
7th Banff Knowledge Acquisition for Knowledge Based Systems Workshop, 1992

INTEGRATING TECHNIQUES FOR

CONCEPTUAL MODELING

Timothy C. Lethbridge
Doug Skuce

Department of Computer Science
University of Ottawa

Ottawa, Ontario, Canada K1N 6N5
(613) 564-8155 tcl@csi.uottawa.ca

(613) 564-5418 doug@csi.uottawa.ca

 Our goal is to
facilitate the conceptual modeling of a domain using a flexible knowledge representation
schema and supporting software. To facilitate this we have built several knowledge
management systems, the latest one being CODE41 (Skuce and Lethbridge 1992)(Skuce
1992c).

In the rest of this introduction we describe the type of knowledge engineering we do. In
section 2 we describe eight major techniques and list some properties and advantages of
each technique. We analyse several of our knowledge engineering projects to see what
techniques were used and with what results. We describe how CODE4 has evolved to
support these techniques in a highly integrated way, and where we see room for further
automated assistance. Finally, we present some some heuristics that indicate what tech-
niques seem most appropriate to what kind of project.

1 CODE stands for Conceptually Oriented Design/Description Environment. The current version is
CODE4 which in a complete redesign of CODE2. The knowledge engineering projects described in
this paper have used both versions. CODE3 was an experiment that was never used for practical
knowledge engineering.

ABSTRACT

We describe seven knowledge engineering projects with which we have been involved. In these projects
the knowledge represented is largely descriptive, has a significant informal content, and typically is
creative as opposed to the being result of expertise-capture. We then compare eight major semi-automated
techniques we have found most useful in the projects The techniques are: brainstorming, interpretive
structural modeling, text scanning, conceptual diagraming, conceptual outlining, table completion,
systematic critiquing and extended inference. Many of these techniques are widely known, but we have
tailored them for our purposes. We suggest criteria for analysing the techniques and describe the
techniques in terms of the these criteria. We also indicate how our knowledge management system,
CODE4, has been developed with these techniques in mind in order to effectively support our knowledge
engineering projects.

1. INTRODUCTION

2

1.1 Our flavor of knowledge engineering

As emphasized by Bradshaw et al (Bradshaw, Chapman et al. 1992) it is becoming
generally accepted that many aspects of knowledge engineering primarily involve
constructive modeling. The old emphasis on extracting expertise is often a secondary
focus, and may not be present at all.

In our work, we also find that we primarily need to represent the following types of
knowledge (which are typically highly correlated):

a) Declarative (i.e. non-procedural) knowledge.

b) Descriptive properties of things (i.e. not rules).

CODE4 and its predecessors are primarily designed, although not restricted, to handle
these types of knowledge.

CODE4 reflects our increased understanding of the importance of:

• The knowledge representation: its comprehensiveness and expressiveness.

• User interface design for knowledge management systems.

2 techniques.

In this paper we focus on the techniques; this necessitates describing a few aspects of the
user interface. The following paragraphs provide a few points about the knowledge repre-
sentation so that the reader can better understand the rest of the paper:

The units of knowledge in CODE4 are termed concepts. These are categorized into: type
concepts, instance concepts, terms, predicates, statements, rules etc. Concepts are the ma-
chine’s model of anything it can reason about. Analogously we can think about concepts
in the mind as representing anything the mind can think about.

CODE4 has a number of advanced knowledge representation features (Lethbridge 1991a).
Of particular note is its ability to represent concepts on a formal-informal spectrum
(Lethbridge 1991b), (Lethbridge and Skuce 1992). Informal knowledge is usually in the
form of text strings that cannot be immediately interpreted by the system, and relies on in-
terpretation by the user of the knowledge (people or other systems). Formal knowledge is
tightly connected to other knowledge with links that have a well-defined semantics.

1.2 Recent knowledge engineering projects

The following paragraphs describe some of the major projects in which we have been in-
volved, using CODE2 and CODE4. The list is not exhaustive: we have built numerous
other small knowledge bases, and various other individuals and organizations use CODE
for their own purposes, e.g. (Bradshaw, Holm et al. 1992)

2 By knowledge management, we include knowledge acquisition, the refinement of the knowledge, and
making the knowledge available for use (i.e. as a server). In this paper we focus on the first two of
these aspects.

3

• The Bell-Northern Research Telos project

This project (Skuce 1992b) lasted 18 months and consisted of building a knowledge
base about Telos, a complex software system under development. The effort included
reverse engineering Telos as well as assisting in the conceptual design of new features.
Two knowledge engineers and several software engineers and managers were
involved.

• The Telebrain project

In this project we designed a hypothetical ‘invention’, a new kind of telephone system.
The focus was on allowing the knowledge engineer to be as creative as possible (as he
or she might be if using traditional tools such as paper and pencil) while gaining the
power of a knowledge representation system.

• The Ontology project

3This on-going project (Skuce and Monarch 1990) is attempting to identify a useful
set of general concepts for the top of an ‘isa’ hierarchy, based on linguistic research.
The objective is to achieve a conceptually elegant ontology that as many people as
possible can agree on, and use as a basis for exchanging knowledge bases.

So far, we have developed a number of iterations of the ontology. Each time we have
refined our thinking and incorporated the ideas of others (Lenat and Guha 1990),
(Miller 1990).

• The CODE self-description project

Several times during the development of CODE2, CODE3 and CODE4 we created
knowledge bases describing our conceptual understanding of the system under design.

