
Proc SIGDOC 92, Ottawa., ACM.

BEYOND HYPERTEXT: KNOWLEDGE MANAGEMENT

FOR TECHNICAL DOCUMENTATION

Timothy C. Lethbridge
Doug Skuce

Department of Computer Science
University of Ottawa

Ottawa, Ontario, Canada K1N 6N5
(613) 564-8155 tcl@csi.uottawa.ca

(613) 564-5418 doug@csi.uottawa.ca

ABSTRACT

We describe the use of our knowledge management system,
CODE2, as an aid to documenters of a complex software
system called Telos. CODE2 was first used by the designers of
Telos to clarify their design concepts and terminology. CODE2
served the following purposes: 1) to acquire the knowledge
about the system; 2) to check the terminology in natural
language documents; 3) as an on-line knowledge resource for
documenters and end-users, and 4) to automatically generate
parts of the printed documentation. We describe some features
that make CODE particularly useful to documenters: its
sophisticated user interface, its ability to handle both formal
and informal knowledge, and its support for language. We also
describe our vision for the future of such knowledge-based
technology.

1. INTRODUCTION

Documenters and knowledge engineers have some common
goals: To gather and perfect knowledge, and to present it in
such a way that others can easily make use of it. Currently
these two groups of professionals communicate very little:
Outside the documenter’s community, documentation is not yet
appreciated as being important, despite that fact that it is still
our main means of collecting and disseminating knowledge.
Conversely, probably few people working in documentation are
aware of developments in knowledge engineering. The work
described here represents a merging of these areas.

We have developed a knowledge management system called
CODE21 [Skuce, 1992a] that can be used by both of these
groups and others2 [Skuce and Meyer, 1990] [Meyer and
Skuce, 1992]. In this paper we first compare the tasks of
knowledge engineers and documenters and then describe how
CODE2 can help bridge the gap, based on practical experience

1 CODE stands for Conceptually Oriented
Design/Description Environment. The latest version
of the system is called CODE4; this is a complete
redesign of earlier systems (CODE2 and CODE3),
incorporating many new ideas. The practical
experience reported in this paper was gained using
CODE2.

2 Terminologists are another group of professionals
with similar goals for whom CODE has proved useful.

in which CODE2 assisted documenters in a software-
development environment. Finally, we describe our vision for
how knowledge engineering and documentation technology
should merge.

2. COMPARING THE TASKS OF KNOWLEDGE
ENGINEERS AND DOCUMENTERS

We can consider there to be three fundamental steps in the
documentation process: 1) initially gathering knowledge3, 2)
verifying and perfecting the knowledge, and 3) packaging or
formatting it for use (traditionally in printed form, but
increasingly in an on-line form perhaps involving hypertext or
CD-ROM).

A similar situation is faced by knowledge engineers. The
knowledge-gathering phase is traditionally called ‘knowledge
acquisition’, the verification phase is sometimes called
‘knowledge debugging’, and the packaging phase has
traditionally involved developing software such as expert
systems that permit a user to use the knowledge for some
purpose.

The types of knowledge manipulated in the two fields tend to
differ as follows: Documenters mainly use natural language and
diagrams that cannot be readily understood by computers;
knowledge engineers mainly use formal mathematical or
computer representations that cannot be readily understood by
many humans.

The above differences are beginning to narrow, and our work
reflects a desire to merge both capabilities seamlessly in one
tool:

• Documenters are increasingly interested in presenting

information on-line4. This necessitates dividing the knowledge
into small chunks (e.g. ‘cards’ or hypertext nodes), indexing it,
and adding other features that allow the computer to make
decisions about what to present and how. Additionally, some
technical documentation is beginning to use a restricted English
syntax and carefully controlled terminology [AECMA, 1989],
so that humans can better understand it, particularly tbose with

3 The terms ‘knowledge’ and ‘information’ could be
used here somewhat interchangably. Practically all of
what documenters refer to as information would be
called knowledge by knowledge engineers.

4 The present conference attests to this.

2

limited knowledge of English or the subject matter. A benefit
of this is that there is more potential for computers to be
actively involved in semantic analysis.

