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Abstract 
This paper proposes a new distributed shortest path (SP) 
based delay constrained multicast routing algorithm 
which is capable of constructing a delay constrained 
multicast tree when node failures occur during the tree 
construction period and recovering from any node failure 
in a multicast tree during the on-going multicast session 
without interrupting the running traffic on the unaffected 
portion of the tree. The proposed algorithm performs the 
failure recovery efficiently, which gives better 
performance in terms of the number of exchanged 
messages and the convergence time than the existing 
distributed SP-based delay constrained multicast routing 
algorithms in a network where node failures occur. 
 
 
1. Introduction 
 

Multicast is the simultaneous transmission of data 
from a source to a group of destinations. There are many 
multimedia applications (e.g., video conferencing) which 
require multicast communication. Moreover, multimedia 
applications are often high bandwidth and delay sensitive, 
which require real-time communication with low end-to-
end delays [19][16]. 

To meet the requirements, distributed delay 
constrained multicast routing algorithms have been 
proposed, which generates a multicast tree that satisfies 
the end-to-end delay constraint along the individual paths 
from source to each destination, and meanwhile tries to 
minimize the cost of the multicast tree. The cost of a 
multicast tree can be in terms of network bandwidth 
utilization. 

One of the main problems with the distributed delay 
constrained multicast routing algorithms is that they do 
not take into account the changes in the topology of the 
network (e.g., node failures) [3]. Whenever the topology 
of the network changes, these algorithms will fail to 
complete the construction of a multicast tree and it is up to 
the application to re-start the algorithm. As a result, these 
algorithms will have a low success rate for the 
construction of a multicast tree (which is the number of 

trials to build a multicast tree successfully divided by the 
number of total trials). Similarly, as these algorithms do 
not respond to the changes in the topology of the network 
after the multicast tree is built, it is up to the application to 
re-start the algorithm to re-build the tree for the changed 
network topology, which causes the interruption of the 
running traffic for all existing members in a multicast 
session. The re-starting approach can be broadly 
considered as a kind of fault recovery approach which will 
be called naïve fault recovery approach. 

In this paper, we propose a new distributed delay 
constrained multicast routing algorithm that takes into 
consideration the node failures in a network and recovers 
from these failures. Though we only consider the node 
failures in the proposed algorithm, the algorithm can be 
easily extended to cover other types of changes in the 
topology of the network such as link failures. The 
algorithm is shortest path (SP) based which means that it 
mainly uses the available shortest path information for 
constructing the multicast tree. The analysis and 
simulation results show that the proposed algorithm not 
only does the fault recovery correctly, but also performs 
the fault recovery efficiently, which gives better 
performance in terms of the number of exchanged 
messages and the convergence time than the existing 
distributed SP-based delay constrained multicast routing 
algorithms [9] in a network where node failures occur.  

There are two major benefits for having such a fault 
tolerant algorithm: First, it will make the fault recovery 
actions transparent to applications during the construction 
of a multicast tree and during an on-going multicast 
session. Second, it will re-connect the disconnected sub-
tree of a multicast tree without interrupting the running 
traffic on the rest of the multicast tree. 

The rest of this paper is organized as follows. Section 
2 gives more details on the background information and 
related work; Section 3 defines the problem formally; 
Section 4 describes the proposed algorithm; Section 5 
discusses the performance of the proposed algorithm; and 
finally Section 6 gives the conclusions. 

 
2. Background and related work 
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The routing function is defined as consisting of two 

parts [4]. The first part selects a route for the session 
during the connection establishment phase, and the second 
part ensures that each packet of that session is forwarded 
along the assigned route. In this paper, only the route 
selection algorithms are considered. During the 
connection establishment phase, the system selects a route 
along which sufficient resources ought to be reserved to 
meet the quality of service (QoS) requirements specified 
by applications, such as network bandwidth and maximum 
message delay. This is an important step to guarantee real-
time data to be delivered to destinations with an 
acceptable delay. 

Multicast routing is to find a routing tree (called 
multicast tree) which is rooted from a source node s and 
contains all nodes in a set S of destination nodes. There 
are two reasons for basing efficient multicast routes on 
trees: i) the data can be transmitted simultaneously to 
various destinations along the branches of the tree; and ii) 
a minimum number of copies of the data are transmitted, 
with replication of data being necessary only at forks in 
the tree. 