• The Cogniterm project

This on-going project (Meyer, Skuce et al. 1992) is exploring how a knowledge
management tool can assist the terminologist. Much of the focus is on defining terms
and describing how they are used.

The main knowledge base contains descriptions of several hundred concepts in the do-
main of ‘optical storage media’.

• The Smalltalk description project

As a new tactic in our strategy of using CODE for software development, Iisaka
(Iisaka 1992) has created a knowledge base about the Smalltalk language (in which
CODE2 and CODE4 are implemented). CODE4 has also been extended so that the
knowledge base can make direct reference to Smalltalk objects.

Figure 1 is a
‘knowledge flow

3 The word ‘ontology’ is developing a variety of meanings. Here we use it in the sense of highly general
concepts applicable to a wide variety of domains.

2. HIGH LEVEL CONCEPTUAL MODELLING TECHNIQUES

4

diagram’ showing the main techniques that we use. Knowledge entering by any of the
techniques comes from the minds of people, from documents or from knowledge already
existing in the knowledge base.

The subsection 2.1 describes some of the criteria by which we can categorize the tech-
niques and subsection 2.2 describes the techniques in more detail. In section 2.4 we indi-
cate how the various projects described above made use of the techniques.

Brainstorming Using
Nominal Group Technique

Interpretive Structural
Modelling

Scanning of Text and Other
Informal Representations

Property Table
Completion

Conceptual Outline
Structuring

Conceptual Diagram
Drawing

Systematic
Statement Critiquing

Extended
Inference

some beginning words
When rendered the house was a big random collection

of words that it is possible to write

more heading words
Another large blotch of body. The intent is to illustrate

how a cd-view like pane would appear, with all kinds
of text following the node name

yest another collection of heading words
there once was a blue sheep. It was ostracised by the
whiite sheep, and even the black sheep did not like it.

One day a wolf came. It was so discusted at the
appearance of the blue sheep, that it ignored the blue

sheep and attacked the others. Later on the survivirs all
dyed themselves blue. Unfortunately, this trick only
worked once

firther nonsense
This is the final block of nonsense text that I am
adding. I will shrink this down, so that only the overall

appearance of the paragraphs show up

Figure 1: A knowledge flow diagram showing the various high-level knowledge acquisi-
tion techniques we use as knowledge is gradually formalized. The arrows represent the
flow of knowledge between techniques (they do not indicate time sequencing since, for
example, brainstorming may be used several times to expand the knowledge). Note that
conceptual outline structuring plays a central role: we have found this to be the most
generally useful technique.

2.1 General questions to ask about the techniques

The techniques in figure 1 all help build up a knowledge base, but they have very different
properties. In particular we can ask the following types of question of each technique:

5

• Pre-existing knowledge

What knowledge needs to be present prior to the technique being used? What is the
starting point for the technique?

Most techniques require existing knowledge that they can refine or use in structuring
other knowledge. For some techniques this input knowledge needs to be relatively for-
mal, whereas for others it is preferable that it be in the form of informal natural lan-
guage statements.

• Type of knowledge that results

Is the resulting knowledge new, or is it a refinement of pre-existing knowledge?

It has been said (Skuce 1992a) that there are three main activities that can be per-
formed by users of a knowledge management system: 1) acquiring new knowledge
(often involving the consensus of several people), 2) critiquing and refining existing
knowledge, and 3) querying, extracting and referring to the knowledge (using the
knowledge base as a server). The first two of these are the knowledge acquisition ac-
tivities that concern us here, although 3 is a constant need during 1 and 2. Some of the
techniques are primarily oriented towards new knowledge, whereas others are oriented
towards refining knowledge.

Is the resulting knowledge informal or is it tightly connected to existing knowledge in
the knowledge base (i.e. is it formal)?

Some of the techniques result in informal (typically natural-language) statements or
loosely structured knowledge, while others increase the linkages between concepts,
making the knowledge base more formal.

Answers to the two questions above are correlated: Techniques that generate new
knowledge tend to generate informal knowledge. Techniques that refine knowledge
tend to make it more formal.

• Creativity and synthesis

Is the user free to enter whatever comes into his or her head, or is he or she
constrained to answer questions or follow a machine prescribed procedure? Who
initiates the next action, the user or the machine?

Two attributes of a machine-assisted technique can answer this question: modality and
interruptability. The former applies to fine grained actions in the user interface, the
latter applies to switching back and forth between techniques.

If the user interface is modal, the user must respond to prompts. Most user interfaces
have more modality than is strictly necessary: For some techniques it is possible and
desirable to remove all modality (the user is in complete control, no keystroke or
movement of the mouse is requested by the machine); other techniques naturally
require a modal interface.

If the technique is interruptable, then the user can switch to another technique,
suspending what he or she is doing in the current technique. This is generally good,
but can be to distractive for some techniques.

6

We hypothesize that less modality and greater interruptability have the potential to
stimulate creativity: The user is not constrained to a particular course of action, and
this is better able to represent whatever thought come into her or his mind. Greater
interruptability also helps boost synthesis, since the user can go looking for knowledge
to combine.

What feedback should the user get to stimulate further ideas?

