables, where each use may be reached by several different definitions.
Let w be a vertex or arc and u(x1, w), ..., u(xn, w) be the uses occurring at w.

– For a set X of variables, we use d(X, v) to denote the set {d(x, v) | x ∈ X}
of definitions.

– An ordered definition context of w is a sequence [d(X1, v1), ..., d(Xm, vm)]
of sets of definitions such that X1 ∪ ... ∪ Xm = X and there is a path
v1π1...vmπmw, called ordered context path, satisfying the following property:
for every 1 ≤ i ≤ m, viπi...vmπmw is a definition-clear path from vi to w
with respect to every variable x in Xi.

122 H.S. Hong and H. Ural

[d({x}, v1)] of v2: F(v1 ∧ X[¬def(x)U(v2 ∧ Fv6)])
[d({x, y}, v1)] of (v3, v4): F(v1 ∧ X[(¬def(x) ∧ ¬def(y))U(v3 ∧ X(v4 ∧ Fv6))])
[d({x, y}, v1)] of (v3, v5): F(v1 ∧ X[(¬def(x) ∧ ¬def(y))U(v3 ∧ X(v5 ∧ Fv6))])
[d({x}, v1)] of v4: F(v1 ∧ X[¬def(x)U(v4 ∧ Fv6)])
[d({z}, v1), d({max}, v2)] of v5:

F(v1 ∧ X[¬def(z)U(¬def(z) ∧ v2 ∧ X[(¬def(z) ∧ ¬def(max))U(v5 ∧ Fv6)])])
[d({z}, v1), d({max}, v4)] of v5:

F(v1 ∧ X[¬def(z)U(¬def(z) ∧ v4 ∧ X[(¬def(z) ∧ ¬def(max))U(v5 ∧ Fv6)])])
[d({max}, v5)] of v6: F(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])

�� ��[d({x}, v1)] of v2, [d({max}, v5)] of v6

�
�

�
�

[d({x, y}, v1)] of (v3, v4),
[d({x}, v1)] of v4,

[d({z}, v1), d({max}, v4)] of v5

�

	

�
�[d({x, y}, v1)] of (v3, v5),

[d({z}, v1), d({max}, v2)] of v5

�

Fig. 10. Ordered contexts coverage criterion for Figure 1

In Figure 1, consider the vertex v5 that has two uses u(z, v5) and u(max, v5).
We observe that [d({z}, v1), d({max}, v2)] and [d({z}, v1), d({max}, v4)] are or-
dered definition contexts of v5 which have v1v2v3v5 and v1v2v3v4v5 as their or-
dered context path, respectively. For another example, consider the edge (v3, v4)
that has two uses u(x, v3, v4) and u(y, v3, v4). [d({x, y}, v1)] is an ordered defini-
tion context of the edge.

Identifying Ordered Definition Contexts. Let λ=[d(X1, v1), ..., d(Xm, vm)].
By definition, λ is an ordered definition context of w if and only if for every
1 ≤ i ≤ m,

– for every variable x ∈ X1 ∪ ... ∪Xi−1, x is not defined at vi,
– for every variable x ∈ X1 ∪ ... ∪Xi, there is a definition-clear path from vi

to vi+1 with respect to x.

This leads to a recursive algorithm for identifying the set of ordered definition
contexts.

Ordered Contexts Coverage Criterion. We say that a test sequence π ex-
ercises an ordered definition context λ if π is of the form π1 · π2 · π3, where π2 is
an ordered context path of λ. A test suite Π satisfies ordered contexts coverage
criterion if for every vertex or arc w of a flow graph, every ordered definition
context of w is exercised by a test sequence in Π. For an ordered definition
context λ of w, we associate an LTL formula inductively defined by

– ltl(λ) = Fltl(λ,true),
– if λ is [d(X, v)]·λ′, then ltl(λ,nodef) = (nodef ∧v∧X[nodef ′Ultl(λ′,nodef ′)]),

where nodef ′ = nodef ∧ ∧
x∈X ¬def (x),

Using Model Checking for Reducing the Cost of Test Generation 123

– if λ is empty and w = v′, then ltl(λ,nodef) = (v′ ∧ Fvf),
– if λ is empty and w = (v′, v′′), then ltl(λ,nodef) = (v′ ∧ X(v′′ ∧ Fvf)).

By induction on the number of definitions in λ, it can be shown that a test
sequence π exercises λ if and only if π |= ltl(λ). Figure 10 shows the ordered
definition contexts, their LTL formulas, and the reduced subsumption graph for
the flow graph in Figure 1.

5 Conclusions and Future Work

We have presented a method for reducing the cost of test generation for structural
testing. We investigated a family of control flow and data flow oriented coverage
criteria and reduced the problem of finding subsumption relations to the problem
of LTL model checking. We illustrated the method using the flow graph model
of a simple program module.

