
Metrics for Concept-Oriented Knowledge Bases
Timothy C. Lethbridge

School of Information Technology and Engineering
150 Louis Pasteur St., University of Ottawa

Ottawa, Canada, K1N 6N5
tcl@csi.uottawa.ca

Abstract

Metrics are widely researched and used in software engineering; however there is little
analogous work in the field of knowledge engineering. In other words, there are no
widely-known metrics that the developers of knowledge bases can use to monitor and
improve their work. In this paper we adapt the GQM (Goals-Questions-Metrics)
methodology that is used to select and develop software metrics. We use the methodology
to develop a series of metrics that measure the size and complexity of concept-oriented
knowledge bases. Two of the metrics measure raw size; seven measure various aspects of
complexity on scales of 0 to 1, and are shown to be largely independent of each other. The
remaining three are compound metrics that combine aspects of the other nine in an attempt
to measure the overall ‘difficulty’ or ‘complexity’ of a knowledge base. The metrics have
been implemented and tested in the context of a knowledge management system called
CODE4.

1 . Introduction

There has been substantial research into measuring the work products of software
engineers. Measurements are taken with several goals in mind, including:

• Predicting and monitoring cost and development time.

• Determining levels of, and improvement in productivity.

• Ascertaining levels of complexity and other aspects of quality.

The same goals can also be used to drive the measurement of the work products of
knowledge engineers; however, little work has been done in this area. This paper takes a
step towards rectifying this situation: We present some ideas about how we can measure
knowledge bases.

1 .1 The context of this research

The overall goal of our research program is to develop practical tools and techniques for
knowledge management. We define knowledge management as a multi-functional process
that includes: acquiring, representing, organizing, reviewing, presenting and disseminating
knowledge. This term has a somewhat wider meaning than knowledge engineering, in that
the latter tends not to be concerned with the presentation and dissemination of knowledge.

With this goal in mind, we have developed a series of knowledge management systems
that we called Conceptually Oriented Design/Description Environments (CODE). Each

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

2

successively numbered version of CODE represents a complete redesign. The most widely
used versions of the system have been CODE2 [1] and CODE4 [2] [3].

All the CODE systems have been developed with the intent that experts from a variety of
fields should be able to build their own knowledge bases. As such, a great deal of
emphasis was placed on the following:

• Developing a highly usable interface for the systems. To achieve this we borrowed ideas
from such technologies as spreadsheets, software browsers and hypertext.

• Designing a knowledge representation that is flexible and permits incremental
formalization. This is important because many users want to sketch their knowledge and
massage it many times before adding details involving formal logic.

Numerous people have built knowledge bases using the CODE systems [4] [5] [6]. In
order to study how effectively we are achieving our goals of making knowledge
management practical, we need to be able to study quantitatively the work products: i.e. we
need metrics for knowledge bases.

The metrics discussed later in this paper were developed and implemented in CODE4.
Section 6 discusses some tests where we applied the metrics to a series of real knowledge
bases.

1 .2 The kind of knowledge bases to be measured

This study is concerned with concept-oriented (frame-based or semantic-net based)
representations such as CODE4, KM [7], CycL [8] and the descendants of KL-ONE [9]
(the latter are commonly called description logic languages). Collectively, these are
sometimes called object-oriented knowledge representations, however they should not be
confused with object-oriented programming languages. Although the design of the metrics
in this paper is most appropriate for these types of languages, it does not preclude their use
with other forms of knowledge base such as those containing rules or problem-solving
methods.

Each concept-oriented knowledge representation uses a slightly different terminology; in
this paper we use the terminology of CODE4. For more detailed information, see [3].
Some key ideas are explained below.

The primitive units of knowledge are called concepts. In other representations, the word
‘concept’ is also sometimes used (perhaps more restrictively) as are the words ‘frame’ and
‘unit’. A CODE4 knowledge base is composed almost entirely of interwoven networks of
various kinds of concepts including :

• A type concept represents a set of similar things. A subset of type concepts, that the
user explicitly creates and describes, are called main subjects.

• An instance concept represents a particular thing.

• A property represents a relation between concepts (similar to slots in other
environments).

• A statement represents a particular tuple of a property. A statement has a subject (a
concept), a predicate (a property) and a value (a reference to another concept). In
CODE4, the value can be formal or informal. An informal value is a reference to an as-
yet-unspecified concept. No reasoning can be done with informal values.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

3

• A term represents a symbol that can stand for zero or more concepts. A concept can
have zero or more synonymous terms.

• A metaconcept is a concept that represents another concept. It contains metaknowledge.
The most important type of metaknowledge is the superconcept-subconcept relation.

2 . Important metrics in software engineering

In the field of software engineering the need for metrics has been widely recognized [10]. It
is therefore worth trying to learn some lessons from them before setting out to develop met-
rics for the allied field of knowledge management. Software engineering metrics are used
as measures of productivity and as tools in project planning. The following are some of the
more widely used:

2 .1 Lines of code and other code metrics

Lines of code (LOC) is a very basic and intuitively obvious metric; it is widely used but has
many flaws. Major uses of LOC, now frowned upon by many people, are to judge
programmer productivity and help estimate cost. The main problems are a) LOC can not be
reasonably determined until coding is complete, and b) LOC varies widely with the
application, programming language, coding style and intrinsic complexity of the module
being programmed.

There have been various other proposals for measuring code, primarily focusing on some
aspect of its complexity that is independent of the way it is written. High complexity may
be predictive of greater cost in future stages of development; and it may expose situations
where designs can be improved. A measure of complexity may also help in accurately
measuring productivity, because a small but complex project may take as much work as a
large but simple project

The most well known of these is McCabe’s cyclomatic complexity [11], which measures
the number of possible execution paths through a module. In principle, if there are more
execution paths, the software is more difficult to test and the effects of changes will be
more difficult to predict. The main flaw with this metric is that it ignores many other
possible aspects of complexity.

2 .2 System metrics

In contrast with code metrics, system metrics (also called design metrics or structure
metrics) take into account the interconnections among modules; i.e. the amount and nature
of data and control coupling. The best-known such metric is Henry and Kafura’s
information-flow metric.[12]: This accounts for the number of flows into and out of a
module, including access to global data structures. As with code metrics, each proposed
system metric only measures one view of complexity.

2 .3 Function points: The main specification metric

Function points [13] is becoming one of the most widely used software engineering
metrics. It measures functionality, and is determined in a semi-subjective manner by
counting specific items in a software requirements specification (unadjusted function
points), and then factoring in other subjectively-estimated aspects of a project such as the

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

4

importance of reuse. A major goal is that the subjective perception of the amount of
functionality in any project should correlate well with that project’s function point count.

The function points metric also allows a priori prediction of cost, whereas design and code
metrics can only be used for evaluation during and after development.

The biggest flaws with function points are: 1) They require significant training, and cannot
be automatically calculated from an informal specification. 2) The formula for computing
function points considers many aspects of complexity but weights them all equally, even
though there may be huge differences in the importance of these factors. 3) Because the
counts are partly subjective, different people can generate different counts for the same
specifications.

2 .4 Lessons learned from software engineering metrics

As a result of studying the above metrics, the following are some of the lessons that should
be considered when designing a metric in another field such as knowledge management:

• One should ensure that the metric correlates well with the subjective phenomena about
which it is designed to yield information (unlike lines of code.).

