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Abstract. The testing of a state-based system may involve the applica-
tion of a number of adaptive test sequences. Where the implementation
under test (IUT) is deterministic, the response of the IUT to some adap-
tive test sequence γ1 may be capable of determining the response of the
IUT to some other adaptive test sequence γ2. Thus, the expected cost
of applying a set of adaptive test sequences depends upon the order in
which they are applied. This paper explores properties of adaptive test
sequences and the problem of finding an order of application, of the el-
ements from some set of adaptive test sequences, that minimises the
expected cost of testing.

1 Introduction

Where a system is state-based, testing involves the application of sequences of
input values. Such sequences are called test sequences. A test sequence, or a set
of test sequences, may represent some test purpose or test objective.

An adaptive test sequence is applied in an adaptive experiment which is
a process in which at each stage the input applied depends upon the output
that has been produced. An adaptive test typically consists of a number of
adaptive test sequences. The use of adaptive tests has been proposed within
the area of testing from a (possibly non-deterministic) finite state machine (see,
for example, [1, 4, 7, 9, 10]), and generally in protocol conformance testing [6].
Further, algorithms for generating tests from a specification written in a Process
Algebra such as LOTOS typically produce adaptive test sequences with verdicts
(see, for example, [2, 8]). Adaptivity is thus a core element of the test description
language TTCN (see, for example, [3]). Adaptivity may lead to more efficient
tests. For example, when testing against a non-deterministic finite state machine
there may be no single preset input sequence that reaches a given state s and
thus a set of input sequences might be used to reach s. Instead, it may be possible
to apply a single adaptive test sequence to reach s.

When the implementation under test (IUT) is deterministic, the response to
one adaptive test sequence γ1 may be capable of fully deciding the response of
the IUT to some other adaptive test sequence γ2. Where this is the case, using γ1
before γ2 may reduce the expected test execution effort. However, relationships
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involving other adaptive test sequences may affect the best relative ordering of
γ1 and γ2. This paper considers the problem of finding an order of execution,
of a set of adaptive test sequences, that maximises the expected saving where
the IUT is known to be deterministic. Such an ordering is said to be an optimal
ordering.

This paper makes a number of contributions. First, we make the observa-
tion that the order in which adaptive test sequences are applied may affect the
expected cost of testing. We formalise this notion and define a function that
determines whether the execution of one adaptive test sequence γ1 is capable
of removing the necessity to apply another adaptive test sequence γ2. We then
show how the scale of the optimisation problem may be reduced. Finally, we
introduce an algorithm that produces the optimal ordering where the problem
has particular properties. Future work will consider how this algorithm may be
generalised.

This paper is structured as follows. Section 2 describes test sequences, di-
rected graphs, and adaptive test sequences. Section 3 then considers conditions
under which the relative ordering of adaptive test sequences may be significant.
Section 4 considers two ways in which the optimisation problem may be sim-
plified. Section 5 introduces a polynomial time algorithm that generates the
optimal ordering under a well-defined condition. Section 6 describes potential
future work and finally, in Section 7 conclusions are drawn.

2 Preliminaries

2.1 Sequences

Throughout this paper X and Y will denote the input and output domains of
the IUT. Given a set A, A∗ will denote the set of sequences of elements from A,
including the empty sequence ε. It will be assumed that the IUT is a state-based
system and thus that testing leads to the observation of input/output sequences
of the form 〈x1/y1, . . . , xk/yk〉 ∈ (X/Y )∗ where x1, . . . , xk ∈ X and y1, . . . ,
yk ∈ Y . A preset input sequence is some element of X∗.

Given sequences c and d, cd will denote the result of concatenating c and d.
For example, 〈a/0〉 〈a/1, b/0〉 = 〈a/0, a/1, b/0〉. Given sets C and D of sequences,
CD will denote the set formed by concatenating the elements of C with the
elements of D. Thus CD = {cd|c ∈ C ∧d ∈ D}. Given a sequence b ∈ A∗, pre(b)
will denote the set of prefixes of b. Given a set B of sequences Pre(B) will denote
the set of prefixes of sequences from B. These are defined more formally by the
following.

