
Resubmitted with revisions to Annals of Software Engineering

1

The Relevance of Software Education:
A Survey and Some Recommendations1

Timothy C. Lethbridge

School of Information Technology and Engineering
150 Louis Pasteur, University of Ottawa

Ottawa, K1N 6V9 Canada
tcl@site.uottawa.ca

Abstract

We summarize the results of a survey of software practitioners in which we asked about the
relevance of their education. We analyze the data and highlight potential changes to
computer science or software engineering curricula, based on mismatches between the
extent to which the topic is taught and its importance in the careers of the participants. We
also present some advice to companies regarding topics in which they should train
employees; we compare this advice to a list of skills that employers have indicated they
wish employees to possess.

1. Introduction

During the summer of 1997, we conducted a survey of 168 software practitioners. The
participants answered four questions about each of 57 topics which are typically found in
the curriculum of computer science or software engineering programs. We asked i) how
much each participant learned about the topic in their formal education, ii) how much he or
she knows now, iii) how important the topic has been in his or her career and iv) how
much desire he or she has to learn more. From this data we have formulated some specific
recommendations about curricula that will be of interest to universities and colleges. We
also present some recommendations that will be of interest to companies involved in
training employees, and to students or employees themselves.

The survey was distributed in paper form as well as electronically on the Internet. 75% of
the participants were actively solicited to complete the survey, either by their companies or
directly by the author. The remainder responded to an advertisement posted to a variety of
Internet newsgroups, and thus were self-selected.

The work location of the participants broke down as follows: 74% of the participants from
Canada (65% from the Ottawa area), 23% from the USA, 3% from other countries, and the
remainder unknown. This represents a significant source of bias; however when we
separately analyzed the data from only non-Canadian participants, there were no important
differences to the conclusions we draw in this paper.

Another significant source of sampling bias is that a disproportionate percentage of
participants (77%) spent at least part of their time working on real-time or embedded
software. This compares with 34% who report working on in-house management
information systems (MIS), and 13% who report working on consumer or mass-market

1 This work is supported by NSERC and sponsored by the Consortium for Software Engineering Research
(CSER).

Resubmitted with revisions to Annals of Software Engineering

2

software (multiple answers were possible for this question). This preponderance of real-
time developers is largely because we were not able to obtain the co-operation of many MIS
departments in non-software companies. Again, this source of bias appear unimportant: A
differential analysis shows that most of our conclusions are the same for the real-time and
non-real-time individuals (see section 4.1).

With respect to education, 33% of the participants had postgraduate degrees, 60% had
bachelors degrees and the remainder had college diplomas. 50% were educated in computer
science or software engineering, 30% in computer or electrical engineering and the rest in a
variety of other fields.

In terms of expertise, 28% of the participants can be considered junior, with up to four
years experience in the software industry. 36% can be considered intermediate, with 5-11
years; and another 36% can be considered expert with 12 or more years of experience. 34%
of the participants have some management function, although only 8% perform this role
exclusively.

See [1] for further discussion of sources of bias and the demographics of participants in
this survey.

The list of topics for the survey came from three sources. We started with topics commonly
found in computer science programs (including electives commonly taken by students). We
then added topics found in software engineering curricula such as that proposed by the
Software Engineering Institute [2] and that at Rochester Institute of Technology [3], the
first undergraduate program in North America. We also considered the Joint IEEE/ACM
draft set of knowledge units [4], however we found it was lacking some topics that were
already on our list. We refined our list by performing a pilot study in which participants
added additional topics that we had not considered.

Among the important findings from the survey are the following: Firstly, participants
reported that certain topics currently heavily taught in university, such as calculus and
numerical methods, appear of little direct use to them in their software development careers.
Secondly, the data suggest that topics central to software engineering, such as project
management, quality assurance, requirements gathering and human-computer interaction,
are under-emphasized in curricula.

The remainder of this paper is organized as follows: Section 2 presents an analysis of
software topics in the entire sample, highlighting such issues as where knowledge is
highest or lowest, and which topics are considered most or least important. Section 3
extends the analysis to other topics commonly studied by computing students. Section 4
then divides the sample so as to look at specific demographic subgroups, specifically real-
time developers and managers. Section 5 then compares data collected in this survey of
practitioners with the opinions of employers about what they seek in a prospective
employee.

A word about statistical significance: For the sake of readability, we have generally
restricted the data given below to mean responses to the questions. Standard deviations are
uniformly in a range of 1.1 to 1.6 on scales of 0 to 5 (when the whole sample is under
consideration). This means that, except for sampling bias towards real time systems, each
mean statistic given would be within about ±0.12 of the true population mean, 19 times out
of 20.