There are two important requirements on algorithms 
for constructing multicast trees. The first is the bounded 
end-to-end delay along the individual paths from source to 
each destination where the delay bound is specified by the 
application performing the multicast. The second is the 
minimum cost of the multicast tree. The cost of the 
multicast tree is the sum of the costs on the edges in the 
multicast tree. For example, the costs on the edges in the 
multicast tree can be in terms of network bandwidth 
utilization. The minimum cost tree is called a Steiner tree, 
and the problem of finding a Steiner tree is known to be 
NP-complete [10][11]. The delay-bounded minimum cost 
tree is called a constrained Steiner tree (or delay 
constrained multicast tree) [12]. The problem of finding a 
constrained Steiner tree is also NP-complete [12].  

Algorithms based on heuristics for constructing 
constrained Steiner trees have been developed in recent 
years. Some algorithms are classified as source-based (or 
centralized) multicast routing algorithms if the source is 
assumed to have all the information necessary to construct 
the multicast tree, such as KPP [13], CDKS [20], CKMB 
[21], CAO [24], and BSMA [25]; while others are 
classified as distributed multicast routing algorithms, if it 
is not required to maintain the entire network status 
information in each node, and multiple nodes are 
participating in constructing the multicast tree, such as 
DKPP [14] and DSPH [9]. Distributed routing algorithms 
are usually slow and complex. On the other hand, source-
based routing algorithms are not practical for very large 
networks, since they assume complete knowledge of the 
network on the source node.  

In addition to the algorithms mentioned above, there 
are also many QoS-based protocols that have been 
proposed in the literature, such as YAM (or spanning join) 
[5], QoSMIC [8] and QMRP [7]. They are 
receiver(destination)-initiated and based on the multiple-
path approach; that is, the protocols will generate multiple 
paths between the existing multicast tree and a receiver, 
and then the receiver will pick the best one based on 
certain QoS criteria to connect itself into the tree. In the 
following, we will focus on discussing the algorithms for 
constructing constrained Steiner trees, which are source-
initiated and do not use the multiple-path approach. 

Among distributed delay constrained multicast 
routing algorithms, DSPH has distinguished itself from the 
others with its good performance in terms of tree cost, 
message and time complexity. DSPH can be considered as 
an SP-based algorithm. In an SP-based multicast routing 
algorithm, the multicast tree is expanded by a delay 
constrained shortest path from the tree to one destination 
node at a time until all destination nodes are covered. A 
delay constrained shortest path is the path with the 
minimum cost among all paths whose delays are under the 
delay constraint. Like other distributed delay constrained 
multicast tree algorithms, DSPH does not take into 
account the changes in the topology of the network (e.g., 
node failures). 

Several fault recovery approaches for unconstrained 
multicast routing problem have been proposed in the 
literature. The one specified in [1][2] uses the approach in 
which the disconnected sub-tree is flushed and all 
members in the sub-tree attempt to rejoin the tree 
individually, which may cause a substantial increase in 
network traffic as the control messages are propagated 
through the network. The one described in [18] uses a 
“reversing tree edges” method to re-connect the 
disconnected sub-tree with the multicast tree in order to 
reduce the traffic of control messages, which may not 
always generate loop free multicast trees. Both approaches 
described above are for the receiver-initiated multicast 
routing algorithms, specifically the core based tree (CBT) 
protocol.    

The algorithm that we study is for the source-
initiated, delay constrained multicast routing problem. It 
should be not only fault-tolerant to node failures in the 
network, but also very efficient in terms of the number of 
exchanged messages and the convergence time. It should 
always generate a loop-free multicast tree. Therefore, the 
existing fault recovery approaches for multicast routing 
algorithms are neither applicable to our problem nor 
comparable to our fault recovery approach included in our 
algorithm. 

 
3. Network model and problem definition 
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A network is modeled as a connected, directed graph 
G=(V, E) where nodes in node set V represent network 
nodes and edges in edge set E represent links. In addition, 
there are two values associated with each link e (e ∈  E): 
delay D(e) and cost C(e). It is assumed that both values do 
not change during a multicast session. The link delay D(e) 
is the delay a packet experiences on the corresponding 
link, the link cost C(e) is a measure of the utilization of 
the corresponding link’s resources. Links are 
asymmetrical, namely the cost and delay for the link e = 
(i, j) and the link e’ = (j, i) may not be the same. 