Definition 1. Given sequence b ∈ A∗ and set B ⊆ A∗:

pre(b) = {b′ ∈ A∗|∃b′′ ∈ A∗.b = b′b′′}

Pre(B) =
⋃
b∈B

pre(b)
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If a set of adaptive test sequences is applied then the IUT is returned to
its initial state after each test using a test postamble [5]. This ensures that
each test is applied in the same state of the IUT. The postamble might involve
some sequence of inputs or a single action such as a disconnect or reset, for a
connection-oriented communications protocol, or the system being switched off
and then on again.

2.2 Directed Graphs

A directed graph is a set of vertices with arcs between them. The following is a
more formal definition.

Definition 2. A directed graph (digraph) G is defined by a pair (V, E) in which
V = {v1, . . . , vn} is a finite set of vertices and E ⊆ V × V is a set of directed
edges between the vertices of G. An element e = (vi, vj) ∈ E represents an edge
from vi to vj. Given edge e = (vi, vj), start(e) denotes vi and end(e) denotes
vj.

Definition 3. Given digraph G = (V, E) and vertex v ∈ V , indegreeE(v) de-
notes the number of edges from E that end at v and outdegreeE(v) denotes the
number of edges from E that start at v.

Given a digraph G = (V, E), a sequence e1, . . . , em of edges from E, in which
for all 1 ≤ k < m end(ek) = start(ek+1), is a path from start(e1) to end(em)
in G. A path is a cycle if its initial and final vertices are the same and no other
vertex is repeated. A digraph is said to be acyclic if it has no cycles.

Given a digraph G, the following defines the result of removing one or more
vertices from G.

Definition 4. Let G = (V, E) denote a digraph and V ′ ⊆ V . Then G \ V ′

denotes the digraph formed by removing every vertex contained in V ′, and the
associated edges, from G. This is formally defined by the following.

G \ V ′ = (V \ V ′, {(vi, vj) ∈ E|vj �∈ V ′ ∧ vi �∈ V ′})

2.3 Adaptive Test Sequences

Testing typically involves applying input sequences to the IUT and observing
the output produced. Sometimes the input sequences used are preset: each is
fully determined before it is applied. However, a test may be adaptive: the next
input provided in a sequence may depend on the outputs produced in response
to the previous input values. Such a test is called an adaptive test sequence. The
use of adaptive test sequences has been proposed in a number of areas including
protocol conformance testing (see, for example, [1, 6, 9]).

In this paper T will denote the set of all adaptive test sequences that use
inputs from X and refer to outputs from Y . The set T may be defined recursively
in the following manner.
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Definition 5. Each element γ ∈ T is one of:

– null
– a pair (x, f) in which x ∈ X and f is a function from Y to T .

An adaptive test sequence γ is applied in the following manner. If γ = null
then the adaptive test sequence ends. If γ = (x, f) then x is applied and the
output y is observed. The adaptive test sequence f(y) is then applied.

We will assume that the adaptive test sequences are finite. An adaptive test
sequence may be represented by a tree. For example, the tree in Figure 1 rep-
resents an adaptive test sequence in which the first input is a, no further input
is provided if the output is 0, and the input b is provided if the output is 1.
Whatever the response to b after a, the test then terminates. The adaptive test
sequence γ given in Figure 1 may be defined in the following way: γ = (a, f),
f(0) = null, f(1) = (b, f ′), f ′(0) = null, and f ′(1) = null.

a

b

0

0

1

1

Fig. 1. An adaptive test sequence

Given γ ∈ T it is possible to define the set IO(γ) of input/output sequences
that may be observed using γ.

