

Fault Recovery for a Distributed SP-based Delay Constrained Multicast
Routing Algorithm

Hasan Ural and Keqin Zhu
School of Information Technology and Engineering, University of Ottawa

Ottawa, Ontario, K1N 6N5 Canada
Email: {ural, kzhu}@site.uottawa.ca

Abstract
This paper proposes a new distributed shortest path (SP)
based delay constrained multicast routing algorithm
which is capable of constructing a delay constrained
multicast tree when node failures occur during the tree
construction period and recovering from any node failure
in a multicast tree during the on-going multicast session
without interrupting the running traffic on the unaffected
portion of the tree. The proposed algorithm performs the
failure recovery efficiently, which gives better
performance in terms of the number of exchanged
messages and the convergence time than the existing
distributed SP-based delay constrained multicast routing
algorithms in a network where node failures occur.

1. Introduction

Multicast is the simultaneous transmission of data
from a source to a group of destinations. There are many
multimedia applications (e.g., video conferencing) which
require multicast communication. Moreover, multimedia
applications are often high bandwidth and delay sensitive,
which require real-time communication with low end-to-
end delays [19][16].

To meet the requirements, distributed delay
constrained multicast routing algorithms have been
proposed, which generates a multicast tree that satisfies
the end-to-end delay constraint along the individual paths
from source to each destination, and meanwhile tries to
minimize the cost of the multicast tree. The cost of a
multicast tree can be in terms of network bandwidth
utilization.

One of the main problems with the distributed delay
constrained multicast routing algorithms is that they do
not take into account the changes in the topology of the
network (e.g., node failures) [3]. Whenever the topology
of the network changes, these algorithms will fail to
complete the construction of a multicast tree and it is up to
the application to re-start the algorithm. As a result, these
algorithms will have a low success rate for the
construction of a multicast tree (which is the number of

trials to build a multicast tree successfully divided by the
number of total trials). Similarly, as these algorithms do
not respond to the changes in the topology of the network
after the multicast tree is built, it is up to the application to
re-start the algorithm to re-build the tree for the changed
network topology, which causes the interruption of the
running traffic for all existing members in a multicast
session. The re-starting approach can be broadly
considered as a kind of fault recovery approach which will
be called naïve fault recovery approach.

In this paper, we propose a new distributed delay
constrained multicast routing algorithm that takes into
consideration the node failures in a network and recovers
from these failures. Though we only consider the node
failures in the proposed algorithm, the algorithm can be
easily extended to cover other types of changes in the
topology of the network such as link failures. The
algorithm is shortest path (SP) based which means that it
mainly uses the available shortest path information for
constructing the multicast tree. The analysis and
simulation results show that the proposed algorithm not
only does the fault recovery correctly, but also performs
the fault recovery efficiently, which gives better
performance in terms of the number of exchanged
messages and the convergence time than the existing
distributed SP-based delay constrained multicast routing
algorithms [9] in a network where node failures occur.

There are two major benefits for having such a fault
tolerant algorithm: First, it will make the fault recovery
actions transparent to applications during the construction
of a multicast tree and during an on-going multicast
session. Second, it will re-connect the disconnected sub-
tree of a multicast tree without interrupting the running
traffic on the rest of the multicast tree.

The rest of this paper is organized as follows. Section
2 gives more details on the background information and
related work; Section 3 defines the problem formally;
Section 4 describes the proposed algorithm; Section 5
discusses the performance of the proposed algorithm; and
finally Section 6 gives the conclusions.

2. Background and related work

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

The routing function is defined as consisting of two

parts [4]. The first part selects a route for the session
during the connection establishment phase, and the second
part ensures that each packet of that session is forwarded
along the assigned route. In this paper, only the route
selection algorithms are considered. During the
connection establishment phase, the system selects a route
along which sufficient resources ought to be reserved to
meet the quality of service (QoS) requirements specified
by applications, such as network bandwidth and maximum
message delay. This is an important step to guarantee real-
time data to be delivered to destinations with an
acceptable delay.

Multicast routing is to find a routing tree (called
multicast tree) which is rooted from a source node s and
contains all nodes in a set S of destination nodes. There
are two reasons for basing efficient multicast routes on
trees: i) the data can be transmitted simultaneously to
various destinations along the branches of the tree; and ii)
a minimum number of copies of the data are transmitted,
with replication of data being necessary only at forks in
the tree.