Some techniques are more oriented towards giving the user freedom to enter knowl-
edge, whereas others focus on displaying the consequences of what is entered.
Feedback can be of three forms:

1) Group participant feedback: Other participants in the technique see what has been
entered and respond

2) Computer responsive feedback: The computer displays the consequences of user
editing actions (in some systems this is done modally, with the user being forced to re-
spond to the feedback, however we find it best not to force responses even if the user
has entered something ‘wrong’)

3) Computer navigational feedback: The computer displays knowledge structures as
the user navigates, often these knowledge structures must be dynamically computed.
Typically the user will navigate around the knowledge base after every edit. The
consequences of previous edits then become clear. This type of feedback differs from
the last in that the user must specifically request it (although the request may be
implicit).

• Group efficacy

Is this technique suitable for use by a group?

Some techniques are naturally group techniques. For these we would want to build
‘groupware’ user interfaces where several people can interact in parallel on their own
screens. Other techniques are naturally oriented to individual knowledge acquisition.
Some techniques are better performed on one screen (no parallel input) but can be ef-
fectively performed with a group of people guiding an operator.

In the next subsection we answer the questions in the context of each technique. The an-
swers are summarized in table 1. In table 2, we also answer some of the questions in the
context of the major projects in which we used the techniques.

The above questions are certainly not the only ones we can pose of the techniques. For ex-
ample it might be useful to ask how good each technique is at producing problem-free
knowledge (perhaps using the eight criteria listed under the systematic statement critiquing
technique in the next section). This is a topic for future research.

2.2 Techniques amenable to computer assisted conceptual modeling

In this section we describe in detail the eight techniques shown in figure 1. We answer the
questions posed in the last subsection and describe some of our experiences with the tech-
niques.

7

The common threads that ties all the techniques together are: 1) they have been found
effective for the type of conceptual modelling described in section 1.1, and 2) they can
usefully be packaged together in an integrated computer assisted knowledge acquisition
system, as indeed we are currently doing in CODE4.

• Brainstorming using nominal group technique

Starting point: A trigger question, of which participants are to think of as many an-
swers as possible. No other knowledge need exist. This is decided by the group or
moderator; it gives an essential focus to the session.

Result: New, largely informal knowledge: a list of concepts that are answers to the
trigger question. The concepts are typically expressed merely as text strings, although
graphical output (sketches) might also be possible. The resultant concepts are typically
a mixture of type concepts, instance concepts and statements; however it is up to a
later technique to actually categorize them as such and to take other steps to formalize
them.

Technique: This technique is typically manual (Delbecq and al 1975), but recently
computerized brainstorming assistance tools have appeared. Participants are arranged
in a cycle and attempt to think of answers to the trigger question. As soon as they
think of a possible answer it is made available to the next participant in the cycle.
Similarly, answers from previous participants in the cycle stimulate new lines of
thought, and hence answers.

Our insight is to treat the items that result from brainstorming as concepts in their own
right. Such concepts would be very informally specified, but a system like CODE4 is
capable of dealing with any level of formality. Later techniques would incrementally
increase the formality of the knowledge. We envisage participants working at their
own screens, with windows for input and for browsing of the ideas of others.

Interface modality: Fully non-modal. At any time, the participant is free to inject new
answers, to browse previous answers etc.

Interruptability: Best not interrupted to use another technique because that would
result in a participant effectively dropping out of the nominal group.

Feedback potential: High, but originating from the parallel efforts of others answer-
ing the trigger question. There is no opportunity for the system to comment on partici-
pants’ input since it is too informal.

Group-efficacy: Requires a group.

Our experiences: In the BNR project we used this technique several times with no
computer support, subsequently performing interpretive structural modelling (below).
and then entering the results into a CODE2 knowledge base using conceptual outline
structuring (see below).

We have also tried other less structured approaches to brainstorming, particularly con-
ceptual outline structuring (below) with a large screen shared by a group. These ap-
proaches, while useful, do not generate as large an amount of new ideas and group
participation as nominal group technique.

8

Example: When designing a subsequent version of CODE we held a brainstorming
session with the trigger question, ‘What features should we add in order to provide
better support for requirements analysis?’. Some thirty ideas were generated by brain-
storming. Many of these were not new, but some gave us fresh insight. The speed with
which we could completely generate a more or less complete spectrum of ideas was
particularly useful.

• Interpretive structural modelling (ISM)

Starting point: A list of more-or-less related concepts. These may be the result of
brainstorming or informal representation scanning.

Result: The starting concepts grouped, categorized or arranged in other hierarchies or
arbitrary graphs according to some set of relations. Thus existing knowledge is refined
and made more formal.

Technique: Historically, a manual technique (Warfield 1976), but computerized
assistance exists as exemplified by BNR’s PRISM tool (Saunders 1990). The
procedure varies depending on the number of concepts and the type of structure to be
built, but the main ingredients are a well-structured and rapid sequence of moderated
discussions and votes.

Once again, our insight is to structure concepts directly using a knowledge based sys-
tem. For example ISM can be used to classify concepts when building an isa hierarchy,
or to structure conceptual relations such as temporal or importance graphs.

Interface modality: Largely modal. The group members respond to prompts that re-
quest them to vote.

Interruptability: Interruptable to perform brainstorming or some other technique,
particularly when the group feels that the input concepts are inadequate to compose
the structures being built.

Feedback potential: Typically low. It is possible to observe the structure being built,
but this can distort the elicited knowledge. It is generally best to let the participants
respond to the prompts by thinking about what they are being asked rather than
attempting to look it up.

Group-efficacy: Most useful in a group, but can be performed individually.