• Knowledge engineers, on the other hand, are finding that it is
important to ensure their computer systems can manipulate
informal knowledge5 [Lethbridge, 1992]. There are many
reasons for this: 1) It allows more creativity and flexibility
during knowledge acquisition (it is very difficult for humans to
correctly formalize knowledge, at least initially when ideas are
not yet clear), 2) It allows knowledge bases to be better
understood by a wider range of humans, and 3) It allows for
sharing of knowledge between systems that cannot
accommodate each others’ formal semantics. Knowledge
engineers are also recognizing the importance of presenting
knowledge in an appealing way [Lethbridge, 1991]: Some
recent knowledge-based systems (including CODE2 and its
successor, CODE4) can process or generate restricted natural
language and have graphical user interfaces with outlining,
hypertext, and graph-drawing capabilities.

3. FEATURES OF CODE2 THAT FACILITATE
DOCUMENT CREATION AND USE

Figure 1 shows a typical view of CODE2 on a workstation
screen. Knowledge is organized by topics in hierarchies; each
topic is identified by either a node in a graph, or as an item in a
textual browser that functions somewhat like an outline
processor. The actual knowledge for a topic can be viewed in
several ways; in Figure 1, a topic view is open for the topic
'actor specification'. The browser is set to the statement
describing the property 'behaviour ports' of this topic.

The following features of CODE2 (and its successor, CODE4)
make it particularly suited to use by documenters and
subsequently by users of the knowledge. The same features,
however, have significant benefits for the knowledge engineer,
a fact many of the latter do not yet appreciate [Lethbridge,
1992]:

• The underlying knowledge representation schema

CODE2’s knowledge representation has a linguistic
orientation: Facts are expressed as statements about topics.
Rules exist for how the components of these statements
should be expressed, but they need not be followed if they
are deemed too restrictive. Thus statements can contain
informal natural language or a machine-interpretable
subset of (almost) natural language we call ClearTalk6.
There is also a lexicon that permits queries about
meanings and uses of terms (e.g. "show me how this term

5 Documenters generally express themselves in natural
language, which may well be highly structured, but
which is nevertheless ‘informal’ in the sense that
today’s computers cannot understand it. Knowledge
engineers have traditionally worked at the other
extreme, where knowledge must be expressed in a
formal, mathematical language.

6 Most of the examples in this paper use ClearTalk

is defined", or "is this term used in more than one sense?",
so that terminology can be better controlled (Figure 2).

• Acquisition facilities

CODE2 is able to assist the documenter to structure
knowledge: 1) It can guide him or her to organize the
knowledge being entered, particularly through the use of
generalization (‘isa’) hierarchies, in which more general

statements "inherit" to more specific subjects7, 2) It can
assist in detecting errors of various kinds, particularly
misused terms, and 3) it can assist in the knowledge-
review process by recording information such as who has
agreed with each statement.

• Text scanning

CODE2 has a facility to scan a natural language document
looking for terms it does not know, which can be added to
the lexicon. It can be set to prompt the user to verify that
certain terms, known to be problematic, are being used in
an appropriate sense (Figure 3).

• Documentation generation

The user can ask CODE2 to generate documents
containing both diagrams and text. Such documents
typically include glossaries and ‘concept primers’, which
CODE2 can deliver in a highly readable format. As
explained in the next section, these can be prepared for
publishing with little modification, relieving the
documenter of an arduous task. CODE2 has sophisticated
facilities for selecting and arranging knowledge: This
permits generated documents to be tailored to a variety of
uses. New documents can be easily produced almost
automatically whenever the knowledge base is changed

Figure 4 shows a topic description as output from CODE2
into a publishing tool. Figure 5 shows an example of a
"semantic net" diagram, that shows relationships between
concepts, also produced automatically.

• On-line browsing

CODE2 can be directly used by the end user as an on-line
documentation facility. The user can navigate around
knowledge using a hypertext-like facility. CODE2’s
browsing facilities are considerably more powerful than
typical hypertext though: The experienced user can use
masking, dynamic querying and diagram drawing
capabilities to generate entirely new presentations of the
knowledge.