There are two important requirements on algorithms
for constructing multicast trees. The first is the bounded
end-to-end delay along the individual paths from source to
each destination where the delay bound is specified by the
application performing the multicast. The second is the
minimum cost of the multicast tree. The cost of the
multicast tree is the sum of the costs on the edges in the
multicast tree. For example, the costs on the edges in the
multicast tree can be in terms of network bandwidth
utilization. The minimum cost tree is called a Steiner tree,
and the problem of finding a Steiner tree is known to be
NP-complete [10][11]. The delay-bounded minimum cost
tree is called a constrained Steiner tree (or delay
constrained multicast tree) [12]. The problem of finding a
constrained Steiner tree is also NP-complete [12].

Algorithms based on heuristics for constructing
constrained Steiner trees have been developed in recent
years. Some algorithms are classified as source-based (or
centralized) multicast routing algorithms if the source is
assumed to have all the information necessary to construct
the multicast tree, such as KPP [13], CDKS [20], CKMB
[21], CAO [24], and BSMA [25]; while others are
classified as distributed multicast routing algorithms, if it
is not required to maintain the entire network status
information in each node, and multiple nodes are
participating in constructing the multicast tree, such as
DKPP [14] and DSPH [9]. Distributed routing algorithms
are usually slow and complex. On the other hand, source-
based routing algorithms are not practical for very large
networks, since they assume complete knowledge of the
network on the source node.

In addition to the algorithms mentioned above, there
are also many QoS-based protocols that have been
proposed in the literature, such as YAM (or spanning join)
[5], QoSMIC [8] and QMRP [7]. They are
receiver(destination)-initiated and based on the multiple-
path approach; that is, the protocols will generate multiple
paths between the existing multicast tree and a receiver,
and then the receiver will pick the best one based on
certain QoS criteria to connect itself into the tree. In the
following, we will focus on discussing the algorithms for
constructing constrained Steiner trees, which are source-
initiated and do not use the multiple-path approach.

Among distributed delay constrained multicast
routing algorithms, DSPH has distinguished itself from the
others with its good performance in terms of tree cost,
message and time complexity. DSPH can be considered as
an SP-based algorithm. In an SP-based multicast routing
algorithm, the multicast tree is expanded by a delay
constrained shortest path from the tree to one destination
node at a time until all destination nodes are covered. A
delay constrained shortest path is the path with the
minimum cost among all paths whose delays are under the
delay constraint. Like other distributed delay constrained
multicast tree algorithms, DSPH does not take into
account the changes in the topology of the network (e.g.,
node failures).

Several fault recovery approaches for unconstrained
multicast routing problem have been proposed in the
literature. The one specified in [1][2] uses the approach in
which the disconnected sub-tree is flushed and all
members in the sub-tree attempt to rejoin the tree
individually, which may cause a substantial increase in
network traffic as the control messages are propagated
through the network. The one described in [18] uses a
“reversing tree edges” method to re-connect the
disconnected sub-tree with the multicast tree in order to
reduce the traffic of control messages, which may not
always generate loop free multicast trees. Both approaches
described above are for the receiver-initiated multicast
routing algorithms, specifically the core based tree (CBT)
protocol.

The algorithm that we study is for the source-
initiated, delay constrained multicast routing problem. It
should be not only fault-tolerant to node failures in the
network, but also very efficient in terms of the number of
exchanged messages and the convergence time. It should
always generate a loop-free multicast tree. Therefore, the
existing fault recovery approaches for multicast routing
algorithms are neither applicable to our problem nor
comparable to our fault recovery approach included in our
algorithm.

3. Network model and problem definition

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

A network is modeled as a connected, directed graph
G=(V, E) where nodes in node set V represent network
nodes and edges in edge set E represent links. In addition,
there are two values associated with each link e (e ∈ E):
delay D(e) and cost C(e). It is assumed that both values do
not change during a multicast session. The link delay D(e)
is the delay a packet experiences on the corresponding
link, the link cost C(e) is a measure of the utilization of
the corresponding link’s resources. Links are
asymmetrical, namely the cost and delay for the link e =
(i, j) and the link e’ = (j, i) may not be the same.

The constrained Steiner tree (CST) problem (or
delay-constrained multicast tree problem) can be stated as
follows. Given a network G = (V, E) with n nodes, a
source node s (s ∈ V), a set of m destination nodes S (S ⊆
V - {s}) called multicast group, and a delay constraint ∆,
find a tree T (T ⊆ G) rooted at s that spans the nodes in S
such that
i) for each node v in S, the delay on the path from s to v is
bounded above by ∆; that is,
∑ e ∈ P(s, v) D(e) < ∆ where P(s, v) is the unique path in T
from s to v, and
ii) the tree cost ∑ e ∈ T C(e) is minimized.
This tree is called a constrained Steiner tree (or delay
constrained multicast tree).