• One should try to make the metric automatically calculable (unlike function points).

• One should try and measure different aspects of the knowledge.

• One should try and develop metrics which can be used as early as possible in the
knowledge base development process (akin to function points).

Luckily there are a great number of possible aspects of a knowledge base that can be
counted, and thus there is wide scope for experimenting with potentially-useful metrics.

2 .5 Differences between software and knowledge which affect
metrics design

Software has a number of significant differences from knowledge:

1. Knowledge is more declarative than most software.

2. If one represents software as a graph, there are a limited number of well-known node
types (e.g. files, routines, statements), arc types (e.g. calls, includes, uses, follows-in-
sequence) and ways of traversing the graph (e.g. call-herarchy, flow-chart) that one can
use. Furthermore the granularity of the nodes is mixed: Many of the nodes represent
entities that are complex and can be represented as graphs themselves. On the other
hand, when one represents a knowledge base as a graph, one finds that most nodes are
fine-grained in nature and densely connected by many different types of user-defined
arcs. Furthermore, there are many different ways of traversing such a graph.

3. Knowledge is intrinsically hard to separate into modules or subsystems; and where this
is done, the modules are generally extremely tightly coupled.

4. When building software, one typically starts with an abstract specification, and builds
something more concrete. This is rarely the case with knowledge bases. A knowledge
base is intrinsically highly abstract. In fact, it may be a specification of something more
concrete.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

5

5 Knowledge can be expressed in a rough form that is partially suited to the task at hand,
and then gradually refined and formalized so that it becomes more suited to the intended
task. Standard software tends either to work (most of the time) or not to work so there
is less scope for incremental development at the detailed level.

These differences lead us to the following observations, as we embark on the process of
creating knowledge base metrics:

• The surface syntax of knowledge is largely irrelevant : Any significant knowledge base
will have such a complex graph that the only effective way to edit it is to use a tool that
selects and pre-formats selected parts of it. As a consequence, metrics analogous to lines
of code will probably not be useful. However, some way of determining the number of
raw low-level assertions might be a baseline measure of raw size.

• The distinction between code and design does not readily carry forward to knowledge,
nor does the distinction between design and specification. However, we may be able to
take measurements of partially-complete knowledge bases or ‘skeletons’ which lack
many formal details.

3 . Towards knowledge base metrics: Goals and tasks

In this paper we adapt the Goals, Questions, Metrics [14] (GQM) methodology for the
development of metrics. This methodology suggests that it is unproductive to develop a
metric unless one has a question in mind that one wants the metric to answer. Furthermore,
one should have a goal in mind, the achievement of which would be made possible by
answering the question.

We prefer to think in terms of tasks, instead of questions, as the intermediate step: Thus we
will first declare our goals; then we will outline some tasks we need to perform to achieve
those goals, and finally we will develop metrics that will enable us to perform those tasks.

3 .1 Goals to achieve by developing metrics

There are several goals in attempting to measure knowledge bases, including:

• Permitting knowledge engineers to monitor their work and to provide baselines for its
continual improvement.

• Understanding how knowledge bases, users and domains differ in terms of
characteristics such as quality, experience and structure.

• Facilitating research into knowledge management systems (both user interface and
knowledge representation features) by providing grounds both for their comparison and
for the comparison of knowledge bases built using them.

• Providing means whereby research using different formalisms and knowledge engines
can be put on a common footing. Currently there is no effective way to compare the size
and complexity of a knowledge base represented in, for example, Classic, with one
represented in CycL.

3 .2 Tasks to perform to help achieve the goals

To achieve the goals listed in the last subsection, we can define a series of measurement
tasks we can perform. Many of the tasks have analogs in conventional software

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

6

engineering, but others do not. The purpose of this section is to further motivate the
development of metrics; suggestions for actual metrics and examples of their use can be
found in sections 4 through 6.

The measuring tasks can be divided into three rough categories: 1) assessing the present
state of a single knowledge base (for completeness, complexity, information content and
balance); 2) predicting knowledge base development time and effort, and 3) comparing
knowledge bases (with different creators, domains, knowledge acquisition techniques and
knowledge representations). These tasks are certainly not independent – most tasks depend
explicitly on others; however, categorizing the measuring tasks provides a useful basis to
decide what metrics should be developed.

A clear mapping between tasks and metrics should not be expected: Some metrics might
help with several tasks, and some tasks may require several metrics.

3 . 2 . 1 Tasks A to D: Assessing the present state of a single knowledge
base

Present-state assessment tasks are those where the measurer wants to determine how a par-
ticular knowledge base fits on one of several possible scales. These tasks can be subtasks
of task A, but can also be performed for other reasons.

Task A – Assessing completeness

Important questions in knowledge engineering are: What does it mean for a concept-
oriented knowledge base to be complete? And furthermore, how can one tell when a
knowledge base is complete? A related question is: Given a particular knowledge base,
how close is it to a state of completeness? Unless these questions are answered, it cannot
be possible to predict the effort required to get to that state.

In a well-managed standard software engineering project (where requirements are not con-
stantly changing), completeness can be assessed by determining if the software fulfills its
specification (e.g. passing appropriate testcases). The degree of completeness for a partially
finished project can be estimated based on such factors as the proportion of function points
represented by testcases that have been passed.

For a knowledge base developed with a particular performance task in mind (e.g. a set of
rules for a diagnosis system) a way of measuring completeness is to apply the performance
system to a set of test tasks that have optimum expected outcomes (e.g. correctly diagnos-
ing faults), and to measure how well the system performs. Unfortunately where no specific
performance task is envisaged (commonly the case for the kinds of concept-oriented
knowledge bases created by users in this research) the above approach is not feasible.

An alternative approach might be as follows: The first step is to recognize there may be no
certain state of completeness. Secondly, it should be possible to measure the amount and
kind of detail supplied about each main subjects in the knowledge base. Finally it should be
possible to ascertain how close this is to the statistical average for knowledge bases that
have been subjectively judged complete. This method has promise if users develop a
skeleton knowledge base and then incrementally add details.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

7

Task B – Assessing complexity

The reasons for measuring complexity of knowledge bases are the same as those of
software: More complex knowledge will take longer to develop and will be harder to
change.

Adaptations of software engineering metrics such as fan-in, fan-out and hierarchy depth
may well apply to knowledge bases, but the special nature of knowledge bases may
suggest additional useful metrics.

Task C – Assessing information content

It is unusual to pose the following query to conventional software: How much information
is in this system? Rather, one asks: How well does it perform one of its limited number of
tasks? With many knowledge bases however, a major goal is that they be queriable in novel
ways – deducing new facts using various inference methods. The objective is to be able to
uncover latent knowledge. The word ‘multifunctional’ has been used for such knowledge
bases [15].

Estimating information content can help determine both the potential usefulness of a knowl-
edge base and the productivity of its development effort. Such metrics should take into ac-
count the fact that some knowledge is a lot less useful than other knowledge.

Task D – Assessing balance

We define two types of balance of a knowledge base: 1) the degree to which a group of
measurements using related metrics are close to their respective ‘normal’ values, and 2) the
degree to which measurements of different parts of a knowledge base using a single metric
are close to each other.