Our method can be applied to more accurate models of programs. Tradition-
ally, test generation has been performed upon flow graphs. Since a flow graph
preserves only the control flow and ignores the values of data variables, it is often
the case that the size of state space is not a concern. However, test generation
is increasingly performed upon more accurate models that respect the values of
data variables such as reachability graphs and abstract state graphs obtained
by abstract interpretation. In this case, the size of state space is the primary
concern and model checking has been proven to be effective for controlling the
state explosion problem. We plan to conduct case studies to see how large and
complex programs can be handled by our method when reachability graphs or
abstract state graphs are used.

Our method can also be applied to requirements specifications written in
state-based specification languages such as extended finite state machines, stat-
echarts, and SDL. Optimal test generation from such specifications is more com-
plicated than that from program modules because it is necessary to cope with
a rich set of language constructs for modeling hierarchy, concurrency, and com-
munications. Our method is language-independent in that the temporal logic
formulas employed in the method can be immediately used for various specifica-
tion languages. In fact, differences between specification languages (for example,
synchronous computational model in statecharts versus asynchronous computa-
tional model in SDL and communications through event broadcasting in stat-
echarts versus communications through unbounded queues in SDL) only affect
the rules for translating them into input to model checkers.

Acknowledgements

This research is supported in part by Natural Sciences and Engineering Research
Council (NSERC) of Canada under grant OGP 976.

124 H.S. Hong and H. Ural

References

1. H. Agrawal, “Dominators, Super Blocks, and Program Coverage,” Proc. of the 21st
ACM Symposium on Principles of Programming Languages, pp. 25-34, 1994.

2. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers, Principles, Techniques, and
Tools, Addision-Wesley, 1986.

3. A. Bertolino, “Unconstrained Edges and Their Application to Branch Analysis and
Testing of Programs,” The Journal of Systems and Software, 20(2):125-133, Feb.
1993.

4. A. Bertolino and M. Marré, “Automatic Generation of Path Covers Based on the
Control Flow Analysis of Computer Programs,” IEEE Transactions on Software
Engineering, 20(12):885-899, Dec. 1994.

5. A. Bertolino and M. Marré, “How Many Paths are Needed for Branch Testing?”
The Journal of Systems and Software, 35(2):95-106, Nov. 1996.

6. T. Chusho, “Test Data Selection and Quality Estimation Based on the Concept of
Essential Branches for Path Testing,” IEEE Transactions on Software Engineering,
13(5):509-517, May 1987.

7. R. Dssouli, K. Saleh, E. Aboulhamid, A. En-Nouaary, and C. Bourhfir, “Test Devel-
opment for Communication Protocols: towards Automation,” Computer Networks,
31(7):1835-1872, June 1999.

8. R. Gupta and M.L. Soffa, “Employing Static Information in the Generation of Test
Cases,” Software Testing, Verification and Reliability, 3(1):29-48, 1993.

9. H.S. Hong, I. Lee, O. Sokolsky, and H. Ural, “A Temporal Logic Based Theory
of Test Coverage and Generation,” TACAS ’02, Vol. 2280 of LNCS, pp. 327-341,
Springer-Verlag, 2002.

10. H.S. Hong, S.D. Cha, I. Lee, O. Sokolsky, and H. Ural, “Data Flow Testing as Model
Checking,” Proc. of the 25th International Conference on Software Engineering, pp.
232-242, 2003.

11. J.W. Laski and B. Korel, “A Data Flow Oriented Program Testing Strategy,” IEEE
Transactions on Software Engineering, 9(5):347-354, May 1983.

12. Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems:
Specification, Springer-Verlag, 1992.

13. M. Marré and A. Bertolino, “Unconstrained Duas and Their Use in Achieving All-
uses Coverage,” Proc. of the International Symposium on Software Testing and
Analysis, pp. 147-157, 1996.

14. M. Marré and A. Bertolino, “Reducing and Estimating the Cost of Test Coverage
Criteria,” Proc. of the 18th International Conference on Software Engineering, pp.
486-494, 1996.

15. S.C. Ntafos, “On Required Element Testing,” IEEE Transactions on Software En-
gineering, 10(11):795-803, Nov. 1984.

16. S. Rapps and E.J. Weyuker, “Selecting Software Test Data Using Data Flow Infor-
mation,” IEEE Transactions on Software Engineering, 11(4):367-375, Apr. 1985.

17. S. Tasiran and K. Keutzer, “Coverage Metrics for Functional Validation of Hard-
ware Designs,” IEEE Design and Test of Computers, 18(4):36-45, July/Aug. 2001.

18. H. Ural and B. Yang, “A Test Sequence Generation Method for Protocol Testing,”
IEEE Transactions on Communications, 39(4):514-523, Apr. 1991.

19. H. Ural, K. Saleh, and A. Williams, “Test Generation Based on Control and Data
Dependencies within System Specifications in SDL,” Computer Communications,
23(7):609-627, Mar. 2000.

20. H. Zhu, P.A. Hall, and J.H.R. May, “Software Unit Test Coverage and Adequacy,”
ACM Computing Surveys, 29(4):366-427, Dec. 1997.

	Introduction
	Preliminaries
	Spanning Sets
	Subsumption Relations
	Statements and Branches
	Definition-Use Pairs
	Required k-Tuples
	IO-df-Chains
	Ordered Definition Contexts

	Conclusions and Future Work

