
8th Banff Knowledge Acquisition for Knowledge Based Systems Workshop, 1994

KNOWLEDGE BASE METRICS AND INFORMALITY:
USER STUDIES WITH CODE4

Timothy C. Lethbridge
Doug Skuce

Department of Computer Science
University of Ottawa, Canada K1N 6N5

{tcl, doug}@csi.uottawa.ca

ABSTRACT

1. INTRODUCTION
Many researchers have designed knowledge representations and built systems for the con-
struction and maintenance of knowledge bases. For the most part the evaluation of such
work has been by one or more of the following methods:

• Appealing to mathematics: Researchers have shown how their representations have
interesting properties such as a logic-based formal semantics and the ability to support
specific types of logical inference

• Appealing to theories from psychology and related disciplines.
• Demonstrating solutions to interesting but specialized general problems.
• Showing how a small number of problematic special cases can be handled.

An approach that has not been tried frequently is to analyse larger numbers of scenarios
where users work on complete projects from start to end. In this paper we take this ap-
proach in order help establish the usefulness of our work and how well it ‘scales up’.

We use the above approach on CODE4, a tool we have developed for the acquisition and
manipulation of knowledge. CODE4 features a high degree of flexibility in its knowledge
representation and user interface, and has been designed so that ‘domain experts’ can
easily and rapidly construct knowledge bases after only a few days training. We describe
CODE4 in detail in a companion paper in this proceedings (Skuce and Lethbridge, 1994).

The overriding hypothesis which we have sought to validate by developing CODE4 is that
it is possible for ordinary people to use knowledge acquisition technology for a wide vari-
ety of tasks1. The fact that CODE4 and its predecessors have attracted on-going interest

1 We do not claim that we can magically solve many of the very difficult and real problems in
knowledge acquisition that are focussed on most heavily by other researchers, such as how to extract
years of implicit knowledge from an expert. What we do propose though, is that there are many

We describe studies of the CODE4 knowledge management system. Two thousand hours
of CODE4 use by 8 users are analysed to validate various design hypotheses. We discuss
initial ideas for some knowledge base metrics and we show that users place a very high
value on certain features of the knowledge representation and user interface, such as those
that permit informal use.

2

from users in a number of occupations (linguists, organizational modellers, philosophers,
software engineers, documenters etc.) goes a long way towards validating this top-level
hypothesis.

In order to improve CODE4, we have formulated several hypotheses about how the tool
can be made more accessible and useful; we have then sought to validate these hypotheses
by user testing. In the next section we present our research method. In section 3 we de-
scribe some metrics that help us describe the nature of our knowledge bases. In the final
section we describe users’ responses to key features in CODE4; many of these features al-
low for informal use of the system.

2. RESEARCH METHOD
CODE4 is the successor to prior versions of CODE, most notably CODE2 (Skuce et al,
1989). CODE2 has been used extensively in several projects in industry and academia.
This experience taught us some useful lessons and led to the development of a number of
hypotheses. Some of the key general hypotheses are:

• A non-modal, graphical and flexible user interface is critical to the effectiveness of such
a system.

• A flexible, elegant knowledge representation is important.

• Features that permit informal use are at least as important as features intended for more
structured, systematic representation work.

Most of the hypotheses were developed by observing problems with CODE2 and CODE3
and analysing the underlying reasons for the problems. In January 1991 it was decided to
start construction of CODE4, which incorporates many of the hypotheses as design princi-
ples.

Since mid-1991 CODE4 has been used by a growing number of people and during this
time new features have been prototyped and incorporated. Important projects using
CODE4 are a group doing organizational modelling at Boeing (Bradshaw et al. 1992) and
a group of translation researchers investigating tools to handle technical terminology
(Meyer et al, 1992). In mid-1993 the system reached a level of maturity sufficient to begin
more structured studies of its effectiveness.

We gave CODE4 to eight subjects (graduate students and a professor). The subjects
created a total of 18 knowledge bases using the system. They reported spending a total of
2000 hours building the knowledge bases, in total representing over 16500 concepts2.

We use four methods to analyse the subjects’ efforts; two are objective in nature and two
subjective:

simpler tasks to which one can apply KA technology. The challenge is to make that technology
accessible. Very few KA researchers are dealing with this particular problem.

2 CODE4 handles all units of knowledge uniformly, and refers to them all as concepts. The figure
16500 represents the number of concepts users added to knowledge bases. A number of primitive
concepts exist when a knowledge base is created.

3

1) Static analysis of the knowledge bases: We measured over 100 attributes of each
knowledge base; a few of these are reported in table 1. These attributes are the basis
for the metrics discussed in section 3.

2) Analysis of the user interface commands used to create each knowledge base:
Throughout the period of the experiment, all usage of CODE4 at the University of
Ottawa was logged in detail – these data were then analysed to determine which
commands and operations appear most useful.

3) Analysis of a detailed questionnaire administered to each subject. The questionnaire
contains 55 main questions and 389 sub-questions. Most of the questions are designed
to ascertain the usefulness (or importance) and difficulty of various features. Figures 1
and 2 show samples of questions.

4) Follow-up interviews with the subjects. Here we tried to further our understanding of
people’s problems, and why they did certain things. In several cases, misconceptions
about CODE4 or the questionnaire were highlighted by this process.

The results reported in this paper come largely from methods 1 and 3: the static analysis
and the questionnaire. The questionnaire gives us immediate feedback about how success-
ful we have been at achieving our goal; results from its analysis are found largely in section
4 where we discuss features of CODE4. The metrics developed from the static analysis
(section 3) gives us fewer immediate clues as to how well we have achieved our goal, but
they provide a baseline for continual improvement, and provide a a way for others to eval-
uate their systems.

When analysing the data resulting from the questionnaire and from the static and
command analyses, we used statistical tests such as the t-test and tests for correlation. We
used 95% confidence intervals to test for significance. For a substantial number of the
questions we were not able to obtain results within such an interval, so those questions
have been omitted from discussion in this paper.

Due to the diversity of backgrounds of the users, the complexity of CODE4 and the in-
teraction among its features, there is limited scope to run controlled experiments of the
type where specific features are isolated. We therefore seek to validate our hypotheses
using collaborating data from related questions or from more than one of the analysis
methods.