Knowledge bases are typically composed of a mixture of very different classes of knowl-
edge; e.g. concepts in a type hierarchy, detailed slots, metaknowledge, commentary
knowledge, procedural knowledge, rules, constraints etc. Each project may require a dif-
ferent proportions of these classes; a balance metric of the first type would indicate how
normal a knowledge base is. For example, a knowledge base would be considered unbal-
anced if it contains a large amount of commentary knowledge but very few different
properties. This might indicate that the person building the knowledge base has not been
trained to use an appropriate methodology that involves identifying properties.

The second type of balance metrics are those that show whether different parts of a knowl-
edge base are equally complete or complex, i.e. whether completeness and complexity are
focused in certain areas or not. A knowledge base would be unbalanced if one major part of
the inheritance hierarchy contained much detail while another part did not.

There is likely to be a strong relationship between metrics for completeness and metrics for
balance; and some balance metrics may be used in the calculation of a composite metric of
completeness. For example if a knowledge base has a low ratio of rules to types, it might
be concluded that there is scope to add more rules; likewise if one subhierarchy is far more
developed than another, the overall KB may be incomplete. However, there are reasons for
measuring balance variables separately (perhaps after a subjective judgment of completion):
They can allow one to characterize the nature of knowledge and to classify knowledge
bases. For example it may be that for some applications, different proportions of the vari-
ous classes of concept are normal.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

8

There are not many analogs to the idea of balance in general software engineering, but one
example is the measure of the ratio of comment lines to statement lines.

3 . 2 . 2 Task E. Predicting knowledge base development time and effort

This is one of the main tasks for which software engineering metrics are developed: People
are interested in ascertaining the amount of work involved in a development project so they
can create budgets and schedules, or so they can decide whether or not to go ahead with a
project as proposed.

The following general framework illustrates the scenario for such metrics; here the term
‘product’ stands for either ‘software system’ or ‘knowledge base’:

a) Measurements have been taken of a number of products, P1…Pn-1.
b) There is an interest in making predictions about product under development, Pn.
c) One of the metrics, Mt, represents time to create a product.
d) Another metric, Ms, can be calculated early in product development and is found to be

correlated (linearly or otherwise) with Mt.
e) By analyzing P1…Pn-1, a function, fp, is developed that reasonably accurately predicts

Mt, i.e. fp(Ms) -> Mt.

In the software engineering world, function points is used for Ms and COCOMO [16] has
formulas that fulfill the role of fp, predicting the number of person-months to complete the
project, given Ms.

For knowledge management, there is a need to come up with new candidates for Ms and
new functions for fp. Furthermore, there is a need to understand the set of assumptions un-
der which Ms and fp are valid. For example the original function points metric is only ef-
fective for data processing software; and COCOMO has become outdated as a predictive
technique due to improvements in software engineering methods.

As with software engineering, prediction cannot be an exact science: Domains, problems
and knowledge engineers differ; and furthermore completeness can only be statistically
estimated. Nevertheless it still seems a worthwhile effort to give knowledge engineers
metrics to help judge how much work they might reasonably need to do.

3 . 2 . 3 Tasks F to I: Comparison

Section 3.2.1 described some ways of measuring a single knowledge base in isolation,
perhaps comparing it with a goal or norm. Another task for metrics is to find relative differ-
ences between knowledge bases so as to indirectly compare their creators, domains, tech-
niques and representations.

Task F – Comparing users

Most of the metrics derived from tasks listed above can lead to useful differential measures
of the skills or productivity of users. By examining knowledge bases they have built, one
can also determine which users are familiar with which features. Users can then also
compare themselves with other users.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

9

Task G – Comparing domains

By measuring various attributes about knowledge bases in particular domains, it may be
possible to ascertain certain constant factors that characterize a domain, distinguishing it
from others.

This kind of knowledge can feed back into the prediction process (task A). For example in
the COCOMO method, different predictive formulas are applied to embedded software and
to data processing software. Similarly it may be possible to distinguish classes of knowl-
edge base that would lead to the creation of different prediction formulas (or different coef-
ficients in the same formulas) for, say, medical rule based systems, electronics diagnosis
systems and educational systems.

Task H – Comparing development techniques

By comparing measures of knowledge bases developed using different knowledge acquisi-
tion techniques it might be possible to decide which techniques are better for certain tasks.
A subsequent objective might be to incrementally improve the techniques using metrics to
evaluate success.

Task I – Comparing representation schemata

In a similar manner to comparing development techniques, it is useful to compare represen-
tation schemata. It might still be possible to gain useful knowledge about the effectiveness
of the abstractions in each schema.

4 . Proposals for metrics

This section proposes actual metrics that can be used in the general measurement tasks
discussed in the last section. Evaluation of the metrics, including actual measurements of
knowledge bases, is deferred to sections 5 and 6. Three classes of metrics are discussed:
general open-ended measures of size (subsection 4.2), measures of various independent
aspects of complexity (subsection 4.3), and compound metrics (subsection 4.4).

4 .1 Open-ended vs. closed-ended metrics

A closed-ended metric is one where measurements can only fall within a particular range –
and where it is logically impossible for them to fall outside that range. The ratio of some
part to its corresponding whole is of this type: Its range can only be from zero to one. An
example is the fraction of all concepts in a knowledge base that are type concepts.

An open-ended metric is one where at least one of the ends of its range are not absolutely
fixed. Although the probability of a measurement outside a particular subrange might be
very small, it is still finite. An example of an open-ended metric is the number of type con-
cepts in a knowledge base.

4 .2 Metrics for raw size

One of the most basic questions that can be asked is: How big is a knowledge base; what is
its size? Knowing this can help predict development time and judge information content.
But what do ‘big’ and ‘size’ mean? In conventional software engineering, lines of code is a

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

10

useful concrete metric that is easy to calculate given some source code. Knowledge engi-
neering needs a similar metric. Several options were considered, the following two being
the most promising:

The total count of all concepts, MALLC

This very physical size measure is appealing as an analog to lines of code which, despite its
problems, is understandable and easy to calculate. Concepts in a knowledge base, how-
ever, can be far more diverse in nature than lines of code: They may include main subjects,
properties, statements, metaconcepts etc. Some concepts may even be created without typi-
cal users realizing it. E.g. a term concept in CODE4 is automatically added when a user
types a new name for another concept.

MALLC might be most useful as a baseline for calculating how much memory and loading-
time a knowledge base might require, or how much time certain search operations might
take.

The number of main subjects, MMSUBJ

MMSUBJ is the count of just the main subjects, i.e. the important concepts that users specify
directly. It excludes concepts about which nothing is said (e.g. example instances) and also
excludes CODE4’s ‘special’ concepts: properties, statements, metaconcepts and terms.

The benefit of such a metric is that since it ignores the detail that has been ‘filled in’ around
each main subject, it helps in the process of separating the sheer size of a knowledge base
from other aspects of its complexity. MMSUBJ should also be intuitive to users because
most of them directly look at lists or graphs of main subjects, but only indirectly work with
other concepts. Furthermore, since users typically develop knowledge bases by initially
drawing a hierarchy of main subjects and then filling in details, MMSUBJ has the potential to
provide a baseline for the estimation of completeness and the prediction of development
time. All these advantages make it potentially more useful than MALLC.

