State Oriented Program Comprehension in legacy distributed
telecommunication systems

Stéephane S. Soe) Timothy C. Lethbridge
School of Information Technology and Engineering (SITE)
150 Louis Pasteur, University of Ottawa, Canada
ssome@ocsi.uottawa.ca

Abstract Software used in PBX systems, because of their size and
distributed nature, constitute a class of complex software
Distributed telecommunication systems consist of sev-difficult to understand and maintain. The software of the
eral programs that spawn independent but collaborating PBX system we are working with consists of about 1.5 mil-
processes during their execution. These processes are imlon lines of code in 4000 source files. The software engi-
plementations of state-based systems. neers who work with this system regularly add new features,
Understanding programs is a pre-requisite for the effec- fix problems and re-engineer portions of it.
tive maintenance of a software system. Program compre- There are several program comprehension tools in the
hension aims at helping software maintainers understandresearch and commercial domains [16, 13, 12, 5]. These
programs by acquiring knowledge about them [15]. One of tools allow program understanding about elements directly
the approaches for program comprehension, is to provide derived from programming languages such as routines, data
maintainers with browsing tools that highlight elements in types, data variables, classes, or higher abstractions built
source code, show their relationships and infer high-level from such elements. Our research also produced a tool
abstractions. called TKSEE [4] with the similar code exploration fea-
This paper discusses how to consider the state-based ditures. TKSEE is already used for the maintenance of the
mension of distributed telecommunication systems in the dePBX system used in this paper.
sign of program comprehension facilities. Distributed systems are characterized by the involvement
of several independent programs that may reside at different
Keywords : program comprehension, state, state transition, physical locations. These programs are generally modeled

distributed system, telecommunication system. upon finite state machines [17]. Finite state machines [2, 3]
Research paper are characterized by the conceptsstdte and state
transition . A state describes a certain situation and a

state transition a change from one state to another. Transi-
tions between states are generally provokedgmcific
. .. events . Because the source code is a mapping of states
Program comprehensmn tools helps software mamtam—and transitions using some underlying programming con-
ers get an abstract view of a software system. A key task isqy,cts, states and transitions are important concepts for un-
highlighting elements in the system source code and show-ye standing théngic andstructureof state based systems.
?ng 'their relationships. The abstract view assi;ts in Nav- | this paper we present an approach to extract informa-
igating through the software code, understanding how it o ahout states in a large distributed telecommunication
works, understanding its design and assessing the impacly stem in order to design state-oriented code exploration
of changes. , , - facilities. The objective of the research is to enhance the
Program understanding tools are particularly critical for program exploration tool TKSEE with state-based brows-
the maintenance of complex software systems. Our rese.arclihg facilities. The paper focus on a particular system. How-
targets such systems [9, 10]. We are particularly working gyer we believe that the underlying ideas are applicable to
with a large distributed PBX system developed by Mitel any other distributed systems and that the approach can
corporation. be generalized.

“This work is supported by NSERC and Mitel Corporation and spon- 1h€ paper is organized as follows. In the next section,
sored by the Consortium for Software Engineering Research (CSER). we describe the model of the PBX system used for experi-

1. Introduction

mentation. Section 3 then presents our approach to support Call process behavior depend on their state. As an ex-

state based program comprehension based on this partickample, when a call process receives a message from a

lar model. Finally section 4 outlines our ongoing work and Peripheral Controller (in reaction to some activity in the

concludes the paper. pheriperal), it interprets it according to the state of the de-
vice that sent the message, and its own call state.

2. State model in a PBX system
2.3. Mapping states to code
A PBX is a key component in a telecommunication sys-
tem. Itis an embedded hardware/software system in charge The call management software in the PBX is a mapping
of establishing and managing communications between ex-of state transition systems. In the following, we describe
ternal entities. The PBX system we are working with in- how this mapping is done.

cludes a Main Controller, a set of Peripheral Controllersand A process'call state is a combination ofcall
aprocess based operating system. The operation of the state values . The list of possible call state values
PBX consists of several concurrent collaborating processesare defined byall state types ; enumerated types
Each process is an incarnation of a program. whose fields are call state values.
Figure 1 shows an example of a call state type defini-
2.1. Call Processes tion. A naming convention is used to distinguish these types
to other enumerated types in the particular system we are
The system uses a conceptall processes in di- studying. Call state types have the word “state” in their

rect relation with its telecommunication nature. A call pro- name.
cess is a separate process executing a portion of a call. Typi-

cally several call processes will collaborate by sending mes- typedef enum devxxall_statest {
sages each to the other in order to achieve a communication devxxcsnil,
between external parties. devxxcsidle,