The constrained Steiner tree (CST) problem (or 
delay-constrained multicast tree problem) can be stated as 
follows. Given a network G = (V, E) with n nodes, a 
source node s (s ∈  V), a set of m destination nodes S (S ⊆  
V - {s}) called multicast group, and a delay constraint ∆, 
find a tree T (T ⊆  G) rooted at s that spans the nodes in S 
such that  
i) for each node v in S, the delay on the path from s to v is 
bounded above by ∆; that is, 
∑ e ∈  P(s, v) D(e) < ∆ where P(s, v) is the unique path in T 
from s to v, and 
ii)  the tree cost ∑ e ∈  T  C(e) is minimized. 
This tree is called a constrained Steiner tree (or delay 
constrained multicast tree). 

Some definitions that will be used later are given 
below. A shortest path from a tree T to a non-tree node v 
is a shortest path (in terms of cost) from a tree node u to v, 
denoted by SP(u, v), and u satisfies 
∑ e ∈  SP(u, v)  C(e) ≤ ∑ e ∈  SP(k, v)  C(e) for any tree node k.  

The cost of the shortest path from a tree T to a non-
tree node v is called the cost from a tree T to a non-tree 
node v, and denoted by C(T, v). A non-tree node v is said 
to be the closest to a tree T if it satisfies C(T, v) ≤ C(T, w) 
for any non-tree node w. 

 
4. A distributed multicast routing algorithm 

 
4.1. Overview of the proposed algorithm 
 

The proposed algorithm is built on top of the existing 
distributed SP-based delay constrained multicast 
algorithm that was proposed in [9]. Briefly, that algorithm 
works as follows: the multicast tree starts with a tree 
containing only the source node s; then the tree is 
expanded by a delay constrained shortest path from the 
tree to one destination node v in S at a time until all 
destination nodes in S are covered. Each time, the 
destination v in S which is selected to be covered next 
should not be in the tree yet and be the closest to the tree 
under the delay constraint. We call it as Distributed 
Shortest Path Heuristic (DSPH). 

The ideas behind DSPH can be attributed to the TM 
heuristic [22] which mimics Prim’s minimum spanning 
tree (MST) algorithm [17][6] but expands the tree path by 
path instead of edge by edge. However, TM heuristic does 
not work for the constrained Steiner tree problem and is a 
centralized algorithm. So, DSPH added the delay 
constraint checking into the algorithm and designed the 
algorithm as a distributed one.  DSPH assumed that each 
node has the information about the shortest path (in terms 
of cost) and the delay of the shortest path to every other 
node in the graph through running a distributed shortest 
path algorithm. 

DSPH is characterized by the following features. On 
one hand, DSPH generates the best quality of delay 
constrained multicast tree in terms of tree cost [9]. It is 
very efficient in terms of O(mn) message complexity. On 
the other hand, DSPH builds the multicast tree 
sequentially destination by destination. At each moment, 
there is only one node that is actively doing calculation. 
Let us call the node in active state as active node. The 
active node “moves” along the delay constrained shortest 
paths between the tree and each destination. It can be seen 
that this procedure is very fragile and takes a long time to 
complete. During this long period, network topology 
could be changed and DSPH will fail to complete the 
delay constrained multicast tree. DSPH depends on a 
naive fault recovery approach, which simply waits for 
applications to re-start the algorithm from scratch. This 
makes DSPH take even longer time to complete when 
node failures occur. 

We can see that without an efficient fault recovery 
approach, DSPH does not work properly in practice. The 
motivation of our work is to design an efficient fault 
recovery approach which will make the recovery 
transparent to the applications, not interrupt the running 
traffic on the rest of the multicast tree, and shorten the 
time to recover from node failures. The proposed 
algorithm will recover by itself and adaptively construct a 
constrained multicast tree when node failures occur. So, 
the proposed algorithm is called Adaptive distributed 
Shortest Path Heuristic (ASPH). 