Definition 6. Given γ ∈ T ,

IO(γ) =
{

{ε} if γ = null⋃
y∈Y {〈x/y〉}IO(f(y)) if γ = (x, f)

The first rule states that if γ = null then no input/output behaviour is
seen and thus the empty sequence is observed. The second rule is recursive,
stating that given y ∈ Y , γ may lead to an input/output behaviour in the
form of x/y followed by some input/output behaviour formed by then apply-
ing f(y). For example, the adaptive test sequence γ given in Figure 1 has:
IO(γ) = {〈a/0〉 , 〈a/1, b/0〉 , 〈a/1, b/1〉}. Since every adaptive test sequence has
finite length, it follows that IO(γ) is finite and every element of IO(γ) is finite.

Definition 7. The length of γ ∈ T is defined by:

length(γ) =
{

0 if γ = null
1 + maxy∈Y length(f(y)) if γ = (x, f)

The length of an adaptive test sequence γ is thus the length of the longest
input/output sequence that may occur through the application of γ.
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Fig. 2. Adaptive test sequences γ1, γ2, and γ3

3 Conditions under Which Savings Occur

This section will explore conditions under which it may not be necessary to use
γ2 ∈ T if we first apply γ1 ∈ T . Consider adaptive test sequences γ1 and γ2
in Figure 2. Suppose the use of γ1 leads to the input/output sequence a/0, a/1.
Then, since the IUT is deterministic we know that the response of the IUT to
γ2 will be a/0. Thus there is no need to apply γ2.

Suppose we intend to execute some adaptive test sequence γ2 after some
adaptive test sequence γ1, γ1 being followed by a postamble that returns the
system to its initial state. Then the response of the IUT to γ1 might determine
the response of the IUT to γ2 if one of the possible responses to γ2 is a prefix of
some possible response to γ1. The condition under which this may happen will
now be defined.

Proposition 1. The response of the IUT to γ1 ∈ T may determine the response
of the IUT to γ2 ∈ T if there is some x1/y1 ∈ IO(γ1) and x2/y2 ∈ IO(γ2) such
that x2/y2 ∈ pre(x1/y1).

Definition 8. If there is some x1/y1 ∈ IO(γ1) and x2/y2 ∈ IO(γ2), γ1, γ2 ∈ T ,
such that x2/y2 ∈ pre(x1/y1) then we write γ2 ≤ γ1.

Note that ≤ is not an ordering: there are distinct adaptive test sequences γ1
and γ2 such that γ2 ≤ γ1 and γ1 ≤ γ2. Such a case is illustrated in Figure 3.

a a
0 01 1

subtree subtree

Fig. 3. Related adaptive test sequences
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Proposition 2. The relation ≤ is reflexive but in general it is not symmetric
and is not transitive.

Proof
The fact that ≤ is reflexive is an immediate consequence of the definition. γ1

and γ2 in Figure 2 demonstrate that ≤ is not symmetric.
In order to see that ≤ is not transitive consider the example in Figure 2. It

is straightforward to show that γ2 ≤ γ1, γ3 ≤ γ2 but γ3 �≤ γ1. �

Clearly, if γ2 ≤ γ1 but γ1 �≤ γ2 it may make sense to use γ1 before γ2. The
function sav, defined below, may be used to decide whether γ1 ≤ γ2.

Definition 9.

sav(γ, null) = true

sav(null, (x, f)) = false

sav((x1, f1), (x2, f2)) = (x1 = x2) ∧
∃y ∈ Y.sav(f1(y), f2(y))

The following result is clear.

Proposition 3. Given γ1, γ2 ∈ T , γ2 ≤ γ1 if and only if sav(γ1, γ2).

Based on the relation ≤ it is possible to define a digraph.

Definition 10. Given some set Γ = {γ1, . . . , γn} of adaptive test sequences, the
dependence digraph is the digraph G = (V, E) in which V = {v1, . . . , vn} and
there is an edge (vi, vj) in E if and only if γj ≤ γi and γj �= γi.