Our experiences: We frequently perform this technique following the use of the
nominal group technique to place some structure on the answers to the trigger
question.

Example: After brainstorming for a list of concepts (representing features) we decided
to categorize them. The first step was to take an arbitrary pair of concepts and ask the
participants, ‘Do these fall in the same category?’ If there was disagreement a discus-
sion was held. This was followed by a vote. This pairwise-voting procedure was re-
peated until the computer determined that it had sufficient information to categorize all
concepts. After naming the categories we performed further ISM to arrange the con-
cepts (including the new categories) in an ‘is more important than’ relation.

9

In this particular example, the categorization resulted in an informal 2-level isa hierar-
chy. Part of the informality was due to the fact that the concepts were still expressed
as character strings. Additional informality resulted from the fact that the categories
were often not really types or superconcepts of the input concepts. A purist
knowledge engineer would in fact have been rather displeased at this initial attempt at
creating an isa hierarchy. Nevertheless, real knowledge was generated and a
knowledge engineer was subsequently able to rapidly clean up the knowledge. The
categories provided a very useful breakdown of types of features, a breakdown that
nobody would have individually thought of. Given the categories, it became possible
to generate further knowledge by asking the question, ‘What is missing from this
partition?’ during systematic statement critiquing (below).

Scanning of text and other informal representations

Starting point: A possibly-complex informal representation that cannot be fully
parsed and compiled into a formal knowledge structure. Typically this is a natural lan-
guage document or the description of a single concept using natural language. In some
future implementation it might be possible to scan visual representations looking for
patterns, icons etc.

Result: A series of new terms extracted from the input.

Technique: Much knowledge that we would like to capture in a knowledge base is
often expressed in natural language documents. We believe that with current
technology it is unreasonable for a knowledge-based system to attempt to ‘understand’
an entire text document.

There have been many attempts to extract terms out of documents without full natural-
language understanding (Szpakowicz 1990). CODE2 can take a document and look
for terms that are not contained in its lexicon. These are presented to the user as
possible candidates for inclusion in the knowledge base (see figure 2). The user may
accept the term (possibly declaring information such as part-of-speech), or reject it.

10

Figure 2: Text scanning of a natural-language document. The term ‘PCM’ has not been
found in the Cogniterm knowledge base.

As an extension to the technique, the scanning process can pause on terms it already
knows, presenting its current knowledge about the concept or concepts(senses) the
term means. The user can then be prompted to confirm or declare the correct sense.
As an future extension, built into a hypertext system, the system might tag the term in
the input document with a pointer to the knowledge base.

Interface modality: Largely modal. The user is presented with a sequence of prompts
requesting acceptance, rejection, confirmation, etc.

Interruptability: Interruptable at any time. In fact it is often desirable to suspend
scanning and structure a concept when a new and useful term is found, or where a
knowledge base problem is detected.

Feedback potential: Low. The technique itself does not result in significant feedback,
but feedback will normally result from interrupting it to structure concepts.

Group-efficacy: Suited to individual use, although the process of deciding how to
deal with discrepancies can be effectively done with several experts involved.

Our experiences: We have had considerable success manually scanning documents to
ensure that their terms and concepts correspond to those in the knowledge base;
editing the document or knowledge base where necessary. So far we have used the
computerised version of this technique only on small exapmples, however there has
been considerable interest in it in connection with our ongoing BNR project.

Example: We took a software specification document and carefully scanned it. We
found numerous subtle problems in almost every sentence. The process of correcting
the knowledge base and the document was edifying to all concerned. Prior to this pro-
cess, the document was considered ‘correct’ to the author and other experts, and the
experts were slightly hostile to our attempts at critiquing. After the knowledge acquisi-
tion process (a large portion of which was simply discussion of the detected
problems), the experts became very positive towards our technology, as they realized
the hidden problems in their document.

• Conceptual diagram drawing

Starting point: Several existing types and properties (relations)..

Result: An arbitrary graph of concepts: typically a mix of new concepts and refined
concepts.

Technique: The user manipulates a graph composed of nodes and links (see figure 3).
The process normally starts with a few nodes (usually representing type concepts or
instance concepts) on display. The user can add, delete and move nodes around by
direct mouse manipulation; the user can also indicate conceptual relations by linking
nodes together. Other useful features include the ability to rapidly alter the set of

11

nodes and links that are displayed in order to work on different parts of the knowledge
base.

A number of knowledge base tools support this technique, e.g. KSSn (Shaw and
Gaines 1991). In CODE4 we have added considerable sophistication for the
experienced user, for example the graphing capability is tightly integrated with the
outlining ability: The user can create networks of browsers such that concepts
displayed in one window are functionally dependent on the user’s selection of
concepts in a prior ‘driver’ window. Updates in one window are automatically
reflected in others, which may show the concepts in a different context.

Interface modality: Almost completely non-modal.

Interruptability: Completely interruptable.

Feedback Potential: High. Typically the user will have several windows open on the
knowledge base, and as changes are made in one window, the consequences can be
seen in another window. CODE4 also provides a separate feedback window by which
the system can comment textually on what has been entered.

Group-efficacy: Generally an individual technique.

Our experiences: We use diagram drawing extensively, although mostly for display
with only minor editing. Most people find conceptual outline structuring (described
below) to be more effective when a large number of changes have to be made.

The most popular kind of diagram is the ‘isa’ hierarchy; second most popular are other
kinds of hierarchical diagrams such as categorization of statements, and part decom-
position. The ability to create other more complex diagrams is used far less, even
though people are impressed when we demonstrate CODE2 and CODE4’s
capabilities..