Class of concept Total Mean Minimum Maximum St. Dev.
Types (includes 4 primitives each) 2007 112 40 288 60
User instances 116 6 0 51 14
User props (inc. 34 primitives each) 2502 172 55 400 60
Statements 6398 355 34 1614 391
Terms 5444 302 94 739 177
Metaconcepts 209 12 0 80 22
All concepts: MTOT 17266 959 224 2825 653

Main subjects: MMSUBJ 1920 107 30 278 61
 Statements per main subject 2.10 0.67 4.15 1.01
 Terms per main subject 1.04 1.00 1.20 0.05

4

Table 1: A few of the basic attributes of the 18 knowledge bases created by the 8
subjects. The reader should consult (Skuce and Lethbridge, 1994) for more details about
these classes of concept.

. In this question, please rank your perceptions of various knowledge representation features. Please use the same
scales as in question C1.

i. Familiarity?
0 .. 10

 ii. Useful to
you?

-5 .. 5

iii. Useful in
general?
-5 .. 5

a) Metaconcepts ...
b) Instance concepts ...
c) Terms as separate concepts from the concept(s) they
designate..
d) Treating terms, properties and statements as full-
fledged concepts (with their own properties etc.)

Figure 1: Sample questions asked of the subjects about CODE4’s knowledge
representation in general.

. In the texts or other sources you consulted, what percentage of the concepts or properties did not have stan-
dardized terms (e.g. you had trouble putting a term on a concept, deciding if two terms had the same meaning, or
even what a term meant?)

KB1: __________ KB2: __________ KB3: __________

. What percentage of main concepts and properties have a name you invented as opposed to one that might be
found in an ordinary dictionary or a technical glossary?

KB1: __________ KB2: __________ KB3: __________

Figure 2: Sample questions from the questionnaire, asking about individual knowledge
representation projects.

3. THE NATURE OF KNOWLEDGE BASES: SOME METRICS
In this section we discuss objective measurement of knowledge bases. We have several
purposes in developing metrics:

1) To understand how knowledge bases, users and domains differ. We hope to detect
patterns in the data, and correlations between the metrics and the answers from ques-
tionnaires.

2) To understand the structure of individual knowledge bases so we can develop user in-
terface and knowledge representation features that better cope with such structures.

3) To give us baselines for continual improvement.

4) To provide means whereby research using different systems can be put on a common
footing.

The metrics described in this paper are only preliminary suggestions; we have found them
useful in our research but are not yet ready to propose them as standards.

We approach our analysis of metrics by first defining the kind of knowledge we are mea-
suring and then describing the kinds of general measuring tasks we may want to perform.
After this we discuss how to evaluate the metrics, asking the question: what features are
desirable or undesirable in a metric? In the final part of the discussion, section 3.4, we

5

present the metrics themselves: We discuss their advantages and disadvantages and outline
a few things they tell us about CODE4 and its users.

3.1 What kind of Knowledge Bases are we Measuring?
For the purposes of this study we are concerned with frame-based or semantic-net based
representations such as CODE4-KR, KM and KL-ONE. These are now often called object
oriented representations. We believe however that the basic principles can be adapted to
rule-based representations or representations of problem-solving methods.

The reason for the latter assertion is that object oriented representations can be made to
subsume the others; or the latter can be seen as more specialized abstractions for the
purposes of certain tasks. For example, when representing rule-oriented knowledge in
CODE4-KR one might encode the rules as instance concepts and have additional concepts
for 1) the things affected by these rules, 2) properties of the rules, 3) statements about
them etc.. One can likewise imagine encoding problem solving methods in an object-
oriented way.

3.2 Measuring Tasks to be Performed on Knowledge Bases
The following subsections list tasks that involve measuring attributes of knowledge bases.
many of the tasks have analogs in conventional software engineering, but others do not. In
this section we explain the motivation for the measuring tasks. Suggestions for actual met-
rics and examples of their use can be found starting in section 3.4.

The measuring tasks can be divided into three rough categories: Predicting tasks, static
judgement tasks (for completeness, complexity, information content and balance), and
comparison tasks (between knowledge bases, domains, knowledge acquisition techniques
and knowledge representations). The tasks are certainly not independent – most tasks de-
pend explicitly on others – however, categorizing measuring tasks gives us a useful basis
to decide what metrics we should develop.

We should not expect a clear mapping between tasks and metrics: Some metrics might
help with several tasks, and tasks may require several metrics.

Task A – Predicting time to completion, and hence cost: This is one of the main tasks
for which software engineering metrics are developed: People are interested in as-
certaining the amount of work involved in a development project so they can create
budgets and schedules, or so they can decide whether or not to go ahead with the project
as proposed.

The following illustrates the general scenario for such metrics; here we use the term
‘product’ to stand for either ‘software’ or ‘knowledge base’:

a) We have measured certain attributes of a number of products P1..Pn-1.

b) We are interested in making predictions about Pn.

c) We assume certain metrics M1..Mm are relatively constant among P1..Pn

d) Another metric, Ms, is fairly simple to measure early in development.

e) Another metric, Mt, represents time to create the knowledge base.

6

f) By analysing P1..Pn-1, a function, fp, is developed that reasonably accurately predicts
Mt, given the constancy of M1..Mm, i.e. fp(Ms) -> Mt.

In the software engineering world, a popular early candidate for Ms is function points
(Low and Jeffrey, 1990). Another, somewhat weaker Ms is lines of code. Several methods
including COCOMO (Boehm, 1981) fulfil the role of fp, predicting the number of person-
months to complete the project, given Ms.

To our knowledge, no similar metrics have been published for the production of
knowledge bases. Many people consider the production of knowledge bases to be a case
of software engineering (especially when a KB is being developed for use in an inference
oriented system such as an expert system), however it is intuitively apparent that lines of
code or function points have little meaning and less predictive value for knowledge bases.
Furthermore few other attributes of standard software engineering projects have similar
values in knowledge engineering, rendering attempts to use COCOMO or similar
techniques rather useless.

For knowledge engineering, we need to come up with new candidates for Ms and new
functions for fp. Furthermore, we need to ascertain those attributes M1..Mm that need to
be constant for our particular Ms to work effectively (Of course if an attribute is not
constant in general, then we can attempt to measure it and incorporate it into our
calculation of Ms).