Some definitions that will be used later are given
below. A shortest path from a tree T to a non-tree node v
is a shortest path (in terms of cost) from a tree node u to v,
denoted by SP(u, v), and u satisfies
∑ e ∈ SP(u, v) C(e) ≤ ∑ e ∈ SP(k, v) C(e) for any tree node k.

The cost of the shortest path from a tree T to a non-
tree node v is called the cost from a tree T to a non-tree
node v, and denoted by C(T, v). A non-tree node v is said
to be the closest to a tree T if it satisfies C(T, v) ≤ C(T, w)
for any non-tree node w.

4. A distributed multicast routing algorithm

4.1. Overview of the proposed algorithm

The proposed algorithm is built on top of the existing
distributed SP-based delay constrained multicast
algorithm that was proposed in [9]. Briefly, that algorithm
works as follows: the multicast tree starts with a tree
containing only the source node s; then the tree is
expanded by a delay constrained shortest path from the
tree to one destination node v in S at a time until all
destination nodes in S are covered. Each time, the
destination v in S which is selected to be covered next
should not be in the tree yet and be the closest to the tree
under the delay constraint. We call it as Distributed
Shortest Path Heuristic (DSPH).

The ideas behind DSPH can be attributed to the TM
heuristic [22] which mimics Prim’s minimum spanning
tree (MST) algorithm [17][6] but expands the tree path by
path instead of edge by edge. However, TM heuristic does
not work for the constrained Steiner tree problem and is a
centralized algorithm. So, DSPH added the delay
constraint checking into the algorithm and designed the
algorithm as a distributed one. DSPH assumed that each
node has the information about the shortest path (in terms
of cost) and the delay of the shortest path to every other
node in the graph through running a distributed shortest
path algorithm.

DSPH is characterized by the following features. On
one hand, DSPH generates the best quality of delay
constrained multicast tree in terms of tree cost [9]. It is
very efficient in terms of O(mn) message complexity. On
the other hand, DSPH builds the multicast tree
sequentially destination by destination. At each moment,
there is only one node that is actively doing calculation.
Let us call the node in active state as active node. The
active node “moves” along the delay constrained shortest
paths between the tree and each destination. It can be seen
that this procedure is very fragile and takes a long time to
complete. During this long period, network topology
could be changed and DSPH will fail to complete the
delay constrained multicast tree. DSPH depends on a
naive fault recovery approach, which simply waits for
applications to re-start the algorithm from scratch. This
makes DSPH take even longer time to complete when
node failures occur.

We can see that without an efficient fault recovery
approach, DSPH does not work properly in practice. The
motivation of our work is to design an efficient fault
recovery approach which will make the recovery
transparent to the applications, not interrupt the running
traffic on the rest of the multicast tree, and shorten the
time to recover from node failures. The proposed
algorithm will recover by itself and adaptively construct a
constrained multicast tree when node failures occur. So,
the proposed algorithm is called Adaptive distributed
Shortest Path Heuristic (ASPH).

In addition, we want ASPH to generate the delay
constrained multicast trees whose quality is as good as
that of DSPH in terms of tree cost, and perform as well as
DSPH in terms of message complexity. These goals are in
general conflicting with each other. For example, to be
able to do fault recovery, extra messages will be needed.
The key approach used in ASPH is to localize the
recovery action to the failed portion of the multicast tree
without re-building the whole tree again. Then, the
problem is how the information about the failed sub-tree
can be communicated to the active node, so that the new
information can be taken into consideration in the rest of
the tree construction process. One straightforward

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

approach is to flood the information in the network.
However, this approach requires O(n2) messages just for
the notification of the node failure alone. We do not take
this approach. In ASPH, the failed sub-tree is refrained
from flooding the network with fault information
messages, and the fault information is propagated through
the regular tree setup messages and scenarios as much as
possible.

With respect to the main control steps of the
algorithm, ASPH progresses in the same way as DSPH.
Between the steps, ASPH checks if any tree node fails.
When a failure is detected, it removes the sub-tree rooted
at the failed node and notifies the source node s of the
destination nodes that were covered by the removed sub-
tree. Thus, the source node s is enabled to add these
removed destination nodes later as ASPH will report back
to the source node s when all the remaining destination
nodes have been added to the multicast tree.