Example: When creating a model of a telephone system we used diagram drawing to
show how parts are interconnected, and to draw a finite state diagram. All the knowl-
edge contained in these diagrams could also be viewed by looking at properties of con-
cepts using conceptual outline structuring (e.g. a state has in-transition and out-transi-
tion properties). This provided useful feedback.

12

Figure 3: Two windows for conceptual outline structuring (left) and a window for
conceptual diagram drawing (right). The knowledge is from our Smalltalk project and is
expressed quite formally.

• Conceptual outline structuring

Starting point: Several existing types and properties.

Result: As with conceptual diagram drawing, an arbitrary graph of concepts (although
only a graph in the mathematical sense, not displayed as such)

Technique: As with conceptual diagram drawing, the user uses direct manipulation to
manipulate nodes and links. However the nodes are lines of text, and the relations be-
tween the nodes are indicated by indentation. This technique is largely a textual analog
of conceptual diagram drawing, with an appearance somewhat like a conventional out-
line processor (see figure 3). In order to facilitate learning, the user inputs required in
CODE4 to manipulate nodes and links have been made almost identical to those of the
conceptual diagram drawing technique

Interface modality: Almost completely non-modal.

Interruptability: Completely interruptable.

Feedback Potential: High, in the same way as conceptual diagram drawing.

Group-efficacy: Generally an individual technique.

Our experiences: This technique is the most heavily used in the CODE2 and CODE4
repertoire. People use it to structure ‘isa’ hierarchies and the statement hierarchies that
describe an individual concept.

The main differences between the diagraming and outlining techniques (aside from vi-
sual appearance) are the following:

1) Much more knowledge can be displayed in a window using outlining. This is both
because of the reduction in white space, and because nodes can be physically larger,
containing useful secondary information (this cannot be done in a diagram because it
would prevent effective screen layout).

2) Impure hierarchies (e.g. those involving multiple inheritance) and arbitrary directed
graphs are much more easy to manipulate using diagram drawing because it is two-di-
mensional

We find that people’s preferred mode of thinking or SET (Meyer and Ross 1991)
(visual or textual/aural) tends to influence choice of technique. This is why we claim
that these techniques should be considered distinct, despite the fact that the users
interactions are very similar: People definitely feel that they are using different
techniques.

• Property table completion

Starting point: A largely complete conceptual structure.

13

Figure 4: A window for property table completion from the Cogniterm knowledge base.
Note that most of the knowledge is very informal natural language.

Result: A refinement of the conceptual structure to fill in gaps in the knowledge.

Technique: Concepts are are listed on one axis, and properties are displayed on the
other axis of a table (see figure 4). The values of statements (whose subject is a
concept and whose predicate is a property) are displayed in cells of the table. The user
can edit the table, particularly the values of the cells, somewhat like a spreadsheet.

Interface modality: Largely non-modal.

Interruptability: Completely interruptable.

Feedback Potential: Very high. Editing affects other windows and the feedback panel
in the same way as with diagraming and outlining. This technique gives valuable
feedback allowing the comparison of concepts, highlighting discrepancies. Numerous
different tables can be dynamically generated by selecting appropriate sets of concepts
and properties.

Group-efficacy: Generally an individual technique.

Our experiences: This has been a relatively new addition to our CODE2 repertoire
and has been largely used to display tables with little editing. Users have found it pre-
vents ‘flipping’ between concepts or opening large numbers of windows, and makes
the process of comparing concepts much easier. Further research is needed,
particularly the addition of the technique to CODE4.

• Systematic statement critiquing

Starting point: A moderately complete knowledge base.

Result: A more complete knowledge base with ‘problems’ removed.

Technique: Statements in the knowledge base are presented to the participants for
critiquing in a structured order. They are normally syntactically embellished to look
like natural language. Statements may be immediately changed if problems are found,
or the problems may be recorded so they can be fixed by individual experts. The
choice of immediate or deferred updating substantially effects the sequencing of
statements that should be presented.

We find it best to present a blocks of statements (e.g. a related subset of all those
about a concept) on the screen and ask the participants to read them and speak up if
they detect any problems. It is particularly important to be systematic in the order of
presenting the statements, e.g. starting from the most general concepts (once the most
general concepts are found to be correct, there are less likely to be problems with
inherited knowledge).

14

We envisage expanding this technique when it is done in a group so it operates like a
software code inspection; i.e. with paraphrasing and the discipline of pre-examining
the knowledge base by participants.

When critiquing participants should ask the following questions of each statement: Is
it: 1) Correct with respect to the opinion of the experts? 2) Consistent within the
knowledge base? 3) Unambiguous in its expression? 4) Sufficiently formal to be
useful? 5) Represented in the most appropriate way? 6) Sufficiently general or
specific? 7) Sufficiently complete? and 8) Relevant to the purpose of the knowledge
base?

Interface modality: Largely modal.

Interruptability: Interruptable, but it is best if interruption is not done excessively, as
the idea is to be systematic in covering the knowledge base. If the user jumps out of
sequence and edits knowledge elsewhere, it may be necessary to restart the process as
previously validated knowledge may no longer be valid. Of course, correcting knowl-
edge may have a similar effect: An adequately intelligent system would take this into
account when sequencing the statements to be presented.

