
Submitted for review (1997) to Int. J. Human Computer Studies

1

Evaluating a Domain-Specialist Oriented
Knowledge Management System

Timothy C. Lethbridge

School of Information Technology and Engineering
150 Louis Pasteur, University of Ottawa

Ottawa, Canada, K1N 6N5
tcl@site.uottawa.ca

Abstract
We discuss the evaluation of a tool designed to allow domain specialists to manage their
own knowledge base. We present the evaluation as a two-phase process: In the first phase
we assess whether the tool has met its objectives of allowing those not trained in logical
formalisms to effectively represent and manipulate knowledge in a computer. By studying
use of the tool by its intended users, we conclude that it has met this objective. In the
second phase of the evaluation, we assess what aspects of the tool have in fact led to its
success. To do this we study what tasks are performed by users, and what features of both
knowledge representation and user interface are exercised. We find that features for
manipulating the inheritance hierarchy and naming concepts are considered the most
valuable. Our overall conclusion is that tool research must involve this two-phase approach
if the others are to learn from the work – the research has much less value unless it can be
determined which features should most profitably be adopted by others.

1. Introduction
This paper presents a case study in evaluation of a domain-specialist oriented knowledge
management system called CODE4 (Lethbridge, 1994; Skuce and Lethbridge, 1995).
CODE4 is primarily intended to be used by domain specialists who want to organize and
manipulate knowledge for the sake of better understanding and communicating that
knowledge among humans. Contrasting systems rely on knowledge engineers, and involve
the development of formalized models of knowledge for manipulation by software that
performs reasoning.

In this paper we outline key steps in the process of developing CODE4, but the focus is
placed on evaluation. Evaluation is a key phase in any software development project: In
conventional software engineering, evaluation comprises such activities as validating
requirement or prototypes to ensure they meet customer needs, and verifying that the final
product is free of defects. The star model of software development (Hix and Hartson,
1993) places evaluation at the centre, with all other software development tasks
surrounding it.

The hoped-for conclusion from such evaluation is that the system in question is in some
sense good. Such conclusions are of little value, however, if others are to learn from the
software development experience. If software is being developed as a research task
therefore, it is necessary to go one step further and evaluate why the software is good. In
this paper we present both types of evaluation.

It is hoped that readers of this paper will learn two things: The first is what kinds of
features ought to be present in a domain-specialist oriented knowledge management system

Submitted for review (1997) to Int. J. Human Computer Studies

2

– as determined by our evaluation. The second is how should research regarding software
tools be performed and reported – we hope that this paper highlights some important
aspects of that process.

1 .1 A general approach to software tool research
This paper is structured according to the following general approach to performing research
into software tools. The intent is that these steps be performed iteratively:

i. Determine the task(s) to be performed and the target population(s) of users.

ii Establish evaluation criteria that will be used to determine the success of the to-be-built
tool.

iii. Design the tool.

iv. Perform effectiveness evaluation: i.e. evaluate the tool to determine whether success
has been achieved according to the criteria established in step ii.

v. Perform analytic evaluation: i.e. evaluate features of the tool to determine which ones
contributed to the success.

It is our belief that each of these steps is important, but that much research into software
tools does not effectively address one or more of the steps.

Step i is often omitted because the tool is developed to test or implement some underlying
technological of scientific idea (e.g. a new knowledge representation), rather than to help
perform a task. Unless the target task and users are effectively chosen, few or no
conclusions about usefulness can be drawn. On the other hand, if a real-world need can be
established by defining a task that users want to perform more effectively, then the
resulting system can be evaluated to determine if the users are in fact more productive. Task
analysis is well understood in the field of human computer interaction (see Diaper, 1989),
but is not widely applied by researchers in computing disciplines

Step ii is also often omitted when software tools are developed in a research setting – the
evaluation criteria are often established only during the evaluation phase, after the tool
exists. However, establishing evaluation criteria can help focus the work and guide design
decisions. Establishment of evaluation criteria in advance is characteristic of engineering
approaches such as usability engineering (Whiteside, Bennett and Holtzblatt, 1988).

In the past there has been criticism that software developed in research environments, and
reported in the literature, is inadequately evaluated. Although we are now in the era where
the importance of evaluation is more widely recognized, we believe that little attention is
placed on distinguishing steps iv and v in our general approach. If step iv is performed
alone, readers are able to conclude that the researchers have done good work, but they
cannot learn what aspects of the tool contributed to success. Readers might assume that all
of the features described were useful – in fact, this is the impression conveyed by much
literature that describes software tools. On the other hand, if detailed evaluations of features
are performed (step v) but there is no verification that the tool as a whole is useful (step iv),
then the reader is equally unable to obtain insights that can be reliably applied to subsequent
work.

This paper, therefore, is structured according to the above general approach. Section 2
discusses the first three steps, presenting the task for which CODE4 was intended, as well
as key aspects of its design. Section 3 discusses CODE4’s evaluation in general, focusing
on the overall techniques used; section 4 presents the effectiveness evaluation and section 5
presents the analytic evaluation.

Submitted for review (1997) to Int. J. Human Computer Studies

3

2 The task and the design
In this section we summarize those aspects of our research that preceded evaluation: steps i,
ii and iii as described in section 2.1

2 .1 Task analysis and the target population
The first step in our research was to define the task. Table 1 presents two very different
tasks that might be performed under the general heading of ‘knowledge management’. The
first task is by far the most widely researched: Knowledge engineers develop models of
some domain, and represent the knowledge using languages rooted in formal logic. The
knowledge is then used to drive formal reasoning processes in a computer program
commonly called a ‘knowledge based system’.

The second task in table 1 is not so widely researched: Domain specialists, typically with
no intent to create a knowledge based system (i.e. no intent to develop a system that
performs automated reasoning), want to manipulate knowledge structures so as to
understand better some aspects of the world. Analogous tasks would be financial analysts
who want to manipulate numbers in a spreadsheet, to better visualize the data and to
discover useful relationships using the analytic capabilities of the human brain. Lacking
CODE4, domain specialists typically structure their knowledge using diagrams, written
text, spreadsheets, outline processors etc. Our hypothesis in performing this research was
that a simple tool for manipulating concepts and properties (frames and slots) would prove
very useful to these people.

Both task 1 and task 2 involve the acquisition of knowledge, and will probably require a
system that can represent such entities as concepts and relations. However, the nature of
the tasks will lead to design decisions and evaluation criteria that are significantly different.

Why did we choose to develop a system for task 2 instead of task 1? The main reasons
were that we saw an unserviced market and a lack of research into the task.

2 .2 Criteria for evaluation of effectiveness
The success of tools and languages developed with task 1 (in table 1) in mind can probably
best be judged by evaluating whether the inferences made with the resulting knowledge are
sound and allow people to make decisions effectively. These criteria can generally be
specified in objectively-evaluable terms – for example verifying that a tool comes to
expected conclusions in known cases, and performs at least as well as other tools.

