
State Oriented Program Comprehension in legacy distributed
telecommunication systems�

Stéphane S. Som´e, Timothy C. Lethbridge
School of Information Technology and Engineering (SITE)

150 Louis Pasteur, University of Ottawa, Canada
ssome@csi.uottawa.ca

Abstract

Distributed telecommunication systems consist of sev-
eral programs that spawn independent but collaborating
processes during their execution. These processes are im-
plementations of state-based systems.

Understanding programs is a pre-requisite for the effec-
tive maintenance of a software system. Program compre-
hension aims at helping software maintainers understand
programs by acquiring knowledge about them [15]. One of
the approaches for program comprehension, is to provide
maintainers with browsing tools that highlight elements in
source code, show their relationships and infer high-level
abstractions.

This paper discusses how to consider the state-based di-
mension of distributed telecommunication systems in the de-
sign of program comprehension facilities.

Keywords : program comprehension, state, state transition,
distributed system, telecommunication system.
Research paper

1. Introduction

Program comprehension tools helps software maintain-
ers get an abstract view of a software system. A key task is
highlighting elements in the system source code and show-
ing their relationships. The abstract view assists in nav-
igating through the software code, understanding how it
works, understanding its design and assessing the impact
of changes.

Program understanding tools are particularly critical for
the maintenance of complex software systems. Our research
targets such systems [9, 10]. We are particularly working
with a large distributed PBX system developed by Mitel
corporation.

�This work is supported by NSERC and Mitel Corporation and spon-
sored by the Consortium for Software Engineering Research (CSER).

Software used in PBX systems, because of their size and
distributed nature, constitute a class of complex software
difficult to understand and maintain. The software of the
PBX system we are working with consists of about 1.5 mil-
lion lines of code in 4000 source files. The software engi-
neers who work with this system regularly add new features,
fix problems and re-engineer portions of it.

There are several program comprehension tools in the
research and commercial domains [16, 13, 12, 5]. These
tools allow program understanding about elements directly
derived from programming languages such as routines, data
types, data variables, classes, or higher abstractions built
from such elements. Our research also produced a tool
called TKSEE [4] with the similar code exploration fea-
tures. TKSEE is already used for the maintenance of the
PBX system used in this paper.

Distributed systems are characterized by the involvement
of several independent programs that may reside at different
physical locations. These programs are generally modeled
upon finite state machines [17]. Finite state machines [2, 3]
are characterized by the concepts ofstate and state
transition . A state describes a certain situation and a
state transition a change from one state to another. Transi-
tions between states are generally provoked byspecific
events . Because the source code is a mapping of states
and transitions using some underlying programming con-
structs, states and transitions are important concepts for un-
derstanding thelogic andstructureof state based systems.

In this paper we present an approach to extract informa-
tion about states in a large distributed telecommunication
system in order to design state-oriented code exploration
facilities. The objective of the research is to enhance the
program exploration tool TKSEE with state-based brows-
ing facilities. The paper focus on a particular system. How-
ever, we believe that the underlying ideas are applicable to
many other distributed systems and that the approach can
be generalized.

The paper is organized as follows. In the next section,
we describe the model of the PBX system used for experi-

1



mentation. Section 3 then presents our approach to support
state based program comprehension based on this particu-
lar model. Finally section 4 outlines our ongoing work and
concludes the paper.

2. State model in a PBX system

A PBX is a key component in a telecommunication sys-
tem. It is an embedded hardware/software system in charge
of establishing and managing communications between ex-
ternal entities. The PBX system we are working with in-
cludes a Main Controller, a set of Peripheral Controllers and
a process based operating system. The operation of the
PBX consists of several concurrent collaborating processes.
Each process is an incarnation of a program.

2.1. Call Processes

The system uses a concept ofcall processes in di-
rect relation with its telecommunication nature. A call pro-
cess is a separate process executing a portion of a call. Typi-
cally several call processes will collaborate by sending mes-
sages each to the other in order to achieve a communication
between external parties.

Figure 2 shows call processes involved in a two party
call. These call processes control the progression of the call
by exchanging messages and communicating with the phys-
ical devices through their Peripheral Controllers.

The communication scenario in the system is as follows :
When an activity is sensed on a peripheral device (exam-
plehook off a telephone handset), the Peripheral Controller
sends a message describing the activity and the state of the
device to the Main Controller. A Message Subsystem of
the Operating System then routes the message to the appro-
priate call process depending on the device type. The call
processing may then lead to various interactions with other
call processes within the Main Controller. Ultimately a call
process may address a message to another Peripheral Con-
troller which interprets it and performs some appropriate
action on the controlled device.