Figure 2 shows call processes involved in a two party devxxcsdialing,
call. These call processes control the progression of the call devxxcsroutedetermined,
by exchanging messages and communicating with the phys- devxxcsfailed call,
ical devices through their Peripheral Controllers. devxxcsseized,

The communication scenario in the system is as follows : devxxcs.connected,
When an activity is sensed on a peripheral device (exam- devxxcsunavailable,
ple hook off a telephone handset), the Peripheral Controller devxxcs lastcall_state
sends a message describing the activity and the state of the } devxxcall_states;

device to the Main Controller. A Message Subsystem of
the Operating System then routes the message to the appro- Figure 1. Call state type definition. This is
priate call process depending on the device type. The call an enumerated type that defines a set of call
processing may then lead to various interactions with other state values as its fields.

call processes within the Main Controller. Ultimately a call

process may address a message to another Peripheral Con-

troller which interprets it and performs some appropriate

action on the controlled device. A call state value indicates one of many dimensions of
the status of call processing. As an example, the status of
2.2. Call states each of the devices involved in a call will correspond to a
state value.
Any process has an operating system state. This state State values are held tstate variables in the

may bedead, ready, running, waiting or stopped. The source code as shown in Figure 4.

operating system state is manipulated by the operating sys- These values are used to control call processes behavior

tem and serves for purposes such as scheduling. We are na&s shown in Figure 5.

interested in these operating system states. There is another State variables also include sonmalirect instances of

kind of state for call Processesall states . call state types. These are instances of record types whose
Call states are maintained by call processes to describdields include direct or indirect instances of call state types.

the status of the calls they are managing. At an abstractFigure 6 shows an example of such a record type. Instances

level, the software in the PBX is as shown in Figure 3, com- of devxx_call_status are state variables because the field

posed of interacting state transition systems. callstate hold state values.

Main
Controller

Peripheral

Controller

Peripheral

Main
Controller

Peripheral

Controller

Peripheral

s ™
Cadl
Call / \ Cdl
Process
Process Process
N

J

Figure 2. Interaction between call processes.

e

.

bl

Xl

!
!

al

O\

Figure 3. Call state model.

3. State based program comprehension

d Il_states d tate; I
evxxcallstates devxstate 3.1. Objective

if (party.status ==dialing &&

party.callstate != ringing) (_)_u_r objective is to develop new program understanding

devxx.state = devxxcs unavailable facilities to help software maintainers explore source code
else with a state model perspective.

devxxstate = devxxcs idle: A state model gives a high level view of the behavior

of a system. It reflects in the system source code where
low-level programming elements such as routines and

Figure 4. Setting process state values. In this data objects are organized and related to each other accord-
example. one of the state values of thé invok- ing to the model. Having the state model of a system in
ing process is set according to some condi- mind therefore gives additional information to a software

tions. The state variable used is devxx _state. engineer who want to understand and maintain it.

As shown in Figure 5state values are used to
control the behavior of processes usihgnd/orcase-like
statements. The exploration includes showing the source
code controlled by givestates orstate values . As
an example, a maintainer may want to know:

devxx call_states devxstate;
e o the state values that are set at the same time,

switch (devxxstate){

case devxocsidle: e the routines called in a given state or when a given state
o value is set,

break;

. ¢ the states that can be reached from a given state,
case devxxsdialing:

e ¢ the state variables used in a program,
break;

case devxxcsroutedetermined e efc.
State based exploration does not supersede traditional
default - program browsing. Queries about states are supposed to be

used in conjunction with program browsing inquiries based
_ o on relationships between elements in the source code.
g The state-based exploration facilities we are developing
here will be added to TKSEE a program browsing tool.
TKSEE uses a database of software objects (e.g. routines,
types, variables) and their relationships (e.g. uses, defini-
tions) obtained by parsing the source code. Adding state-
based program understanding facilities consist of adding
new objects and relationships to the database. However,

a first step before state extraction is to group source code
typedef struct devxxall_statust { according to processes.

Figure 5. Control of a process behavior using
state values.

int ref;
devxxcall_states callstate;
devxxcall_types calltype;

3.2. Finding source code belonging to processes

We are working with a PBX system made of several call
processes. The software in the system is large (1.5 million
line of code in about 4000 source files).