In addition, we want ASPH to generate the delay 
constrained multicast trees whose quality is as good as 
that of DSPH in terms of tree cost, and perform as well as 
DSPH in terms of message complexity. These goals are in 
general conflicting with each other. For example, to be 
able to do fault recovery, extra messages will be needed. 
The key approach used in ASPH is to localize the 
recovery action to the failed portion of the multicast tree 
without re-building the whole tree again. Then, the 
problem is how the information about the failed sub-tree 
can be communicated to the active node, so that the new 
information can be taken into consideration in the rest of 
the tree construction process. One straightforward 
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approach is to flood the information in the network. 
However, this approach requires O(n2) messages just for 
the notification of the node failure alone. We do not take 
this approach. In ASPH, the failed sub-tree is refrained 
from flooding the network with fault information 
messages, and the fault information is propagated through 
the regular tree setup messages and scenarios as much as 
possible. 

With respect to the main control steps of the 
algorithm, ASPH progresses in the same way as DSPH. 
Between the steps, ASPH checks if any tree node fails. 
When a failure is detected, it removes the sub-tree rooted 
at the failed node and notifies the source node s of the 
destination nodes that were covered by the removed sub-
tree. Thus, the source node s is enabled to add these 
removed destination nodes later as ASPH will report back 
to the source node s when all the remaining destination 
nodes have been added to the multicast tree. 

Furthermore, loops may be introduced in the 
multicast tree due to the network topology changes. ASPH 
will detect these loops by checking if a node (say v) to be 
added is already in the tree. A loop is removed by 
choosing the path from the source node s to node v which 
has the minimum delay. This will ensure that all existing 
paths between the source node s and destinations that go 
through node v still satisfy the delay constraint. If the new 
parent of v has the minimum delay from the source node, 
node v will accept the new parent and break itself from its 
previous parent. Otherwise, node v will reject the new 
parent. 

After the tree is constructed, ASPH will continue to 
run the tree node failure checking and recovery steps to 
repair the delay constrained multicast tree if node failures 
occur during an ongoing multicast session. 

 
4.2. Details of the proposed algorithm  
 

Eight types of messages are used in ASPH, which are  
open - opening a multicast connection; 
setup - setting up a shortest path from the tree to a non-
tree node;  
fork - forking a new branch from the tree node that is 
closest to the selected non-tree node; 
completion - notifying the termination of the multicast tree 
setup; 
break - notifying its parent to break a loop; 
reject - rejecting the invitation to join the tree as either the 
constraint may be violated or a loop may be formed;  
remove - removing a sub-tree from the tree; 
destination - adding destination back to the uncovered 
destination list; 

Among these messages described above, the first four 
types of messages are used in DSPH as well, while the last 
four types of messages are newly introduced for ASPH. It 

is assumed that node failures are detected by a lower level 
protocol.  

Interleaved with the detailed description of the 
proposed algorithm, an example network shown in Figure 
1 is used to illustrate the algorithm. For clarity of the 
diagrams, the same integer number is used to represent 
both cost and delay values. Node s is the source node and 
dark nodes b, h and i are destination nodes. ∆ is 14 and 
node e fails after node b and h are covered. 

The details of the proposed algorithm are as follows:   
1. When a node receives a request (open message) for 

opening a multicast connection with parameters S and 
∆, it becomes the source node s of the multicast 
connection (i.e., the only tree node in the multicast 
tree).  
In Figure 1, when node s receives an open message, it 
becomes the first node in the tree. 
1.1 The source node then calculates an initial T2D 

(tree to destination) table. For each destination di 
∈  S, T2D table records the following information: 
cost - the cost from the tree to di, tree_node - the 
tree node closest to di and tag - indicating if di is 
in the tree or not. Obviously, the cost, tree_node 
and tag fields for each destination in T2D table 
will be initially set to the distance of the shortest 
path from the source node s to the destination, 
source node s and “no”, respectively. 

      1.2 The destination closest to the tree is selected and 
its tag in T2D table is marked as “yes”. A setup 
message is sent to the neighbor towards the 
selected destination to include all nodes on the 
shortest path into the tree. This setup message 
carries T2D table and the accumulated delay and 
the number of hops (called tree level) from the 
source node s. 
In Figure 1, node b will be selected as the closest 
destination based on Figure 1(c). 