4 Simplifying the Optimisation Problem

This section describes two ways of reducing the scale of the optimisation problem
and proves that these approaches do not conflict: by applying one approach we
do not reduce the scope for applying the other approach.

4.1 Merging Adaptive Test Sequences

Given γ1, γ2 ∈ T , it may be possible to combine γ1 and γ2 to form one adaptive
test sequence. This may reduce the size of the optimisation problem. This section
considers conditions under which this may be done and defines an algorithm that
merges adaptive test sequences.

Consider, for example, the adaptive test sequences given in Figure 4. Here
γ3 is the result of merging γ1 and γ2. By applying γ3 to a deterministic imple-
mentation we get exactly the same information as if we had separately applied
γ1 and γ2 to some implementation since:

1. Each possible response to γ3 is a possible response to one of γ1 and γ2; and
2. Each possible response to one of γ1 and γ2 is a prefix of some possible

response to γ3.
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Fig. 4. Merging γ1 and γ2 to form γ3

Before considering how adaptive test sequences may be merged we will define
what it means for one adaptive test sequence to be smaller than or equal to
another.

Definition 11. γ1 ∈ T is smaller than or equal to γ2 ∈ T if and only if
IO(γ1) ⊆ Pre(IO(γ2)).

This says that all behaviours observable under γ1 are also observable under
γ2.

Definition 12. γ3 ∈ T is the result of merging γ1 ∈ T and γ2 ∈ T if and only
if the following hold:

1. IO(γ1) ∪ IO(γ2) ⊆ Pre(IO(γ3)) and
2. for every γ4 ∈ T , if IO(γ1)∪ IO(γ2) ⊆ Pre(IO(γ4)) then γ3 is smaller than

or equal to γ4.

The first element of this definition insists that all behaviours observable under
γ1 and all behaviours observable under γ2 are also observable under γ3. The
second element says that γ3 is the smallest adaptive test sequence that has this
property.

Sufficient and necessary conditions, for it to be possible to merge two adap-
tive test sequences, will be defined in terms of the notion of two adaptive test
sequences being compatible.

Definition 13. γ1, γ2 ∈ T are said to be compatible if and only if there are
no pairs of sequences 〈x1/y1, x2/y2, . . . , xk−1/yk−1, xk/yk〉 ∈ Pre(IO(γ1)) and
〈x1/y1, x2/y2, . . . , xk−1/yk−1, x

′
k/y′

k〉 ∈ Pre(IO(γ2)) with xk �= x′
k (k ≥ 1).

Thus, γ1 and γ2 are compatible if there does not exist an input/output se-
quence x/y that might result from both γ1 and γ2 such that γ1 and γ2 apply
different input values after x/y. It should be clear that in order to be able to
merge two adaptive test sequences γ1 and γ2 it is necessary for them to be
compatible: otherwise the resultant adaptive test sequence γ3 must be able to
provide two different input values after some input/output sequence x/y. This
is not allowed by the definition of an adaptive test sequence.

The function compatible, defined below, decides whether two adaptive test
sequences are compatible.
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Definition 14.

compatible(γ, null) = true

compatible(null, γ) = true

compatible((x1, f1), (x2, f2)) = (x1 = x2) ∧ ∀y ∈ Y.

compatible(f1(y), f2(y))

Proposition 4. γ1, γ2 ∈ T are compatible if and only if compatible(γ1, γ2) =
true.

Given compatible γ1 and γ2, the following algorithm merges γ1 and γ2.

Definition 15.

merge(γ, null) = γ

merge(null, γ) = γ

merge((x, f1), (x, f2)) = (x, {y → merge(f1(y), f2(y))
|y ∈ Y })

Proposition 5. If γ1 ∈ T and γ2 ∈ T are compatible then merge(γ1, γ2) is the
result of merging γ1 and γ2.