Both MALLC and MMSUBJ have the problem that since concepts differ in importance, what
they count are not ‘equal’ to each other. For example, in many CODE4 knowledge bases
people create a core of concepts which are central to their domain and about which they add
much detail. Typically though, users also add a significant number (10-30%) of concepts
that are outside or peripheral to the domain. In a typical case, a user creating a zoology
knowledge base might also add a small amount of information about plants. Both MALLC
and MMSUBJ would consider these peripheral concepts to be as important as the main
zoological concepts.

4 .3 Independent and closed-ended metrics for complexity

A number of factors contribute to the complexity of a knowledge base. Seven complexity
metrics have been developed that are logically independent of the raw size. They have also
been designed to be as independent of each other as possible. Of course, just because one
metric is designed to be independent of another does not prevent correlations from
appearing in practice: It may happen that the normal process of knowledge acquisition
results in increasing complexity along the different scales in parallel. Correlation is
discussed in section 6.2.

Each of these complexity measures falls in the range of 0 to 1 so that they can be easily
visualized as percentages, and so they can be easily combined to form compound metrics.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

11

Relative Properties, MRPROP

This is a measure of the number of user properties, relative to the number of main subjects.
It is calculated as the square of the ratio of user (non-primitive) properties to the sum of
user properties and main subjects:

MRPROP = (MUPROP / (MUPROP + MMSUBJ))2

Where MUPROP is the number of user properties in the knowledge base.

If a user adds no properties, then MRPROP is zero; MRPROP approaches one as large num-
bers of properties are added to a knowledge base. In the average knowledge base, the
number of user properties tends to be slightly more than the number of main subjects
(0.55, i.e. people seem to add just over one new property for every main subject), hence
MRPROP averages 0.3 (which is 0.55 squared).

The metric is squared to reduce a problem that arises due to the deliberate decision not to
make it open-ended: For each additional property, the increase in the metric is less. Thus in
a 100 main-subject knowledge base, increasing the number of user properties from zero to
100 causes a 0.25 increase, whereas raising it another 100 only causes a 0.19 increase. If
the metric were not squared, this problem would be much worse (the first 100 properties
would cause a 0.5 increase and the next 100 only a 0.17 increase). In practice these dimin-
ishing returns only become severe at numbers of properties well above what have been en-
countered. Intuitively there appears to be diminishing returns in the subjective sense of
complexity as well.

Figure 1 shows how MRPROP varies as additional properties are added to a 100 main
subject knowledge base.

0
0.1
0 .2
0 .3
0 .4
0 .5
0 .6
0 .7
0 .8
0 .9

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

Figure 1: Values of MRPROP when there are 100 main subjects. The x axis shows the

effect of an increasing number of user properties. The bold plot is that of MRPROP while

the dashed plot shows what the metric would look like if it were not squared. The squar-
ing flattens the curve and thus makes the metric more useful.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

12

Detail, MDET

This metric is the fraction of statements about main subjects, that have a locally specified
value. Such statements contrast with those that have an inherited value, or no value at all as
can be the case if a property is added and no statements are created using it. If no statement
values are filled in at all in a knowledge base, MDET is zero. If every possible statement
about every main subject is given a specialized value, then MDET equals one. However
should MDET have a value too near one it would indicate that inheritance is not being prop-
erly taken advantage of, and thus there is no knowledge reuse with its complexity-reducing
effect.

To summarize, the formula for MDET is as follows:

MDET = MMSSLV / MMSS

where MMSS is the number of main subject statements (statements whose subject is
a main subject)

and MMSSLV is the number of main subject statements which have local values

Whereas MRPROP measures the potential number of specialized statements , MDET indicates
the amount of use of that potential. The next measure, MSFORM, goes one step further and
measures to what degree that use results in the interconnection of concepts.

Statement Formality, MSFORM

This measures the fraction of values (of statements about main subjects) that contain actual
links to other concepts in the knowledge base. If MSFORM is zero, then the user has merely
placed arbitrary text in all values (CODE4 and some other systems allow this so the user
can sketch knowledge informally before incrementally formalizing it). The higher MSFORM
is, the more a knowledge management system would be able to infer additional network
structures (i.e. the part-of relation) inherent in the knowledge.

The formula for MSFORM is as follows:

MSFORM = MMSFS / MMSSLV

where MMSSLV is the number of main subject statements with local values (see
MDET)

and MMSFS is the number of main subject formal statements, i.e. those with local
values containing value items that are other concepts

The denominator of MSFORM is composed of only those statements that form the numerator
of MDET – those statements with locally specified values. It thus should be independent of
MDET : i.e. regardless of whether MDET is near zero or near one, MSFORM can still range
from zero to one. The one exception is when there are no statement values, in which case
MDET is zero and MSFORM is undefined.

Diversity, MDIV

While high measurements of relative properties, detail and formality may indicate that sub-
stantial work has been done to describe each main subject, that detail may be largely in the
form of very subtle differences. There may be a large amount of mere data, expressed as
statements of the same set of properties about each main subject. For example, in a knowl-

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

13

edge base describing types of cars, hundreds of classifications of cars may be described but
only using a fixed set of properties (engine size, fuel consumption etc.) – such a knowl-
edge base would be subjectively judged to be rather simple despite having a lot of ‘facts’ (it
would be more like a database). MDIV attempts to quantify this subjective feeling by rating
more diverse, or ‘interesting’, knowledge bases higher.

The diversity metric, MDIV, measures the degree to which the introduction of properties is
evenly spread among main subjects. If all properties are introduced in one place (e.g. at the
top concept) then MDIV is close to zero because the knowledge base is judged to be simpler.
Likewise, MDIV is close to zero if properties are introduced mostly on leaf concepts (so
there is no inheritance). Maximum MDIV complexity of one is achieved when some proper-
ties are introduced at the top of the inheritance hierarchy, some in the middle and some at all
of the leaves.

The method of calculating MDIV is described in the following paragraphs; figure 2 is used
to illustrate the calculations.

To calculate MDIV, the first step is to calculate the standard deviation of the number of
properties introduced at each main subject. This is zero if the introduction of properties is
evenly distributed, and some higher number otherwise. The next step is to normalize this
standard deviation into the range zero to one. The following formula accomplishes this:

MCONCEN = ((σ PI) / MUPROP) * MMSUBJ

where MUPROP is the number of user properties in the knowledge base
and PI is the number of properties introduced at a main subject
and σ is the standard deviation operator

A simple way to convert MCONCEN into a diversity metric would be to calculate 1-MCONCEN.
However, thus results in measurements being too crowded towards zero. MDIV is actually
calculated using the following more subjectively appealing formula:

MDIV = (1 - MCONCEN2)2

Figure 3 plots the relationship between MCONCEN and MDIV.