Task B – Judging completeness: In standard software engineering a product is typically
considered complete if it fulfils its specification (e.g. passing appropriate testcases). There
are a number of fundamental differences however, between standard software engineering
and knowledge engineering, that make it necessary to find different ways of determining
completeness:

• There rarely is a specification; knowledge engineering typically progresses fluidly to-
wards a goal, perhaps using a prototyping approach.

• Whereas standard software can be broken down into well-defined modules with well-de-
fined outputs that can be tested; most knowledge bases have a much finer grain – being
composed of concepts or rules.

• Knowledge can be expressed in a rough form that is partially suited to the task at hand,
and then gradually refined and formalized so that it becomes more suited to the intended
task. Standard software tends to either work or not work so there is less scope for incre-
mental development at the detailed level.

The standard way of measuring KB completeness is to apply a knowledge-based system to
a set of test tasks that have optimum expected outcomes, and to measure how well the
system performs. This has a number of disadvantages: a) It is typically hard to measure the
completeness of sub-components of the knowledge base, since for correct operation most
components of knowledge based systems must operate together. b) In incremental devel-
opment it is all too easy to refine just those areas of the KB that lead to good performance
on the test set, and thus to bias the system. c) For some types of knowledge bases it is not
feasible to come up with meaningful test tasks; for example if the knowledge base
represents the design of something, or is intended to serve as an educational resource that
students explore in order to learn about some domain.

7

The above points imply that there may be scope for developing completeness metrics that
do not rely on operational testing: For example, we may be able to measure a knowledge
base’s degree of refinement or formalization. Such metrics would not predict whether the
knowledge is in any sense correct, but they might point out when and where further work
would be profitable, and perhaps how much.

Task C – Judging complexity: A number of metrics allow software engineers to
determine the complexity of modules or subsystems. There are several reasons for doing
this: High complexity may be predictive of greater cost in future stages of development;
and it may expose situations where designs can be improved. A measure of complexity
may also help in determining productivity, because a small but complex project may take
as much work as a large but simple project.

In software engineering one might measure cyclomatic complexity, coupling, fan-out and
hierarchy depth. Adaptations of the latter three may well apply to knowledge bases, but
the special nature of KB’s may suggest additional useful metrics.

Task D – Judging information content: It is not usual to ask of conventional software a
question like: How much information is in this system? In general, such a system is
designed to be able to perform a limited number of tasks. With many knowledge bases
however, a major goal is that they be queriable in novel ways – deducing new facts using
various inference methods. We want to be able to uncover latent knowledge.

To be able to estimate information content helps us determine both the potential use-
fulness of a knowledge base and how productive its development effort is. Such metrics
should take into account the fact that some knowledge is a lot less useful than other
knowledge.

Task E – Judging balance: Knowledge bases are typically composed of a mixture of
very different classes of knowledge; e.g. concepts in a type hierarchy, detailed slots, meta-
knowledge, commentary knowledge, procedural knowledge, rules, constraints etc. Each
project may require a different balance of these classes; and various metrics might give us
clues as to what kind of balance we have achieved. Other knowledge base measures that
come under the category of balance are those that show whether different parts of a
knowledge base are equally complete or complex, i.e. whether completeness and
complexity are focussed in certain areas.

There is likely to be a strong relationship between measures of completeness and measures
of balance; and some balance measures may help create a composite measure of complete-
ness. For example if a knowledge base has a low ratio of rules to types, it may imply that
there is scope to add more rules; likewise if one subhierarchy is far more developed than
another the overall KB may be incomplete. However, there are reasons for measuring bal-
ance variables separately (perhaps after a subjective judgement of completion): They can
allow us to characterize the nature of knowledge and to classify knowledge bases. In the
metrics described in this paper, we omit balance to conserve space but believe measures of
this type to be useful.

There are not many analogs to the idea of balance in general software engineering, but one
example is measuring the ratio of comment lines to statement lines.

8

Task F – Comparing knowledge bases: Most of the metrics derived from tasks listed
above can lead to useful differential measures between particular knowledge bases. For
example we can determine how much more complex KB A is than KB B.

Task G – Comparing domains: By measuring various attributes about knowledge bases
in particular domains, we may be able to ascertain certain constant factors that charac-
terize each domain, distinguishing it from others.

This kind of knowledge can feed back into the prediction process (task A). For example in
the COCOMO method, different predictive formulas are applied to embedded software
and to data processing software. Similarly we may be able to distinguish features of
classes of knowledge base that would allow us to create different prediction formulas (or
different coefficients in the same formulas) for, say, medical rule based systems,
electronics diagnosis systems and educational systems.

Task H – Comparing development techniques: By comparing knowledge bases
developed using different knowledge acquisition techniques we can decide which
techniques are better for certain tasks. We can also incrementally improve techniques.

Task I – Comparing representations: In a similar manner to comparing development
techniques, we can compare representations. Even though such a process might require
converting each representation to some common denominator, we might be able to gain
useful knowledge about the effectiveness of the abstractions in each representation.

3.3 Criteria for Evaluating Metrics
The following are some questions one should ask when evaluating metrics. These criteria
are used in the next section when we discuss actual metrics we have developed:

• How subjectively useful is the metric? The metric must perform some useful task.

• How intuitive is the metric? To be preferred are simpler metrics and ones where people
easily understand the reasons for the calculations.

• How correctly does the metric measure what we want? We must be sure that the calcu-
lated number corresponds to what we are trying subjectively to measure. If the objective
phenomena being measured do not correspond to the subjective phenomena it might be
because some objective factor is omitted or incorrectly weighted.

• How independent is the metric from others? Sometimes this can only be determined by
actually measuring knowledge bases and testing for correlation. Often however, it is
possible to ascertain mathematically that certain dependencies exist. Ideally metrics
should be as independent as possible.

• What are the logical extreme cases of the metric? Do these correspond with what one
would intuitively expect, or are there pathological cases? If the metric behaves in an un-
desired manner at the ends of its ranges, then we probably should modify it. A metric
that has fixed extremes might have more overall usefulness than an open-ended metric;
and there should be some intuitive meaning for the ends of the metric’s range. In the
metrics discussed below we have attempted to find formulas that give a zero-to-one
range. This allows easy comparison between metrics

• How sensitive is the metric to changes in the subjective impression it is trying to
measure, and to what degree of precision should we measure it? A metric should make

9

appropriate distinctions without excessive noise. Also a metric should have a similar
sensitivity throughout its range.