For our task-2 research, however, any inferences made are by humans. We are therefore
forced to use more subjective evaluation techniques.

We decided that the success would be judged based on two criteria. The criteria are phrased
as questions and described below:

Criterion 1: Is the tool used on a discretionary basis by significant numbers
of members of its target audience and on a variety of different and
significant examples of the intended task?

By using this criterion we are asserting that if the system is used voluntarily by people,
then there must be value in it, and our hypothesis mentioned above is found to be true. The
criterion requires that the usage be by its target audience and on a variety of significant
examples so that we can gain confidence that we are not drawing conclusions by chance.

Submitted for review (1997) to Int. J. Human Computer Studies

4

Task 1 Task 2 (our research)

Description of
task

Developing formalized models for
manipulation by software that
performs reasoning.

Organizing and manipulating
knowledge for the sake of better
understanding or communication
of that knowledge among humans.

Developers of
the knowledge
base

Knowledge engineers Domain specialists

Typical
knowledge base
development
subtasks

Eliciting knowledge; encoding it in
a formal representation language;
validating it.

Modeling one’s personal
understanding of the domain at
whatever level of formality proves
useful; validating the knowledge.

Agents that
perform
reasoning with
the knowledge

Computer programs Humans

Typical tasks
that involve use
of the
knowledge base

Entering parameters; running the
program to obtain inferences;
analysing the results to make
decisions.

Massaging the knowledge to obtain
different views of it and detect
patterns; making decisions based
on a better understanding of the
domain.

Key evaluation
criteria used to
determine if the
system is
successful

a) Are inferences that are made
using the knowledge sound?

b) Using the resulting knowledge
and inferences, can decisions be
made at least as easily as they
could using other methods?

a) Is the system used on a
discretionary basis on significant
examples of the task?

b) Is the system perceived to be at
least as useful as other techniques
that could be used for the task?

Key design
issues (most
important listed
first)

Choice of knowledge
representation(s) that will allow
effective encoding of the
knowledge and allow inference
methods to work effectively.

Choice of knowledge acquisition
method(s).

Choice of reasoning method(s).

Choice of mediating
representation(s) that will allow
humans to better understand the
knowledge.

Choice of knowledge manipulation
method(s).

Choice of knowledge
representation(s) that will allow
effective encoding of the
knowledge and work with the
mediating representations
effectively.

Table 1: Comparison of two very different knowledge management tasks

Submitted for review (1997) to Int. J. Human Computer Studies

5

Criterion 2: Is the system perceived to be useful, i.e. at least as useful as
other techniques that could be used for the task?

The second criterion provides additional evidence to back up the first. Although it is
unlikely that people would use a non-useful system voluntarily, they might choose a
system that is marginally useful, and they might choose a system without being aware of
other systems that could do the job better. The question posed by this second criterion can
be answered by asking users about, a) what tasks they were able to perform with the tool,
and b) how their experiences using this tool compared with experiences using other tools.

Our objectives were to obtain strong positive answers to both of the above questions. The
conclusions are presented in section 4.

2 .3 Design decisions based on the task and evaluation criteria
This section outlines some key decisions made during the design of CODE4, and explains
their rationale in terms of the task presented in section 2.1 and the evaluation criteria
presented in section 2.2. More complete details can be found in Lethbridge 1994 – only
enough is presented here so the reader can understand section 5 which discusses analytic
evaluation.

To achieve our objectives, we had to design two elements: the knowledge representation
and the user interface.

We had to design a knowledge representation that had sufficient power to represent the
kind of information users wanted to represent, yet would not require much training to get
started. In particular we did not want users to have to put up with complex textual syntaxes;
nor did we want them to have to know formal logic or computer programming.

The user interface had to be able to effectively present different views of the knowledge to
the users. It also had to allow them to edit knowledge without having to follow restrictive
syntactic conventions.

Each of the above aspects is summarized below.

Overview of the knowledge representation

We attempted to keep the knowledge representation very simple: For the sake of
uniformity, everything the users manipulate is a concept, and all concepts have common
features – e.g. they are located in an inheritance hierarchy and they inherit properties (i.e.
relations). Since everything is a concept, even the properties are concepts.

Concepts are divided into type concepts, that can have subconcepts (specializations) and
instance concepts that represent specific things. In order to allow the user to more easily
manipulate concepts, he or she can readily convert a concept between instance and type
(and vice versa if it does not have any subconcepts).

In order to ensure that users could work with the knowledge without being constrained by
syntax, we introduced several features that allow what we call ‘informal’ knowledge to be
manipulated: Concepts can have several different terms (synonyms), and the values of
properties can be expressed using arbitrary text. Users can add more formality if they
choose by making the values of concepts point to other concepts. See Lethbridge and
Skuce (1992) and (1994) for more on this topic.

Submitted for review (1997) to Int. J. Human Computer Studies

6

Several features were added in order to allow users to better visualize the knowledge. One
such feature was the global property hierarchy – this contains all properties in the system,
with each concept inheriting a subhierarchy of it. Other features added for visualization
purposes included graphical icons and graph layout information.

In order to represent information such as multiple terms, property hierarchy relations, icons
and graph layout data without adding special features (i.e. without veering from the notion
that the knowledge base should consist entirely of concepts), the notion of the
‘metaconcept’ was introduced. Metaconcepts are not intended to be used directly by
ordinary domain experts – they serve only as special concepts that contain information
describing an underlying concept as opposed to information described by the underlying
concept. Each concept, conceptually at least, has a metaconcept; information about a
concept is described using properties of its metaconcept that are known as facets.

A relatively small number of other features were added to the representation to solve
specific problems encountered by groups of users. Among these were a) a ‘combining’
technique for automatically resolving situations where two different values of a property are
inherited due to multiple inheritance; b) an ability, called ‘delegation’, to specify the value
of a property by reference to another property; c) an ability to specify that two type
concepts are disjoint (i.e. cannot have a common descendent in the inheritance hierarchy);
and d) an ability to add ‘dimension’ or discriminator labels to distinguish among alternative
ways of dividing a concepts into subconcepts. See Bowker and Lethbridge (1994a) and
(1994b) for information on the latter.

Overview of the user interface

The user interface was designed so that users can interact with multiple different views of
the knowledge. Four so-called mediating representations were developed; i.e. visual
representations that mediate between the user and the underlying knowledge representation.

Subwindows, each containing a view of part of the knowledge base, are chained together
such that sets of concepts currently selected by the user in one window dynamically
determine what appears in dependent windows. Each subwindow uses one of the four
mediating representations and shows concepts linked by one or more properties.

The four mediating representations are as follows:

1. Graphical: This lays out concepts as nodes linked by arcs in two-dimensional space;.
Users can edit the graph by adding nodes and arcs; they can also manually adjust and save
the layout of the graph.