2.2. Call states

Any process has an operating system state. This state
may bedead, ready, running, waiting or stopped. The
operating system state is manipulated by the operating sys-
tem and serves for purposes such as scheduling. We are not
interested in these operating system states. There is another
kind of state for call Processes :call states .

Call states are maintained by call processes to describe
the status of the calls they are managing. At an abstract
level, the software in the PBX is as shown in Figure 3, com-
posed of interacting state transition systems.

Call process behavior depend on their state. As an ex-
ample, when a call process receives a message from a
Peripheral Controller (in reaction to some activity in the
pheriperal), it interprets it according to the state of the de-
vice that sent the message, and its own call state.

2.3. Mapping states to code

The call management software in the PBX is a mapping
of state transition systems. In the following, we describe
how this mapping is done.

A process'call state is a combination ofcall
state values . The list of possible call state values
are defined bycall state types ; enumerated types
whose fields are call state values.

Figure 1 shows an example of a call state type defini-
tion. A naming convention is used to distinguish these types
to other enumerated types in the particular system we are
studying. Call state types have the word “state” in their
name.

typedef enum devxxcall statest f
devxx cs nil,
devxx cs idle,
devxx cs dialing,
devxx cs routedetermined,
devxx cs failed call,
devxx cs seized,
devxx cs connected,
devxx cs unavailable,
devxx cs last call state

g devxx call states;

Figure 1. Call state type definition. This is
an enumerated type that defines a set of call
state values as its fields.

A call state value indicates one of many dimensions of
the status of call processing. As an example, the status of
each of the devices involved in a call will correspond to a
state value.

State values are held bystate variables in the
source code as shown in Figure 4.

These values are used to control call processes behavior
as shown in Figure 5.

State variables also include someindirect instances of
call state types. These are instances of record types whose
fields include direct or indirect instances of call state types.
Figure 6 shows an example of such a record type. Instances
of devxx call status are state variables because the field
callstate hold state values.

2



Call

Process

Call

Process

Call

Process
Main
Controller

Peripheral
Controller

Peripheral

Figure 2. Interaction between call processes.

Main
Controller

Sa0

Sa1

Sb0

Sb1

Sd0

Sd1

Sd3

Se0

Se1

Peripheral

Controller

Peripheral

Sc0

Sc1

Sc3

a1

a2

b2

c1

c2

c3

d3

d4

e1

e2

d2

d1
b1

Figure 3. Call state model.

3



� � �

devxx call states devxxstate;
� � �

if (party.status ==dialing &&
party.callstate != ringing)
devxx state = devxxcs unavailable;

else
devxx state = devxxcs idle;

� � �

Figure 4. Setting process state values. In this
example one of the state values of the invok-
ing process is set according to some condi-
tions. The state variable used is devxx state.

� � �

devxx call states devxxstate;
� � �

switch (devxxstate)f
case devxxcs idle:

� � �

break;
case devxxcs dialing:

� � �

break;
case devxxcs routedetermined:

� � �

� � �

default :
� � �

g;
� � �

Figure 5. Control of a process behavior using
state values.

typedef struct devxxcall statust f
� � �

int ref;
devxx call states callstate;
devxx call types calltype;
� � �

g devxx call status;

Figure 6. Record type which field is a state
type instance.

3. State based program comprehension

3.1. Objective

Our objective is to develop new program understanding
facilities to help software maintainers explore source code
with a state model perspective.

A state model gives a high level view of the behavior
of a system. It reflects in the system source code where
low-level programming elements such as routines and
data objects are organized and related to each other accord-
ing to the model. Having the state model of a system in
mind therefore gives additional information to a software
engineer who want to understand and maintain it.

As shown in Figure 5,state values are used to
control the behavior of processes usingif and/orcase-like
statements. The exploration includes showing the source
code controlled by givenstates or state values . As
an example, a maintainer may want to know:

� the state values that are set at the same time,

� the routines called in a given state or when a given state
value is set,

� the states that can be reached from a given state,

� the state variables used in a program,

� etc.

State based exploration does not supersede traditional
program browsing. Queries about states are supposed to be
used in conjunction with program browsing inquiries based
on relationships between elements in the source code.