 

Figure 1: An example for ASPH Heuristic 
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2.  When a node v receives a setup message, it includes 
itself into the tree and modifies T2D table if a lower 
cost from itself to a destination is found, the 
destination is not yet in the tree and the delay from 
itself to the destination plus the accumulated delay 
from the source node s is under ∆. 
In Figure 1, when node a receives the setup message, 
node a will update T2D table as in Figure 1(d). 
2.1  If the addition of node v to the tree will introduce 

a loop (which means that node v is already in the 
tree), node v will do the following to avoid the 
loop: 
2.1.1 If the accumulated delay along the existing 

path from the source node s to the 
destination node is within the delay bound, 
then node v sends a reject message to the 
sender of the setup message. So, the sender 
won’t include node v in the tree.  

2.1.2 Else if the sender node has higher or equal 
tree level than node v and the new 
accumulated  delay from the source node s 
to node v via the sender is less than the old 
accumulated delay, then node v sends a 
break message to its parent to break the 
existing tree path and accept the new one. 

2.1.3 Otherwise, field tree_node in T2D for the 
destination under consideration will be set to 
the source node s to force the algorithm to 
re-build the tree path to the destination from 
the source node s. 

2.2 If node v is not the destination yet, node v simply 
passes the setup message to the neighbor towards 
the destination with the possibly modified T2D 
table and the adjusted accumulated  delay from the 
source node s. 

2.3 If all destinations are included in the tree (i.e., all 
tags in T2D table are “yes”), node v sends a 
completion message to the source node s. 

2.4 If node v is the destination itself, it selects next 
closest destination and sends a fork message to 
tree_node that is recorded in T2D table. The fork 
message carries T2D table. 
In Figure 1, node b will send a fork message to 
node a to include the next selected destination h. 

3. When node v receives the fork message, if node v is in 
the tree, the destination closest to the tree is selected 
and its tag in T2D table is marked as “yes”. Node v 
then creates a setup message and forwards it to the 
neighbor towards the destination with T2D table and 
the adjusted accumulated delay and the tree level from 
the source node s. If node v is not in the tree, field 
tree_node in T2D for the destination under 
consideration will be set to the source node s to force 
the algorithm to re-build the tree path to the 

destination from the source node s. Then it re-forks as 
in Transaction 2.4. 
The final multicast tree for the example is shown in 
Figure 1(b). 

4.  When node v in the tree detects that its child node 
fails, node v removes the child node from the tree. 

5.  When node v in the tree detects that its parent node 
fails or receives the remove message, node v removes 
itself from the tree. If node v is not a leaf node, it will 
forward the remove message to all of its children. If 
node v is a destination node, it sends a destination 
message to the source node s so that the source node s 
will add the destination node back to the uncovered 
destination list when the merging of the uncovered 
destination list occurs. 

6.  When the source node s receives the destination 
message, it adds the sender node to a “sync list” which 
is the uncovered destination list. 

7.  When the source node s receives the completion 
message, if “sync list” is not empty, the cost, 
tree_node and tag in T2D table for each destination di 
∈  “sync list” will be re-set to the distance of the 
shortest path from the source node s to the destination, 
source node s and “no”, respectively. Then it re-forks 
as in Transaction 2.4. If  “sync list” is empty, it 
announces that a delay-constrained multicast tree is 
ready for use. 

Figure 2(a) illustrates the procedure described in 
transactions 4 to 6, where remove and destination 
messages are sent. Figure 2(b) illustrates the case 
described in 2.1.1, where the setup message is rejected to 
avoid loops in the tree, while Figure 2(c) illustrates the 
case described in 2.1.2, where the loop can be broken by 
breaking the existing tree branch. 

It is shown that: a) The delay-constrained multicast 
tree built by ASPH is loop free; b) When ASPH 
terminates with a multicast tree, the multicast tree is 
constrained; that is, the tree satisfies the delay constraint; 
c) ASPH’s message complexity is O(kmn) and time 
complexity is O(kmn) in the worst case, where k-1 is the 
number of node failures occurred in the network during 

 

Figure 2: Illustrations for ASPH Heuristic 
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the construction of a delay constrained multicast tree and 
the on-going multicast session. 