2. Outline: This lays out concepts as in the outline view of a word processor, with
indentation representing the relation of one concept to another. Concepts can also be
arranged alphabetically.

3. Matrix: This lays out concepts in rows and columns with the relations between concepts
shown as the intersections of the rows and columns.

4. User language: This is a degenerate mediating representation that merely shows the value
of a property as text.

Figure 1 gives capsule views of windows containing the various mediating representations.

Submitted for review (1997) to Int. J. Human Computer Studies

7

 a) b) c)

Figure 1: The CODE4 mediating representations showing concepts and relations. a)
graphical; b) two outline views and a user language view at bottom right; c) matrix

The first three mediating representations have many features in common. In particular, the
user can: a) add and delete concepts and relations; b) select sets of concepts in several
standard ways; c) cause a subset of concepts to be shown or highlighted according to the
setting of a ‘mask’.

In addition to the above, there is a control panel facility that allows the user to specify
general preferences as well as load and save knowledge bases.

In order to modify knowledge, users open a knowledge base (or request to start a new
one). They then edit the knowledge using one or more of the mediating representations. In
order to query and explore the knowledge they can do one of the following: a) Use the
masking facilities to pick knowledge of interest; and, b) open subwindows that show
concepts and relations of interest. When used together, these facilities give the user quite a
rich knowledge management environment.

3 . General aspects of the evaluation
In order to provide a basis for both the effectiveness and the analytic evaluation (sections 4
and 5) we performed a circumscribed study of a set of 12 users as they developed 25
knowledge bases. This section describes that process.

3 .1 The user study
The basic steps in performing the user study were: 1) Solicit people to build knowledge
bases; 2) Train them; 3) Perform any necessary enhancements to the system in order to
accommodate their needs, and 4) Study the results of their knowledge base building
efforts. Details of these steps follow:

Step 1: As many people as possible were solicited to build knowledge bases
using CODE4.

Some users were solicited from the University of Ottawa student or researcher population –
people who had to perform tasks for which CODE4 was suitable. Users from companies
and other universities also started using the tool after they found out about the product
through various publications and contacts. Section 4 discusses tool usage in more detail.

Step 2: The users were trained to use the system, or trained themselves.

A 100-page user manual was created to train users. Additionally, users received training: 1)
from graduate lectures, 2) by following a step-by-step tutorial created by members of a

Submitted for review (1997) to Int. J. Human Computer Studies

8

particular user group, and 3) by personal consultation with members of the development
team.

Step 3: CODE4 was regularly enhanced in response to requests from the
users.

It was not possible to have CODE4 remain static during the research. Significant new fea-
tures were added over a three-year period in order to meet the requirements of users. The
kinds of features added after CODE4 started to be used seriously include:

• Knowledge representation features such as dimensions.
• New mask predicates to permit specialized queries.
• New primitive properties to permit the display and storage of specialized information

such as multiple graph layouts
• New display options for existing mediating representations.
• An entirely new mediating representation: the matrix.

Step 4: Information was gathered from as many users as possible

A significant percentage of CODE4 users were willing to have their work studied in detail.
These users are called the participants1 in the following discussions.

The total number of participants was twelve; all used CODE4 at the University of Ottawa.
Eleven were graduate students and one was a professor. Student usage was divided
between those using CODE4 for course work, and those using it in thesis research.

The participants created 25 knowledge bases. These covered a very wide range of topics,
categorized as follows:

• Computer languages and operating systems (eleven knowledge bases).

• Other technical topics (e.g. optical storage, electrical devices, geology, matrices – nine
knowledge bases).

• General purpose knowledge (e.g. people, vehicles, fruit, top level ontology – five
knowledge bases).

The total amount of work involved in creating these knowledge bases was reported to be
about 2000 hours, i.e. an entire person-year.

The work of the participants was studied in two ways:

1) By analysing the participants’ responses to a detailed questionnaire and follow-up inter-
view questions. Further details about the questionnaire are found in the next sub-
section.

2) By measuring the knowledge bases. Some of the metrics are discussed in section 5.
Further details can be found in Lethbridge (1998).

3 .2 The CODE4 user questionnaire
The questionnaire contains six parts containing a total of 55 main questions, many of which
have sub-questions: There are a total of 259 sub-questions about CODE4 in general and

1 There were other users in addition to the participants. These did not actively participate (filling out

questionnaires, being interviewed etc.) because they were busy, their work was confidential etc.

Submitted for review (1997) to Int. J. Human Computer Studies

9

130 sub-questions about each knowledge base. Most participants took several hours to
complete the questionnaire and some were quite enthusiastic about it despite the amount of
work involved.

The first two sections of the questionnaire ask general questions in order to ascertain how
much users know about CODE4, how they learned it and how much they have used it. The
subsequent two sections focus on the users’ reactions to specific features of the software.
The fifth section deals with users’ experiences developing individual knowledge bases.
Questions in this section were designed to complement the measurement of the knowledge
bases. The final section of the questionnaire covers problems and desires users encountered
in the use of CODE4.

Data resulting from the questionnaire is presented in sections 4 and 5.

3 .4 Why not run a ‘controlled’ experiment?
The evaluation methodology described above is that of a natural experiment (i.e. trying to
reach conclusions about an activity by observing as many cases of that activity as possible,
but without interfering). An alternative approach would have been to design a controlled
experiment.

In the field of knowledge engineering, a controlled experiment might involve a procedure
like the following: First, create two versions of a knowledge management system that differ
according to the presence or absence of some feature. Then have separate sets of users cre-
ate knowledge bases with each system. Finally, measure the resulting knowledge bases to
see if the presence or absence of the feature causes any difference in the resulting work.

Such an experiment involves varying one parameter (in this case a feature) while ensuring
that differences in other factors, including ongoing changes to the system, do not influence
any conclusions. This was judged impractical for the following reasons:

• It is not reasonable to assign a small number of people to create knowledge bases and
expect that the resulting work will be comparable. Knowledge enterers have
dramatically different levels of skill (analysis ability and understanding of knowledge
representation) as well as background (general knowledge that they can apply to the
problem).

• It might be possible to control for skill and background differences by using a large
number of knowledge enterers. However it was found to be too difficult to find enough
people with sufficient motivation to work for tens of hours on a single assigned
problem. People were only willing to be participants if they could work on a topic that
interested them.

• It might be possible to overcome biases imposed by a particular domain by having
participants create several knowledge bases from a small pool of domains. Again
however, finding willing people is extremely difficult (it was even difficult to get
enough participants, who had already created knowledge bases, to fill in a
questionnaire).

