
Minimizing Parsing when Extracting Information from

Code in the Presence of Conditional Compilation�

St�ephane S. Som�e

Timothy C. Lethbridge

School of Information Technology and Engineering (SITE)

150 Louis Pasteur, University of Ottawa, Canada

ssome@csi.uottawa.ca

Abstract

Exploring and understanding a software system require parsing its source code

to extract necessary information. This task is complicated by the use of conditional

compilation, a means o�ered by several programming languages for selective compilation

of source code based on conditions. In this paper, we discuss the di�culties in parsing

code with conditional compilation. We argue that the e�ective way to ensure the

extraction of all meaningful information from a source �le is to parse a set of versions

of that �le de�ned by conditional compilation, and describe an heuristic based approach

for the minimization of such parsing.

1 Introduction

The goal of our overall research project is to improve the productivity of software engineers
who are maintaining complex software systems [3, 4]. The purpose of the research described
in this paper, is to design facilities that will allow code exploration and understanding, in the
presence of considerable conditional compilation. To ensure our work is industrially relevant,
we are working with a large telecommunications system developed by Mitel corporation.
This is written in a proprietary language called Mitel Pascal and makes extensive use of
conditional compilation. The software engineers who work with this system regularly add
new features, �x problems and reengineer portions of it.

A conditional compilation directive involves a boolean expression followed by some source
code. This source code is compiled only if its associated boolean expression evaluates to true
during a pre-processing process. The evaluation of a condition depends on values assigned
to conditional compilation variables.

�
This work is supported by NSERC and Mitel Corporation and sponsored by the Consortium for Software

Engineering Research (CSER).

1



Conditional compilation has several uses, including compiling versions of the software for
di�erent platforms and with di�erent sets of features. Unfortunately, the use of conditional
compilation may result in quite complex code [10, 2]; thus the tasks of program comprehen-
sion and reverse engineering can be very di�cult. The Mitel system we are studying consists
on 3460 �les and uses 107 di�erent conditions in conditional compilation directives.

When conditional compilation is used in a program, the actual �le compiled is only one
of many possibles versions of the source code { each determined by a particular setting of
conditional compilation variables. The compiler does not care about the parts of the code
that are not included in the particular compilation. However, program comprehension and
reverse engineering are concerned with the understanding of all the information in a source
code [3]. E�ective tools should therefore be able to show all entities in a system along with
information about which states of conditional compilation variables permit that entity to be
considered by the compiler.

Program understanding and reverse engineering tools obtain their data by parsing source
code. We must therefore ensure that such parsing can extract every detail in the code in
presence of conditional compilation directives. Ideally we would write a parser that could
accept un-preprocessed code and process it in one pass. This is, in general, not possible for
three reasons:

Firstly, conditional compilation directives may be used in a such way that only a subset
of them are syntactically consistent with each other. For example, we might have code such
as:

a :=
#if PRODUCT1

func1(
#endif
#if PRODUCT2

func2(
#endif

arg);

Clearly, valid code would not be produced if PRODUCT1 and PRODUCT2 were both set;
however at least one of them must be set. It would probably be impossible to design a parser
that could anticipate every programmer's trick such as the above.

Secondly, it is common to use directives for documentation purposes, which are, in fact
not supposed to be parsed. An example follows:

#if PRODUCT1
#if SPECIALFEATURE

Error: Special feature can only be incorporated into product 2.
#endif
#endif

Thirdly, conditional compilation is frequently used to 'comment-out' code that the pro-
grammer wants to preserve, for some reason (e.g. because it is only partially complete or

2



because the programmer is unsure about whether it is, in fact, safe to delete it). Such
commented-out code will often have syntax errors. More details regarding the above di�-
culties will be discussed in the next section.

There are several well known program comprehension tools, e.g. Sni�+ [11], Source
Navigator [8] commercial tools for code exploration, Rigi [6], Software Bookshelf [1] and
GHINZU [5]. Due to di�culties such as those described above, these tools do not, in fact,
consider conditional compilation: They present only the state of the system under one
particular setting of conditional compilation variables. This hampers the ability of software
engineers to use such tools, since they must know in advance which variables to set, and are
not able to easily discover the e�ects of di�erent settings. The main objective of the current
research is to overcome this problem.