Feedback Potential: Moderate. The knowledge is presented, and any corrections may
cause other displays to update, reflecting consequences. But as was noted under
‘interruptability’ it is best to focus on the current statement.

Group-efficacy: Typically performed individually; however ‘inspection’ of the
knowledge base by several people in parallel can be useful for detecting and correcting
problems that arise out of differences of opinion (i.e. consensus-building)

Our experiences: At the current time, we use the user interface of the outlining tech-
nique, and rely on the user’s familiarity with the knowledge base to systematically pre-
sent statements to the participants for critiquing. With future research we hope to have
the system help organize the session.

Example: In the early phases of the BNR project, individual experts would enter
knowledge using outlining and then get together for group critiquing sessions led by a
knowledge engineer. CODE2 assisted by a) selecting material to be reviewed, and b)
recording the status of group decisions about each statement. These sessions proved
extremely valuable, although they were sometimes quite arduous as the knowledge
was very complex.

• Extended inference

Starting point: A largely complete knowledge base.

Result: Further refinement of the knowledge base.

Technique: This technique has much the same purpose as systematic critiquing: find-
ing problems with the knowledge. The difference is that specialized automatic
inference methods are used.

We assume that there are some basic inference methods that run in almost real-time,
computing new knowledge (forward-chaining) or detecting problems (backward

15

chaining). CODE4 has inheritance, delegation, value combination and a number of oth-
ers. When a knowledge base nears completion, however, we may want to unleash the
full power of first order logic to perform inferencing that is too computationally com-
plex to perform in real time. We call this extended inferencing.

The user must request that extended inferencing be run. He or she may request that it
be performed on a particular part of the knowledge base and may specify parameters
such as search depth. The system then computes either forwards or backwards and re-
ports its results. In the future we envisage the results being presented in such a way
that the user can perform systematic critiquing of them.

Interface modality: Non-modal. The user is presented with a list of consequences
with which to do whatever he or she wants.

Interruptability: This technique is inherently atomic from the user interface point of
view, so interruption is not possible (of course, the on-going computation could be
aborted, perhaps displaying results computed so far).

Feedback potential: Very high. Feedback is the raison d’être of this technique.

Group-efficacy: Not applicable. It only takes one user to start the inferencing
(although subsequently a group may use the critiquing technique on the
consequences).

Our experiences: We developed a Prolog-based adjunct to CODE2 called FOLDE
(Full First-Order Logic Deduction Engine) (Skuce 1991). Interestingly, we found
nobody but ourselves was interested in using it, and we have not yet used it in any of
the major projects listed in section 1.2. We believe that this is partly due to the
following: a) the need to fully formalize any input knowledge in order to use extended
inferencing; b) the fact that its user interface is not yet adequately developed; and c)
lack of familiarity with, and fear of, logic. Further research is needed.

Table 1 summarizes and quantifies some of the analysis of techniques given in this section.
All of the attributes are rated on a scale of 0 to 10; the values assigned are the authors’
judgements, and should primarily be considered relative to each other.

Technique

Average
formality
of starting

point

Amount of
new

knowledge
(vs.

refined)

Average
formality
of result

Potential
for creativ-

ity

Level of
feedback
provided

Group effi-
cacy

Brainstorming 0 10 1 10 7 10

ISM 2 4 4 3 3 9

Scanning 1 8 6 1 1 3

Diagraming 5 6 8 9 8 4

Outlining 4 8 7 9 9 5

16

Table completion 7 3 8 5 10 5

Critiquing 6 1 9 3 5 6

Extended inference 10 2 10 2 10 6

Table 1: Ratings of some of the eight techniques of figure 1 in terms of the questions
posed in section 2.1

Table 2 lists the knowledge engineering projects we described in section 1.2, and indicates
the degree to which we used each technique. It also ranks some of the projects in terms of
the questions asked in section 2.1. The columns have the following meanings:

X: Relative complexity of the knowledge bases produced, on a scale of 1-10

F: Formality of the resulting knowledge base, expressed as a percent.

N: Percent of time spent adding knowledge as opposed to refining or debugging it

C: Percent of the resultant knowledge base that was creative, (i.e. that contained
knowledge that was not present anywhere in any form prior to the project)

G: Percent of work performed in groups

As with table 1, the figures in table 2 are the authors’ judgements and should be
considered in a relative sense. In future research we expect to instrument CODE4 so that
some of these figures can be measured.

Project X F N C G Techniques Used Comments

Telos 10 15 30 40 50 35% Outlining In the early and late phases, experts did most of
this. In the intermediate phase most was done by
a knowledge engineer after reading documents
and interviewing experts.

55% Critiquing In the early phases, this technique was performed
intensively. During the time when the knowledge
engineer was performing the outline browsing,
the statement critiquing became easier.

5% Diagraming At the time, CODE lacked the diagram-drawing
power it now has

5% Scanning Some design documents were scanned and the
documentation group became interested in this
technique to make sure that all terms were prop-
erly described in the knowledge base

Telebrain 6 30 70 90 5 65% Outlining The knowledge engineer and expert were the
same person, resulting in

15% Diagraming It became particularly useful to represent engi-
neering diagrams directly in the knowledge base.

20% Critiquing This figure was lower than normal because this
project was almost entirely inventive in nature,
this there was little checking for correctness, only
consistency, completeness, ambiguity etc.