Each call process has a corresponding main file where its
main function is defined. But several processes share other
source code scattered in different files.

It is necessary to delimit the source code accessed by a
call process in order to find its states. The approach starts

} devxxcall_status;

Figure 6. Record type which field is a state
type instance.

from each call process program's main function and follows
the call graph involved in the Process.

For each procesB, we determineoutines(P) the
set of routines called bly, types(P) the set of data types
manipulated inP and variables(P) the set of global
variables manipulated if. These sets are then used to
find all the files related to the proceBsby considering
all the source files where the elementsantines(P)
types(P) andvariables(P) are defined.

These sets make it possible to explore the system with
a process perspective since one can precisely know what
source code is pertinent to a given call process. Another

useful capability is to know the source code exclusive to

a call process; this source code (routines, types, variables) sva1 is defined by theall state type

therefore can be modified without any influence on other

processes. On the other hand, it is also possible to knowState(P)

3. Let statewvalues(P)? be the power-set of
state _values(P)
4. states(P) s the set of all elementssvy, - - -, sv, }

in state_values(P)? such that for eackw; there is no
sv; such thatype(sv;) = type(sv;).

As an example, imagine a procd3svhich refers to the
state valuegsvy1, svi2, sv21, sv31 } and suppose that:

e svy;, and svip are defined by thecall state
type stq,

e svo; Is defined by theall state type sty and

8t3.

is the Set{@, {51]11}, {Sﬂlz}, {8’021}, {SU31},

source code shared by several processes and therefore bgvii, sva1}, {svi1, svsi}, {svia, svar}, {svi2, svs1},

able to evaluate the impacts of changes made in that code.
3.3. Extracting a complete state model

A call state is a combination of call state values assigned

to state variables at some point in the source code execute\é

by a call process.

Figure 4 shows a typical example with the setting
of variable devxx _state The possible values of
devxx _state are enumerated by the call state type
devxx _call _states described in Figure 1.

More formally, a stateS is determined by a set
of state values{svy, ---, sv,} such that eacksv;, €
state _values(P) the set of all the state values used by
the proces®.

A process is in &all state S ={svy, -+, sv,}, at
some point of its execution, if there anevariables of dif-
ferentcall state types set to respectivelygvy, - -,
SUp.

Given a call procesB, we can determinstates(P)
the set of all thecall states of P as follow.

1. Identify state types.

In the general case there is no “explicit” way to dis-
tinguish call state types from other enumerated types.
However in the PBX system we are working with,
there is a naming convention to distinguish state types.
Expert knowledge may be needed in the general case.

. Findstate _values(P)
P.

State _values(P) is the set of all state values ref-
ered in the main program &f and in all the routines
in routines(P) , all the routines called directly or
indirectly fromP main program.

, all the state values used by

{87}21, 87}31}, {81)11, SV21, 87}31}, {81)12, SV21, 87)31}}.

A state transition denotes a change from a state
to another one in a process. #tate transition
is reflected in the source code as the modification of
somestate variables which are set to newtate
alues . Figure 4 shows possible state transitions with the
etting of thestate variable dev_state.

Formally, there is a state transition from a statto a
states’ in a proces® if:

e s corresponds to a set of states val$ds ands’ cor-
responds to a set of states valds',

e at some point in the proce&ssource code, the set of
state values knownisSV,

e there is a statement such that the setstdte
values becomesSV”’.

SV’ may be obtained by adding a nestate value to
SV or by replacing an old value by a new value of the same
state type The first case corresponds to the setting
of a state variable that doesn't have a value while
the second case corresponds to the resetting sihi@
variable

A state transition definition generally includes
some triggering events In our case, the
triggering events may be given by the conditions
under which the change of state values happens. As
an example, the portion of code in Figure 4, corre-
sponds to two possible state transitions described in Fig-
ure 7. A transition from a state, to a states, where
devxx _cs _unavailable is set and a transition from
the states; to a statess where devxx _cs_idle is
set. The triggering event of the first transition is given
by the condition(party.status _dialing &&
party.call _state != ringing) while the second
transition is triggered by the negation of this condition.

NOT (o Where state variables are used.

party.stggs ==_diaing That includes knowing the use of state variables as ac-

party.status == _dialing tual parameters.