• How should the metric be weighted when creating composite metrics? For example
when creating a measure of overall complexity we have to combine several factors, and
decide on the relative importance of those factors. For the composite metrics discussed
below we have weighted all factors equally (due to lack of enough data to justify any
other weighting).

3.4 Metrics for CODE4 and Similar Knowledge Bases
In this section we discuss several metrics we have developed. Statistics for these are
summarized in table 2. There are three classes of metrics: 1) general open-ended measures
of size, 2) measures of various independent aspects of complexity, and 3) compound
metrics.

Metric Potential
Range Mean Min Max

Std.
Dev.

Raw size measures

 All concepts: MTOT (40-∞) 959 224 2825 653
 Main subjects: MMSUBJ (0-∞) 107 30 278 61

Independent complexity measures

 Userprop Ratio: MUPMS (0-1) 0.30 0.05 0.70 0.18
 Detail: MDET (0-1) 0.14 0.03 0.46 0.10
 Statement Formality: MSFORM (0-1) 0.16 0.00 0.48 0.17
 Diversity: MDIV (0-1) 0.73 0.09 0.99 0.26
 Second Order Knowledge: MSOK (0-1) 0.08 0.00 0.41 0.12
 Isa Complexity: MISA (0-1) 0.43 0.29 0.59 0.09
 Multiple inheritance: MMI (0-1) 0.13 0.00 0.87 0.21

Compound complexity measures

 Apparent completeness MACPLT (0-100%) 35% 10% 63% 15%
 Pure complexity: MPCPLX (0-37) 1.00 0.35 2.22 0.47
 Overall complexity: MOCPLX (0-∞) 114 18 360 99

Table 2: Statistics for the metrics discussed in this section, gathered from knowledge
bases created by the users in our study.

Metrics for size: One of the most basic questions we need to ask is: How ‘big’ is this
knowledge base; what is its ‘size’? Knowing this can help us predict development time and
judge information content. But what does ‘big’ or ‘size’ mean? In software engineering,
size can be measured in lines of code (LOC), unadjusted or adjusted function points,
projected time required etc. The former measure is often criticised as being too dependent
on implementation and design, but still gives a very concrete baseline. The other measures
can usually be specified as a function of LOC.

10

In knowledge engineering we also need a concrete baseline to use in the construction of
other size-dependent metrics. We considered several options, the following two being the
most promising:

• The total number of CODE4 concepts, MTOT: This very physical size measure is
appealing as an analog to lines of code, with which it shares the problem of being poorly
correlated with complexity and time-to-create. Unlike lines of code however, CODE4
concepts are rather diverse in their nature, and many are created without typical users
realizing it (e.g. a ‘term’ concept is automatically added when a user types a new name for
another concept). To combat this difference in importance, we considered constructing a
metric that gives different weights to each class of concept (types, terms etc.), but
abandoned that approach due to lack of data.

MTOT is useful as a measure of how much memory and loading-time a knowledge base
requires, and correlates well with the response time of CODE4’s user interface.

The number of main subjects, MMSUBJ: This count excludes concepts about which noth-
ing is said (e.g. example instances) as well as CODE4’s ‘special’ concepts: properties,
statements, metaconcepts and terms. It ignores how much detail has been filled in for each
concept; this makes it uncorrelated with non-size aspects of complexity and thus more
useful than MTOT. Other advantages are that people have an intuitive sense of what
MMSUBJ means, and can estimate it early in the development of a knowledge base: It is
common for people early in development to roughly categorize and name the important
main subjects in their domain, and then work on adding detail.

Both MTOT and MMSUBJ have the problem that concepts differ in importance. For
example, in many CODE4 knowledge bases people create a core of concepts which are
central to their domain and about which they add much detail. Typically though, users also
add a significant number (10-30%) of concepts that are outside or peripheral to the
domain. In a typical case, a user creating a zoology knowledge base might sketch out a
rough hierarchy of plants.

We settled on MMSUBJ as the most useful basic measure of size due to its ability to be
estimated early and its non-size complexity independence. In our user study this metric
ranged from 30 to 278 with a mean of 107 and a standard deviation of 61. We have found
that knowledge bases in these ranges are relatively easy to browse and keep consistent and
correct. When the number of main subjects rises over 500, even CODE4’s powerful
browsing capabilities are taxed.

Independent Measures of Complexity: A number of factors contribute to the com-
plexity of a knowledge base. We have derived seven complexity metrics that are indepen-
dent of the raw size. We have also attempted to make these as independent of each other
as possible. Each of these complexity measures falls in the range of 0 to 1 so that they can
be easily visualized as percentages, and so they can be easily combined to form compound
metrics.

• Userprop Ratio, MUPMS: This is the square of the ratio of user (non-primitive) properties
to the sum of user properties and main subjects. If a user adds no properties, then MUPMS

is zero; MUPMS approaches one as large numbers of properties are added to a knowledge

11

base. In the average knowledge base, the number of user properties tends to
approximately equal the number of main subjects, hence MUPMS averages 0.3 (0.54
squared, i.e. people seem to add just over one new property for every main subject).

A possible flaw with this metric is that it is not open-ended: For each additional property,
the increase in the metric is less. Thus in a 100 main-subject knowledge base, increasing
the number of user properties from zero to 100 causes a 0.25 increase, whereas raising it
another 100 only causes a 0.19 increase. If the metric were not squared, this problem
would be much worse (the first 100 would cause a 0.5 increase and the next 100 only a
0.17 increase). In practice these diminishing returns only become severe at numbers of
properties well above what we have encountered, and intuitively there appears to be
diminishing returns in the subjective sense of complexity as well.

• Detail, MDET: This metric gives the fraction of inherited properties that are locally modi-
fied. If no statement values are filled in at all, this metric is zero. If every possible property
inheriting to a main subject is given a specialized value, then MDET equals one. As can be
seen from table 2, MDET never exceeds 0.5 in practice – in fact a value near one indicates
that inheritance is not being properly taken advantage of, and there is thus no knowledge
reuse with its complexity-reducing effect.

Whereas MUPMS measures the potential number of specialized statements , MDET indicates
the amount of use of that potential. The next measure, MSFORM, goes one step further and
measures to what degree that use involves a systematic syntax.