Furthermore, loops may be introduced in the
multicast tree due to the network topology changes. ASPH
will detect these loops by checking if a node (say v) to be
added is already in the tree. A loop is removed by
choosing the path from the source node s to node v which
has the minimum delay. This will ensure that all existing
paths between the source node s and destinations that go
through node v still satisfy the delay constraint. If the new
parent of v has the minimum delay from the source node,
node v will accept the new parent and break itself from its
previous parent. Otherwise, node v will reject the new
parent.

After the tree is constructed, ASPH will continue to
run the tree node failure checking and recovery steps to
repair the delay constrained multicast tree if node failures
occur during an ongoing multicast session.

4.2. Details of the proposed algorithm

Eight types of messages are used in ASPH, which are
open - opening a multicast connection;
setup - setting up a shortest path from the tree to a non-
tree node;
fork - forking a new branch from the tree node that is
closest to the selected non-tree node;
completion - notifying the termination of the multicast tree
setup;
break - notifying its parent to break a loop;
reject - rejecting the invitation to join the tree as either the
constraint may be violated or a loop may be formed;
remove - removing a sub-tree from the tree;
destination - adding destination back to the uncovered
destination list;

Among these messages described above, the first four
types of messages are used in DSPH as well, while the last
four types of messages are newly introduced for ASPH. It

is assumed that node failures are detected by a lower level
protocol.

Interleaved with the detailed description of the
proposed algorithm, an example network shown in Figure
1 is used to illustrate the algorithm. For clarity of the
diagrams, the same integer number is used to represent
both cost and delay values. Node s is the source node and
dark nodes b, h and i are destination nodes. ∆ is 14 and
node e fails after node b and h are covered.

The details of the proposed algorithm are as follows:
1. When a node receives a request (open message) for

opening a multicast connection with parameters S and
∆, it becomes the source node s of the multicast
connection (i.e., the only tree node in the multicast
tree).
In Figure 1, when node s receives an open message, it
becomes the first node in the tree.
1.1 The source node then calculates an initial T2D

(tree to destination) table. For each destination di
∈ S, T2D table records the following information:
cost - the cost from the tree to di, tree_node - the
tree node closest to di and tag - indicating if di is
in the tree or not. Obviously, the cost, tree_node
and tag fields for each destination in T2D table
will be initially set to the distance of the shortest
path from the source node s to the destination,
source node s and “no”, respectively.

 1.2 The destination closest to the tree is selected and
its tag in T2D table is marked as “yes”. A setup
message is sent to the neighbor towards the
selected destination to include all nodes on the
shortest path into the tree. This setup message
carries T2D table and the accumulated delay and
the number of hops (called tree level) from the
source node s.
In Figure 1, node b will be selected as the closest
destination based on Figure 1(c).

Figure 1: An example for ASPH Heuristic

s

2
6

6

5

2

1
5

9
6

5

10

9 9

(a) a network

5

(b) a multicast tree for (a)

dest cost tree_
node

tag

b 3 s no
h 8 s no
i 12 s no

(c) initial T2D table

dest cost tree_
node

tag

b 3 s yes
h 7 a no
i 12 s no

a
b

c e

d

i

h

f g

3

7
2 8

3
2

s

2
5

2

1

5
a

b c

d

i

h

8

(d) T2D table updated by node a

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

2. When a node v receives a setup message, it includes
itself into the tree and modifies T2D table if a lower
cost from itself to a destination is found, the
destination is not yet in the tree and the delay from
itself to the destination plus the accumulated delay
from the source node s is under ∆.
In Figure 1, when node a receives the setup message,
node a will update T2D table as in Figure 1(d).
2.1 If the addition of node v to the tree will introduce

a loop (which means that node v is already in the
tree), node v will do the following to avoid the
loop:
2.1.1 If the accumulated delay along the existing

path from the source node s to the
destination node is within the delay bound,
then node v sends a reject message to the
sender of the setup message. So, the sender
won’t include node v in the tree.

2.1.2 Else if the sender node has higher or equal
tree level than node v and the new
accumulated delay from the source node s
to node v via the sender is less than the old
accumulated delay, then node v sends a
break message to its parent to break the
existing tree path and accept the new one.

2.1.3 Otherwise, field tree_node in T2D for the
destination under consideration will be set to
the source node s to force the algorithm to
re-build the tree path to the destination from
the source node s.