Proof
First observe that, by definition, if γ1 and γ2 are compatible then merge(γ1,γ2)

is defined. Let γ3 = merge(γ1, γ2).
Clearly every sequence in IO(γ1) ∪ IO(γ2) is a prefix of some sequence in

IO(γ3). It thus suffices to prove that γ3 is the smallest adaptive test sequence
with this property.

Proof by induction on the length of γ3 will be applied. The base case, where
γ3 = null, is clear since null is smaller than or equal to every other adaptive
test sequence. Inductive hypothesis: if γ3 = merge(γ1, γ2) has length less than
k and γ4 has the property that IO(γ1) ∪ IO(γ2) ⊆ Pre(γ4) then γ3 is smaller
than or equal to γ4.

Suppose γ3 = merge(γ1, γ2) has length k and γ4 has the property that
IO(γ1) ∪ IO(γ2) ⊆ Pre(IO(γ4)). It now suffices to prove that γ3 is smaller
than or equal to γ4.

Note that γ1 and γ2 are smaller than or equal to γ4. Thus the result is clear
if either γ1 = null (so γ3 = γ2) or γ2 = null (and so γ3 = γ1). Suppose γ1 �= null
and γ2 �= null. Then there exists x1 ∈ X such that γ1 = (x1, f1), γ2 = (x1, f2),
γ3 = (x1, f3), and γ4 = (x1, f4).

It is now sufficient to prove that the set IO(γ3)\Pre(IO(γ4)) is empty. Proof
by contradiction: suppose 〈x1/y1, . . . , xm/ym〉 ∈ IO(γ3) \ Pre(IO(γ4)).

Let γ′
1 = f1(y1), γ′

2 = f2(y1), γ′
3 = f3(y1), and γ′

4 = f4(y1). Now consider
the relationships between γ′

1, γ′
2, γ′

3, and γ′
4. By the definition of merge, γ′

3 =
merge(γ′

1, γ
′
2). Further, IO(γ′

1) ∪ IO(γ′
2) ⊆ Pre(γ′

4) and 〈x2/y2, . . . , xm/ym〉 ∈
IO(γ′

3) \ Pre(IO(γ′
4)). Since γ′

3 has length at most k − 1, this contradicts the
inductive hypothesis. The result thus follows. �
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Proposition 6. It is possible to merge adaptive test sequences if and only if
they are compatible.

Proof
By Proposition 5, it is possible to merge γ1 and γ2 if they are compatible. It

thus suffices to prove that if γ1 and γ2 can be merged then they are compatible.
Proof by contradiction: suppose that γ1 and γ2 can be merged but they are not
compatible. Let γ3 denote the result of merging γ1 and γ2.

Since γ1 and γ2 are not compatible there exists v = 〈x1/y1, . . . , xm−1/ym−1〉,
v 〈xm/ym〉 ∈ Pre(IO(γ1)), and v 〈x′

m/y′
m〉 ∈ Pre(IO(γ2)) with xm �= x′

m. By
definition, vxm/ym ∈ Pre(IO(γ3)) and vx′

m/y′
m ∈ Pre(IO(γ3)). This contra-

dicts the definition of an adaptive test sequence, since γ3 must allow two different
input values after the input/output sequence v. The result thus follows. �

The following result is an immediate consequence of the definitions.

Proposition 7. If γ1 ∈ T and γ2 ∈ T are compatible then γ1 ≤ merge(γ1, γ2)
and γ2 ≤ merge(γ1, γ2).

By merging compatible adaptive test sequences it is possible to reduce the
number of sequences considered.

Definition 16. A set Γ of adaptive test sequences is irreducible if no two ele-
ments of Γ are compatible. Otherwise Γ is reducible.

It will be assumed that any set of adaptive test sequences considered is
irreducible: where there are compatible adaptive test sequences these are merged
before the order of application is decided.

Observe that given a reducible set Γ of adaptive test sequences, there may
be more than one way in which to merge the elements of Γ in order to produce
an irreducible set. Future work will consider the problem of choosing an optimal
irreducible set.