Ontology 2 25 10 50 10 30% Outlining

10% Diagraming

17

60% Critiquing The knowledge bases created for this project are
typically very small, so the focus is on maxi-
mizing the correctness and utility of the state-
ments

Self-de-
scription

4 15 45 60 30 5% Brainstorming

5% ISM

5% Scanning During several design efforts, natural language
documents were done first

25% Outlining

10% Diagraming

30% Critiquing

Cogniterm 7 10 65 10 20 30% Outlining

20% Diagraming

10% Table comple-
tion

This technique is particularly important when
comparing concepts or writing definitions.

30% Critiquing

Smalltalk 4 35 60 20 5 70% Outlining As with Telebrain, the knowledge engineer and
expert were the same person

30% Critiquing

Table 2: How we applied the techniques to the projects described in section 1.2. See the
text for a description of the lettered columns.

2.3 Other techniques

It is important to understand that we are not advocating the abandoning of many other
tried and true techniques, such as those surveyed by Neale (Neale 1989). We have just not
yet found it useful to integrate semi-automated support for them into our environment.
We add techniques when there is sufficient demand from users, or when we have sufficient
evidence that an experimental implementation would be worthwhile.

For example, there are many techniques in the literature to help a knowledge engineer
conduct interviews. We try to encourage experts to work directly with our system by
providing a simple and flexible user interface, and permitting very informal input.
However, where interviews are necessary we see little advantage in computer assistance:
A skilled interviewer can do an effective job of elicitation and paper-and-pencil recording
of results. The computer integrated techniques come into play following interviews when
the knowledge engineer typically uses outline structuring to enter the elicited knowledge.

Repertory grids are used in another popular technique (Gaines and Shaw 1987). We have,
however, found only minimal use for them in the kind of knowledge engineering projects
we do because of their limited expressiveness. The closest we come is our table
completion technique, which is more general in one sense, but which does not provide the
same kind of dynamic feedback. Interestingly, the knowledge gathered for the tables in this
paper may have benefited from repertory grid analysis.

18

2.4 Combining the computer-supportable techniques into a methodology

Different knowledge engineering project require different techniques. As we pointed out in
section 1.1, we focus on descriptive modeling projects, but even within this constraint,
projects can require different techniques.

It is typical for ‘methodologies’ for various activities to prescribe a relatively fixed proce-
dure to achieve some goal. We believe, however, that just about any technique can have
its place and it is up to the skill of the knowledge engineer to pick the right technique and
to switch back and forth between techniques as needs dictate. In our view, therefore, a
good methodology should be no more than a set of heuristics that suggest when a given
technique can be useful.

The most important heuristic we espouse is ‘use the technique that appears the most
useful at the time, and feel free to switch among techniques’. However, our analysis of the
above techniques (including the analysis presented in the tables) has led us to develop a
number of heuristics. The heuristics are still under development but the following issues
are of major importance:

Role of knowledge engineer

• Skilled knowledge engineers tend to do most of their work using conceptual outline
structuring. We encourage non-knowledge-engineers to directly use the system: They
tend to also use outlining extensively, although with fewer of its powerful features.
They also tend to want to see knowledge represented in forms such as diagrams and
tables.

Sources of existing knowledge

• If the knowledge is largely in people’s minds then brainstorming, ISM and
conceptual structuring are effective at obtaining it. Quite often though, there is a
substantial body of written material. We find it important to scan this written material,
both to ensure its content is captured and to ensure that it is not inconsistent with the
knowledge base. The latter problem is extremely common.

Complexity and amount of knowledge

• Knowledge bases can get very large and complex, and the classic ‘knowledge acqui-
sition bottleneck’ can hinder further progress. With astute use of partitioning aids and
feedback mechanisms in the conceptual structuring techniques it is possible to ‘hide’
much of the complexity. Systematic critiquing can prevent excessive iteration when
trying to debug a complex knowledge base.

Phase of the project

• Typically the early phases of a project will involve more use of brainstorming and
other techniques that are best at generating new knowledge. In later phases, the
refining techniques are used more. We find it useful, though, to expand and refine the
knowledge base iteratively, focusing on somewhat different areas each time. This idea
has been explored by Shaw and Gaines (Shaw and Gaines 1991)

19

Intended use of the knowledge

• If the knowledge acquisition is being largely performed to help understand a domain,
rather than for the development of an inference-performing system (e.g. the typical ex-
pert system), then less formality is needed in the resulting knowledge. This does not,
however, mean that critiquing is not necessary; it means that the system need not
‘understand’ the representation of every concept.

We have used the following principles when integrating the
techniques into CODE4:

1. All of the techniques operate in windows and act on an underlying knowledge base
using a well-defined series of internal editing commands (i.e. there is a common API
between all the user interface windows and the knowledge engine).

2. We have defined a higher-level API for techniques that involve displaying or traversing
sets of related concepts (diagram drawing, outline processing, property table completion
and systematic statement critiquing). This API has its own set of common internal
commands operating on what we call ‘knowledge maps’ that each describe a particular
view of a knowledge base.

3. The user interfaces for all the techniques have a simiiar look and feel.

4. Changes made in one window are, by default, reflected in others immediately

5. Windows for different techniques can be made to ‘drive’ one another with selections
made in one window determining what is displayed in another window on a different
technique.

In this paper, we have presented a series of
knowledge acquisition techniques for which we

are developing integrated computer support within CODE4. Some of these (e.g.
Interpretive Structural Modelling, conceptual outline structuring) have not been
extensively discussed in the knowledge acquisition literature and we therefore desire to
point out their advantages.