Resubmitted with revisions to Annals of Software Engineering

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Data structures

General s/w archit. & design

Programming language theory

Operating systems

Numerical methods

File & information mgmt.

Comparative program. langs.

Complexity and algor. analysis

Databases

Parsing and compilers

Systems programming

Data transmission

Simulation

Requirements gathering

Artificial intelligence

Information retrieval

Real-time

Formal methods

Parallel and distributed

Graphics

Project management

Object oriented analysis & des.

User interfaces

Testing & quality assurance

Pattern recognition

Metrics

Reliability

Maintenance

Cost estimation

Configuration management

Process standards

Figure 1: The amount participants say they learned in their formal education
(gray bars) about software topics, compared with the amount they say they
know now about the topics (ends of the black lines).

2. Analysis of software topics for the whole sample

Figure 1 illustrates how the participants in the survey perceive their knowledge of 31
distinct software topics. The light gray bars are the mean responses of participants to the
following question:

Question i. How much did you learn about this at University or College?
0= Learned no thing at all.
1=Became vaguely familiar
2=Leaned the basics
3=Became functional (moderate working knowledge)
4=Learned a lot
5=Learned in depth ; became expert (Learned almost everything).

Participants were asked a second question about each topic:

Resubmitted with revisions to Annals of Software Engineering

4

Question ii. What is your current knowledge about this, considering what you have
learned on the job as well as forgotten?
0= Know nothing
1=Am vaguely familiar
2=Know the basics
3=Am functional ; (moderate working knowledge)
4=Know a lot
5=Know in depth / am expert (Know almost everything)

Mean answers to question ii are plotted in figure 1 using the endpoints of the black lines.
Lines that extend to the right of the gray bars indicate that the participant has learned more
about the topic since completing formal education; lines that extend left from the end of the
gray bars indicate that the participant has, on average, forgotten material. The length of the
black lines indicates the magnitude of on-the-job learning.

The following are interesting observations about the data in figure 1:

• Participants felt they became functional (2.5 to 3.5) in only five of the 31 topics; of these,
only data structures had a mean response above 3.

• Participants felt that they did not even learn the basics (less than 1.5) in over half the
topics. Some of this lack of knowledge can be attributed to not having taken elective
courses (e.g. pattern recognition, graphics) or to material that is very recent and which
therefore would not have been covered in the education of older participants (e.g. object
oriented analysis). However, it seems surprising that the typical participant did not even
learn the basics about such well-established subjects as user interfaces, project management
and testing.

• For most topics, participants have learned a considerable amount while in the workforce.
Table 1 gives the eight topics for which on-the-job learning was highest (the longest black
bars of figure 1). It is interesting that most of these are process-oriented topics that
software engineers generally need to learn to function in the workplace. This provides
evidence for boosting the coverage of these topics in educational institutions so as to better
prepare graduates – particularly since some aspects of these topics are not likely to be
effectively acquired on the job (e.g. the more theoretical aspects of testing, object-oriented
analysis and user interfaces).

Topic
Extent of on-the-

job learning

Configuration management 2.4
Testing and quality assurance 2.1

Process standards 2.1
Maintenance and reengineering 2.0

Project management 1.9
Object oriented analysis and design 1.8

User interfaces / human-computer interaction 1.7
Requirements gathering 1.6

Table 1. Topics for which on-the-job learning was highest (black bars in
figure 1). The number is the difference between mean responses for the
amount currently known about the topic (question ii) and the amount known
in university (question i).

Resubmitted with revisions to Annals of Software Engineering

5

• In only two topics (data structures and general software architecture and design) did the
participants feel that, on average, they currently know a lot (more than 3.5).

• For a few topics, namely numerical methods and artificial intelligence, the participants
report a net loss of knowledge. Presumably the material has not been of much direct use in
the workplace.

Figure 2 describes how important each software topic has been to the participants. The light
gray bars are responses to the following question:

Question iii. How useful has this specific material been to you in your career?
0=Completely Useless
1= Almost n ever useful
2= Occasionally useful
3= Moderately useful , but perhaps only in certain activities.
4= Very useful
5= Essential

The dark gray bars in figure 2 are responses to the following:

Question iv. How useful would it be (or have been) to learn more about this (e.g.
additional courses)?
0= Pointless learning more
1=Very unlikely to be useful
2= Possibly helpful
3= Moderately helpful.
4= Important to learn more
5= Critical to learn more

The dashed lines compare the participants’ perceived importance of the topic (question iii),
to the importance educational institutes apparently give the topic (judged by how much
students learned about it in their answers to question i). The average length of the dashed
lines has been normalized to zero; i.e. when they extend to the right of the light gray bars,
the topic is perhaps more heavily taught than might be justified by its perceived importance.
When the dashed lines extend left, they indicate that the material is perhaps not taught
enough.