Second Order Knowledge, MSOK

The metrics described so far totally ignore the presence of second order knowledge, i.e.
knowledge not about the things in the world represented by concepts, but about the repre-
sentations of those things. MSOK measures the use of two types of second order
knowledge:

• The use of metaconcepts, i.e. the concepts that describe concepts themselves
• The use of terms, i.e. symbols that represent things.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

14

B

C D

A

T

B

C D

A

T

B

C D

A

T

B

C D

A

T

c) d)

MDIV = 0.36
MCONCEN = 0.63

MDIV = 0.36
MCONCEN = 0.63

a) b)

MDIV = 0
MCONCEN = 1

MDIV = 0
MCONCEN = 1

B

C D

A

T

B

C D

A

T

e) f)

MDIV = 0.64
MCONCEN = 0.45

MDIV = 1
MCONCEN = 0

Figure 2: Calculation of MDIV. Each part shows an inheritance hierarchy with five main

subjects and five properties (shown as five distinct shapes). Parts a and b show
pathological situations where properties are all introduced at a single concept (the top and
a leaf respectively) and MDIV is thus zero. Part f shows a well balanced case, where each

concept introduces exactly the same number of new properties (one in this case) and
MDIV is one. Parts c, d and e show intermediate cases.

Every main subject in principle has a metaconcept, but most are ignored by users. Of inter-
est are those which users have explicitly made the subjects of statements (i.e. those which
users have said something about). Similarly, every main subject generally has a term that is
used to name it. However, of interest are those cases where extra terms are specified: This
indicates that users have paid attention to linguistic issues.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

15

MSOK is zero if the user has neither worked with metaconcepts nor specified synonyms for
any concept. The metric gives a measurement of one if every main subject has both multiple
terms and metaconcept statements. MSOK is thus calculated as follows:

MSOK = (MFMETA + MFTERM) / 2

where MFMETA is the fraction of main subjects whose metaconcept has a user-spec-
ified statement

and MFTERM is the fraction of main subjects that have more than one term

0

0.2

0 .4

0 .6

0 .8

1

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

MDIV

MCONCEN

Figure 3: The relationship between MCONCEN and MDIV . MCONCEN, shown in the x

axis is a normalized version of the standard deviation of the number of properties intro-
duced at each main subject. This is transformed using a sigmoid function, as plotted in
the above graph, in order to obtain a metric that has a good subjective ‘feel’.

Isa complexity, MISA

This metric combines two factors in order to measure the complexity of the inheritance hi-
erarchy. The first factor is the fraction of types that are leaves of the inheritance hierarchy,
ignoring instance concepts which are always leaves (i.e. the fraction of types that have no
subtypes). This measure is called MFLEAF:

MFLEAF = MLEAF / MTYPES

where MLEAF is the number of leaf types
and MTYPES is the total number of types

For any non-trivial knowledge base, MFLEAF is a function of the branching factor, MBF (2
for a perfect binary tree, 3 for a perfect ternary tree etc.) however the latter is not used as a
metric because it is open ended (i.e. not in a zero-to-one range). The formula relating
branching factor to MFLEAF is as follows:

 Lim MFLEAF = (MBF - 1) / MBF
MTYPES->∞

where MTYPES is the total number of types

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

16

Figure 4 shows several simple inheritance hierarchies along with their measures of MFLEAF.
MFLEAF approaches 0.5 when the inheritance hierarchy is a binary tree (figure 4, parts c and
f). It approaches zero in the ridiculous case of a unary ‘tree’ with just a single
superconcept-subconcept chain (part b) and it approaches one if every concept is an imme-
diate subconcept of the top concept (part a).

Types = 15; Leaves = 5
MFLEAF = 0.33
MALLSUP = 3.92
MISA = 0.25; MMI = 0.4

Types = 15; Leaves = 7
MFLEAF = 0.47
MALLSUP = 2.86
MISA = 0.31; MMI = 0

Types = 6; Leaves = 1
MFLEAF = 0.17
MALLSUP = 3
MISA = 0.11; MMI = 0

Types = 6; Leaves = 5
MFLEAF = 0.83
MALLSUP = 1
MISA = 0; MMI = 0

Types = 6; Leaves = 3
MFLEAF = 0.5
MALLSUP = 1.33
MISA = 0.12; MMI = 0

Types = 6; Leaves = 3
MFLEAF = 0.5
MALLSUP = 1.83
MISA = 0.23; MMI = 0.5

Types = 15; Leaves = 12
MFLEAF = 0.8
MALLSUP = 1.71
MISA = 0.33; MMI = 0

Types = 15; Leaves = 10
MFLEAF = 0.67
MALLSUP = 2.29
MISA = 0.38; MMI = 0.53

Types = 15; Leaves = 10
MFLEAF = 0.67
MALLSUP = 2.57
MISA = 0.41; MMI = 0

a) b) c)

d) e) f)

g) h) i)

Figure 4: Complexities of various inheritance hierarchies. Parts a through i show in-
creasing complexity using the MISA metric. Parts a and b show simplistic cases (MISA
would be small regardless of the size of the knowledge base). Parts c and d show the same
structure, with variation only in multiple inheritance. Pairs (e,f) and (g,h) also show sim-
ilar structures with variation in multiple inheritance, however MISA can be seen to be

somewhat independent of the adding of extra parents (such an action may either increase or
decrease MISA).

On its own, MFLEAF has the undesirable property that for a very shallow hierarchy (e.g.
just two or three levels) with a high branching factor it gives a measurement that is unrea-
sonably high, from a subjective standpoint (part a of figure 4 illustrates this)

To correct this problem with MFLEAF , an additional factor is used in the calculation of
MISA: the average number of direct and indirect superconcepts per non-root main subject ,
MALLSUP. (The root concept at the top if the inheritance hierarchy is not counted since it
cannot have parents). This second factor is related to hierarchy depth but depends to some
extent on the amount of multiple inheritance.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

17

MISA is thus calculated using the following formula:

MISA = MFLEAF - (MFLEAF / MALLSUP)

MISA approaches zero in either of the following cases: 1) when there is just a single layer of
concepts below the top concept (no matter how many concepts); or 2) when the branching
factor is one. MISA approaches the value of MFLEAF (e.g. 0.5 for a binary tree) as the hier-
archy becomes deeper (as the average number of direct or indirect parents per main subject
increases).

Multiple Inheritance, MMI

This measures the extent to which main subjects have more than one parent, thus introduc-
ing complex issues associated with multiple inheritance such as the combination of values
when two inherited values conflict. If just single inheritance is present, this metric is zero.

MMI measures the ratio of extra parents to main subjects, thus if all main subjects had two
parents (impossible in fact because the concepts directly below the top concept cannot have
more than one parent) then the metric would be one; it could also be one if a substantial
number of concepts have more than two parents. Although the metric, as described, could
theoretically give a value above one, it is assumed that this could not be the case in any rea-
sonable knowledge base. Thus a ceiling of one is imposed that the metric cannot exceed,
even if there are an excessive number of parents.

4 .4 Compound metrics for complexity

In this subsection, the simple metrics for complexity described in section 4.3 are combined
into compound metrics in an attempt to give useful overall pictures of a knowledge base. In
the previous subsection, the metrics were designed with reasonable confidence that they are
generally applicable. Here however, the necessity of combining metrics requires finding
numerical coefficients that optimize the usefulness of the result. Determining such
coefficients requires extensive examination of data. In this research the only data available
was that of the user study described in section 6. While the amount of data is quite large for
testing metrics, it is not nearly large enough to act as a ‘training set’ for metric optimization.
As a result, the main contributions of this subsection are proposals for procedures for
designing metrics, rather than proposals for actual formulas (the formulas presented are
examples of the application of the procedure).

The generic procedure for designing a compound metric is as follows:

1) Choose the metrics that are to be combined by looking for those with certain desired
characteristics.