&& party.cal_state !=
party.call_state != ringing) We find state variables by parsing the source code. But
rnging the approach supposes having a knowledge of the call state
types. In the case of the PBX system used for our experi-
ment, this knowledge is provided by a naming convention.

Tracking how state variables are used is more complex
because state variables may be set or compared to other state
variables. In such cases, the information in the data base
specifies the fact that the state variable is set/compared to
another state variable.

The state information extracted allows new source code
exploration and understanding facilities within TKSEE. It
becomes possible to combine queries about state variables

The Complete finite state machine model of a call processyith more “traditional queries"_ AS examp|e5, a software
may be recoverred by finding all its states and states tran-maintainer can issue queries to ask :
sitions. The sestate(P) gives all thepossible call
processing states of the procéssHowever on|y a subset e in which routines a given state variable is modified ?,
of state(P) corresponds to real states which the process
can enter.

We do not extract a complete state model in the PBX sys-
tem. Given the size of this system, the state model would o \hat are the possible transitions for a given state vari-
be extremely complex, the number of possible states and gple ?,
transitions in this system being huge. Therefore, we believe
that the value of this state model in understanding the sys- e etc.

tem would be undermined by its size and complexity. L . . o
.) . By issuing a series of queries, a maintainer can follow
We rather extract pieces of information about states that . . :
the evolution of a state variable through different stages of

provide facets of call states. The state model obtained doesa rocess call araph and then acauire a knowledae about
not make a single global state diagram. We get several P grap 4 g

views of the system states useful for incremental browsingthe eﬁ‘eqt Of.th'§ vgrlable. The overal result of this k'm.j.Of
: exploration is similar to the inference of a state transition
and understanding of the source code.

model according to a facet of the system given by this state
variable. However this state model is contructedntally
by the software maintainer through the exploration.

devxx_cs unavailable devxx_cs idle

Figure 7. State transitions corresponding to
Figure 4.

e what are the routines called when a state variable has a
specific state value ?,

3.4. Extracting pieces of state information

We extract, pieces of state information to augment the 3 5 Aytomatic derivation of state models related to
database of TKSEE and then support state based explo- single variables

ration.

The extracted information describes : State based exploration helps maintainers mentally make

up state models.

It is however useful to automatically derive state mod-
This includes declaration as formal parameters andels that show the transitions of single state variables. An
also declarations as global variables in call processes. interest of such state models is to help newcomers learn a
system. State models related to single state variables will
also be smaller and less complex than complete state mod-

e Where state variables are defined.

e How state variables are used.

We record every use of state variables including : els as discussed in section 3.3.
Automatic (non assisted) derivation of a state model sup-
— setting to state values, poses knowing the state values set to state variables in all
— comparison with state values, the cases. Unfortunately, state variables are sometime set to

other state variables, or even to values returned by function
calls. It is possible to use an inter-procedural slicing tech-
— etc. nique [7, 14] to know state values set to state variables in

use for control througlf andcase statements,

these situations. Program slicing [18, 1] is a technique to ex-source code and developing exploration capabilities based
tract from a program the statements that affect a given com-on these.

putation. Slicing gives answers to questions such as “what We see state based program understanding discussed in
statements potentially affect the computation of a varigble this paper and program understanding based on inter pro-

at statemeng ?” cesses relationships as complementary. State based pro-
Suppose an assignment statement where a state variablgram understanding helps in understanding processes taken
svy is set to the value of a state variable,. Program slic- in isolation while inter-process relationships provide a high

ing can help finding all the other computations which in- level view of the whole system behavior by showing the

volve sv, and then determine what may be the valuewf collaboration of independent processes entities.

in the assignment. Slicing is however costly in time and Finding inter process relationships by a static analysis of
space. Our current work includes making this technique ef- source code is however a difficult task [8, 6, 11]. The dif-

fective for large software systems such as ours. ficulty comes from the fact that inter process relationships
are often established at runtime. We distinguish two de-
4. Conclusion grees in inter-process relationship recovesfatic ~ and

dynamic recovery. Static recovery concerns inter-process
relationships apparent in the source code while dynamic re-
covery considers links between running processes. We are
h considering system run traces to help find dynamic inter-
oprocess relationships.

Programs in distributed telecommunication systems
are based on concepts such smte and state
transition . In this paper, we discussed an approac
to get state information from source code, and enhance pr
gram exploration.