The following are some observations from this data:

• Importance (question iii, light gray bars) and desire to learn more (question iv, dark gray
bars) are very closely correlated; the correlation coefficient is 0.93. This is a sign of
consistency in the participants’ opinions.

• Data transmission, real-time software and systems programming rank surprisingly high in
importance. This is likely due to sampling bias (see section 1).

• It would be expected, if curricula were highly relevant, that key compulsory topics would
be ranked as the most important. In figure 2, certain core topics such as data structures
operating systems and file management do indeed appear near the top; however many other
topics which are not typically compulsory are ranked just as high (e.g. testing and quality
assurance, requirements gathering, and project management). The data provide evidence
that these ought to be emphasized more heavily.

• Conversely and as expected, many topics that are normally elective (e.g. artificial
intelligence, pattern recognition, graphics and simulation) are ranked at the bottom of the
importance scale. It is notable that the first three of these topics are rated on average as
almost never useful (less than 1.5).

Resubmitted with revisions to Annals of Software Engineering

6

• Participants have ranked surprisingly low in importance a couple of topics that are widely
cited as important for software engineering: metrics and formal methods. Assuming that
there is value in the material, causes of this low ranking might be 1) lack of education about
the material, or 2) lack of opportunity to have actively applied the material in the workplace,
and hence to have come to understand its value.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

General s/w archit. & design

Data structures

Testing & quality assurance

Requirements gathering

Operating systems

Project management

Data transmission

Real-time

Object oriented analysis & des.

Configuration management

File & information mgmt.

User interfaces

Maintenance

Systems programming

Databases

Programming language theory

Reliability

Cost estimation

Process standards

Comparative program. langs.

Complexity and algor. analysis

Information retrieval

Formal methods

Parallel and distributed

Metrics

Parsing and compilers

Simulation

Numerical methods

Graphics

Pattern recognition

Artificial intelligence

Figure 2: Perceived importance of the software topics. Light gray bars are
mean answers to question iii (importance in career); dark gray bars are
mean answers to question iv (desire to learn more). Dashed lines suggest
whether the topic is overemphasized in university (extending right from
importance bar) or under-emphasized (extending left).

• There is a poor correlation between importance (question iii), and emphasis in the
curriculum (question i); the correlation coefficient is 0.25. This is a sign that, overall,
curricula are far from optimal; the following points explore this issue further.

• Several topics appear to be overemphasized in curricula, as indicated by the dashed lines
in figure 2, whose lengths are shown in table 2. Several topics appear in this list that are
compulsory in most university programs (numerical methods, programming language
theory and complexity and algorithm analysis) as well as other topics which are generally
elective but which nevertheless are perceived to be overemphasized by participants.

• The topics for which curriculum emphasis is the lowest, as compared with perceived
importance, are mostly software engineering topics (e.g. configuration management,

Resubmitted with revisions to Annals of Software Engineering

7

testing, project management etc.; see table 3). On the other hand, the topics which appear
significantly over-emphasized (table 2) tend to be more theoretical or mathematical in
nature. This suggests that separate software engineering programs might be needed, as
distinct from the computer science programs which provided the education for most of the
participants.

Topic

Apparent over-
emphasis in

curricula

Numerical methods 1.9
Artificial intelligence 1.7

Pattern recognition 1.3
Programming language theory 1.0

Parsing and compilers 1.0
Complexity and algorithm analysis 1.0

Graphics 1.0
Simulation 0.9

Comparative programming languages 0.9

Table 2: Topics for which the perceived importance was significantly less
than the relative importance given the topic in educational institutions. The
numbers are the length of the right-pointing dashed lines in figure 2.

Perceived importance (question iii, figure 2) is quite highly correlated with amount
currently known (question ii, figure 1); the correlation coefficient is 0.93. However, there
are some interesting differences between these variables. Table 4 lists top 10 topics for
which there is the greatest difference .This provides a useful clue to companies regarding
the topics in which they might consider training their employees.

Topic

Apparent under-
emphasis in

curricula

Configuration management 1.6
Testing and quality assurance 1.4

Maintenance 1.2
Project management 1.1

Process standards 1.0
Object oriented analysis and design 0.9

Requirements gathering 0.9
User interfaces / human-computer interaction 0.8

Real-time system design 0.8
Cost estimation 0.8

Reliability 0.7

Table 3: Topics for which the perceived importance was significantly
greater than the relative importance given to the topic in educational
institutions. The numbers are the length of the left-pointing dashed lines in
figure 2.