2.2 If node v is not the destination yet, node v simply
passes the setup message to the neighbor towards
the destination with the possibly modified T2D
table and the adjusted accumulated delay from the
source node s.

2.3 If all destinations are included in the tree (i.e., all
tags in T2D table are “yes”), node v sends a
completion message to the source node s.

2.4 If node v is the destination itself, it selects next
closest destination and sends a fork message to
tree_node that is recorded in T2D table. The fork
message carries T2D table.
In Figure 1, node b will send a fork message to
node a to include the next selected destination h.

3. When node v receives the fork message, if node v is in
the tree, the destination closest to the tree is selected
and its tag in T2D table is marked as “yes”. Node v
then creates a setup message and forwards it to the
neighbor towards the destination with T2D table and
the adjusted accumulated delay and the tree level from
the source node s. If node v is not in the tree, field
tree_node in T2D for the destination under
consideration will be set to the source node s to force
the algorithm to re-build the tree path to the

destination from the source node s. Then it re-forks as
in Transaction 2.4.
The final multicast tree for the example is shown in
Figure 1(b).

4. When node v in the tree detects that its child node
fails, node v removes the child node from the tree.

5. When node v in the tree detects that its parent node
fails or receives the remove message, node v removes
itself from the tree. If node v is not a leaf node, it will
forward the remove message to all of its children. If
node v is a destination node, it sends a destination
message to the source node s so that the source node s
will add the destination node back to the uncovered
destination list when the merging of the uncovered
destination list occurs.

6. When the source node s receives the destination
message, it adds the sender node to a “sync list” which
is the uncovered destination list.

7. When the source node s receives the completion
message, if “sync list” is not empty, the cost,
tree_node and tag in T2D table for each destination di
∈ “sync list” will be re-set to the distance of the
shortest path from the source node s to the destination,
source node s and “no”, respectively. Then it re-forks
as in Transaction 2.4. If “sync list” is empty, it
announces that a delay-constrained multicast tree is
ready for use.

Figure 2(a) illustrates the procedure described in
transactions 4 to 6, where remove and destination
messages are sent. Figure 2(b) illustrates the case
described in 2.1.1, where the setup message is rejected to
avoid loops in the tree, while Figure 2(c) illustrates the
case described in 2.1.2, where the loop can be broken by
breaking the existing tree branch.

It is shown that: a) The delay-constrained multicast
tree built by ASPH is loop free; b) When ASPH
terminates with a multicast tree, the multicast tree is
constrained; that is, the tree satisfies the delay constraint;
c) ASPH’s message complexity is O(kmn) and time
complexity is O(kmn) in the worst case, where k-1 is the
number of node failures occurred in the network during

Figure 2: Illustrations for ASPH Heuristic

s s

(a) if node a failed
(b) break a loop by rejecting

a
b

c

d

i

h
remove Destination

 to s

Destination to s

a

b c

d

i

h

setup

reject

(c) break a loop by breaking

s

a

b
c

d

i

h

setup

break

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

the construction of a delay constrained multicast tree and
the on-going multicast session.

5. Performance analysis

In this section, we compare the performance of ASPH

with DSPH in the average case under the condition that a
node failure occurs during the construction of a delay
constrained multicast tree or during the on-going multicast
session. DSPH is going to use the naïve fault recovery
approach; that is, the algorithm will be re-run from scratch
when a node failure occurs. To the best of our knowledge,
there are no other fault recovery approaches that have
been published for the delay constrained multicast tree
problem. Otherwise, we would include them in the
comparison as well.

In order to compare the performance of ASPH with
DSPH, a series of simulations have been performed by
applying both DSPH and ASPH to networks generated by
the Waxman’s approach [23]: the nodes are randomly
distributed over a rectangular coordinate grid. Each node
is placed at a location with integer coordinates. The
Euclidean metric is then used to determine the distance
between each pair of nodes. A link between two nodes u
and v is added with a probability that is given by the
function P(u, v) = β exp(-d(u, v)/ αL), where d(u, v) is the
distance from u to v, L is the maximum distance between
any two nodes, and 0 < α ≤ 1, 0 < β ≤ 1. Larger values of
β result in graphs with higher link densities, while small
values of α increase the density of short links relative to
longer ones. The cost of a link is assigned to a value
which is uniformly distributed over the range between 0
and 60. The delay of a link (u, v) in the graph is the
distance between nodes u and v on the rectangular
coordinate grid. Graphs are generated and tested until the
graph is a two-connected network, which has at least two
paths between any pair of nodes. The random graphs do

have some of the characteristics of an actual network. It
has been shown by simulation [15] that the performance
of a multicast routing algorithm when applied to a real
network is almost identical to its performance when
applied to a random two-connected network.