The techniques vary in a number of dimensions. Some, such as brainstorming, and dia-
gram- or outline-oriented conceptual structuring stimulate creativity. Some, such as table
completion, extended inference and conceptual structuring give the users a large degree of
feedback, helping them to understand the consequences of the entered knowledge.
Brainstorming and ISM are the techniques most suited to use in a group, although we
have had considerable success with group-oriented critiquing. Brainstorming, conceptual
structuring and scanning are most effective at generating large quantities of new
knowledge; while critiquing, extended inference and table completion are the most useful
for refining knowledge.

Conceptual outline structuring and critiquing are the techniques that are used most often.
Technique usage depends strongly on factors such as the type and complexity of the
project and the knowledge engineering skill and personal preferences of the users. We find
that a large, complex project tends to involve much more use of the refinement-oriented
techniques. A skilled knowledge engineer uses mostly conceptual outline structuring,

3. INTEGRATION

4. SUMMARY AND CONCLUSIONS

20

although conceptual diagram drawing is used by visually-oriented thinkers and in cases
where non-hierarchical relationships are important.

Support for this research has been provided by Bell-
Northern Research and the Natural Sciences and

Engineering Research Council of Canada.We would like to thank the following people for
their work on various knowledge engineering projects: Ingrid Meyer, Karen Eck and Lynn
Bowker for Cogniterm; Yves Beauvillé and Joe Sarkic for the self-description project;
Ken Iisaka for the Smalltalk project, and numerous people at BNR for the Telos project,
especially Roy MacLean and Milan Javor.

Bradshaw, J., C. Chapman, et al. (1992). "An Application of DDucks
to Bone-Marrow Transplant Patient Support". 1992 AAAI Spring

Symposium on Artificial Intelligence in Medicine, Stanford University, March.

Bradshaw, J., P. Holm, et al. (1992). "eQuality: A Knowledge Acquisition Tool for
Process Management". FLAIRS 92, Fort Lauderdale, Florida.

Delbecq, A. L. and e. al (1975). Group Techniques for Program Planning. Glenview, IL,
Scott, Foresman & Co.

Gaines, B. and M. Shaw (1987) Knowledge Support Systems, MCC.

Iisaka, K. (1992) Knowledge Base of Fundamental Concepts of the Smalltalk-80
Language and Programming Environment, Undergraduate Senior Report, University
of Ottawa.

Lenat, D. and R. Guha (1990). Building Large Knowledge Based Systems. Reading, MA,
Addison Wesley.

Lethbridge, T. C. (1991a). "Creative Knowledge Acquisition: An Analysis". 6th
Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff.

Lethbridge, T. C. (1991b). "A model for informality in knowledge representation and
acquisition.". Workshop on Informal Computing, Santa Cruz, Incremental Systems.

Lethbridge, T. C. and D. Skuce (1992). "Informality in Knowledge Exchange". AAAI
Workshop on Knowledge Representation Aspects of Knowledge Acquisition, San
Jose.

Meyer, I., D. Skuce, et al. (1992). "Towards a New Generation of Terminological
Resources: An Experiment in Building a Terminological KB". 13th International
Conference on Computational Linguistics (COLING)., Nantes.

Meyer, M. and J. Ross (1991). "Psychotherapeutic techniques for identifying experts' and
system users' sensorial experience of thinking: Significance to knowledge acqusition".

ACKNOWLEDGEMENTS

REFERENCES

21

proc. 6th Banff Knowledge Acqusiition for Knowledge-Based Systems Workshop,
Banff.

Miller, G. (1990). “WordNet: an On-line Lexical Database.” International Journal of
Lexicography. 3(4): whole issue.

Neale, I. M. (1989). “First generation expert systems: a review of knowledge acquisition
The Knowledge Engineering Review : 105-145.

Saunders, C. (1990) A PRISM Handbook, , BNR, Internal Document.

Shaw, M. and B. Gaines (1991). "Using Knowledge Acquisition Tools to Support
Creative Processes". proc 6th Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop, Banff.

Skuce, D. (1991). “Interactive Debugging of First-order Knowledge Bases.” Data and
Knowledge Engineering submitted.

Skuce, D. (1992a). "Knowledge Management in Software Engineering: A Tool and and
Experiment". 7th Knowledge Based Software Engineering Conf., Tyson's Corner,
VA.

Skuce, D. (1992b). “Managing Software Design Knowledge: A Tool and an Experiment.”
Resubmitted with reviewers changes to: IEEE Transactions on Knowledge and Data
Engineering : 36.

Skuce, D. (1992c). “A Wide Spectrum Knowledge Management System.” To appear in:
Knowledge Acquisition : 49 pp.

Skuce, D. and T. C. Lethbridge (1992). "A Knowledge Representation for Interactive
Knowledge Management". Submitted to: 3rd International Conf. on the Principles of
Knowledge Rep. and Reasoning, Cambridge, Mass., October.

Skuce, D. and I. Monarch (1990). "Ontological Issues in Knowledge Base Design: Some
Problems and Suggestions.". Proc. 5th Knowledge Acquisition for Knowledge Based
Systems Workshop, Banff.

Szpakowicz, S. (1990). “Semi-automatic acquistion of conceptual structure from technical
Int. J. Man-Machine Studies 33 385-397.

Warfield, J. N. (1976). Societal Systems: Planning, Policy and Complexity. New York,
Wiley.