It is interesting to compare the topics in table 4 to the top 10 topics in terms of importance
(figure 2). Topics for which the ranking in table 1 is lower, are either well taught in
university (data structures) or else perhaps relatively easy to pick up ‘on-the-job’ (testing

Resubmitted with revisions to Annals of Software Engineering

8

and quality assurance, and project management). Topics for which the ranking in table 4 is
higher than the importance ranking perhaps have a greater need for classroom-based
training (i.e. real-time systems, data transmission, maintenance and re-engineering, cost
estimation and user interfaces)

Topic
Importance minus
current knowledge

General software architecture and design 0.47
Real-time software development 0.47

Data transmission 0.46
Requirements gathering 0.41

Data structures 0.38
Testing & quality assurance 0.35

Maintenance and reengineering 0.34
Project management 0.33

Cost estimation 0.32
User interfaces / human computer interaction 0.30

Table 4: The top ten software topics in which companies might consider
providing training courses for employees. The number is the difference
between mean perceived importance of the topic and the mean current
knowledge of the topic.

3. Analysis considering non-software topics

In addition to the software topics discussed in section 2, we asked the participants to
answer the same four questions with respect to topics in mathematics, business,
engineering, science and humanities. This section expands the analysis to include these
areas.

Figure 3 shows the participants’ perceptions of how much they learned about mathematics
in their education, and how much they feel they know now. It is notable that participants
have apparently forgotten much of their education in all nine topics – this is quite unlike
most software topics where participants have learned considerably more since leaving
university or college.

Calculus and linear algebra, rated 3.2, were the topics that the participants claimed to have
learned most about from the entire list of topics in the survey, even more than the highest
ranked software topic (data structures at 3.2). Along with differential equations, these
topics had the largest loss of knowledge (between -1.2 and -1.4) in the survey following
graduation. Although these topics provide prerequisite material for certain other topics, the
data in figure 3 should result in some careful thought about how these topics are presented.
Maybe the mathematics should be taught on an as-needed basis for the dependent topics,
with additional math courses as electives for those who are interested: It seems a waste to
invest 4-6 courses in subjects that will be so readily forgotten. Some might argue that the
mathematics subjects teach problem-solving skills. This seems likely to be true, but
perhaps the data indicate that mathematics education could be made more relevant (e.g.
teaching with the use of software examples) so that the material is not so readily forgotten.

Figure 4 shows the amount learned and now known about a variety of other topics taught
as either elective or complementary material in computer science programs. Some
observations:

Resubmitted with revisions to Annals of Software Engineering

9

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Calculus
Linear algebra

Probability and statistics
Differential equations

Set theory
Predicate logic

Graph theory
Information theory

Computational geometry

Figure 3: The amount participants say they learned in their formal education
(gray bars) about mathematics topics compared with the amount they say
they know now about the topics (ends of the black lines). This uses the
same scale as figure 1; the software average is shown for comparison.

• Three of the topics (technical writing, ethics and professionalism, and management) were
not apparently emphasized enough in formal education, judging by the large increase in
knowledge since graduation.

• Basic science (physics and chemistry) and electronics were considered similar to
mathematics in that they were heavily emphasized – more than the average software topic –
but much of the material was later forgotten.

• On the other hand participants reported a net increase in knowledge since graduation of
all the business and humanities subjects listed. This is especially interesting since there is a
bias in our sample (see section 1) towards the more scientific aspects of computing (real-
time) and away from management-information-system software. Clearly, educational
institutions and accreditation bodies ought to consider requiring more business and
humanities and less science.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Maximum for math topics

Maximum for software topics
Physics

Computer architecture

Digital electronics
Chemistry

Analog electronics

Economics
Technical writing

Second language

Literature
History

Ethics & professionalism

Philosophy
Psychology

Accounting

Management
Robotics

Marketing

Figure 4: The amount participants say they learned in their formal education
(gray bars) about miscellaneous topics compared with the amount they say
they know now about the topics (ends of the black lines). This uses the
same scale as figures 1 and 3; key statistics about software and
mathematics are shown for comparison.

Resubmitted with revisions to Annals of Software Engineering

10

Figure 5 shows the importance with which the participants hold the various mathematics
topics. Probability and statistics (needed for software reliability and interpretation of
experimental data), and discrete mathematics (exemplified by predicate logic and set theory
which are needed for formal methods) are clearly considered the most important. Calculus
and differential equations, which are heavily taught according to figure 3, appear near the
bottom of the list in terms of importance. This provides evidence that the balance in math
curricula ought to be shifted towards the former topics.