In the simulations, node failures are injected into
networks in order to see how the multicast routing
algorithms perform in a network where node failures
occur. There are two types of experiments: one is for the
case when node failures occur during the construction of a
multicast tree, and the other is for the case when node
failures occur during the on-going multicast session. For
the first type of experiments, it is assumed that at most one
node failure may occur during the construction of the
multicast tree. The timing for a node failure is randomly
selected so it could occur randomly among the different

stages of the construction of the multicast tree. The failed
node is randomly selected among the nodes in the
multicast tree built so far that are neither the source node
nor the destination nodes when node failure occurs, since
the failure of the source node means that there will be no
multicast tree to be built and the failure of a destination
node means that the constructed multicast tree will not be
comparable with other multicast trees which cover all
destination nodes. DSPH will be re-run when a node
failure occurs.

The number of messages exchanged, the convergence
time and the cost of the multicast tree are measured by
their average value in a total of 100 simulation runs on a
network with 200 nodes. Note that an exchanged message
will only be counted once from its sender to its receiver
no matter how many intermediate nodes are walked
through as long as the algorithm running on the node does
not interpret the message. Meanwhile, the convergence
time is counted by taking one message exchange as a time
unit. However, within one time unit, there may be several
message exchanges occurring in the network. Thus,

0

1000

2000

3000

4000

5 1
5

2
5

3
5

4
5

5
5

Group Size

C
o

st

DSPH-c DSPH-m

ASPH-c ASPH-m

SPT-d

0

50

100

150

200

250

300

350

5 1
5

2
5

3
5

4
5

5
5

Group Size

N
u

m
b

er
 o

f
M

es
sa

g
es

DSPH-c DSPH-m

ASPH-c ASPH-m

0

50

100

150

200

250

300

350

5 1
5

2
5

3
5

4
5

5
5

Group Size

T
im

e
DSPH-c DSPH-m

ASPH-c ASPH-m

Figure 3: Tree cost versus group
size when node failure occurs

Figure 4: Number of messages versus
group size when node failure occurs

Figure 5: Time versus group size
when node failure occurs

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

multiple messages exchanged within the same time unit
will only be counted once in the convergence time.

For the second type of experiments, DSPH will have
to be re-run to re-build the entire multicast tree when a
node failure occurs during an ongoing multicast session.
In the experiments, one multicast tree node will be
randomly selected as a failure node during a multicast
session for the type of networks that we study. Like the
first type of experiments, the number of messages
exchanged, the convergence time and the cost of the
multicast tree are measured by their average value in a
total of 100 simulation runs on a network with 200 nodes.

As DSPH will be re-run when a node failure occurs
while ASPH will always return a multicast tree no matter
whether a node failure occurs or not, ASPH has a better
success rate than DSPH.

Figure 3, Figure 4 and Figure 5 show the simulation
results when ∆ is set to dmax + (3/8)dmax, where dmax =
max({du | for any u ∈ S: du is the delay on the shortest
path from s to u}), and the group size changes between 5
and 60 in 200-node networks. In the figures, suffix “-c”
means during the construction of a multicast tree, suffix “-
m” means during the on-going multicast session and

“SPT-d” means the delay-based SPT. The delay-based
SPT could be considered as the delay constrained
multicast trees without any optimization on tree costs.

Figure 3 shows that the costs of the trees generated by
ASPH are almost identical to those by DSPH. This result
is very encouraging. DSPH calculates the multicast tree
based on the consistent current network topology
information after it re-runs while ASPH might use
different network topology information for different parts
of a delay constrained multicast tree. Intuitively, it could
be expected that the costs of the trees generated by ASPH
should be noticeably higher than those by DSPH. But, the
simulation results show that it is not the case. It is also
shown in Figure 3 that the delay-constrained multicast tree
algorithms generate trees with much better cost

performance than the algorithms without considering
optimization on the tree cost such as SPT-d. This means
that it is worth using the delay-constrained multicast tree
algorithms rather than using SPT-d directly.