The state-based exploration facilities we are developing
here will be added to TKSEE a program browsing tool.
TKSEE uses a database of software objects (e.g. routines,
types, variables) and their relationships (e.g. uses, defini-
tions) obtained by parsing the source code. Adding state-
based program understanding facilities consist of adding
new objects and relationships to the database. However,
a first step before state extraction is to group source code
according to processes.

3.2. Finding source code belonging to processes

We are working with a PBX system made of several call
processes. The software in the system is large (1.5 million
line of code in about 4000 source files).

Each call process has a corresponding main file where its
main function is defined. But several processes share other
source code scattered in different files.

It is necessary to delimit the source code accessed by a
call process in order to find its states. The approach starts

4



from each call process program's main function and follows
the call graph involved in the Process.

For each processP, we determineroutines(P) the
set of routines called byP, types(P) the set of data types
manipulated inP and variables(P) the set of global
variables manipulated inP. These sets are then used to
find all the files related to the processP by considering
all the source files where the elements inroutines(P) ,
types(P) andvariables(P) are defined.

These sets make it possible to explore the system with
a process perspective since one can precisely know what
source code is pertinent to a given call process. Another
useful capability is to know the source code exclusive to
a call process; this source code (routines, types, variables)
therefore can be modified without any influence on other
processes. On the other hand, it is also possible to know
source code shared by several processes and therefore be
able to evaluate the impacts of changes made in that code.

3.3. Extracting a complete state model

A call state is a combination of call state values assigned
to state variables at some point in the source code executed
by a call process.

Figure 4 shows a typical example with the setting
of variable devxx state . The possible values of
devxx state are enumerated by the call state type
devxx call states described in Figure 1.

More formally, a stateS is determined by a set
of state valuesfsv1, � � �, svng such that eachsvi 2

state values(P) the set of all the state values used by
the processP.

A process is in acall state S = fsv1, � � �, svng, at
some point of its execution, if there aren variables of dif-
ferentcall state types set to respectivelysv1, � � �,
svn.

Given a call processP, we can determinestates(P) ,
the set of all thecall states of P as follow.

1. Identify state types.

In the general case there is no “explicit” way to dis-
tinguish call state types from other enumerated types.
However in the PBX system we are working with,
there is a naming convention to distinguish state types.
Expert knowledge may be needed in the general case.

2. Findstate values(P) , all the state values used by
P.

State values(P) is the set of all state values ref-
ered in the main program ofP and in all the routines
in routines(P) , all the routines called directly or
indirectly fromP main program.

3. Let state values(P )2 be the power-set of
state values(P) .

4. states(P) is the set of all elementsfsv1, � � �, svng
in state values(P )2 such that for eachsvi there is no
svj such thattype(svi) = type(svj).

As an example, imagine a processP which refers to the
state valuesfsv11, sv12, sv21, sv31g and suppose that:

� sv11, and sv12 are defined by thecall state
type st1,

� sv21 is defined by thecall state type st2 and

� sv31 is defined by thecall state type st3.

State(P) is the setf;, fsv11g, fsv12g, fsv21g, fsv31g,
fsv11, sv21g, fsv11, sv31g, fsv12, sv21g, fsv12, sv31g,
fsv21, sv31g, fsv11, sv21, sv31g, fsv12, sv21, sv31gg.

A state transition denotes a change from a state
to another one in a process. Astate transition
is reflected in the source code as the modification of
somestate variables which are set to newstate
values . Figure 4 shows possible state transitions with the
setting of thestate variable dev state.

Formally, there is a state transition from a states to a
states0 in a processP if:

� s corresponds to a set of states valuesSV ands0 cor-
responds to a set of states valuesSV

0,

� at some point in the processP source code, the set of
state values known isSV ,

� there is a statement such that the set ofstate
values becomesSV 0.

SV
0 may be obtained by adding a newstate value to

SV or by replacing an old value by a new value of the same
state type . The first case corresponds to the setting
of a state variable that doesn' t have a value while
the second case corresponds to the resetting of astate
variable .

A state transition definition generally includes
some triggering events . In our case, the
triggering events may be given by the conditions
under which the change of state values happens. As
an example, the portion of code in Figure 4, corre-
sponds to two possible state transitions described in Fig-
ure 7. A transition from a states1 to a states2 where
devxx cs unavailable is set and a transition from
the states1 to a states3 where devxx cs idle is
set. The triggering event of the first transition is given
by the condition(party.status == dialing &&
party.call state != ringing) while the second
transition is triggered by the negation of this condition.