2) Normalize the metrics so that they are not arbitrarily biased.
3) Weight the metrics based on decisions about which are most important, and how much

their values should contribute to the resulting metric
4) Design a formula that combines the metrics.

Although both step 2 and step 3 involve finding coefficients that modify the original values
of the metrics, they are logically separate steps. After step 2, accidental bias is removed.
Such bias may be caused by the fact that the metrics might have quite different expected
values or ranges. In step 3, deliberate weighting is added. For this initial research, step 3 is
ignored since it would require a very large amount of data to justify an unequal weighting.
The most important step in this research is step 4.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

18

Apparent completeness, MACPLT

This metric combines those metrics that, intuitively, should steadily increase as a project
progresses. The idea is to create a metric that ranges between 0 and 1 so that users can ob-
tain an impression of how much work needs to be done on a knowledge base to make it
‘complete’ (i.e. with a reasonably high percentage of detail, formality etc.). See section
5.3.1 for a discussion of what it means for a knowledge base to be complete.

The metrics chosen to compose MACPLT are:

• MRPROP, indicating the extent to which properties have been added
• MDET, indicating the proportion of potential statements with actual values, and
• MSFORM indicating the extent to which the knowledge base has been formalized.

The possibility of adding MSOK was considered, but it was decided not to do this because
the amount of second order knowledge might be heavily dependent on the domain, whereas
the extent to which statements are filled in and formalized appears much more likely to
measure the state of completeness, independent of domain.

To remove accidental bias from the metrics, actual knowledge bases were studied to see
how the component metrics range in practice (see section 6). None ever approached a value
of one, and the maximums for well-worked out knowledge bases were all about 0.7. It
seems reasonable that none of these metrics would ever reach one for the following
reasons:

• MRPROP can only asymptotically approach 1 as ever larger numbers of properties are
added. A measurement as high as 0.7 already indicates that there are over five times as
many properties as main subjects. Experience has shown that it is unlikely for a
knowledge base to have a much higher proportion of properties than this.

• If MDET were to approach 1, it would mean that hardly any statements are inherited; all
would be locally specified (i.e. they all override inherited values). This seems unlikely to
happen in most knowledge bases.

• If MSFORM were to approach 1, the user has been able to formalize all statements. This
seems unlikely in a normal knowledge base.

It was thus decided that prior to combining the metrics to create MACPLT , all of them
should be normalized so that when a measure using the normalized metric has a value of
about 1, it is considered to indicate that the particular aspect of the knowledge base is
reasonably complete. It is purely coincidental that the 0.7 is used for all three: All three
component metrics all had measured ranges of 0-0.7.

The coefficient used to normalize the metrics is the reciprocal of 0.7, i.e. 1.4. As a result of
this, MACPLT can give measurements greater than one – that would merely indicate that
more detail has been provided than in a normal complete knowledge base.

The following points explain how it was decided to combine the metrics:

• MRPROP must dominate the calculation for the following reason: If there are few proper-
ties, then high measurements of detail and formality mean little (because there can only
exist a few statements with potential for having detail and formality). Thus MRPROP
should be a multiplicative value for the whole metric formula – if MRPROP is zero then
MACPLT should be zero.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

19

• For similar reasons, MDET must dominate MSFORM. If there are few statements, then a
high measurement of formality means little because there are only a few statements to be
formal.

The basic formula for combining the three metrics is therefore:

MACPLT = C * MRPROP * (W + C * MDET * (X + Y * C * MSFORM))

Where C is the constant 1.4 used to unbias the metrics; i.e. to convert their 0 to 0.7
range to a range of 0 to 1. If this factor were missing , the resulting metric
could only yield measurements that would approach 70%.

And where W, X and Y are coefficients used to weight the metrics. As discussed
earlier it was decided to weight the metrics equally. These three coefficients
should all be 0.33 then. That would mean that if all three input metrics ap-
proached one, the result would be 0.33 * 3 = 1.

Simplifying the above, where Z is used in place of W, X and Y, gives:

MACPLT = MRPROP * (C * Z + MDET * (C2 * Z + C3 * Z * MSFORM))

After application of the constants, the derived formula for MACPLT is thus as follows:

MACPLT = MRPROP * (0.47 + MDET * (0.65 + 0.91 * MSFORM))

An interesting derivative use of MACPLT would be to apply it to different subhierarchies of a
knowledge base in order to determine which areas need work, or alternatively, which areas
contain more useful knowledge.

Pure complexity, MPCPLX

The objective of this metric is to combine all the independent complexity measures into a
size-independent metric for the ‘difficulty’ or ‘sophistication’ of a knowledge base. It was
decided to use a mechanism similar to that used to calculate function points (see section 2).
MMACPLT is used as the analog for ‘unadjusted function points’. The four metrics not
included in the calculation of MMACPLT are then used as ‘complexity adjustment factors’.
After the application of each to either increase or decrease the unadjusted metric, the
resulting metric MPCPLX is an analog of ‘adjusted function points’.

To calculate adjusted function points, the first step is to measure fourteen complexity ad-
justment factors using simple scales and then to sum the measurements (without weight-
ing). The sum can be called the ‘compound adjustment factor’. In the second step, a
formula involving the compound adjustment factor results in the multiplication of the
unadjusted function points by a factor ranging from 0.65 to 1.35. In the following
paragraphs, a similar two-step approach is applied to knowledge base metrics.

Step 1: Scaling and summing. The four metrics not included in MMACPLT have
theoretical ranges of zero-to-one. However, upon examining data from user studies, it was
determined that measurements of three of the four metrics rarely approach the top of that
range (MSOK is the exception).

Thus it was decided to apply multiplicative scaling factors to MSOK, MISA and MMI in order
to unbias them (so that each metric contributes fairly to the result). The scaling factors (2.5,
1.6 and 1.2 respectively) were determined by examining the means and ranges of the test

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

20

data. These scaling factors are the least objective aspect of the calculation of MPCPLX –
extensive data analysis would be needed to fine tune them; however since this research is
intended to propose a method for developing metrics rather than a definitive formula, these
figures are considered adequate. The resulting compound adjustment factor has a range of
zero to four (see formula below).

Step 2: Creating the adjusted metric: It was decided to adjust MMACPLT so that the
resulting metric is MMACPLT multiplied by between 0.25 and 1.85. This is a wider range
than that used for function points, but it was decided the four adjustment factors should
have a larger influence than those used for function points. Again, more extensive data
analysis would be needed to arrive at a more objective range.

The derived formula for MPCPLX is thus as follows:

MPCPLX = MMACPLT * (0.25 + 0.4 *
(MDIV + 2.5 * MSOK + 1.6 * MISA + 1.2 * MMI))

where the second line is the compound adjustment factor

Overall complexity, MOCPLX

The overall complexity measure is simply MMSUBJ multiplied by MPCPLX. In other words
the count of the number of main subjects is adjusted using the measure of ‘pure’ complex-
ity of the knowledge base. MOCPLX might be considered to measure ‘fully specified main
subjects’. It is intended to serve as a measure of productivity or information content.

5 Desirable qualities of the metrics

This section discusses various useful qualities of the metrics presented in the previous
section. The following criteria are used to judge the quality of the metrics: 1) Does each
metric have a use that is independent of the others? 2) Is each metric understandable? And,
3) does each metric have a reasonable mapping onto the subjective phenomenon (including
behavior at extremes)?