 
5. Performance analysis 

 
In this section, we compare the performance of ASPH 

with DSPH in the average case under the condition that a 
node failure occurs during the construction of a delay 
constrained multicast tree or during the on-going multicast 
session. DSPH is going to use the naïve fault recovery 
approach; that is, the algorithm will be re-run from scratch 
when a node failure occurs. To the best of our knowledge, 
there are no other fault recovery approaches that have 
been published for the delay constrained multicast tree 
problem. Otherwise, we would include them in the 
comparison as well. 

In order to compare the performance of ASPH with 
DSPH, a series of simulations have been performed by 
applying both DSPH and ASPH to networks generated by 
the Waxman’s approach [23]: the nodes are randomly 
distributed over a rectangular coordinate grid. Each node 
is placed at a location with integer coordinates. The 
Euclidean metric is then used to determine the distance 
between each pair of nodes. A link between two nodes u 
and v is added with a probability that is given by the 
function P(u, v) = β exp(-d(u, v)/ αL), where d(u, v) is the 
distance from u to v, L is the maximum distance between 
any two nodes, and 0 < α ≤ 1, 0 < β ≤ 1. Larger values of 
β result in graphs with higher link densities, while small 
values of α increase the density of short links relative to 
longer ones. The cost of a link is assigned to a value 
which is uniformly distributed over the range between 0 
and 60. The delay of a link (u, v) in the graph is the 
distance between nodes u and v on the rectangular 
coordinate grid. Graphs are generated and tested until the 
graph is a two-connected network, which has at least two 
paths between any pair of nodes. The random graphs do 

have some of the characteristics of an actual network. It 
has been shown by simulation [15] that the performance 
of a multicast routing algorithm when applied to a real 
network is almost identical to its performance when 
applied to a random two-connected network. 

In the simulations, node failures are injected into 
networks in order to see how the multicast routing 
algorithms perform in a network where node failures 
occur. There are two types of experiments: one is for the 
case when node failures occur during the construction of a 
multicast tree, and the other is for the case when node 
failures occur during the on-going multicast session. For 
the first type of experiments, it is assumed that at most one 
node failure may occur during the construction of the 
multicast tree. The timing for a node failure is randomly 
selected so it could occur randomly among the different 

stages of the construction of the multicast tree. The failed 
node is randomly selected among the nodes in the 
multicast tree built so far that are neither the source node 
nor the destination nodes when node failure occurs, since 
the failure of the source node means that there will be no 
multicast tree to be built and the failure of a destination 
node means that the constructed multicast tree will not be 
comparable with other multicast trees which cover all 
destination nodes. DSPH will be re-run when a node 
failure occurs. 

The number of messages exchanged, the convergence 
time and the cost of the multicast tree are measured by 
their average value in a total of 100 simulation runs on a 
network with 200 nodes. Note that an exchanged message 
will only be counted once from its sender to its receiver 
no matter how many intermediate nodes are walked 
through as long as the algorithm running on the node does 
not interpret the message. Meanwhile, the convergence 
time is counted by taking one message exchange as a time 
unit. However, within one time unit, there may be several 
message exchanges occurring in the network. Thus, 
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Figure 3: Tree cost versus group 
size when node failure occurs 

Figure 4: Number of messages versus 
group size when node failure occurs 

Figure 5: Time versus group size 
when node failure occurs 
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multiple messages exchanged within the same time unit 
will only be counted once in the convergence time. 

For the second type of experiments, DSPH will have 
to be re-run to re-build the entire multicast tree when a 
node failure occurs during an ongoing multicast session. 
In the experiments, one multicast tree node will be 
randomly selected as a failure node during a multicast 
session for the type of networks that we study. Like the 
first type of experiments, the number of messages 
exchanged, the convergence time and the cost of the 
multicast tree are measured by their average value in a 
total of 100 simulation runs on a network with 200 nodes. 

As DSPH will be re-run when a node failure occurs 
while ASPH will always return a multicast tree no matter 
whether a node failure occurs or not, ASPH has a better 
success rate than DSPH. 

Figure 3,  Figure 4 and Figure 5 show the simulation 
results when ∆ is set to dmax + (3/8)dmax, where dmax = 
max({du | for any u ∈  S: du is the delay on the shortest 
path from s to u}), and the group size changes between 5 
and 60 in 200-node networks. In the figures, suffix “-c” 
means during the construction of a multicast tree, suffix “-
m” means during the on-going multicast session and 

“SPT-d” means the delay-based SPT. The delay-based 
SPT could be considered as the delay constrained 
multicast trees without any optimization on tree costs. 