• Statement Formality, MSFORM: This measures the fraction of statement values on main
subjects that are interpretable by CODE4 so that they become links to other concepts in
the knowledge base. If MSFORM is zero, then the user has merely placed arbitrary
expressions in all values. The higher MSFORM, the more CODE4 is able to infer additional
network structures (i.e. ‘knowledge maps’ such as the part-of relation) inherent in the
knowledge.

• Diversity, MDIV: While a high measure of properties, detail and formality may indicate
that substantial work has been done to describe each main subject, that detail may be
largely in the form of very subtle differences. There may be a large amount of what really
amounts to mere data, expressed as statements of the same set of properties about each
main subject. For example in a knowledge base describing categories of cars, hundreds of
cars may be described but only using a fixed set of properties (engine size, fuel
consumption etc.) – we subjectively judge such a knowledge base to be rather simple
despite having a lot of ‘facts’; MDIV attempts to quantify this subjective feeling.

Our diversity metric measures the degree to which the introduction of properties is evenly
spread among main subjects. If all properties are introduced in one place (e.g. at the top
concept) then MDIV is close to zero because the knowledge base is be judged to be
simpler. Likewise, MDIV is close to zero if properties are introduced mostly on leaf
concepts (so there is no inheritance). Maximum MDIV complexity of one is achieved when
some properties are introduced at the top of the isa hierarchy, some in the middle and
some at the leaves. At table 2 shows, among complexity metrics MDIV has the greatest de-
gree of variability in the knowledge bases created by the subjects in our study.

12

• Second Order Knowledge, MSOK: This measures the use of synonyms and metaconcepts,
indicating to what degree a knowledge base contains an added layer of complexity: I.e. the
extent to which users have described the concepts themselves (in addition to the things
represented by the concept) and have paid attention to linguistic issues. MSOK is zero if
neither of these features is used, and is one if every main subject has both multiple terms
and a metaconcept.

• Isa complexity, MISA: This metric combines two factors in order to measure the
complexity of the inheritance hierarchy. The first factor is the ratio of leaf types to non-
leaf types (ignoring instance concepts which are always leaves). This factor is a simple
function of the branching factor, however we choose not to use the latter because it is
open ended. The leaf type ratio is 0.5 when the isa hierarchy is a binary tree. It would
approach zero in the ridiculous case of a unary ‘tree’ with just a single superconcept-
subconcept chain and it would approach one if every concept were an immediate
subconcept of the top concept. On its own, the leaf type ratio has the undesirable property
that for a very shallow hierarchy (e.g. just two levels) with a high branching factor it gives
a reading that is unreasonably high, from a subjective standpoint.

To correct this problem with leaf type ratio, we factor into MISA the average number of
concepts inherited by each main subject. This second factor is related to hierarchy depth
but depends to some extent on the amount of multiple inheritance.

MISA is calculated using the following formula:

MISA = leaf-type-ratio - (leaf-type-ratio / average-concepts-inherited)

MISA is zero in either of the following cases: 1) when there is just a single layer of
concepts below the top concept (no matter how many concepts); or 2) when the branching
factor is one. MISA approaches the value of the leaf type ratio (e.g. 0.5 for a binary tree) as
the tree gets deeper (as the average number of direct or indirect parents per main subject
increases).

• Multiple Inheritance, MMI: This measures the extent to which main subjects have more
than one parent, thus introducing complex issues associated with multiple inheritance such
as teh combinationb of values when two inherited values conflict. If just single inheritance
is present, this metric is zero. MMI actually records the ratio of extra parents to main
subjects, thus if all main subjects had two parents (impossible in fact because the ones near
the top cannot have more than one parent) then the metric would be one; it could also be
one if a substantial number of parents have more than two parents. Although as described
the metric could theoretically read above one, we believe that this could not be the case in
any reasonable knowledge base. Thus we impose a limit of one that the metric cannot
exceed, even if there are an excessive number of parents.

As mentioned at the beginning of this subsection, we developed the above metrics with the
hypothesis that they are independent of each other. As table 3 indicates, for the most part
we have been successful. The only notable exception is the negative correlation between
the isa complexity and the amount of multiple inheritance. This can be accounted for
theoretically because if there are more parent concepts to be multiply inherited (including
by leaves), then the proportion of leaf types should decrease. Despite this moderate
correlation, we think that having a separate measure of multiple inheritance is useful.

13

Multiple
Inher.

Isa
Complex.

Second
Order Diversity

Statement
Formality Detail

MMI MISA MSOK MDIV MSFORM MDET
Userprop ratio: MUPMS -0.05 -0.16 0.24 0.08 -0.17 0.20
Detail: MDET 0.05 -0.10 -0.16 -0.11 -0.17
Statement Formality: MSFORM -0.16 0.17 -0.05 0.27
Diversity: MDIV 0.01 0.15 -0.14
Second Order Knowledge: MSOK -0.13 -0.04
Isa complexity: MISA -0.46

Table 3: Coefficients of linear correlation among the six complexity metrics

Compound Measures of Complexity: We combine the above simple metrics into
compound metrics that give useful overall pictures of a knowledge base. For our initial
study we weight all combined metrics equally because we do not yet have enough data to
justify an unequal weighting.

• Apparent completeness, MACPLT: For this metric we combine those metrics that,
intuitively, should steadily increase as a project progresses. We also seek to create a
metric that ranges between zero and 100 percent so that users can obtain an intuitive
impression of how much work needs to be done on a knowledge base.

The metrics composing MACPLT are: MUPMS, indicating the the extent to which properties
have been added; MDET, indicating the proportion of statements filled in, and MSFORM

indicating the extent to which the knowledge base has been formalized. We considered
adding MSOK, but decided against it because we believe the amount of second order
knowledge may vary too significantly among domains.

Taking the unadjusted average of the component metrics would result in an arbitrary bias
in favour of metrics that have higher expected values. We correct for this as follows:
before averaging, we normalize each metric by multiplying it by a factor that results in the
maximum reading for the data of our study being one. We use the maximum because we
want knowledge bases with the highest readings for each component metric to appear
close to 100% complete. We also want to have MACPLT be zero if all its component
metrics are zero.