5 .1 How subjectively useful are the metrics?

Each metric must perform some useful task. There should be some reason why a user
might want to use the metric independently of the others. The following paragraphs indicate
that each metric apparently has a valid use by showing what the user can learn by using it.

• All concepts: MALLC: This gives an idea of the amount of memory and disk space
used by the knowledge base. It also gives an idea of the number of discrete facts in the
knowledge base.

• Main subjects: MMSUBJ: This indicates to the user the number of things being talked
about in the knowledge base, and hence is a natural measure of size that is independent of
complexity. If the user follows a methodology of sketching out the inheritance hierarchy
before filling in details, this metric can help him or her estimate the eventual size of the
knowledge base and hence the amount of work that might be required to create it.

• Relative Properties: MRPROP: This indicates to the user whether a knowledge base
has a reasonable number of properties, relative to the number of main subjects. A low
measurement might indicate that more properties should be added.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

21

• Detail: MDET: This indicates whether a knowledge base (or portion thereof) has a rea-
sonable number of statements. A low measurement might suggest that additional
statements should be added.

• Statement Formality: MSFORM: This indicates whether a knowledge base has a rea-
sonable number of formal links. A low measurement indicates that the user would be un-
likely to be able to generate sophisticated graphs of relations.

• Diversity: MDIV: This indicates the degree to which knowledge is focused at the top or
bottom of the inheritance hierarchy. A low value might indicate that inheritance is not
being properly used and that many concepts are merely placeholders.

• Second Order Knowledge: MSOK: This indicates the extent to which knowledge is
included about concepts themselves as opposed to the things represented by concepts. A
low measurement indicates that there is probably significant knowledge missing.

• Isa Complexity: MISA: This metric indicates the degree to which the inheritance hier-
archy has a non-trivial pattern of branching. A low measurement indicates that many con-
cepts do not have siblings and thus relatively few distinctions are being made.

• Multiple inheritance: MMI: This indicates the extent of the complexity added due to
multiple inheritance. A low measurement indicates that little multiple inheritance is being
used.

• Apparent completeness: MACPLT: By combining those metrics that should logically
increase as a knowledge base approaches completion, this metric gives the user an idea of
how close to completion the knowledge base might be.

• Pure complexity: MPCPLX: By combining all the complexity metrics this gives the
user an overall value of the ‘difficulty’ of the knowledge base, independent of size.

• Overall complexity: MOCPLX: In combining pure complexity with size, this metric is
intended to give the user an idea of the information content in a knowledge base.

5 .2 How intuitive or understandable are the metrics?

To be preferred are simpler metrics, i.e. ones where users can easily understand the rea-
sons for the calculations.

The methods of calculating MALLC and MMSUBJ are the simplest, being mere counts. MDET,
MSFORM and MMI have a slightly lower level of understandability since they are simple
ratios of reasonably understandable counts. MRPROP is lower again in understandability
since it is squared in order to give it better responsiveness to the underlying phenomenon.
The other metrics all have relatively complex formulas.

5 .3 How good is the mapping between the metric’s function
and the subjective phenomenon?

The function described by the metric (the objective phenomenon) must correspond well
throughout its range with the subjective phenomenon in the mind of the metric’s interpreter.
If the correspondence is poor, it might be because some objective factor is omitted or
incorrectly weighted.

One test of correspondence for metrics with a zero-one range is as follows: The metric
should yield a value of 0.5 when the subjective phenomenon is at about the half-way point,

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

22

i.e. the subjectively ‘normal’ point. Another test is to ensure that the endpoints correspond
with what one would intuitively expect. Table 1 gives interpretations for the endpoints and
centre points of the closed-ended metrics and shows that they behave well in these respects.
The only possible exception is MRPROP whose middle point indicates that there are 2.5
properties per concept – however this occurs in order to ensure that equal deltas of the
metric correspond more closely with equal changes in the subjective phenomenon.

Metric Meaning
approaching 0

Meaning near 0.5 Meaning
approaching 1

 MRPROP No properties 2.5 properties per concept Very many properties per
concept

 MDET No values specified Values specified on half of
statements

Value specified wherever
possible

 MSFORM No formal values Half of values are formal All values are formal

 MDIV Properties introduced on
one concept

Properties introduced on
half of all concepts

Properties introduced
evenly on all concepts

 MSOK No second order knowledge Metaconcept detail and ex-
tra terms on about half of
concepts

Both metaconcept detail
and extra terms on every
concept

 MISA Each concept has about one
parent - very simple

Binary tree Very bushy tree - very
complex

 MM I No multiple inheritance Half of concepts have an
extra parent

Very high degree of multi-
ple inheritance

Table 1: Interpreting metrics – meanings of various values. Rows show metrics defined
that are closed-ended. Columns indicate the interpretation of measurements at the extremes
of that range and in the middle.

5 .4 Summary of desirable qualities of the metrics

Table 2 summarizes how well the metrics appear suited to the various tasks described in
section 3.

The following are some other general observations about the metrics:

• The most useful metrics appear to be MOCPLX, MDET and MSFORM. User studies (section
6) showed that the overall complexity metric correlates reasonably well with time-to-
complete, whereas MDET and MSFORM give clear indications of where work needs to be
done in a knowledge base.

• The metrics that have the best combination of understandability and usefulness are
MMSUBJ and MDET.

• Most metrics correspond well with subjective phenomena.

• All the metrics with a zero-to-one range have good meanings for the ends of the ranges

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

23

Suitable
Task Metrics Observations

A to D. Assessing the present state of a knowledge base

 Completeness MACPLT The compound metric of apparent completeness.

 Complexity MPCPLX, MDET,

MSFORM

Pure complexity, and two of its most important compo-
nents: detail and statement formality

 Information content MOCPLX The overall complexity of the knowledge base

 Balance MDIV The diversity of distribution of properties; other balance
metrics could be created.

E. Predicting MMSUBJ The number of main subjects can typically be determined
earlier than other metrics

F to I. Comparing all

Table 2: Measuring tasks and how well they can be performed. At the left are the
measuring tasks listed in section 5.3. The middle column lists some of the metrics that
may be useful in the performance of the task.

6 . Use of the metrics during the development of knowledge
bases.

This section summarizes the results of preliminary tests using the knowledge base metrics
introduced in section 4.

For this work, the following procedure was used:

1. 12 people who were interested in building knowledge bases in CODE4 were selected as
participants. These included 11 graduate students and one professor.

2. The participants were trained to use the system. They also had access to a 100 page
user manual .

3. They created 25 knowledge bases, covering such topics as:
• Computer languages and operating systems.

• Other technical topics (such as optical storage, electrical devices, geology and
matrices)

• General purpose knowledge (people, vehicles etc.)

The total amount of work involved in creating the knowledge bases was about 2000
hours, i.e. an average of 80 hours per knowledge base.

4. The participants were asked to complete a questionnaire about their experiences. This
questionnaire contained 55 main questions and, among other things, asked for the
participants’ subjective impressions of the complexity and completeness of their
knowledge bases.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

24

5. The resulting knowledge bases were measured using the simple complexity metrics
developed in this paper. The same knowledge bases were also used to calibrate the
compound complexity metrics.