Figure 4 shows that the number of messages required
by DSPH is up to 20% more than that required by ASPH
during the construction of a delay constrained multicast
tree, and is up to 55% more than that required by ASPH
during the on-going multicast session. This result is
surprising as we know that doing fault recovery normally
costs extra number of messages. Intuitively, one would
expect that because DSPH is so efficient on using
messages, any fault recovery approach that tries to merge
the list of uncovered destinations in the failed sub-tree
with the list of uncovered destinations in the active node
will have a worse number of messages than DSPH even
though DSPH has to run twice. Contrary to this
expectation, ASPH has a significantly better message
performance than DSPH. This is due to the fact that
ASPH uses the approach that refrains from sending
messages on node failure. The previous analysis shows
that the delay on sending node failure messages does not
have a negative effect on the quality of the generated

multicast trees.
Figure 5 shows that the convergence time required by

DSPH is up to 50% and 75% more than that by ASPH.
This result confirms what has been expected. Through the
localized recovery approach taken by ASPH, it is
expected that the convergence time can be reduced by
ASPH.

When the group size is fixed at 20 in 200-node
networks and ∆ varies between dmax + (1/8)dmax and dmax +
(23/8)dmax, where dmax = max({du | for any u ∈ S: du is the
delay on the shortest path from s to u}), Figure 6, Figure 7
and Figure 8 give the corresponding results. Figure 6
shows that the costs of the generated trees by two
algorithms are almost identical. Also, confirming what has
been expected, when the delay constraint is tight, the cost

0
20
40
60
80

100
120
140

1 5 9 1
3

1
7

2
1

Delay Constraint

N
u

m
b

er
 o

f
M

es
sa

g
es

DSPH-c DSPH-m

ASPH-c ASPH-m

0
20
40
60
80

100
120
140

1 5 9 1
3

1
7

2
1

Delay Constraint

T
im

e

DSPH-c DSPH-m

ASPH-c ASPH-m

0

500

1000

1500

2000

1 5 9 13 17 21

Delay Constraint

C
o

st

DSPH-c DSPH-m

ASPH-c ASPH-m

SPT-d
 Figure 7: Number of messages versus

delay constraint when node failure occurs
Figure 8: Time versus delay
constraint when node failure

Figure 6: Tree cost versus delay
constraint when node failure occurs

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

of the generated tree is slightly higher than that when the
delay constraint is relaxed since the algorithm has less
options to optimize the tree. Figure 7 and Figure 8 show
that the message and time performance for ASPH is much
better than that for DSPH. For DSPH, they show that the
tighter the delay constraint, the higher the number of
messages and time. This could be due to the fact that
when the delay constraint is tight, DSPH tends to fork
more tree paths directly from the source node. However,
ASPH behaves contrary to DSPH. This may be due to the
localized recovery approach used in ASPH, which tends
to try less alternatives to expand the tree under tighter
delay constraints.

In conclusion, ASPH performs better than DSPH in
terms of the number of exchanged messages and the
convergence time in addition to the advantage that ASPH
has local recovery from the node failures without re-
building the entire tree. Re-building the entire multicast
tree will cause the interruption of the multicast session,
which is avoided in ASPH. Meanwhile, the costs of the
generated multicast trees by two algorithms are almost
identical, which means that the quality of the multicast trees
generated by ASPH is as high as that generated by DSPH
even though ASPH conducts the fault recovery actions.

6. Conclusions

In this paper, we proposed a new distributed SP-
based delay constrained multicast routing algorithm which
takes into account the changes in the topology of the
network. The proposed algorithm can recover from node
failures during the construction of a delay constrained
multicast tree, and during an on-going multicast session
without requiring the rebuilding of the entire multicast
tree. Furthermore, compared with the existing distributed
SP-based delay constrained multicast routing algorithm
DSPH that uses the naïve fault recovery approach, the
proposed algorithm gives better performance in terms of
the number of exchanged messages and the convergence
time when applied in a network where node failures occur.

Acknowledgment
The authors would like to thank Dr. G. Luo of Nortel Networks
for many insightful discussions, and Prof. X. Jia at City
University of Hong Kong, Prof. D.S. Reeves at North Carolina
State University, and Prof. B.M. Waxman at Southern Illinois
University for providing their simulation software to us. This
work is supported in part by the Natural Sciences and Engineering
Research Council of Canada under grant number OGP0000976.

References

[1] A. Ballardie, “Core based trees (CBT version 2) multicast
routing protocol specification,” RFC 2189, Internet Engineering
Task Force, September 1997.