It is interesting to note that there are three math topics where the answers to question iv
(desire to learn more) were higher than the answers to question iii (importance):
Information theory, graph theory and computational geometry are topics that are not
universally taught, and thus participants might have ranked these relatively higher due to
curiosity.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Probability and statistics
Predicate logic

Set theory
Linear algebra

Information theory
Graph theory

Calculus
Differential equations

Computational geometry

Figure 5. Perceived importance of the mathematics topics. Light gray bars
are mean answers to question iii (importance in career); dark gray bars are
mean answers to question iv (desire to learn more). This uses the same
scale as figure 2.

Figure 6 shows the perceived importance of the miscellaneous topics. Technical writing is
ranked particularly high: Of all the topics in the survey, only general software architecture
and design came higher (3.9) than technical writing (3.6). Other topics given relatively high
importance – above the average level for software topics – were ethics and professionalism,
computer architecture, and management. The latter topic is particularly high in terms of
desire of the participants to learn more.

Several other business topics (marketing, economics and accounting) are comparable with
typical mathematics topics in terms of importance, but are given far less coverage (often
none) in curricula.

4. Differences for real-time developers and managers

We performed several analyses of the data to detect differences in the responses of
participants according to their backgrounds. The following subsections discuss two
important such analyses. These differential analyses serve two purposes: 1) To help
validate the survey (ensuring the general conclusions remain the same when one corrects
for the real-time bias). 2) To provide additional data for those who want to educate or train
people who are more (or less) oriented than the general software community towards real-
time-systems or management

4.1 Real time developers compared to non-real-time developers

Since the survey had a bias towards software developers involved with real-time software,
we wanted to see what differences exist among the following groups: 82 participants who

Resubmitted with revisions to Annals of Software Engineering

11

develop real time software exclusively; 33 participants who develop both real-time and non-
real-time software, and 34 participants who do not develop real time software at all.

Most important demographic factors were similar for these three groups; for example, the
proportions of participants with graduate degrees, bachelors degrees and college diplomas
were practically identical. The percentages with computer science degrees were also very
similar, although there were more engineers among the real-time group, and more science
graduates among the non-real-time group.

The greater preponderance of engineering backgrounds among the real-time developers
shows up when one notices that real-time developers learned significantly more about
math, hardware and even software at university. Table 5 shows the average amount learned
about various topics in the participants’ formal education (question i).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Maximum for software topics

Technical writing
Ethics & professionalism

Computer architecture

Management
Digital electronics

Maximum for math topics

Second language
Psychology

Physics

Marketing
Economics

Accounting

Analog electronics
Literature

Philosophy

History
Chemistry

Robotics

Figure 6: Perceived importance of the miscellaneous topics. Light gray bars
are mean answers to question iii (importance in career); dark gray bars are
mean answers to question iv (desire to learn more). This uses the same
scale as figures 2 and 5.

Topic Exclusively
non-real-time
developers

Developers who
work on some
real-time and
some non-real-
time systems

Exclusively real-
time developers

Overall math 2.3 2 . 8 2 . 8

Overall software 1.3 2 . 1 1.8

Overall hardware 1.3 2 . 0 2 . 2

Table 5: Comparison of amount learned in university and college among
developers who work with or do not work with real time systems.

Resubmitted with revisions to Annals of Software Engineering

12

The relative importance of topics (question iii) also differs among these groups of
participants. Table 6 summarizes the key differences. It is interesting that the group which
performs both types of work tend to give higher importance ratings to many topics. It
might be because this ‘both’ group contains many more managers – as we will see in the
next section, managers consistently rate almost all topics as more important than do non-
managers.

Topic Exclusively
non-real-time
developers

Developers who
work on some
real-time and
some non-real-
time systems

Exclusively real-
time developers

 More important to real-time developers

Real-time 1.4 3.8 4.1

 More important to those who do both real-time and non-real-time work

Data transmission 2.6 3.9 3.8
Systems prog. 2.3 3.8 3.3
Operating systems 3 3.7 3.6
Software reliability 1.6 3.1 2.9
Algorithm analysis 1.9 3.0 2.4
Process standards 1.5 2.9 2.8
Parsing and compilers 1.6 2.7 2.1
Parallel & distributed 1.9 2.7 2.4
Software metrics 1.6 2.6 2.3
Predicate Logic 2.1 2.5 1.6
Simulation 1.5 2.5 2.3
Math as a whole 1.5 1.8 1.4

 More important to non-real-time developers

Databases 3.6 3.5 2.6
User Interfaces 3.6 3.5 2.9
Information retrieval 2.6 2.6 2.1

Table 6: Comparison of topic importance among developers who work with
or do not work with real time systems.