5



S2

S1

S3

party.status == _dialing

&&
ringing

party.call_state !=
&&

party.status == _dialing

NOT (

)party.call_state !=
ringing

devxx_cs_unavailable devxx_cs_idle

Figure 7. State transitions corresponding to
Figure 4.

The complete finite state machine model of a call process
may be recoverred by finding all its states and states tran-
sitions. The setstate(P) gives all thepossible call
processing states of the processP. However only a subset
of state(P) corresponds to real states which the process
can enter.

We do not extract a complete state model in the PBX sys-
tem. Given the size of this system, the state model would
be extremely complex, the number of possible states and
transitions in this system being huge. Therefore, we believe
that the value of this state model in understanding the sys-
tem would be undermined by its size and complexity.

We rather extract pieces of information about states that
provide facets of call states. The state model obtained does
not make a single global state diagram. We get several
views of the system states useful for incremental browsing
and understanding of the source code.

3.4. Extracting pieces of state information

We extract, pieces of state information to augment the
database of TKSEE and then support state based explo-
ration.

The extracted information describes :

� Where state variables are defined.

This includes declaration as formal parameters and
also declarations as global variables in call processes.

� How state variables are used.

We record every use of state variables including :

– setting to state values,

– comparison with state values,

– use for control throughif andcase statements,

– etc.

� Where state variables are used.

That includes knowing the use of state variables as ac-
tual parameters.

We find state variables by parsing the source code. But
the approach supposes having a knowledge of the call state
types. In the case of the PBX system used for our experi-
ment, this knowledge is provided by a naming convention.

Tracking how state variables are used is more complex
because state variables may be set or compared to other state
variables. In such cases, the information in the data base
specifies the fact that the state variable is set/compared to
another state variable.

The state information extracted allows new source code
exploration and understanding facilities within TKSEE. It
becomes possible to combine queries about state variables
with more “traditional queries”. As examples, a software
maintainer can issue queries to ask :

� in which routines a given state variable is modified ?,

� what are the routines called when a state variable has a
specific state value ?,

� what are the possible transitions for a given state vari-
able ?,

� etc.

By issuing a series of queries, a maintainer can follow
the evolution of a state variable through different stages of
a process call graph and then acquire a knowledge about
the effect of this variable. The overal result of this kind of
exploration is similar to the inference of a state transition
model according to a facet of the system given by this state
variable. However this state model is contructedmentally
by the software maintainer through the exploration.

3.5. Automatic derivation of state models related to
single variables

State based exploration helps maintainers mentally make
up state models.

It is however useful to automatically derive state mod-
els that show the transitions of single state variables. An
interest of such state models is to help newcomers learn a
system. State models related to single state variables will
also be smaller and less complex than complete state mod-
els as discussed in section 3.3.

Automatic (non assisted) derivation of a state model sup-
poses knowing the state values set to state variables in all
the cases. Unfortunately, state variables are sometime set to
other state variables, or even to values returned by function
calls. It is possible to use an inter-procedural slicing tech-
nique [7, 14] to know state values set to state variables in

6



these situations. Program slicing [18, 1] is a technique to ex-
tract from a program the statements that affect a given com-
putation. Slicing gives answers to questions such as “what
statements potentially affect the computation of a variablev
at statements?”

Suppose an assignment statement where a state variable
sv1 is set to the value of a state variablesv2. Program slic-
ing can help finding all the other computations which in-
volvesv2 and then determine what may be the value ofsv2

in the assignment. Slicing is however costly in time and
space. Our current work includes making this technique ef-
fective for large software systems such as ours.

4. Conclusion

Programs in distributed telecommunication systems
are based on concepts such asstate and state
transition . In this paper, we discussed an approach
to get state information from source code, and enhance pro-
gram exploration.

Our approach is based on a particular PBX system. The
peculiarities of the approach linked to this system concern
the assumptions thatstate variables are used to de-
scribe states and a special naming convention is used to find
state types that define these state variables. We be-
lieve that our approach can be generalized because :

� The natural way to map a state model to code is to use
state variables to model states andcase/if-like state-
ments for state transitions. Therefore, it is reasonable
to believe that the approach used in our PBX system is
common to lot of similar systems.

� In order to be manageable, any large state based system
which uses state variables should use some conven-
tion to distinguish state variables (and/or state types)
to other variables. A naming convention is used in our
system, other conventions may be used in other sys-
tems.