Figure 6 shows a browser set to show only the hierarchy of
topics involving 'reference'. A mouse click will bring up a
complete view of any description, such as that shown in
Figure 7. A complete textual listing of any topic or topics
can be obtained as in Figure 8, for off-line reference.

7 e.g. a statement such as "cars have wheels" inherits to
specializations of cars such as "sports cars"

3

4. THE BNR EXPERIMENT

At BNR (Bell Northern Research) we worked with a group of
some fifty people who were developing a large, complex piece
of software called Telos [Skuce, 1992b]. Our involvement
lasted about eighteen months. The first few months were
largely spent with software engineers and their managers
reverse engineering the system as it existed, i.e. obtaining the
basic knowledge about the system. Later, we actively assisted
the engineers to design new features using CODE2 as a
"designer's assistant".

Towards the end of the project the documenters became
interested in CODE2 as they realized that much of the
knowledge they would need to obtain and then describe in
technical documentation was already captured in CODE2,
avoiding the need for frequent discussions with the engineers to
explain unclear concepts and terminology (one of CODE2's
main purposes). Furthermore they realized the advantage of
having one common source for documentation that could be
used for the verification and generation of documents. This
contrasted sharply with the common situation where the
documenters have to work with a group of engineers who have
difficulty agreeing on a common set of concept descriptions and
appropriate terminology. Typically, knowledge is dispersed in
many incomplete documents prepared without adequate
attention to terminology or correctness. Often, much of the
knowledge is still only in the heads of the engineers, the
situation known to knowledge engineers as the "knowledge
acquisition bottleneck".

Once CODE2 was recognized as the central repository for
knowledge (the group officially designated it as such), the
following types of documents or other information resources
could be produced from the knowledge base:

• The on-line help system.

• A user's reference manual.

• Much of the official ‘concepts’ guide, that explains the whole
system and its components at a conceptual level (Figure 4 is an
example of such a concept description.)

• System maintenance information.

The documentation team found the knowledge base to be such a
valuable resource that they took charge of maintaining it.
Indeed, they became what every project will hopefully someday
have: the resident knowledge engineers.

Suggestions were also made that CODE2 could be integrated
directly into Telos, both to provide a next-generation on-line
help system about Telos itself, and to allow for the
management of knowledge that Telos itself would generate,
i.e. knowledge about software designed using Telos.

5. A VISION OF THE FUTURE: THE MERGING OF
TECHNOLOGIES

In future we see a convergence of the present assortment of
functionally diverse systems such as knowledge-based systems,
hypertext systems, documentation systems, terminology support
systems, and on-line help systems. At present, each of these is

still being designed and deployed to meet the needs of a
particular group of users in a particular kind of situation.

Our claim, however, is that these users and situations have
much in common: they all need rapid access to the kinds of
knowledge that today are being captured and disseminated
using document production tools. But today's document
production tools have no knowledge management functions;
they are not designed by or for knowledge engineers. In the
future, both groups will merge their expertise in designing tools
that meet both kinds of needs. CODE2 represents an early step
in this direction that has already found practical application in
industry.

In our vision of the future we expect that engineers, managers,
educators, documenters and others will all contribute to a
comprehensive knowledge base describing many aspects of a
topic. The knowledge will be carefully managed with the help
of sophisticated software, to ensure that it is correct, complete
and consistent. The knowledge base will be treated as a large
hypertext document and directly browsed by some users. Other
users will run programs that make computational use of the
knowledge. Still other users will choose to generate documents
that fulfil special needs (e.g. beginners tutorials, context-
sensitive on-line help). These documents will be automatically
updated when the knowledge base changes.

In this scenario, the documenter's main role will change from
that of writing to that of coordinating the gathering of
knowledge and structuring the knowledge base so that useful
documents can be automatically generated.