4.2 Managers compared to non-managers

When comparing the 57 managers to the 110 non-managers, demographic factors such as
type and level of education, as well as location of work, were very similar. As expected,
managers tended to be more expert (63% vs. 22%) and to have a wider variety of
experience with different types of software (more of them fell in the ‘both’ category of
section 4.1).

Managers felt they had been slightly less well educated than non-managers, particularly in
real-time systems, project management, requirements gathering and object oriented
analysis. This might be attributed to them having been educated earlier, before some of

Resubmitted with revisions to Annals of Software Engineering

13

these topics were as widely developed or taught. Managers felt they had been better
educated in general management, however.

There were significant differences in the perceived importance of topics among these two
groups. Every single topic was considered more important to managers than to non-
managers, with the notable and strong exception of second language (1.7 for managers, vs.
2.3 to non-managers). It is hard to explain the above, except that perhaps managers have to
deal with a wider spectrum of topics in their work – and tend not to be foreigners.

There were several topics which managers found very much more important than non-
managers; these are listed in table 7.

Topic Managers Non-
managers

Project management 4.5 3.0
Management 4.2 2.1
Process standards 3.2 2.1
Marketing 2.5 1.1
Accounting 2.1 0.9

Table 7: Topics that managers found very much more important than non
managers.

5. Perceived needs of employers vs. perceived needs of
employees

Those who hire employees for their software organizations create lists of knowledge and
skills they would like prospective employees to possess. A group of Ottawa-area
companies produced such a list [5] in conjunction with OCRI (Ottawa Centre for Research
and Innovation). It is interesting to compare the perceived importance of topics in the OCRI
document to the opinions of the software professionals in our study, many of whom
worked for the same companies as the authors of the OCRI document.

Table 8 lists the topics in the OCRI document in order of importance2. The third and fourth
columns give a comparison to the ranking of similar topics in our survey. Table 9 restates
the results of our survey, taking the more important software and miscellaneous topics so
as to be in correspondence with the coverage in the OCRI document. In both tables,
important differences are highlighted using bold type; asterisks mark correspondences
between topics that are very approximate.

The following observations can be made about tables 8 and 9:

• The employers ranked several topics substantially lower than their rankings in our survey
of practitioners. The most important such case is architecture and design, which appears at
the top of the practitioners’ list. Requirements definition and gathering as well as data
transmission and networking were also substantially lower in the employers’ list.

• More interesting, perhaps, is that several topics appearing in our survey have no match in
the employers’ list. Some of these topics (e.g. data structures, file management and
computer architecture) may not have been listed because the employers consider them very

2 The OCRI document did not actually present this ordering, however it has been computed from the data
given.

Resubmitted with revisions to Annals of Software Engineering

14

basic, and thus not necessary to include since everybody will have this background. The
same cannot be said, however, for such topics as user interfaces, and maintenance and
reengineering: These appear reasonably high on our list but are completely absent from the
employers’ list.

OCRI
Rank

Topic in employers’ (OCRI)
document

Whether employers
ranked the topic
higher or lower than
practitioners in our
relevance survey

Primary (and secondary)
topics in the relevance
survey to which the
employers’ topic was
compared. Numbers for
survey topics are given in
table 9.

1 Object oriented languages Higher 10 (20, 24)
2 Real time / Operating systems Slightly higher 6 (9)
3 Testing Same 3
4 MS-Windows environment Not in relevance

survey
5 Software process Similar 7 (11, 22, 23)
6 CASE Not in survey
7 Reviewing Similar 3
8 Analysis tools Not in survey
9 Unix environment Not in survey

10 Project experience Not in survey
11 Technical writing Slightly lower 5
12 Requirements definition Lower 4
13 Databases Similar 16
14 Class libraries Not in survey
15 Distributed systems Slightly higher 28
16 System architecture & design Much lower 1
17 Networking Lower 8
18 Call control (telephony) Not in survey
19 Keyboarding Not in survey
20 Drivers Similar 15
21 Embedded systems Slightly lower 9 (15)
22 Compilers and parsers Similar 31

Table 8: Topics in which companies want employees to have skills, in order
of importance. Data is computed from a document prepared by several
companies in conjunction with OCRI [5]. Interesting differences with
respect to the relevance survey are highlighted in bold.