The derived formula for MACPLT is thus as follows:

MACPLT = (1.4 MUPMS + 2.2 MDET + 2 MSFORM) / 3

As can be seen from table 2, the knowledge bases in our study have a wide range of com-
pleteness. Using the questionnaire, we asked people to rate the completeness of their
knowledge bases; unfortunately we discovered later that this particular question was
interpreted in several different ways so we as of yet have insufficient evidence for the
validity of the above metric. The strongest apparent weakness is that statement formality
may be weighted too highly – many people appear highly satisfied with very informal
knowledge bases. In order to adjust the weightings in the formula, we would adjust both
the constant factors and the denominator in the equation so the result still franges from
zero to 100%.

14

An interesting derivative use of MACPLT would be to apply it to different subhierarchies of
a knowledge base in order to determine which areas need work, or alternatively, which
areas contain more useful knowledge.

• Pure complexity, MPCPLX: To compute this metric, we combine all the independent com-
plexity measures, again without weighting. Our objective is to give a size-independent
measure of how ‘difficult’ or ‘sophisticated’ a knowledge base is. MPCPLX can be seen as
similar to the complexity multipliers in the function point or COCOMO methods.

We seek to create a metric where above-average complexity results in a value greater than
one and below-average complexity yields a value less than one. To do this we first add a
constant to each metric to bring its average up to one, and then multiply the results
together.

The derived formula for MPCPLX is thus as follows:

MPCPLX = (MUPMS + 0.7) * (MDET + 0.86) * (MSFORM + 0.84) * (MDIV + 0.27) *
(MSOK + 0.92) * (MISA + 0.57) * (MMI + 0.87)

As expected, the average of MPCPLX for the knowledge bases in our study is one. The
complexities vary over a wide range, yielding useful information about the knowledge
bases, independently of size.

• Overall complexity, MOCPLX: Our overall complexity measure is simply MMSUBJ multi-
plied by MPCPLX. In other words we adjust the count of the number of main subjects using
our measure of ‘pure’ complexity of the knowledge base. MOCPLX is intended to serve as a
measure of productivity or information content.

We asked the participants how many hours they spent creating each knowledge base. We
then computed the coefficients of correlation between this estimate and our three size
metrics (the basic counts MTOT and MMSUBJ, plus our computed MOCPLX) in order to see
how well each could act as a productivity measure. As table 4 shows, MOCPLX scored
higher than the others although the correlation was far from perfect. Some reasons for
lack off correlation are: a) the users differed in skill level (some were beginners and others
were experts); b) the time estimates were subjective because the users spent time over
many weeks and it was hard for them to account for all of their time, and c) it was hard for
them to segregate time spent using CODE4 from time spent on research away from the
system.

Metric Correlation with
estimated time

MTOT 0.49 Total number of concepts

MMSUBJ 0.36 Number of main subjects

MOCPLX 0.55 Overall complexity

Table 4: Correlations between metrics and time to build knowledge bases

As an experiment we translated a substantial portion of Bruce Porter’s ‘Botany
Knowledge Base’ (Acker 92) from his KM system into CODE4-KR, and tried

15

manipulating it. With an MOCPLX of 836 (MMSUBJ = 768; MTOT = 6178) it forced us to
add new features to CODE4 to permit more control of the segregation of sub-portions of
the knowledge base for study. Although CODE4’s user interface is capable of opening a
substantially wider ‘window’ on s knowledge base than is Porter’s KM system, CODE4
requires commensurately more skilled manipulation to do this (when browsing smaller
knowledge bases, CODE4 requires substantially less skill to operate than KM).

4. SUBJECTIVE MEASURES OF CODE4’S FEATURES
Using the questionnaire, subjects were asked what aspects or ‘features’ of CODE4-KR
(CODE4’s knowledge representation) they feel were important in representing or
conveying the knowledge in their particular knowledge bases, and to what degrees were
these aspects important. As a result of this study, nine distinct aspects of the
representation were identified. These are listed and categorized in table 5. Table 5 also
shows the rated importance of each aspect on a scale of 0 to 10.

In table 5, we have divided the aspects into three categories: Structural aspects of
representation deal with interconnection and positioning of nodes, considering the
knowledge base to be a semantic net. Terminological aspects deal with the nodes
themselves and how they are labelled. Statement aspects deal with how the nodes are
described in detail. These aspects are discussed in further detail in the next few sections; to
understand more, the reader is urged to consult (Skuce and Lethbridge, 1994).

One of our most significant hypotheses when designing CODE4 has been the need to
allow for users to choose their level of informality3. By this we mean that users usually
want to sketch knowledge in a rough form during the early stages of development, and
then gradually alter it by modifying both structure and syntax so that they conform to
standards, correctly convey the intended meaning, and can be used by inference
mechanisms. This implies designing a knowledge representation that tightly integrates
formal and informal aspects. (Lethbridge, 1991) and (Lethbridge and Skuce, 1992a and
1992b) describe various aspects of the CODE4 design that relate to the formality
spectrum. (Shipman and Marshall, 1993) also make strong arguments for a formality
spectrum.

In table 5, we have indicated which aspects are oriented towards informal use of CODE4,
and which features are for more formal use.

Aspect Importance

Structural aspects (section 4.1)

Conceptual structure, i.e. the ‘knowledge
 maps’ in a CODE4 KB (formal)

9.5

3 There has been considerable debate about our use of the terms ‘formality’ and ‘informality’. Few
people object to us using the term ‘informal’ to describe the use of CODE4 to roughly sketch
knowledge, without being constrained to rigidly defined syntaxes. However some object to us using the
term ‘formal’ for the inverse, because they prefer to preserve that word only for representations with
mathematically defined semantics. We assert, however, that our use of ‘formal’ corresponds with
dictionary definitions and conventional non-computer-science use; and furthermore we find no better
word that captures what we are trying to express.

16

Presentation structure (informal)
Layout (in three dimensions) 5.4
Order (in two dimensions) 2.6

Terminological aspects (section 4.2)

Names (formal or informal)
Main subject names 9.6
Property (relation) names 9.9
2nd order relation names (dimensions) 6.2

Graphic symbols (informal) 3.3

Statement aspects (section 4.3)

Formal statements 5.1
Informal statements 7.9

Table 5: Subjects’ perceptions about the importance of certain aspects of the knowledge
representation to the conveyance of the knowledge in their knowledge bases.

4.1 Structural Aspects of CODE4
Many systems are capable of automatically generating graphs from a description of the to-
pography of a knowledge base (using a particular hierarchy or ‘knowledge map’ – say isa,
or part-of). We discovered early in our use of CODE2, however, that users like to rear-
range their graphs – the graphs have more meaning to them when they are rearranged. A
possible conclusion from this is that the graph-drawing algorithms are not optimal. That is
certainly part of the truth, but we have also concluded that people are actually
representing implicit knowledge when they create their own special layouts, or when they
merely choose to order subconcepts in a certain way.