• During the conduct of this study, users would frequently ask for new features. If all
participants were assigned a topic, it might have been possible to deny their requested
modifications for the sake of gathering ‘good data’. However since most users were
working on their own research projects, it was necessary to make regular incremental
modifications to the system. Otherwise many users would not have felt comfortable
trusting CODE4 to be a reliable tool for their research.

Submitted for review (1997) to Int. J. Human Computer Studies

10

In conclusion, without a very significant amount of money with which to pay participants
for long periods of time, it was only feasible to perform an exploratory study of the type
described in the previous subsections. We believe, however, that such a study provides
adequate information to allow us to effectively evaluate the tool.

4. Effectiveness evaluation: Assessing whether or not success
has been achieved
In this section we discuss our assessment about whether CODE4 was successful in terms
of whether it met the objectives set for it. The rationale behind the objectives themselves are
described in section 2.2.

4 .1 Discretionary use on the intended task
The first evaluation criterion, as described in section 2.2, is: Is the tool used on a
discretionary basis by significant numbers of members of its target audience and on a
variety of different and significant examples of the intended task?

A total of at least 30 individuals are known to have used CODE4 to build knowledge bases.
These fall into three main groups: 1) industrial customers, 2) researchers and 3) graduate
students taking courses. In addition, about ten other groups are known to have obtained
copies of a demonstration version. Some examples CODE4’s use are described below; all
of these involved people voluntarily choosing to use the tool.

The primary industrial customers for CODE4 have been groups headed by Jeff Bradshaw,
then of Boeing Aircraft Corporation in Seattle. Bradshaw’s work primarily involved
building CODE4 into other applications. In Bradshaw, Boose, Shema, Skuce and
Lethbridge (1992) an application involving design rationale capture is presented. Another
application involving organizational modelling is discussed in Bradshaw, Holm et al.
(1992).

CODE4 was also adopted by the Cogniterm project. In this project, linguists used it for
terminology research – their goal was to find ways to model multi-lingual terminology to
assist translators. Some of the published literature includes Eck’s M.Sc. thesis (1993) and
papers by Skuce and Meyer (Skuce 1993; Meyer, Eck and Skuce 1994). Bowker (Bowker
and Lethbridge 1994a and 1994b) used CODE4 as a major tool for her Ph.D. research.

Several other student research projects and theses have used CODE4 as their major tool;
these include Ghali (1993) and Wang (1994). CODE4 has also been used as a teaching tool
in several courses in artificial intelligence at the University of Ottawa.

We can conclude from the above that CODE4 has achieved its first objective. The only
minor counter-argument is that many of the users completely ignored certain features.
However, as stated in section 1.1, we want to evaluate success of the tool as a whole and
then subsequently ask question about which features contributed to this success. The latter
is discussed in section 5.

4 .2 Perceived usefulness
The second criterion to ascertain success is: Is the system perceived to be useful, i.e. at
least as useful as other techniques that could be used for the task?

Submitted for review (1997) to Int. J. Human Computer Studies

11

To answer this question we posed three subjective questions to the participants of the study
described in section 3. The first two questions ask about usefulness in general and the third
compares CODE4 to other technologies.

Question 1. How much insight into the domain did you obtain?

In almost all instances, the participants report that they obtained substantial insight about
the subject matter when using CODE4. On a scale where 0 indicated that constructing the
knowledge base resulted in no new insights and 10 indicated that many new insights were
obtained, the mean response was 7.1 (range 2 to 10; std. dev. = 2.6).

Question 2. Was creating the knowledge base a worthwhile exercise?

Participants were asked, for each knowledge base, whether creating it was a worthwhile
exercise. Answers were on a scale where -5 meant ‘strongly disagree’, 0 meant ‘no
opinion’ and 5 meant ‘strongly agree’.

The mean response was 4.2 (range 0 to 5; std. dev. 1.5), indicating a reasonably high
feeling that using CODE4 was worthwhile. Users however gave significantly different
answers for different knowledge bases: As would be expected, those knowledge bases
used for serious research were judged more worthwhile.

Question 3. How easily could you have represented the same knowledge
using the following types of software or representation methods?

For each knowledge base they developed, each participant was asked to compare CODE4
with other representational technologies with which he or she was familiar. The answers
were on a scale where -5 meant that the knowledge could have been represented much more
easily using the alternate technology than using CODE4; zero meant that CODE4 equalled
the technology in representational ease, and 5 meant that using the alternate technology in-
stead of CODE4 would have resulted in much more difficulty (i.e. that CODE4 was much
better for the task than the alternative technology would have been be).

In all cases, the mean rating indicates CODE4 is easier for the task than alternative
technologies. Table 2 summarizes the results and figure 2 shows a plot of the results. In
particular it is notable that CODE4 was perceived as easier to use than both informal
representation techniques (e.g. natural language) and formal representation techniques (e.g.
predicate calculus and conceptual graphs). Hypertext is CODE4’s only significant
competition: One user ranked hypertext as far easier than CODE4, but on average, users
still found hypertext a bit harder to use for knowledge management.

Note that the figures only consider cases where participants actually know the competing
technology; for example less than half of the respondents compared CODE4 to other AI
tools. Also note that the figures do not mean that the competing technologies are less good;
the only conclusion that can be drawn is that there is evidence that for this task, CODE4
performs better.

Submitted for review (1997) to Int. J. Human Computer Studies

12

Technology Mean Max Min Std.
Dev

Responses
(KBs)

Spreadsheet 4.2 5 2 1.2 17
Drawing program 3.9 5 2 1.2 17
Relational database 3.0 5 1 1.6 15
Natural language (word processor) 3.0 5 0 1.7 20
Outline processor 2.9 4 0 1.5 7
Hypertext 1.0 5 -5 2.4 11
Predicate calculus 4.6 5 1 1.1 14
Prolog 4.4 5 1 1.2 11
Other AI tools (any the user had

used; e.g. expert system shells)
3.9 5 -1 2.0 8

Conceptual graphs 3.3 5 -1 2.0 12

Table 2: Perceived difficulty of use of representational technologies. larger numbers indi-
cate that the technology is perceived as being more difficult to use for the kind of repre-
sentational tasks studied. CODE4 (the baseline for comparison) is zero. A negative num-
ber would indicate that the technology is perceived as easier than CODE4. There are no
negative means; only a few individual negative values.

0

1

2

3

4

5

Spread-

sheet

Drawing

program

Rel-

ational

database

Natural

language

Outline

pro-

cessor

Hyper-

text

Predicate

calculus

Prolog Other AI

tools

Con-

ceptual

graphs

Figure 2: Histogram of perceived difficulty of use (see data in table 2). The technologies
on the right (crosshatched) are those from the field of artificial intelligence.

4 .3 Conclusions from phase 1: Was success achieved?
We can conclude from the significant numbers of discretionary users of the tool and the
positive responses of users in our study, that CODE4 has met the objectives outlined in
section 2.2. There would seem, therefore, to be strong evidence in favour of our
hypothesis that a simple tool for the manipulation of concepts and properties would prove
useful for domain specialists.