• Conversely, the employers include specific tools and languages that were not part of our
survey – this is consistent with typical job advertisements which give such skills
prominence. We chose not to ask specific languages and tools because there are just too
many of them, they change frequently and can be learned quickly (we believe) if people
have been educated in the core topics in our list. Of particular note is the presence of object
oriented languages at the very top of the employers’ list (which we have roughly tied to
object oriented analysis in the tables). We believe that, to some extent, this indicates that
employers have too short a time horizon when seeking new employees: They tend to think

Resubmitted with revisions to Annals of Software Engineering

15

of specific work they want done which requires, for example, C++. This in turn causes
students (who read job ads) to put languages and tools at the top of their must-learn lists
and resumés. It might be more prudent for employers and students to look at the results of
our survey to see what topics prove more useful and enduring in the long run.

Our
Rank

Topic in relevance survey Whether
participants in the
relevance survey
ranked the topic
higher or lower than
employers.

Primary (and secondary)
topics in the employers
document to which the
relevance survey topic
was compared. Numbers
for employers’ topics are
given in table 8.

1 General s/w architecture & design Much higher 16
2 Data structures Not listed by

employers.
3 Testing & quality assurance Similar 3 (7)
4 Requirements gathering Higher 12
5 Technical writing Slightly higher 11
6 Operating systems Slightly lower 2 (tie)
7 Project management Similar 5
8 Data transmission Higher 17
9 Real-time Slightly lower 2 (tie)

10 Object oriented analysis & des. Lower 1 (16, 14)
11 Configuration management Slightly lower 5
12 File & information mgmt. Not listed.
13 User interfaces Not listed.
14 Maintenance & reengineering Not listed.
15 Systems programming Similar 20
16 Databases Similar 13
17 Ethics & professionalism Not listed.
18 Computer architecture Not listed.
19 Management Not listed.
20 Programming language theory Not directly listed.
21 Reliability Not listed.
22 Cost estimation Lower 5
23 Process standards Lower 5
24 Comparative program. langs. Not directly listed.
25 Complexity and algor. analysis Not listed.
26 Information retrieval Not listed.
27 Formal methods Not listed.
28 Parallel and distributed Slightly lower 15
29 Metrics Lower 5
30 Digital electronics Not listed. not in survey
31 Parsing and compilers Similar 22

Table 9: Restatement of selected data from the relevance survey (figures 2
and 6), in order of importance. Interesting difference with respect to a list
of topics compiled by employers are highlighted in bold.

Resubmitted with revisions to Annals of Software Engineering

16

6. Conclusions and recommendations

We have presented an analysis of data from a survey of 168 software practitioners, each of
whom was asked about topics typically found in a computer science or software
engineering curriculum. The survey asked the practitioners about their knowledge of the
topics, and how important they perceived each to be.

Most of the participants were from Canada, but when data from the United States was
isolated and analyzed separately, few important differences were found. Similarly, there
was a bias towards real-time developers; however, when the data from non-real-time
developers were separately analyzed, most conclusions were very similar.

It should be noted that while the statistics in this paper may apparently present strong
evidence that the emphasis on certain topics in curricula ought to be either increased or
decreased, it is important to use the data presented here as only one of many sources of
information when making curriculum decisions. There may be very valid reasons for
including unpopular topics in curricula – e.g. a belief that the material will help students in
their general problem-solving abilities, or that the material will become more important in
the future. There may similarly be reasons why certain educational institutions should
under-emphasize some topics that seem to be in high demand; for example certain topics
may be considered ‘passing fads’ or might better be left to on-the-job training.
Furthermore, the statistics presented here are purely opinions: Although the sample is large
enough to prevent any individual’s strong opinion about a certain topic from skewing the
results, there may be systematic tendencies for people to dislike or undervalue certain
topics, and to overemphasize others. For example, the data show that mathematics topics
are considered low in importance, but high in terms of amount learned. It might be the case
that the nature of the mathematics education made it stand out in the minds of participants
so that they thought it was emphasized more than it really was in their studies. Similarly,
the participants may downplay the usefulness of mathematics if it provides them merely
with background skills (that they don’t notice themselves using) for their main job which is
software development.

The most important conclusions we were able to draw from the data are that certain topics
are significantly more highly emphasized in universities and colleges than would be
warranted by their perceived importance, while for other topics the inverse holds true. We
summarize our findings in the following two subsections, which give recommendations to
educational institutions, companies and individuals.

6.1 Recommendations to educational institutions:

Table 10 lists topics for which evidence in this paper suggests there should be increased
emphasis in university or college curricula. Table 11 lists topics for which there is evidence
for a decrease. The rows in each table present the type of evidence that argues in favor of
the topic having its emphasis changed – for more details see the earlier sections.