Our approach is based on a particular PBX system. TheReferences
peculiarities of the approach linked to this system concern
the assumptions thatate variables areusedtode- [1] D.Binkley and K. Gallagher. Program slicinddvances of
scribe states and a special naming convention is used to find Computing 43, 1996.
state types that define these state variables. We be- [2] R. Biichi. On a decision method in restricted second-

lieve that our approach can be generalized because : order arithmetic. IrProc. International Congress on Logic,
Methodology, and Philosophy of Science 196@ges 1-12.

e The natural way to map a state model to code is to use Stanford University Press, 1962.
state variables to model states arabe/if-like state- [3] Y. Choueka. Theories of automata ortapes: a simplified
ments for state transitions. Therefore, it is reasonable approach.J. Comput. System Sd, 1974.
to believe that the approach used in our PBX systemis [4] K.B.R.E.group. Introduction to tksee 2.0. http://www.csi-

common to lot of similar systems. .uottawa.ca/ tcl/kbre/tksee.html.
[5] R. Holt. Software Bookshelf: Overview And Construction.

e Inorderto be manageable, any large state based system http://www.turing.toronto.edu/ holt/ papers/bsbuild.html.
which uses state variables should use some conven- [6] L. J. Holtzblatt, R. L. Piazza, H. B. Reubenstein, S. N.
tion to distinguish state variables (and/or state types) Roberts, and D. R. Harrls_. Design recovery for d_lstrlb_uted
to other variables. A naming convention is used in our systems. |EEE Transactions on Software Engineering

system, other conventions may be used in other sys- 23(7):461-472, July 1997.
teyms ’ y Y [7] S.Horwitz, T. Reps, and D. Binkley. Interprocedural slicing

using dependence graph8&CM Transactions on Program-
In any case, our approach essentially needs the set of ming Languages and Systeri2(1), Jan. 1990.
all the state types. In absence of a convention, such [8] T.Kunz and J. P. Black. Using automatic process clustering

information can be obtained from the experts of the for design recovery and distributed debuggigEE Trans-
actions on Software Engineeringl(6), June 1995.

system. _ ; _
[9] T. C. Lethbridge and N. Anquetil. Architecture of a
State is only one particularity of distributed telecommu- Source Code Exploration Tool: A Software Engineering
nication systems. Another aspect of these systems is inter ~ Case Study. Technical Report TR-97-07, University of Ot-
process relationships. As an example, in our PBX system, __ tawa, Computer Science, Dec. 1997.

T. C. Lethbridge and J. Singer. Strategies for Studying Main-

. . ! . 10]
call processes communicate intensively each with the other[. . X
P y tenance. IWorkshop on Empirical Studies of Maintenance

|_Ir_1hthe Main Cliontroller ?yh[rlwéer ﬁ)rqcesi 'mezsage exch?lnges. pages 79-84, Monterey, California, Nov. 1996.
ere ar? aiso parent/child relations !ps etween C_a Pro-111) N. c. Mendona and J. Kramer. Developing an Approach
cesses with some call processes creating or destroying other ¢, the Recovery of Distributed Software Architectures. In

call processes. These inter process relationships reflects IWPC'98, 6th International Workshop on Program Compre-
both on the architecture and the behavior of the system. Our hension pages 28-36, Ischia, Italy, June 1998. IEEE Com-

work includes abstracting inter process relationships from puter Society.

[12] H. Muller, M. Orgun, S. Tilley, and J. UHL. A Reverse-
engineering Approach to Subsystem Structure Identifica-
tion. Software Maintenance: Research and Practs481—
204, 1993.

[13] Power Software Corporation home page. http://www.power-
soft.co.uk/.

[14] T. Reps and G. Rosay. Precise Interprocedural Chopping. In
Proceedings of the 3rd ACM Symposium on Foundations of
Software EngineeringNVashington, DC, Oct. 1995.

[15] S. Rugaber. Program Comprehensiah.Encyclopedia of
Computer Science and Technolp8%, 1996.

[16] Take5 Corporation home page. http://www.takefive.com/in-
dex.htm.

[17] J. Weidl, R. Kbsch, G. Trausmuth, and H. Gall. Facili-
tating program comprehension via generic components for
state machines. I8th Int. Workshop on Program Compre-
hension pages 118-127, May 1997.

[18] M. Weiser. Program slicingdEEE Transaction on Software
Engineering SE-10:352-357, July 1984.