Another line of research that considers conditional compilation is source code con�gura-
tion re-engineering. Examples of such work are Snelting [9] and Pearse et al [7]. Snelting's
approach involves rediscovering code con�guration structure by computing a concept lattice
based on conditional compilation directives. The structure found may then be used to assess
the code structure and help reorganizing it. Pearse and al show the conditional compilation
structure of a source �le by generating a graphical representation. They also compute some
metrics (lines of input source code, lines of conditional compilation logic, number of condi-
tional logic branches and number of preprocessor variables) in order to evaluate conditional
compilation complexity.

As described above, our research objective is to parse source �les to extract all the in-
formation. A straightforward approach would be to exhaustively consider all the possible
versions induced by conditional compilation. This supposes that one knows all possible com-
binations of conditions that can be used for pre-processing, and then performing a separate
parse for each. The approach also supposes that one pre-parses the code to extract all the
possible conditions guarding conditional compilation directives in a �le.

A problem with the above approach is the potential great number of parses. The essence
of our technique is that we try to compute the minimum number of parses needed so as to
have processed every valid statement in the source code, and hence to have extracted all the
information in the �le. In general, we �nd that the number of parses can be reduced to an
acceptably low number, although we do not claim to be able to �nd the minimum number.

This next section discusses in more detail the di�culties of parsing code in the presence
of conditional compilation. We then discuss the exhaustive parsing approach and approaches
to reducing the number of parses based on heuristics.

2 Di�culty in parsing code with Conditional Compi-

lation

Syntactically, a conditional compilation directive is similar to a space or a comment as it
may appear everywhere in a source code except inside tokens. That makes impossible to
design a usable grammar for unpreprocessed code.

The following is an example of a Mitel-Pascal program with conditional compilation
directives. This is an arti�cial example used to motivate subsequent discussions.

3



PROGRAM srctest(input,output); (1)

CONST (2)

f%IF appl dg (3)

my cmd line = (4)

f%IF load con�g = lc ss7g ss7 command line; f%ENDg (5)
f%IF load con�g = lc maing dumb maintenance terminal; f%ENDg (6)

f%ENDg (7)

index = 1; (8)

f%IF icode enabledg (9)

TYPE (10)

proc record = RECORD (11)

name: prog name; (12)
procid: process id; (13)

ENDREC;
(14)

f%ENDg
(15)

VAR
(16)

f%IF icode enabledg app pid : proc record; f%ENDg (17)
app name : STRING[10]; (18)
f%IF NOT icode enabledg app pid : INTEGER ; f%ENDg (19)
PROCEDURE treat proc; (20)
BEGIN (21)

f%IF appl d AND (load con�g = lc ss7 OR load con�g = lc main)g (22)

treat cmd(my cmd line); (23)

f%ENDg (24)

f%IF NOT appl d AND icode enabledg (25)

This is an error. icode should not be enabled in this situation. (26)

f%ENDg (27)

treat name(app name); (28)

ENDPROC (29)

BEGIN (30)

treat proc; (31)

ENDPROG. (32)

4



Parsing this program without selecting appropriate parts by pre-processing is impossible
because the code obtained by simply removing f%IF � � �g and f%ENDg do not follow the lan-
guage syntactical constructs. As an example the following constant declaration corresponds
to the program lines 4 to 6. This code segment clearly do not correspond to a Mitel-Pascal
legal constant declaration.

my cmd line =
ss7 command line;
dumb maintenance terminal;

There is another di�culty with the fact that not all the variants of source code obtained
by pre-processing may be wanted. In fact some combinations of conditional compilation
conditions may be prohibited, and it is not exceptional that some directives be used for
documentation and thus are not supposed to be parsed. An example of a such conditional
compilation directive in the above program is between lines 25 and 27. This directive clearly
shows that the intention of the programmer is to have a compilation error when both appl d

is unde�ned and icode enabled is de�ned.
Since an invalid program cannot be completely parsed, we only want to consider variants

of the source code that are syntactically correct. However, to do this, we need to know which
combinations of conditions are valid and which are not.

3 Exhaustive parsing of code with Conditional Com-

pilation

The straightforward way of extracting all the information in a source program that has
conditional compilation is 1) to �nd all the combinations of conditional compilation variables
and their possible values, and 2) to parse the source code repeatedly with each of these
combinations. This will guarantee that each section of the source code has been parsed;
although many sections will clearly be parsed many times.