4.2 Independent Adaptive Test Sequences

We have seen that the order of the application of adaptive test sequences may
be important. However, there may be adaptive test sequences in the test whose
relative order is irrelevant. Where this is identified, the problem of determining
the optimal ordering may be reduced to that of determining the optimal ordering
amongst the elements within a number of sets of adaptive test sequences.

Suppose that γ1, γ2 ∈ T , γ1 �≤ γ2 and γ2 �≤ γ1. Then it may appear that the
relative order of γ1 and γ2 is irrelevant. However, since ≤ is not transitive, there
may be some γ3 such that γ1 ≤ γ3 and γ3 ≤ γ2. Thus, in order to define some
notion of independence we form an equivalence relation from ≤.

Definition 17. γ1 and γ2 are dependent in a set Γ of adaptive test sequences
if and only if there exist γ1, . . . , γk ∈ Γ with γ1 = γ1, γ2 = γk and for all
1 ≤ i < k, γi ≤ γi+1 or γi+1 ≤ γi. If γ1 and γ2 are dependent we write γ1 ∼ γ2;
otherwise we say they are independent and write γ1 �∼ γ2.
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In Lemma 4 we will prove that if two adaptive test sequences are compatible
then they are dependent. The relation ∼ is the symmetric, transitive closure of
the reflexive relation ≤. Thus ∼ is an equivalence relation. Given two equivalence
classes Q1 and Q2 if Q1 �= Q2, γ1 ∈ Q1, and γ2 ∈ Q2, γ1 and γ2 must be
independent. Thus it is possible to split the set of adaptive test sequences used
into these equivalence classes and determine an order of application for the
elements of each equivalence class. This observation may simplify the problem
of choosing the optimal ordering.

We have seen two different approaches to simplifying the problem: dividing
the set of adaptive test sequences into a set of equivalence classes and merging
adaptive test sequences where possible. In Theorem 1 we will prove that these
approaches do not conflict: by merging two adaptive test sequences we cannot
combine two equivalence classes.

Definition 18. Given γ ∈ T and v ∈ IO(γ), prune(v, γ) is the adaptive test
sequence formed by taking γ and replacing the node reached by input/output
sequence v by null.

prune(ε, (x, f)) = null

prune(〈x1/y1〉 v, (x1, f)) = (x1, {y → f(y)|y ∈ Y \ {y1}}
∪{y1 → prune(v, f(y1))})

Thus, prune(v, γ) removes all extensions of v from IO(γ). The following is
clear.

Lemma 1. Given v 〈x/y〉 ∈ IO(γ), γ ∈ T and γ′ = prune(v, γ), we have that
IO(γ′) = (IO(γ) ∪ {v}) \ {v 〈x/y′〉 |y′ ∈ Y }

We have seen two different approaches to simplifying the problem: dividing
the set of adaptive test sequences into a set of equivalence classes and merging
adaptive test sequences where possible. In Theorem 1 we will prove that these
approaches do not conflict: by merging two adaptive test sequences we cannot
combine two equivalence classes.

Lemma 2. If γ=merge(γ1, γ2), γ, γ1, γ2 ∈ T then Pre(IO(γ))=Pre(IO(γ1))∪
Pre(IO(γ2)).

Proof
By definition, Pre(IO(γ1)) ∪ Pre(IO(γ2)) ⊆ Pre(IO(γ)). It thus suffices to

prove that Pre(IO(γ)) ⊆ Pre(IO(γ1)) ∪ Pre(IO(γ2)). This holds if IO(γ) ⊆
Pre(IO(γ1)) ∪ Pre(IO(γ2)).