Figure 3 shows that the costs of the trees generated by 
ASPH are almost identical to those by DSPH. This result 
is very encouraging. DSPH calculates the multicast tree 
based on the consistent current network topology 
information after it re-runs while ASPH might use 
different network topology information for different parts 
of  a delay constrained multicast tree. Intuitively, it could 
be expected that the costs of the trees generated by ASPH 
should be noticeably higher than those by DSPH. But, the 
simulation results show that it is not the case. It is also 
shown in Figure 3 that the delay-constrained multicast tree 
algorithms generate trees with much better cost 

performance than the algorithms without considering 
optimization on the tree cost such as SPT-d. This means 
that it is worth using the delay-constrained multicast tree 
algorithms rather than using SPT-d directly.  

Figure 4 shows that the number of messages required 
by DSPH is up to 20% more than that required by ASPH 
during the construction of a delay constrained multicast 
tree, and is up to 55% more than that required by ASPH 
during the on-going multicast session. This result is 
surprising as we know that doing fault recovery normally 
costs extra number of messages. Intuitively, one would 
expect that because DSPH is so efficient on using 
messages, any fault recovery approach that tries to merge 
the list of uncovered destinations in the failed sub-tree 
with the list of uncovered destinations in the active node 
will have a worse number of messages than DSPH even 
though DSPH has to run twice. Contrary to this 
expectation, ASPH has a significantly better message 
performance than DSPH. This is due to the fact that 
ASPH uses the approach that refrains from sending 
messages on node failure. The previous analysis shows 
that the delay on sending node failure messages does not 
have a negative effect on the quality of the generated 

multicast trees.   
Figure 5 shows that the convergence time required by 

DSPH is up to 50% and 75% more than that by ASPH. 
This result confirms what has been expected. Through the 
localized recovery approach taken by ASPH, it is 
expected that the convergence time can be reduced by 
ASPH. 

When the group size is fixed at 20 in 200-node 
networks and ∆ varies between dmax + (1/8)dmax and dmax + 
(23/8)dmax, where dmax = max({du | for any u ∈  S: du is the 
delay on the shortest path from s to u}), Figure 6, Figure 7 
and Figure 8 give the corresponding results. Figure 6 
shows that the costs of the generated trees by two 
algorithms are almost identical. Also, confirming what has 
been expected, when the delay constraint is tight, the cost 
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of the generated tree is slightly higher than that when the 
delay constraint is relaxed since the algorithm has less 
options to optimize the tree. Figure 7 and Figure 8 show 
that the message and time performance for ASPH is much 
better than that for DSPH. For DSPH, they show that the 
tighter the delay constraint, the higher the number of 
messages and time. This could be due to the fact that 
when the delay constraint is tight, DSPH tends to fork 
more tree paths directly from the source node. However, 
ASPH behaves contrary to DSPH. This may be due to the 
localized recovery approach used in ASPH, which tends 
to try less alternatives to expand the tree under tighter 
delay constraints.   

In conclusion, ASPH performs better than DSPH in 
terms of the number of exchanged messages and the 
convergence time in addition to the advantage that ASPH 
has local recovery from the node failures without re-
building the entire tree. Re-building the entire multicast 
tree will cause the interruption of the multicast session, 
which is avoided in ASPH. Meanwhile, the costs of the 
generated multicast trees by two algorithms are almost 
identical, which means that the quality of the multicast trees 
generated by ASPH is as high as that generated by DSPH 
even though ASPH conducts the fault recovery actions. 

  
6. Conclusions 
 

In this paper, we proposed a new distributed SP-
based delay constrained multicast routing algorithm which 
takes into account the changes in the topology of the 
network. The proposed algorithm can recover from node 
failures during the construction of a delay constrained 
multicast tree, and during an on-going multicast session 
without requiring the rebuilding of the entire multicast 
tree. Furthermore, compared with the existing distributed 
SP-based delay constrained multicast routing algorithm 
DSPH that uses the naïve fault recovery approach, the 
proposed algorithm gives better performance in terms of 
the number of exchanged messages and the convergence 
time when applied in a network where node failures occur. 
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