CODE4 has features that allow users to manually lay out graphs and then to save them for
recall. Users can save multiple layouts for the same information, and can combine layouts
of subgraphs in various ways. Similar capabilities are also available for non-graphical user
interface components (e.g. outline browsers, where the ordering of elements under a
particular parent can be manipulated).

Because the knowledge implicit in ordering or layouts only has meaning to the users, and
cannot be interpreted by inference mechanisms, we consider it informal. We use the term
structural formality to refer to the degree to which the decisions about the spatial
positioning of concepts are purely based on the topography of the graph being
represented.

4.2 Terminological Aspects
We use the term terminological formality to refer to the degree to which a system
enforces a strict rule of one constrained-syntax identifier per concept. Most systems do
just that, requiring the user to pick a unique term using alphanumeric characters. Such
systems require these unique identifiers to distinguish concepts.

Based on lessons from CODE2, where choosing terms was found to be one of the most
difficult tasks for users, we choose to clearly separate the ‘uniqueness’ role from the

17

‘identifier’ role of terms. Looked at another way, we choose to separate the task of
identifying a concept to CODE4 from identifying a concept to the users of CODE4.
CODE4 maintains automatically-generated internal identifiers, but users normally do not
see these. When a concept is first created, the system invents a label for it, often merely
based on its location in the inheritance hierarchy. For example, if a user adds a new
subconcept of ‘horse’ the default term will be ‘specialized horse’. Indeed if two or more
new subconcepts of horse are added, they will all be called ‘specialized horse’. The user is
responsible for knowing which is which, perhaps based on the order in which they are
listed or the properties they have. Presumably the user will give such concepts meaningful
names, but the burden of doing this at the instant of creation is lessened.

In addition to allowing variable numbers of terms per concept, CODE4 also does not con-
strain the syntax of terms. Any ASCII sequence can be used, or, alternately, one or more
bit-mapped graphics can be used. In future we intend to extend this idea so that concepts
can be identified by particular fonts, shapes and colours.

The subjects in our study reported that for 31% of concepts, was no one standard term
they could think of. This figure ranged from 10% to 90% depending on knowledge base
(std. dev. 25%). To combat this problem, subjects had four options available:

1) Invent a new term.

2) Use a single term to refer to more than one concept.

3) Use more than one term for a concept.

4) Use no term (leave the possibly non-unique default label)

For 19% of all concepts, the users took the first option. There were 1.04 terms per con-
cept in the average knowledge base indicating significant use of option 3.

4.3 Statement Aspects
The subjects were asked to estimate the formality of the statements4 in their knowledge
bases, using the following criterion: “Consider knowledge more formal if it has a high pro-
portion of property values with actual links to other concepts rather than just arbitrary
[unparsable] expressions”.

Estimates of formality ranged from 0% to 90%. The mean was 54% and the standard de-
viation was 26%. The actual formality of first-order knowledge in the knowledge bases
was then computed. The actual formality ranged from 0% to 48% with a mean of 16%
(see MSFORM in table 2). The coefficient of correlation between the subjects’ estimates
and the measured formality was 0.27 which, although positive, indicates that the subjects
either have an unclear idea of what formality means or cannot easily estimate it. Both rea-
sons are likely true.

When asked about which type of statements were most important in conveying its content
the subjects ranked formal statements significantly lower than informal ones (51% vs.
79%). (Although see table 6 for somewhat contradictory data) When using informal state-

4 A statement corresponds to the occurrence of a property in a subject concept. They are called concept-
slot-value triples in KM, for example. A statement has a ‘value’ and possibly other facets.

18

ments, the subtle nuances of natural language (or the user’s choice of syntax) can be used.
Although most informal statements can in fact be formalized, to do so requires adding a
number of additional statements; therefore informal statements might be considered more
‘knowledge-dense’ on average, than formal statements (although much less of this dense
knowledge is available for automatic processing).

4.4 Summary of Formality/Informality
In almost all the knowledge bases, the subjects used informal features in all three of the
above major categories. Statement informality was used most, followed by structural in-
formality and then terminological informality.

The less complex knowledge bases tend to be substantially less formal than the more
complex ones. This corresponds with our expectation (and observations) that people nor-
mally want to ‘sketch out’ a knowledge base initially and then gradually formalize it. Ship-
man’s PhD research (Shipman 1992) discusses this concept in detail.

4.5 Ratings of particular features
We asked the subjects to rate their perceptions of 58 distinct features of CODE4. 22 of
these are knowledge representation features, and the rest involve the user interface. We
asked two related questions:, ‘How useful have the features been to
useful to you think the features might be in general?’’. For both questions the subjects
used a scale where -5 means ‘very harmful’, zero means of no use and 5 means essential.
We combined the scores for the two questions to produce numbers on a scale of -10 to
10. All the mean scores are positive.

Table 6 shows the subjects’ ratings of 12 knowledge representation features for which we
obtained statistically significant results. Although several features involving informality
have slightly lower ratings than formal features, this does not contradict our hypothesis
about the importance of informality because all the features listed were judged to be
important.

Feature Rating Type of feature

Property hierarchy * 10 Structural

Inheritance 9.7 Inference

Multiple inheritance 9.7 Inference

Multiple property parents * 9.4 Structural

Modality facet 8.6 Statement

Facets in general 8.5 Statement

Formal references 8 Statement

Delegation 7.7 Inference

Metaconcepts * 7.5 Structural / statement

Flexibility in adding facets * 7.4 Structural / statement

Informality in statement values * 7.3 Statement (informal)

Synonyms * 7.3 Terminological

Ability to use any string in a term * 7.1 Terminological (informal)

19

The built-in facets 7 Structural / statement

Table 6: Ratings (in a scale of -10 to 10) of all the knowledge representation features
for which statistically significant results were obtained. A single asterisk indicates the
feature is rarely found with similar capabilities in comparable systems.

4.6 Suitability of CODE4 to Tasks
In general there was a high satisfaction with the use of CODE4. In almost all cases, the
subjects reported that they obtained substantial insight about the subject matter when
using CODE4. On a scale where 0 indicates that constructing the knowledge base results
in no new insights and 10 indicates that many new insights were obtained, the mean
response was 7.7 (std. dev. = 2.5).