As mentioned in section 1.1, however, this does not inform us about exactly what led to
success – this is discussed in the next section.

Submitted for review (1997) to Int. J. Human Computer Studies

13

5. Analytic evaluation: Assessing which aspects of the system
led to success
Having concluded that CODE4 has met its objectives, we now move on to the second
phase of evaluation: Determining what aspects of the tool are the key contributors to that
success, and, conversely, what aspects of the tool may be of lesser use, or even detrimental
to success.

In this section we present the evaluation of the knowledge representation and user interface
features.

5 .1 Analysis of the knowledge representation features
We analysed knowledge representation features using the following techniques: a)
Studying the knowledge bases to see which representation features are actually used; b)
Studying how, in the opinion of users, each feature helps convey the content of each
knowledge base, and c) Studying the overall opinions of users about each feature.

Observing which knowledge representation features were present in the
resulting knowledge bases

The knowledge bases created by the participants can be analysed by measuring various
attributes. Table 3 shows counts of the various classes of concepts in CODE4 knowledge
bases.

Class of concept Total Mean Minimum Maximum St. Dev.
Main concepts (i.e. types) 2177 91 21 278 61
Instances 182 8 0 55 16
Properties (i.e. relations) 3744 155 52 397 60
Statements (i.e. tuples) 7399 308 34 1614 355
Terms (names for concepts) 6362 265 93 739 168
Metaconcepts (see section 2.3) 209 9 0 80 20

Table 3: Counts of classes of concepts created by participants

The following are some general observations arising from the table 3:

• The number of concepts confirms that substantial work has been done using CODE4.
The size of the larger knowledge bases confirms that some of the work was serious in
nature.

• The data indicate that users made relatively little use of such features as instance
concepts, independent metaconcepts and term concepts. Although their presence may
have been useful to a few users, success of the system clearly did not depend on their
presence.

In addition to the above counts of concepts, various metrics were developed to better
characterize knowledge bases. These are described in Lethbridge (1998). While most of the
metrics are out of the scope of this paper, two are particularly relevant:

• On average only 16 percent of the values of properties (called statements in CODE4)
were formal, i.e. pointed to other concepts. The rest merely contained text entered by
users. Clearly, the ability to provide a mix of formality and informality is important.

Submitted for review (1997) to Int. J. Human Computer Studies

14

• On average only 19 percent of concepts had more than one superconcept. This in fact
indicates that multiple inheritance is quite important.

Assessing which features of knowledge representation convey more content

For each knowledge base, users were asked to estimate how much each feature of the
knowledge representation contributed to conveying the actual content of the knowledge
base (i.e. to expressing its most important information).

The results are shown in tables 4 and 5. Table 4 lists the 14 knowledge representation
features about which users were asked. Note that the features are not necessarily disjoint;
e.g. users were asked about values (of statements) in general as well as particular types of
value.

Group A s p e c t Mean Max Min Std. Dev Responses

A The names given to main subjects 9.3 10 7 1.0 21
The names given to properties 9.1 10 6 1.6 21
The structure of the inheritance hierarchy 9.1 10 5 1.5 21

B The structure of the property hierarchy 8.0 10 0 2.5 21

C Values of statements about main subjects 7.5 10 0 3.2 21
Informal values as carefully thought-out natural lan-
guage expressions or sentences

7.2 10 3 2.8 21

Informal values that are commentary and descriptive 7.2 10 1 3.2 21

D The layout of graphs 5.9 10 0 3.6 21
The dimension labels 5.6 10 0 4.0 21

E Values of statements about metaconcepts 4.7 10 0 3.9 21
The structure of other relation graphs 4.5 10 0 3.5 21
Formal values 4.1 10 0 3.7 21
The order of subproperties in a property hierarchy 3.6 9 0 3.5 21

F The order of subconcepts in an inheritance hierarchy 2.8 9 0 3.4 21

Table 4: Features of a knowledge bases that convey its content. For each knowledge base,
each feature was ranked by the participants on a scale where 0 means unimportant and 10
means essential. The horizontal lines distinguish groups of features that are independently
comparable with other groups, as shown in table 5

The features are listed in decreasing order by mean, however there is no statistically
significant difference2 between features whose means are close together. An analysis of
where statistically significant differences do exist showed that the features can be divided
into eight groups (i.e. equivalence classes), labelled A through H in tables 4 and 5. Table 5
can then be used to determine which groups convey significantly more knowledge than
others. For example none of the aspects within group A were considered more important
than others, whereas all of group A was considered more important than all of the others
(groups B through F). Similarly the single aspect in group B is only more important, in the
opinion of participants, than aspects in groups D and F, but not more important than any of
the aspects in group C.

2 According to pairwise t-tests.

Submitted for review (1997) to Int. J. Human Computer Studies

15

F E D C B

A √ √ √ √ √
B √ √ √
C √ √
D √

Table 5: Significant differences among groups of knowledge-conveying aspects. The x and
y axes indicate groups of content-conveying aspects from figure 6.6. Wherever a check
mark appears, users believed that row aspects were significantly more important than
column aspects. Significance was determined using t-tests.

Some general observations about Tables 4 and 5:

• As group A shows, names are considered to be of paramount importance. Users appear
to attach great significance to the fact that humans will be using the knowledge base and
thus concepts must have effective names. In a purely formal system, operated on by a
computer, names are not significant (although it meaningful names are still needed so
that humans can work with the formal language).

• Group A supports the intuitive notion that the inheritance hierarchy, with labelled
concepts and attached properties, is the fundamental framework for building knowledge
bases. Other aspects of knowledge can only be added once a rough inheritance
hierarchy is specified.

• The way the property hierarchy is structured has as much importance as the values of
statements. This validates CODE4’s emphasis of this feature.

• Informal values are considered significantly more important than formal ones (and more
important than the graphs of relations that the latter permit to be drawn). This suggests
that developing effective ways of dealing with informal values can be a worthwhile
exercise. Substantial and useful knowledge bases can be built that contain largely
informal knowledge.

• As would be intuitively expected, values of statements about main concepts were
considered more important than values of statements about metaconcepts; although
metaconcept values were important to some participants.

• Graph layouts and dimension labels, features supported strongly in CODE4, were
considered moderately important. Among knowledge bases, however, these features
varied in importance.

Assessing general usefulness of knowledge representation features

Users were asked how useful they perceived various knowledge representation features to
have been in their work. This set of questions differs from the last set in the following
ways:

• The previous set of questions ask about specific knowledge bases, whereas these
questions ask for overall impressions of users.

• These questions ask about features in more detail than the previous ones. The result is
that fewer users were able to answer any given question.