In any case, our approach essentially needs the set of
all the state types. In absence of a convention, such
information can be obtained from the experts of the
system.

State is only one particularity of distributed telecommu-
nication systems. Another aspect of these systems is inter
process relationships. As an example, in our PBX system,
call processes communicate intensively each with the other
in the Main Controller by inter process message exchanges.
There are also parent/child relationships between call pro-
cesses with some call processes creating or destroying other
call processes. These inter process relationships reflects
both on the architecture and the behavior of the system. Our
work includes abstracting inter process relationships from

source code and developing exploration capabilities based
on these.

We see state based program understanding discussed in
this paper and program understanding based on inter pro-
cesses relationships as complementary. State based pro-
gram understanding helps in understanding processes taken
in isolation while inter-process relationships provide a high
level view of the whole system behavior by showing the
collaboration of independent processes entities.

Finding inter process relationships by a static analysis of
source code is however a difficult task [8, 6, 11]. The dif-
ficulty comes from the fact that inter process relationships
are often established at runtime. We distinguish two de-
grees in inter-process relationship recovery :static and
dynamic recovery. Static recovery concerns inter-process
relationships apparent in the source code while dynamic re-
covery considers links between running processes. We are
considering system run traces to help find dynamic inter-
process relationships.

References

[1] D. Binkley and K. Gallagher. Program slicing.Advances of
Computing, 43, 1996.

[2] R. Büchi. On a decision method in restricted second-
order arithmetic. InProc. International Congress on Logic,
Methodology, and Philosophy of Science 1960, pages 1–12.
Stanford University Press, 1962.

[3] Y. Choueka. Theories of automata on!-tapes: a simplified
approach.J. Comput. System Sci., 8, 1974.

[4] K. B. R. E. group. Introduction to tksee 2.0. http://www.csi-
.uottawa.ca/ tcl/kbre/tksee.html.

[5] R. Holt. Software Bookshelf: Overview And Construction.
http://www.turing.toronto.edu/ holt/ papers/bsbuild.html.

[6] L. J. Holtzblatt, R. L. Piazza, H. B. Reubenstein, S. N.
Roberts, and D. R. Harris. Design recovery for distributed
systems. IEEE Transactions on Software Engineering,
23(7):461–472, July 1997.

[7] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs.ACM Transactions on Program-
ming Languages and Systems, 12(1), Jan. 1990.

[8] T. Kunz and J. P. Black. Using automatic process clustering
for design recovery and distributed debugging.IEEE Trans-
actions on Software Engineering, 21(6), June 1995.

[9] T. C. Lethbridge and N. Anquetil. Architecture of a
Source Code Exploration Tool: A Software Engineering
Case Study. Technical Report TR-97-07, University of Ot-
tawa, Computer Science, Dec. 1997.

[10] T. C. Lethbridge and J. Singer. Strategies for Studying Main-
tenance. InWorkshop on Empirical Studies of Maintenance,
pages 79–84, Monterey, California, Nov. 1996.

[11] N. C. Mendonc¸a and J. Kramer. Developing an Approach
for the Recovery of Distributed Software Architectures. In
IWPC'98, 6th International Workshop on Program Compre-
hension, pages 28–36, Ischia, Italy, June 1998. IEEE Com-
puter Society.

7



[12] H. Müller, M. Orgun, S. Tilley, and J. UHL. A Reverse-
engineering Approach to Subsystem Structure Identifica-
tion. Software Maintenance: Research and Practice, 5:181–
204, 1993.

[13] Power Software Corporation home page. http://www.power-
soft.co.uk/.

[14] T. Reps and G. Rosay. Precise Interprocedural Chopping. In
Proceedings of the 3rd ACM Symposium on Foundations of
Software Engineering, Washington, DC, Oct. 1995.

[15] S. Rugaber. Program Comprehension.J. Encyclopedia of
Computer Science and Technology, 35, 1996.

[16] Take5 Corporation home page. http://www.takefive.com/in-
dex.htm.

[17] J. Weidl, R. Klösch, G. Trausmuth, and H. Gall. Facili-
tating program comprehension via generic components for
state machines. In5th Int. Workshop on Program Compre-
hension, pages 118–127, May 1997.

[18] M. Weiser. Program slicing.IEEE Transaction on Software
Engineering, SE-10:352–357, July 1984.

8