ACKNOWLEDGEMENTS

Support for this research has been provided by Bell-Northern
Research and the Natural Sciences and Engineering Research
Council of Canada. We wish to thank the Telos group at BNR,
particularly Roy MacLean and his documentation team who so
enthusiastically embraced our technology and provided many
suggestions. We also wish to thank Yves Beauvillé who was
responsible for much of the programming.

REFERENCES

AECMA (1989) ACEMA Simplified English, Association
Europeenne des Constructeurs de Materiel Aerospatial, PSC-
85-16598

Lethbridge, T. C. (1991). "Creative Knowledge Acquisition: An
Analysis". 6th Knowledge Acquisition for Knowledge-Based
Systems Workshop, Banff

Lethbridge, T. C. and D. Skuce (1992). "Informality in
Knowledge Exchange". AAAI Workshop on Knowledge
Representation Aspects of Knowledge Acquisition, San Jose

Lethbridge, T. C. and D. Skuce (1992). "Integrating Techniques
for Conceptual Modeling". 7th Banff Knowledge Acquisition
for Knowledge-Based Systems Workshop, Banff

Meyer, I., D. Skuce, et al. (1992). "Towards a New Generation
of Terminological Resources: An Experiment in Building a
Terminological KB". 13th International Conference on
Computational Linguistics (COLING), Nantes

4

Skuce, D. (1992a). “A Wide Spectrum Knowledge
Management System.” To appear in: Knowledge Acquisition :
49 pp.

Skuce, D. (1992b) Managing Software Design Knowledge: A
Tool and an Experiment. Submitted with reviewer's changes to:
IEEE Transactions of Knowledge and Data Engineering. 45pp.

Skuce, D. and I. Meyer (1990). "Concept Analysis and
Terminology: A Knowledge-based Approach to
Documentation.". Proc. 13th International Conference on
Computational Linguistics (COLING), Helsinki

Figure 1. An overall view of CODE2 on a workstation screen. There are three main windows open. In the background is a graph labelled
‘TelosKBase76’ showing topics arranged in a generalization hierarchy. At the right is a ‘Property Browser’. This also shows a
generalization hierarchy in its left subwindow. Its top-right two subwindows list properties of the selected topic. Below these are
subwindows giving details of the selected topic and property. The window in the bottom left of the figure shows one way that a collection
of properties of a topic can be presented. The knowledge in any of these windows can be edited, and the user can navigate in a
hypertext-like mode. The complexity of the knowledge in this figure is attributable to the subject matter.

5

Figure 2. A lexicon browser. Words can have many meanings and can perform as various parts of speech. The lexicon browser permits
the editing of this type of knowledge. Once lexical information is entered into the system, the ClearTalk parsing mechanism is better able
to validate knowledge. In this figure the left subwindow contains a hierarchy of lexicons (of varying importance). The middle subwindow
contains words known in the current knowledge base. The right subwindow contains lexical information about one of the senses of the
selected word.

Figure 3. A text scanner. Using the existing knowledge base, the system scans an natural language document for words it does not
recognize. The system then presents various prompts so that the knowledge can be entered into the system.

6

Figure 4. An example of a page produced directly from CODE2 for prototype Telos documentation. The graph fragment at the top relates
the topic ‘Binding Specification’ to related concepts. The rest of the page contains pseudo-natural-language generated by CODE2 and
then post-processed by a word processor.

Figure 5. An example of a semantic net diagram produced directly from CODE2. The boxes represent topics in the knowledge base, and
the arcs show how these various concepts are related to each other.

7

Figure 6. A detailed view of a property browser. The browser has been focussed on the concept 'reference'. ‘Fixed actor reference’ (a
specialized kind of reference) has been selected and its properties are displayed on the top-right subwindow. The property ‘equivalence

8

Figure 7. A screen view of part of a topic description. The top left subwindow shows how this topic relates to others. The top center
subwindow contains knowledge management information. The top right subwindow contains linguistic and commentary information.
Other subwindows contain categories of properties particular to this topic.

9

Figure 8. An example of a textual listing of a topic description. Details of properties of ‘actor specification’ divided up into categories.
The terms in angle brackets refer to the most general topic to have this property.