• These questions ask about usefulness in general, whereas the previous ones focused on
how information content was conveyed. These questions use a scale where -5 indicates

Submitted for review (1997) to Int. J. Human Computer Studies

16

that the feature was harmful to their work (i.e. negatively useful), 0 indicates that the
feature is of no use, and +5 indicates that the feature is very useful. The previous
questions on the other hand, had just required responses on a scale of zero to 10.

Inheritance, in general 4 . 9
Multiple inheritance 4 . 9
The property hierarchy, in general 4 . 8

Table 6: The highest mean responses to the question about usefulness of knowledge
representation features.

Data for this set of questions is found in tables 6 (features rated high) and 7 (features rated
low). Note that features that were given an intermediate rating are excluded for
compactness – their contribution to success or failure of the tool as a whole is considered
likely to be neutral. The following are some comments:

• Inheritance and multiple inheritance were judged more important than any other feature,
and were classed as ‘essential’. This corroborates the conclusion (from the questions
about information content) that the inheritance hierarchy is of paramount importance.

• Significantly less important, statistically speaking, was the property hierarchy, however
it too was judged very close to essential.

• The next most important feature was multiple parents in the property hierarchy,
however no conclusion can be drawn about whether it is in fact more important than the
twelve features that follow it in the ranking. Despite this, the emphasis CODE4 places
on the property hierarchy appears to correspond with users’ needs.

• A large number of features were ranked close together and no conclusions can be
drawn about the exact order. In this group are formal and informal values (formal
values are ranked marginally higher than informal ones, contrary to findings discussed
earlier, but not significantly higher).

Metaconcepts 3 . 5
The ability to add new facets 3 . 4
The ability to have more than one term for a concept (synonyms) 3 . 2
The ability to use almost any character string in a term (the name of a property or main
concept)

3 . 2

Treating terms, properties and statements as full-fledged concepts (with their own properties
etc.)

3 . 1

Automatic combination of conflicting values in multiple inheritance 2 . 8
Delegation 2 . 7
The set of built-in facets 2 . 6
Instance concepts 1 . 9
Terms as separate concepts from the concept(s) they designate 1 . 9
The maintenance of information about which concepts are disjoint 1 . 5
Treating facets as properties 1 . 4
The fact that you need not explicitly name a concept (automatic default naming) 0 . 2

Table 7: The lowest mean responses to the question about usefulness of knowledge
representation features.

Submitted for review (1997) to Int. J. Human Computer Studies

17

• Ranked close together at a moderate level of importance were several features
associated with naming (synonyms, unrestricted syntax for names, and treating terms
as concepts). However the feature of CODE4 that results in automatic default naming
was ranked far lower (close to ‘unimportant’). The latter might be because users almost
always name a concept as soon as they create it, so they consider the default name of
little use. However, generating a default name permits the interface to be non-modal
(this was ranked highly in a question discussed in the next subsection).

• Although no features were given an overall assessment of ‘harmful’ (i.e. negatively
useful), three features were given such an assessment by individual users. These were
automatic combination under multiple inheritance, treating facets as properties and
automatic default naming.

5.2 Analysis of the user interface features
This section continues the analytical evaluation of CODE4 by considering user interface
features. Two types of questions were posed in order to perform the evaluation: The first
type of question asked subjects to give their general opinion about the usefulness of
features; the second type of question probed how much they used certain mediating
representations, where alternatives were available.

Assessing general usefulness of knowledge representation features

In a similar manner to the questions about knowledge representation features, users were
asked a series of questions about user interface features. They used the same scale as
previously (where -5 means harmful and 5 means essential).

The outline mediating representation, in general 4 . 8
Dynamic updating of subwindows 4 . 7
Direct typing to change a concept name in the outline and graphical mediating representations 4 . 6
The graphical mediating representation, in general 4 . 6
The ability to save various graph layouts 4 . 5
The control panel, in general 4 . 5
The ability to make multiple selections on the graphical and outline mediating representations 4 . 5
Relation subwindows (e.g. showing part-of or other arbitrary relations of combinations of rela-
tions)

4 . 3

The matrix mediating representation, in general 4 . 3
Different mediating representations (outline, graphical, matrix) with commands that work in a
similar manner in each

4 . 3

The variety of ways of making or extending a selection (dragging, marquee, shift key, control
key)

4 . 2

Table 8: The highest mean responses to the question about usefulness of user interface
features.

Most of the features about which questions were asked are either novel in CODE4 or are
emphasized far more in CODE4 than in other knowledge management technology. Data is
found in tables 8 and 9; the following are some specific observations:

• Four features were ranked as close to essential and were significantly more important
than most of the others. Foremost of these was the outline mediating representation.

Submitted for review (1997) to Int. J. Human Computer Studies

18

Close behind this was: a) dynamic updating of windows, b) direct typing to change a
name and c) the graphical mediating representation.

• Ranking significantly behind the above four, but still ‘very important’ were the ability
to save multiple graph layouts, the control panel and the ability to make multiple
selections. These features are not ‘new ideas’, but their inclusion appears to greatly
enhance the system.

• A very large number of features were ranked indistinguishably close to each other as
‘important’. Examples are the non-modality of the interface, the matrix mediating
representation, relation knowledge maps and features concerned with the mask.

• No features were ranked as ‘unimportant’ or ‘harmful’ but a few features were ranked
as only slightly useful (table 9). These included the ability to attach a graphical icon to a
concept and the ability to have multiple knowledge bases loaded at once. The latter
feature was ranked as harmful by one user.

The options available in the control panel (e.g. the format options) 3 . 4
Unlimited chains of driving and driven subwindows 3 . 4
The ability to arrange an outline both alphabetically and hierarchically 2 . 6
The ability to have multiple knowledge bases loaded at once 2 . 6
The ability to show placeholders for hidden concepts (+/-) 2 . 1
The ability to attach a graphical icon to a node in the graphical mediating representation 1 . 2

Table 9: The lowest mean responses to the question about usefulness of user interface
features.

Assessing the extent to which users used particular mediating
representations when entering knowledge

For each knowledge base, users were asked to estimate how much of the knowledge was
entered using the four major mediating representations. In agreement with the above
general questions, users reported using the outline representation far more than any other.

The matrix representation was used relatively little, although it was developed after some
users had started their work. Also, it is not (yet) possible to start creating a knowledge base
using a matrix window; it can only be used as a query mechanism or to fill in missing
values.

Table 10 gives the data about mediating representation usage. The statistics for the ‘user
language’ mediating representation and the outline representation are likely to be too low
and high respectively. This is because many users are not aware that the user language
representation is considered distinct from the outline representation (the former, which is
used only for entering a single property value, is usually associated with an outline but can
be associated with a graph).

Mediating Representation Mean M a x M i n Std. Dev

Outline 64.4 100 30 22.8
Graphical 14.8 50 0 18.7
User language 16.3 50 0 16.7
Matrix 4.6 20 0 6.1

Table 10: Amounts of knowledge entered using different mediating representations.