[2] A. Ballardie, B. Cain and Z. Zhang, “Core based trees (CBT
version 3) multicast routing protocol specification,” Internet
Draft draft-ietf-idmr-cbt-spec-v3-01, Internet Engineering Task
Force, August 1998.
[3] F. Bauer and A. Varma, “Distributed algorithms for
multicast path setup in data networks,” IEEE/ACM Trans.
Networking, vol.4, no.2, April 1996, pp.181-191.
[4] D. Bertsekas and R. Gallager, Data Networks, Second
Edition, Englewood Cliffs: Prentice-Hall, 1992.
[5] K. Carlberg and J. Crowcroft, “Building shared trees using a
one-to-many joining mechanism,” ACM SIGCOMM Computer
Communication Review, vol. 27, no. 1, January 1997, pp. 5-11.
[6] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction
to Algorithms, Cambridge, Ma: MIT, 1992.
[7] S. Chen, K. Nahrstedt, and Y. Shavitt, “A QoS-aware
multicast routing protocol,” IEEE J. Select. Areas Commun.,
vol.18,no.12, December 2000, pp.2580-2592.
[8] M. Faloutsos, A. Banerjea, and R. Pankaj, “QoSMIC:
Quality of service sensitive multicast internet protocol,” in
Proceedings of ACM SIGCOMM’98, Sept. 1998, pp.144-153.
[9] X. Jia, "A distributed algorithm of delay-bounded multicast
routing for multimedia applications in wide area networks,"
IEEE/ACM Trans. Networking, vol. 6, Dec. 1998, pp. 828-837.
[10] R.M. Karp, “Reducibility among combinatorial problems,”
in Complexity Computer Communications, R.E. Miller and J.W.
Thatcher, Eds., New York: Plennum, 1972.
[11] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm
for Steiner trees,” Acta Informatica, no.15, 1981, pp.141-145.
[12] V.P. Kompella, J.C. Pasquale, and G.C. Polyzos,
"Multicasting for multimedia applications," in Proc. IEEE
INFOCOM’92, 1992, pp.2078-2085.
[13] V.P. Kompella, J.C. Pasquale, and G.C. Polyzos,
"Multicast routing for multimedia communication," IEEE/ACM
Trans. Networking, vol.1,no.3, June 1993, pp.286-292.
[14] V.P. Kompella, J.C. Pasquale, and G.C. Polyzos, "Two
distributed algorithms for the constrained Steiner tree problem," in
Proceedings of the Second International Conference on Computer
Communications and Networking, June 1993, pp.343-349.
[15] C.A. Noronha and F.A. Tobagi, “Evaluation of multicast
routing algorithms for multimedia streams,” in Proceedings of
IEEE International Telecommunication Symposium, August 1994.
[16] Sanjoy Paul, Multicasting on the internet and its
applications, Kluwer Academic Publishers, 1998.
[17] R. Prim, “Shortest connection networks and some
generalizations,” Bell Syst. Tech. J., vol.36, Nov.1957, pp.1389-1401.
[18] L. Schwiebert and R. Chintalapati, “Improved fault
recovery for core based trees,” Computer Communications 23,
2000, pp.816-824.
[19] H.F. Salama, D.S. Reeves, and Y. Viniotis, "Evaluation of
multicast routing algorithms for real-time communication on
high-speed networks," IEEE J. Select. Areas Commun., vol.15,
no.3, April 1997, pp.332-345.
[20] Q. Sun and H. Langendoerfer, “Efficient multicast routing
algorithm for delay-sensitive applications,” in Proceedings of
2nd international Workshop on Protocols for Multimedia
Systems (PROMS’95) , 1995, pp.452-458.
[21] Q. Sun and H. Langendoerfer, “An efficient delay-
constrained multicast routing algorithm,” Journal of High-Speed
Networks, vol.7, no.1, 1998, pp.43-55.
[22] H. Takahashi and A. Matsuyama, “An approximate solution
for the Steiner problem in graphs,” Mathematica Japonica, vol.
24, no. 6, 1980, pp. 573-577.
[23] B.M. Waxman, "Routing of multipoint connections," IEEE
J. Select. Areas Commun., vol.6, no. 9, Dec. 1988, pp. 1617-1622.
[24] R. Widyono, “The design and evaluation of routing
algorithms for real-time channels,” Technical Report TR-94-
024, Tenet Group, University of California at Berkeley, 1994.
[25] Q. Zhu, M. Parsa, and J.J. Garcia-Luna-Aceves, "A source-
based algorithm for delay-constrained minimum-cost
multicasting," in Proc. IEEE INFOCOM'95, 1995, pp.377-385.

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