The proposed curriculum change can be accomplished in two ways:

1. Change the balance of existing programs in favor or against the topics listed.

2. Create a new program that has a balance as shown in the tables, while keeping the old
program. In particular, universities might consider creating software engineering programs
to complement computer science programs, since most of the topics in table 10 are of a
software engineering nature.

Some specific discussion is warranted regarding mathematics: It would clearly not be
possible to reduce the math content very far and still be able to call a program ‘science’ or

Resubmitted with revisions to Annals of Software Engineering

17

‘engineering’. So how does one confront the evidence that much math is given far more
weight in curricula relative to its importance, and is quickly forgotten? Some suggestions
are 1) To tie mathematics education to software problems so that it becomes more relevant,
and 2) to shift the emphasis from continuous mathematics towards discrete mathematics,
probability and statistics (with relevant software examples).

All of the curriculum recommendations presented here should be taken as one piece of
evidence among many. Clearly there will be pedagogical reasons for emphasizing material
differently from what is presented here.

Reason for recommended
increase in emphasis

T
esting

O
bject orientation

U
ser interfaces / H

C
I

T
echnical w

riting

E
thics &

 professionalism

M
anagem

ent

Project m
anagem

ent

R
equirem

ents gathering

R
eal tim

e system
s

D
ata transm

ision

R
eengineering

C
ost E

stim
ation

Psychology

M
arketing

E
conom

ics

A
ccounting

Significant learning is
required in the work force
following graduation x x x x x x
Most practitionners do not
even know the basics x x x
Ranked particularly high in
importance x x x x
Knowledge of practitioners is
low relative to importance,
and the topic may be hard to
pick up on the job x x x x x
Business and humanities
topics that are comparable
with mathematics and other
sciences (e.g. chemistry) in
terms of importance, but
which are far less
emphasized x x x x x x

Table 10: Summary of topics for which it is recommended that universities
and colleges increase their education of computing students

6.2 Recommendations to companies, students and employees

The key recommendation to the consumers of education is to increase your training in areas
that this survey shows:

a) are most important, particularly where knowledge of typical practitioners is relatively
low;

b) that participants seek to learn more about.

Resubmitted with revisions to Annals of Software Engineering

18

Highly recommended courses would therefore be those in software architecture and design,
real time systems, data transmission, requirements gathering, testing and quality assurance,
maintenance and reengineering, project management, object oriented analysis and design,
human-computer interaction, and technical writing.

Additionally, managers should receive extra training in general management skills, process
standards, and marketing. Companies focusing on real-time systems should emphasize
real-time design and data transmission; while companies focusing on MIS software should
emphasize databases, human-computer interaction and information retrieval.

Reason for recommended decrease
in emphasis

N
um

erical m
ethods

Program
m

ing language theory

A
lgorithm

 analysis

C
alculus

L
inear algebra

D
ifferential equations

Net loss of knowledge following
graduation x x x x
Low importance with respect to
emphasis x x x x x x

Table 11: Summary of topics for which it is recommended that universities
and colleges reduce the requirements for at least some computing students

Employers who are in the process of hiring new staff should think carefully about the
topics their current employees find important. Conducting a survey like this in-house could
provide valuable information to help guide the advertising process and make hiring
decisions. On the other hand, if the company is large and diverse enough (perhaps with a
bias towards real-time software), then the results of this survey should be very applicable.
In particular, employers should think more about longer-term skills rather than particular
tools or languages, unless they are hiring staff merely for short term contracts.

Acknowledgments

We would like to thank all the participants in this survey, and the managers of the
companies who encouraged their employees to participate. We also thank K. Teresa Khidir
for her painstaking work at data entry, and Anatol Kark for his efforts at setting up and
managing the web site for gathering the data.

References

[1] Lethbridge, T.C. “A Survey of the Relevance of Computer Science and Software
Engineering Education”, submitted to 11th Conference of Software Engineering Education
and Training, Atlanta, 1998

[2] G. Ford, (1996) “The SEI Undergraduate Curriculum in Software Engineering”,
Software Engineering Institute

Resubmitted with revisions to Annals of Software Engineering

19

[3] J. Fernando Naveda (1997) “Crafting a Baccalaureate Program in Software
Engineering”, 10th SEI Conference on Software Engineering Education, Virginia Beach,
pp. 74-79.

[4] Joint IEEE Computer Society and ACM Steering Committee for the Establishment of
Software Engineering as a Profession; at http://computer.org/tab/seprof/

[5] Mason, J., Pinard, D., and Thompson, N. “Software Skills List”, Technical Report of
the Technology Resource Initiative, Ottawa Center for Research and Innovation (OCRI),
June 1997.