Submitted for review (1997) to Int. J. Human Computer Studies

19

5 .3 Tasks performed during knowledge management
The previous two sections have separately analysed the various features of CODE4 to
determine which are apparently most useful to the system’s success. This section continues
the analysis by looking at various aspects of the work they performed using the tool – tasks
that involve both knowledge representation and user interface.

How difficult do users find various knowledge management tasks?

For each knowledge base, users were asked how difficult various tasks were to perform.
Difficulty was ranked on a scale where zero indicates extremely easy and ten indicates
extremely difficult.

The data is shown in tables 11 and 12. Table 11 orders tasks by mean. Table 12 shows
which groups of tasks were significantly more difficult than others. The following are
general observations:

• None of the tasks was judged to be extremely difficult; most of the tasks were closer to
‘easy’ than to ‘difficult’. This suggests that CODE4 is helping users.

• The only possible exception was ‘Determining whether a part of the knowledge base is
correct, coherent and consistent’. This task was judged significantly more difficult than
almost all others. This suggests the need for more facilities to provide feedback.

• Judged to be less difficult than the above, but still moderately difficult, were two
‘understanding’ tasks: understanding the domain, and understanding CODE4’s error
messages. The latter again suggests that better feedback facilities are needed.

• Several tasks related to specifying properties are rated moderate (neither easy nor very
difficult). These tasks include naming a property, dealing with several properties that
have the same name, determining the most general subject for a property, determining
whether a property is already present or not, and moving a property to a new most
general subject. This suggests that a ‘property assistant’ tool would prove useful.

• Tasks that are largely mechanical in nature were judged reasonably easy by the
participants. Such tasks included reparenting (i.e. changing a superconcept or
superproperty) and setting up windows.

• Two tasks were judged significantly easier than the others: These were finding a main
subject that already exists and understanding the effects of inheritance. This helps show
that CODE4’s querying and display capabilities are effective.

Submitted for review (1997) to Int. J. Human Computer Studies

20

Group Knowledge management task Mean Max Min Std. Dev Responses

A Determining whether a part of the knowledge base i s
correct, coherent and consistent

5.8 10 2 2.4 23

B Understanding the subject matter being entered into
the knowledge base

5.2 10 0 3.2 23

Understanding what is the problem when the system
does not permit a command

5.1 10 0 3.2 23

C Naming a property 4.3 8 0 2.9 23

Determining the interrelationships among a particu-
lar set of concepts

4.2 9 1 2.5 19

D Determining whether a part of the knowledge base i s
complete enough

4.2 8 1 2.9 20

Dealing with the situation where there are several
properties with the same name which should really
have been the same property

4.2 9 0 2.9 20

E Figuring out where to put a concept in the inheritance
hierarchy

4.1 8 1 2.2 23

Figuring out the most general subject for a property 4 9 2 1.8 23

F Specifying a special relationship (e.g. part-of) be-
tween concepts

3.8 9 0 2.9 22

G Determining whether a property is important enough
to add

3.6 8 1 2.0 23

Determining whether a property exists already or not 3.3 8 1 2.1 22

Changing a character string (possibly in many
places)

3.3 10 0 3.3 23

H Determining whether a concept is important enough
to add

3.2 8 1 1.8 23

H Filling in a value, in general 3.1 10 0 2.1 23

I Moving a property to a new most general subject 3.1 9 0 3.5 22

H Figuring out where to put a property in the property
hierarchy

3.1 7 1 1.9 23

I Reparenting a property 3.1 9 0 3.5 20

I Reparenting a concept 3.0 9 0 3.2 21

H Determining on what statement to put a value 3.0 7 0 2.0 21

H Setting up windows to show the knowledge in which
you are interested

2.8 10 0 2.8 23

I Naming a main subject 2.7 7 0 2.6 23

I Finding a property that already exists in the knowl-
edge base

2.6 7 1 2.1 21

J Finding a main subject that already exists in the
knowledge base

1.9 7 0 1.7 21

Understanding how inherited values get their content 1.8 9 0 2.3 23

Table 11: Users’ perceptions of the difficulty of tasks. For each knowledge base, each task
was ranked by the participants on a scale where 0 means extremely easy and 10 means
extremely difficult. The horizontal lines distinguish groups of tasks that are independently
comparable with other groups, as shown in table 12. Groups H and I could not be
separated by a unique line.

Submitted for review (1997) to Int. J. Human Computer Studies

21

J I H G F E D C

A √ √ √ √ √ √ √ √

B √ √ √ √

C √ √ √

D √ √

E √ √ √

F √ √

G √

H √

I √

Table 12: Significant differences among groups of knowledge management tasks. The x
and y axes indicate groups of knowledge management tasks from figure 6.6. Wherever a
check mark appears, users believed that row tasks were significantly more difficult than
column tasks. Significance was determined using t-tests.

Assessing features that support formality vs. features that support
informality or spontaneity

One of the major tenets in the design of CODE4 was that users should be able to represent
knowledge both formally and informally. Studies of knowledge representation and user
interface features reported earlier show that users feel the need for both formality and
informality. The following questions were designed to obtain further evidence about this:

Participants were asked to judge the degree of formality of their knowledge bases on a scale
where 0 means completely informal and 10 means completely formal. The mean response
was 4.8 with a standard deviation of 2.7. Responses ranged from 0 to 9 for the 24 knowl-
edge bases from which responses were received. Interestingly, individual participants gave
very different responses for different knowledge bases they created. It thus appears that
informality and formality are both necessary, although as was discussed earlier, users feel
the informal aspects might convey more knowledge.

Participants were also asked to indicate how rapidly they would represent an idea when it
occurred to them. The principle here is that informal capabilities should allow users to
rapidly record their thoughts, if they so wish. The scale used was as follows: 0 means that
they would represent the idea immediately and later on worry about whether it was correct;
and 10 means that they would never represent the idea until they were absolutely sure they
could do it correctly. The mean response was 4.2, with a range of 0 to 8 and a standard de-
viation of 2.4. Being in the middle of the range, this suggests that users need both facilities
to rapidly enter ideas, and also facilities to rapidly help them decide whether they should
enter an idea.

How difficult were naming tasks?

Users were asked what percentage of main subjects or properties did not have standardized
terms; i.e. they had trouble putting a term on a concept, deciding if two terms had the same
meaning or even what a term meant. The mean response was 29% (range 10% to 90%;

Submitted for review (1997) to Int. J. Human Computer Studies

22

standard deviation 22%). This indicates naming is not a straightforward task, and justifies
CODE4’s attempts to provide better facilities to handle names.

As table 11 shows, users found naming properties to be significantly more difficult than
naming main subjects.