The subjects were then asked to compare CODE4 with other representational
technologies with which they were familiar. They were asked, only for those technologies
with which they were familiar, “How easily could you have represented the same
knowledge using the following types of software or representation methods?”. The
answers were placed on a scale where -5 means that the knowledge can be represented
much more easily using the alternate technology than using CODE4, zero means that
CODE4 equals the technology in representational ease, and 5 means that the using the
alternate technology instead of CODE4 would have resulted in much more difficulty.

In all cases where there was sufficient data, the subjects ranked CODE4 ahead of the alter-
nate technologies. Figure 3 summarizes the results. In particular it is notable that CODE4
is perceived as more useful than both informal representation techniques (e.g. natural
language) and more formal representation techniques (e.g. predicate calculus and concep-
tual graphs).

0

1

2

3

4

5

Spreadsheet Drawing

program

Predicate

calculus

Relational

database

Conceptual

graphs

Natural

language

Figure 3: Perceived difficulty of use of representational technologies. Larger numbers
indicate that the technology is perceived as being more difficult to use for the kind of
representational tasks studied. CODE4 (the baseline for comparison) is zero. A negative
number (of which there are none) would indicate that the technology is perceived as
easier than CODE4.

The subjects were also asked to compare CODE4 to technologies such as KIF,
Ontolingua, KL-One derivatives, hypertext and outline processors. Unfortunately there

20

was insufficient experience among subjects for statistically significant conclusions about
these technologies.

5. CONCLUSIONS AND FUTURE WORK
Detailed studies of knowledge acquisition cases can yield useful insights. We analysed the
use of CODE4 using subjective questionnaires as well as objective computations
performed on the resulting knowledge bases. In our study, eight users spent about 2000
hours creating 18 knowledge bases.

The following conclusions have resulted from the above process:

1) The ability to measure characteristics of knowledge bases can help with several tasks
including measuring productivity, determining how ‘complete’ knowledge is and
predicting how long it will take to develop a knowledge base. The metrics discussed in
this paper have proved useful in our CODE4 research, and could readily be calculated for
other types of knowledge representation system.

2) There appear to be at least six different ways of characterizing the complexity of a
knowledge base that are independent of size and of each other. These include the relative
number of properties, the extent to which concepts are described using the properties, the
formality of statements using the properties, the degree to which properties are introduced
in an evenly-distributed manner, the proportion of second-order knowledge and the struc-
tural complexity of the isa hierarchy. These, plus measures of raw size, can be combined
to create useful compound metrics.

3) A knowledge management system that is capable of allowing users to represent and ma-
nipulate informal knowledge is indeed useful. CODE4 users appear to value the combina-
tion of a knowledge based system’s capabilities, with the freedom to express ideas using a
variety of textual and graphic syntaxes and terminologies.

4) Most systems or languages are not designed to allow a spectrum of formality, therefore
such systems are restricted in their usefulness when it comes to the task of helping users
structure their thoughts. While highly formal systems may be useful for the creation of
knowledge bases for inference-intensive automated tasks, such systems have substantially
less ability to act as an amplifier of human thought processes.

5) Several important aspects of informal knowledge representation cannot be adequately
exploited without the presence of a graphical user interface. Of particular importance is
the ability to manipulate graphs or textual hierarchies showing structure. While knowledge
acquisition systems which only focus on formal knowledge for inference systems may find
such a user interface useful; it becomes essential for systems that are designed to help
people explore and structure their thoughts. The design of such a user interface must be
done in tandem with the design of the knowledge representation.

We see several avenues of future research. Of significant use would be to gather more user
data in order to improve, fine-tune and validate the metrics. Another way to fine-tune and
validate the metrics would be to have several CODE4 experts take the knowledge bases
created during our study, and judge various aspects of their complexity. The results of
these judgements would be compared with the metrics.

21

ACKNOWLEDGEMENTS
The authors would like to heartily thank those whose numerous hours of knowledge-base
building work and questionnaire-answering made this study possible.

REFERENCES
Acker, Liane (1992). “Access Methods for Large Multifunctional Knowledge Bases”, PhD

Thesis, Technical Report AI92-183, Department of Computer Science, University of
Texas at Austin

Boehm, B.W. (1981) Software Engineering Economics, Prentice-Hall, Englewood Cliffs,
NJ

Bradshaw, J., Holm, P., Boose, J., Skuce, D., & Lethbridge, T. (1992). Sharable On-
tologies as a Basis for Communicating and Collaborating in Conceptual Modeling. 7th
Banff KAW, p. 6.

Lethbridge, T. C. (1991). “A model for informality in knowledge representation and ac-
Workshop on Informal Computing,, Santa Cruz: Incremental Systems.

Lethbridge, T. C., & Skuce, D. (1992a). “Integrating Techniques for Conceptual Model-

Lethbridge, T. C., & Skuce, D. (1992b). “Informality in Knowledge Exchange”. In AAAI
Workshop on Knowledge Representation Aspects of Knowledge Acquisition, San Jose

Low, G.C and Jeffrey, D.R. (1990), “Function Points in the Estimation and Evaluation of
the Software Process”, IEEE Transactions on Software Engineering 16, January, pp
64-71

Meyer, I., Skuce, D., Bowker, L., & Eck, K. (1992). “Towards a New Generation of
Terminological Resources: An Experiment in Building a Terminological Knowledge
Base”. In 13th International Conference on Computational Linguistics (COLING).,
(pp. 956-960). Nantes

Shipman, F (1992). “Supporting Knowledge-Base Evolution using Multiple Degrees of
Formality”, Technical Report CU-CS-592-92, Dept. of Computer Science, University
of Colorado at Boulder

Shipman, F & Marshall, C (1993). “Formality Considered Harmful: Experiences, Emerg-
ing Themes, and Directions”, Technical Report CU-CS-592-92, Dept. of Computer
Science, University of Colorado at Boulder

Skuce, D. & Lethbridge, T.C. (1994). “CODE4: A Multifunctional Knowledge Manage-

Skuce, D.,Wang, S., & Beauvillé, Y. (1989). “A Generic Knowledge Acquisition Envi-
ronment for Conceptual and Ontological Analysis”. Banff KAW, 89