Proof by contradiction will be applied: suppose there exists some input/output
sequence v 〈x/y〉 ∈ IO(γ)\ (Pre(IO(γ1))∪Pre(IO(γ2))). Then we may create a
new adaptive test sequence γ′ = prune(v, γ). From Definition 15 we know that
IO(γ1)∪IO(γ2) ⊆ Pre(IO(γ)). Since v 〈x/y〉 �∈ Pre(IO(γ1))∪Pre(IO(γ2)), for
all y′ ∈ Y we have that v 〈x/y′〉 �∈ Pre(IO(γ1))∪Pre(IO(γ2)). Thus, by Lemma
1, we have that IO(γ1) ∪ IO(γ2) ⊆ Pre(IO(γ′)). But γ is not smaller than or
equal to γ′, contradicting γ being the result of merging γ1 and γ2. The result
thus follows. �
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We thus get the following result.

Lemma 3. Given γ, γ1, γ2 ∈ T , if γ = merge(γ1, γ2) and v ∈ IO(γ) then either
v ∈ IO(γ1) or v ∈ IO(γ2).

Lemma 4. If γ1 �∼ γ2, γ1, γ2 ∈ T , then we cannot merge γ1 and γ2.

Proof
It is sufficient to prove that if we can merge γ1 and γ2 then γ1 ∼ γ2. Suppose

that we can merge γ1 and γ2 and let γ = merge(γ1, γ2).
Let v = 〈x1/y1, . . . , xm/ym〉 ∈ IO(γ). By Lemma 3, v ∈ IO(γ1) ∪ IO(γ2).

Without loss of generality, v ∈ IO(γ1). If v ∈ Pre(IO(γ2)) then γ1 ≤ γ2, and so
γ1 ∼ γ2 as required. It will thus be assumed that v �∈ Pre(IO(γ2)).

Let v′ denote the longest prefix of v contained in Pre(IO(γ2)). Thus v′ =
〈x1/y1, . . . , xk/yk〉 for some k < m. Suppose there is some extension, v′ 〈x/y〉 of
v′ in Pre(IO(γ2)). Observe that, since γ1 and γ2 may be merged, by Proposition
6, γ1 and γ2 are compatible. Thus x = xk+1, contradicting the maximality of v′.
Thus v′ ∈ IO(γ2) and so γ2 ∼ γ1 as required. �

Lemma 5. If γ1 �∼ γ, γ2 �∼ γ and γ3 = merge(γ1, γ2), γ1, γ1, γ3 ∈ T , then
γ �≤ γ3 and γ3 �≤ γ.

Proof
Assume that γ1 �∼ γ, γ2 �∼ γ, and γ3 = merge(γ1, γ2). Proof by contradiction

will be applied. There are two cases to consider.
Case 1: γ3 ≤ γ.
Thus there exists input/output sequences v ∈ IO(γ3) and v′ ∈ IO(γ) such

that v ∈ pre(v′). By Lemma 3, v ∈ IO(γ1) ∪ IO(γ2). Without loss of generality,
v ∈ IO(γ1). Thus, γ1 ≤ γ, providing a contradiction as required.

Case 2: γ ≤ γ3.
Thus there exists input/output sequences v ∈ IO(γ) and v′ ∈ IO(γ3) such

that v ∈ pre(v′). By Lemma 3, v′ ∈ IO(γ1)∪ IO(γ2). Without loss of generality,
v′ ∈ IO(γ1). Thus, γ ≤ γ1, providing a contradiction as required. �

Theorem 1. We cannot combine two equivalence classes of ∼ by merging two
adaptive test sequences.

Proof
Observe that the merging of adaptive test sequences γ1 and γ2 can only lead

to equivalence classes being merged if one of the following happens:

1. γ1 and γ2 are in different equivalence classes.
2. γ1 and γ2 are in the same equivalence class Q of ∼ but there is some γ in an

equivalence class Q′ �= Q such that γ ≤ merge(γ1, γ2) or merge(γ1, γ2) ≤ γ.

The result thus follows from Lemmas 4 and 5. �

5 Ordering Based on the Dependence Digraph

This section will consider the problem of finding an ordering based on the de-
pendence digraph where the dependence digraph G is acyclic. It transpires that
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in this case an exact solution may be found in polynomial time. Future work will
consider general algorithms.