6.1 Measurements of several knowledge bases

Table 3 summarizes measurements taken of the knowledge bases prepared by the
participants in this research.

Metric Theoretical
Range

Mean Minimum Maximum Standard
Deviation

Raw size metrics

 All concepts: MALLC (40-∞) 842 224 2825 612
 Main subjects: MMSUBJ (0-∞) 91 21 278 61

Independent complexity metrics

 Relative Properties: MRPROP (0-1) 0.33 0.05 0.70 0.17
 Detail: MDET (0-1) 0.18 0.03 0.69 0.14
 Statement Formality: MSFORM (0-1) 0.16 0.00 0.67 0.19
 Diversity: MDIV (0-1) 0.71 0.00 0.99 0.27
 Second Order Knowledge: MSOK (0-1) 0.06 0.00 0.41 0.11
 Isa Complexity: MISA (0-1) 0.40 0.19 0.59 0.11
 Multiple inheritance: MMI (0-1) 0.19 0.00 0.87 0.23

Compound complexity metrics
 Apparent completeness: MACPLT (0-2) 0.20 0.03 0.39 0.11
 Pure complexity: MPCPLX (0-5.6) 0.19 0.02 0.38 0.10
 Overall complexity: MOCPLX (0-∞) 16 2 56 14

Table 3: Statistics about knowledge bases created by the participants. Each row corre-
sponds to one of the metrics discussed in section 4.

The following are some general observations about table 3:

• The knowledge bases differ substantially in size. When measured using MALLC and
MMSUBJ the ratio of largest to smallest is about 13:1. When measured using MOCPLX,
however, a more realistic ratio appears, i.e. 28:1.

• The knowledge bases vary widely according to all of the independent complexity metrics,
in particular according to MDIV and MMI. Of these, MDIV is probably the most interesting
since it seems to be more of an indicator of the individual style of the knowledge base de-
veloper than the other metrics.

6 .2 How independent is each complexity metric from the
others?

Metrics should be as independent as possible because it would be redundant to make mea-
surements using two metrics that are dependent on each other. The simple complexity met-

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

25

rics were designed to be independent of each other – all involve separate aspects of a
knowledge base. However, the only way to really test for independence is to calculate cor-
relation coefficients.

As table 4 indicates, for the most part success has been achieved. The biggest exception is
the reasonably strong negative correlation between the isa complexity and the amount of
multiple inheritance. This can be accounted for theoretically because if there are more parent
concepts to be multiply inherited (including by leaves), then the proportion of leaf types
should decrease.

Multiple
Inher.

Isa
Complex.

Second
Order

Diversity Statement
Formality

Detail

MMI MISA MSOK MDIV MSFORM MDET
Relative Properties: MRPROP 0.15 -0.23 0.11 -0.13 -0.17 0.17

Detail: MDET 0.12 -0.28 -0.21 -0.06 -0.16

Statement Formality: MSFORM -0.19 0.04 -0.02 0.34

Diversity: MDIV -0.18 0.07 -0.08

Second Order Knowledge: MSOK -0.21 0.14

Isa complexity: MISA -0.58

Table 4: Coefficients of linear correlation among the seven complexity metrics. The data
used in calculating these coefficients was obtained from the knowledge bases prepared by
the participants.

7 . Summary and conclusion

The primary purpose our research into knowledge management systems is to make
knowledge management practical. It is very hard to manage something, however, unless
one can quantify it.

This paper has discussed several metrics that can be applied to frame-based knowledge
representations. The metrics can be divided into three classes: 1) raw measures of size; 2)
measures of various attributes of complexity, and 3) compound measures intended to help
users assess their productivity.

With the help of metrics, users can better do such things as the following:

1. Estimate completeness of a knowledge base, or a component thereof. Using a metric
like MACPLT, a user can decide how much work might need to be done and where.

2. Judge the overall volume of knowledge in a knowledge base, using MOCPLX.
3. Obtain a rough idea of how difficult a knowledge base might be to navigate or modify;

MPCPLX can help with this.
4. Compare subjectively ‘complete’ knowledge bases to see how domains differ, in order

to help in the estimation of future knowledge base development tasks.

The main scientific contribution of this paper has been to point out several kinds of things
that one might wish to measure in a knowledge base. It is hoped that the work will
stimulate people to actually measure the products of knowledge engineering and to perform
further research into metrics.

Accepted for publication (1997): Int. J. of Software Engineering & Knowledge Engineering

26

References

1. D. Skuce, “A Multifunctional Knowledge Management System”, Knowledge
Acquisition, 5 (1993), 305-346.

2. D. Skuce and T. C. Lethbridge, “CODE4: A Unified System for Managing Conceptual
Knowledge”, Int. J. Human-Computer Studies 42 (1995), 413-451.

3. T.C. Lethbridge, Practical Techniques for Organizing and Measuring Knowledge,
Ph.D. thesis, Department of Computer Science, University of Ottawa, 1994.

4. I. Meyer, K. Eck and D. Skuce, “Systematic Concept Analysis Within a Knowledge-
Based Approach to Terminology”, in Handbook of Terminology Management, Eds.
S.E. Wright and G. Budin, John Benjamin, 1994.

5. J. Bradshaw, P. Holm, O. Kiperztok and T. Nguyen. “eQuality: A Knowledge
Acquisition Tool for Process Management”, Proc. FLAIRS 92, Fort Lauderdale.

6. M. Longeart, G. Boss and D. Skuce, “Frame-based Representation of Philosophical
Systems Using a Knowledge Engineering Tool”, Computers and the Humanities 2 7
(1993), 27-41.

7. B. Porter, J. Lester, K. Murray, K. Pittman, A. Souther, L. Acker and T. Jones, AI
Research in the Context of a Multifunctional Knowledge Base: The Botany Knowledge
Base Project, Technical Report, The University of Texas at Austin.

9. D. Lenat and R. Guha, Building Large Knowledge Based Systems, Addison Wesley ,
1990.

9. R. Brachman, D. McGuiness, P. Patel-Schneider, L. Resnick and A. Borgida, “Living
with CLASSIC: When and How to Use a KL-ONE Like Language”, in Principles of
Semantic Networks, Ed. J. Sowa, Morgan Kaufmann, 1991, pp. 401-456.

10. M. Shepperd and D. Ince, Derivation and Validation of Software Metrics, Oxford,
1993.

11. T.J. McCabe, “A Complexity Measure”, IEEE Trans. Software Eng. 2 (1976), 308-
320.

12. S.M. Henry and D. Kafura, “Software Structure Metrics Based on Information Flow,”
IEEE Trans. Software Eng., 7 (1981), 510-518.

13. G. C. Low and D. R. Jeffrey, “Function Points in the Estimation and Evaluation of the
Software Process”, IEEE Trans. Software Eng. 16 (1990), 64-71.

14. V.R. Basili and H.D. Rombach, “The TAME Project: Towards Improvement-Oriented
Software Environments,” IEEE Trans. Software Eng. 14 (1988), 758-773.

15. L. Acker, Access Methods for Large, Multifunctional Knowledge Bases, TR AI92-
183, Ph.D. Thesis, Department of Computer Science, University of Texas at Austin,
1992.

16. B.W. Boehm, Software Engineering Economics, Prentice-Hall, 1981.