Users were also asked what percentage of main subjects and properties had a name that the
participant invented, as opposed to one that might be found in an ordinary dictionary or
technical glossary. The mean was 17% (range 0% to 70%; standard deviation 18%).

5 .4 Conclusions from phase 2: Which aspects of the system led
to success?

The following summarizes the results of evaluating the importance of features – the process
we call analytic evaluation. It is important to note that many features of CODE4 are
interdependent. For example, users did not directly judge the uniformity of concepts to be
important; they nevertheless found facilities to deal with terms, metaconcepts and properties
to be useful. Treating concepts uniformly allows the latter to be designed more easily; such
treatment also facilitates browsing and other useful capabilities.

• Features for dealing with the inheritance hierarchy: Users judged the inheri-
tance hierarchy to be one of the most generally important features and to convey much
of the knowledge in their knowledge bases. While this is not unexpected, it suggests
that knowledge management systems must provide effective facilities, like CODE4’s
outline mediating representation, for rapid manipulation of this hierarchy.

• The property hierarchy and features for dealing with it: Users found these
both generally important and useful in conveying knowledge.

• Features for dealing with terms and naming: Users found names of properties
and main subjects to be very important in conveying meaning. They also found naming
to be intrinsically difficult since they had to frequently invent names or choose among
several alternatives.

• Features for handling informality: Users judged that informality was important
in conveying much of the knowledge – although not to the exclusion of formality.

• The non-modality of the interface and dynamic updating: These features
were rated important by users.

• Mediating representations: Users rated all three major mediating representations as
useful, particularly outlines. They considered the ability to save graph formats to be
important.

• Search facilities: Users indicated that finding concepts, a task frequently performed
using the mask, was one of the easiest tasks to perform.

On the other hand, there were a variety of features that we judge did not contribute to the
success of the tool. These include instance concepts, combination, delegation and a variety
of formatting options. These nevertheless involved considerable development work.

The following needs were identified during the evaluation.

• Tools to help specify properties: Users found naming properties to be
particularly difficult. They also found manipulating them to be difficult and in need of
support.

Submitted for review (1997) to Int. J. Human Computer Studies

23

• Tools to assist with analysis: Since users reported that one of their most difficult
problems was evaluating correctness and coherence of the knowledge base, there is an
obvious need for analysis tools. The metrics, which were unavailable to users when
they created their knowledge bases, might help in this process.

• Improved facilities for feedback: Users found that understanding CODE4’s error
messages was one of the most difficult tasks.

6 Summary and Conclusions
This paper has presented the evaluation of a knowledge management tool called CODE4, as
well as techniques for performing and presenting such evaluations in general. The design
of the tool was presented in terms of task analysis, objectives and design rationale. The
evaluation was then split into two sections: Effectiveness (judging success) and analytic
(determining what led to success or failure).

The tool was judged to be effective because a) users from the target population (domain
specialists) regarded developing their knowledge bases to be a worthwhile exercise; b) the
users used CODE4 repeatedly and produced significant knowledge bases with it, and c) the
users judged CODE4 to be easier to use than other tools for knowledge management.

With regard to the reasons for success, it appears the most important contributors were
features that allowed easy direct-manipulation interaction with hierarchies, the names of
items and a combination of formal and informal knowledge.

References
Bowker, L and Lethbridge, T.C. (1994a). “Terminology and Faceted Classification:

Applications Using CODE4”, Advances in Knowledge Organization (Proc. Third
ISKO Conference), Copenhagen, June, pp. 200-207.

Bowker, L and Lethbridge, T.C. (1994b). “CODE4: Applications for Managing
Classification Schemes”, proc . 5th ASIS SIG/CR Classification Research Workshop,
Alexandria, Virginia, October

Bradshaw, J., J. Boose, D. Shema, D. Skuce and T. Lethbridge (1992). "Steps Toward
Sharable Ontologies for Design Rationale". AAAI-92 Design Rationale Capture and
Use Workshop, San Jose, CA, July, pp. 29-38.

Bradshaw, J., Holm, P., Boose, J., Skuce, D., and Lethbridge, T.C. (1992, October).
“Sharable Ontologies as a Basis for Communicating and Collaborating in Conceptual
Modeling”. Proc. 7th Knowledge Acquisition for Knowledge-Based Systems
Workshop. Banff, Alberta, pp. 3.1-3.25

Diaper, D. ed. (1989). Task Analysis for Human-Computer Interaction. Chichester: Ellis
Horwood.

Eck, K. (1993) Bringing Aristotle Into the Twentieth Century: Definition-Oriented Concept
Analysis in a Terminological Knowledge Base, Master's thesis, University of Ottawa.

Ghali, N. (1993) Managing Software Development Knowledge: A Conceptually Oriented
Software Engineering Environment, M.Sc. Thesis, University of Ottawa, Dept. of
Computer Science.

Submitted for review (1997) to Int. J. Human Computer Studies

24

Hix, D., and Hartson, H.R. (1993). Developing User Interfaces: Ensuring Usability
through Product and Process. New York: John Wiley.

Lethbridge, T.C., and Skuce, D. (1992), “Informality in Knowledge Exchange”. Proc.
AAAI-92 Workshop on Knowledge Representation Aspects of Knowledge
Acquisition. San Jose, July, pp. 93-99.

Lethbridge, T.C. and Skuce, D. (1994). “Knowledge Base Metrics and Informality: User
Studies with CODE4”. Proc. 8th Knowledge Acquisition for Knowledge-Based
Systems Workshop. Banff, Alberta, January, pp. 10.1 - 10.19.

Lethbridge, T.C. (1994). Practical Techniques for Organizing and Measuring Knowledge,
Ph.D. Thesis, University of Ottawa

Lethbridge, T.C. (1998, to appear). “Metrics for Concept-Oriented Knowledge Bases”,
International Journal of Software Engineering and Knowledge Engineering, 8 2, June.

Meyer, I., K. Eck and D. Skuce (1994). "Systematic Concept Analysis Within a
Knowledge-Based Approach to Terminology", in Handbook of Terminology
Management, S. E. Wright and G. Budin eds. Amsterdam/Philadelphia: John
Benjamin.

Skuce, D. (1993). "A System for Managing Knowledge and Terminology for Technical
Documentation". Third International Congress on Terminology and Knowledge
Engineering, Cologne, pp. 428-441.

Skuce, D. and Lethbridge, T.C. (1995). “CODE4: A Unified System for Managing
Conceptual Knowledge”. International Journal of Human-Computer Studies 42, 413-
451.

Wang, C. (1994) Towards Conceptually-Oriented Software Requirements Analysis and
Design, M.Sc. Thesis, University of Ottawa.

Whiteside, J., Bennett, J., and Holtsblatt, K. (1988). Usability Engineering: Our
Experience and Evolution. In Handbook of Human-Computer Interaction (Helander M.
ed.). Amsterdam: North-Holland.