The following is a useful property of acyclic digraphs.

Proposition 8. If digraph G = (V, E) is acyclic and |V | > 0 then there exists
some v ∈ V such that indegreeE(v) = 0.

Thus, if the dependence digraph G for Γ is acyclic, it is possible to choose
some γ ∈ Γ such that the application of another element of Γ cannot lead to γ
not being required. Thus, in choosing an order in which to apply the elements
of Γ it is acceptable to start with γ.

Proposition 9. Suppose digraph G = (V, E) is acyclic and v ∈ V . Then the
digraph G \ {v} is acyclic.

From this it is clear that if the dependence digraph G is acyclic, then having
chosen some γ ∈ Γ as described above, when γ is removed from Γ the resultant
digraph is acyclic.

Based on these results, we get the following algorithm for the case when ≤
defines an acyclic dependency digraph. This algorithm essentially chooses some
ordering based on a directed acyclic graph (DAG).

Algorithm 1
1. Input the dependence digraph G = (V, E) (|V | = n), where vi ∈ V represents

adaptive test sequence γi.
2. Set T = ε, G0 = (V0, E0) = (V, E), k = 0.
3. While (Vk �= ∅) do
4. Choose some vi ∈ Vk such that indegreeEk

(vi) = 0.
5. Set T = T 〈γi〉, k = k + 1, Gk = (Vk, Ek) = Gk−1 \ {vi}.
6. od
7. Output T

The following result is clear.

Proposition 10. Algorithm 1 has computational complexity O(n2) where n de-
notes the number of adaptive test sequences in Γ .

Thus, where the dependency digraph is acyclic the problem of finding an
optimal ordering for the adaptive test sequences may be solved in polynomial
time.

6 Future Work

This paper has formalised properties of adaptive test sequences that may be
utilised in order to reduce the expected cost of testing. However, a number of
problems remain. Where there are cycles in the dependence digraph, any ordering
chosen will allow some possible savings while precluding others. This leads to
a more complex optimisation problem which will form an important element of
future work.
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We have shown that, given a set of adaptive test sequences, it may be possible
to merge some of these sequences to produce an irreducible set. However, there
may be a number of possible orders in which the merging may occur and a
number of irreducible sets that may result from this process. Future work will
consider algorithms that determine the order in which adaptive test sequences
should be merged.

This paper has focussed on the case where the IUT is known to be determin-
istic and thus will always respond to an input sequence with the same output
sequence. Where the IUT is non-deterministic, it is sometimes possible to make
a fairness assumption: it is assumed that there is some k such that the use of an
adaptive test sequence k times will lead to all possible responses being observed.
Where such an assumption is made it is possible for the responses of the IUT to
one adaptive test sequence to be capable of determining the response to another
adaptive test sequence. Future work will consider the problem of finding an op-
timal ordering of a set of adaptive test sequences where a fairness assumption
can be made.

7 Conclusion

Adaptive test sequences may be used when testing a state-based system. Where
the implementation under test I is known to be deterministic, the response of
I to one adaptive test sequence γ1 may fully determine the response of I to
another adaptive test sequence γ2. Thus, the order in which the adaptive test
sequences are applied may affect the expected cost of testing. This paper has
considered the problem of finding an ordering that minimises the expected cost
of testing.

This paper has introduced two ways of reducing the size of the optimisation
problem: by merging adaptive test sequences and by splitting the set of adaptive
test sequences into a set of equivalence classes that may be considered separately.
We have proved that they do not affect one another: merging adaptive test
sequences cannot lead to equivalence classes being combined.

The relation, that states when the use of one adaptive test sequence may lead
to another not being used, has been represented as the dependence digraph. This
paper has given a low-order polynomial time algorithm that produces the optimal
ordering where the dependence digraph is acyclic. Future work will consider how
the optimal ordering may be produced where the dependence digraph contains
cycles.
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