For the remainder of the paper, when we use the word 'variable' we are referring to a
conditional compilation variable unless otherwise speci�ed. To be able to �nd all possible
combinations of variables, requires us to �rst �nd the variables themselves. In some cases,
they may be enumerated at a particular location in the source code but this cannot be relied
on. In fact, variables are usually set using a compiler directive, e.g. the -D option in C. To
�nd all variables that may e�ect the compilation of the code, therefore, we must 1) scan the
code to detect all directives, and 2) extract the variables and their values from the directives.

Once we have found all the variables and values the exhaustive approach then involves
constituting all the possible combinations of variables/values, and parsing the source �le
with each of them. The remainder of this sections describes this process in detail; discussion
of optimizations is defered to subsequent sections.

5



3.1 De�nitions

A condition guarding a conditional compilation directive is either an atomic condition, or a
complex condition which consists on a set of atomic conditions related with operators AND
or OR.

An atomic condition C is a triple <Sign, Var, Abstr Val> with : Sign denoting the fact
that the condition is negated or not (Sign = \+" or \-"), Var a variable and Abstr Val an
abstract value. Notice that the sign of a complex condition is propagated to its atomic
conditions according to De Morgan's laws.

A variable may be any legal element in the preprocessing language under consideration
which can be used as the left hand side of a boolean expression. In Mitel-Pascal it may be
any expression. Note that valid variables in the preprocessing language may di�er from valid
variables in the underlying language.

An abstract value represents whatever a variable can be compared to in a condition. An
abstract value may describe a single value or a set of possibly in�nite values. We distinguish
the following classes of abstract values.

� DEF,

� UNDEF and

� (Comparator,Value).

DEF and UNDEF are prede�ned values which denotes the fact that a variable is de�ned
or not. As an example, variable APPL D has the value DEF in SRCTEST line 3. A condition
such as f%IF Varg is true only if the value of the variable Var is DEF.

An abstract value (Comparator,Value) includes a comparator; a relational operator in
the language considered (\=", \in", \<>", \<", \<=", \>" and \>=" in Mitel-Pascal),
and a value; an expression. (Comparator,Value) represents a set concrete values V such as
the boolean expression \V Comparator Value" is true for all values V. As an example, (>,
5) represent the set of all values greater than 5.

Given a set of variables fV ar
1
; � � � ; V ar

n
g, we de�ne a setting Vset, as a set of pairs

f(V ar
1
; Abstr V al

1
); � � � ; (V ar

n
; Abstr V al

n
)g with Abstr V al

i
a possible abstract value of

V ar
i
.

3.2 Algorithm for exhaustive parsing

Using the above de�nitions, we have de�ned an algorithm for exhaustive parsing of source
code with conditional compilation directives. The algorithm, which will form the basis for
optimizations to be described later, is as follow.
Given a source �le F :

1. Scan to extract all the atomic conditions of conditional compilation directives.

This �rst scan gets all the f%IF Condsg in F with each Conds being atomic or complex.
We extract all the atomic conditions <Sign, Var, Abstr Val> in Conds.

We then determine all the variables used in conditional compilation conditions of F
and all their possible abstract values.

6



2. Constitute all the possible variable setting.

Given all variables and their possible abstract values, we build the set of all the possible
variable setting. We then obtain all the possibilities with which the �le F can be pre-
processed.

3. For each variable setting Vset, parse F .

We follow exactly the rules used for pre-processing. When a conditional compilation
directive (f%IF Condsg in Mitel-Pascal) is found, we

(a) evaluate Conds according to the abstract values in Vset

(b) if Conds evaluate to true, we parse the statement in the conditional compilation
directive (until the corresponding f%ENDg in Mitel-Pascal)

(c) if Conds evaluate to false, we skip it.

When an error occurs during the parsing, we mark Vset as invalid, stop the current
parsing, and get the next setting.

All the information about F is stored in a database which is updated with the additional
information obtained after each successful parsing.

3.3 Example

The following describes the application of this algorithm to the program SRCTEST listed
earlier.

1. Extraction of all the conditions of conditional compilation directives.

We obtain the following conditions:

� f%IF appl dg

� f%IF load con�g = lc ss7g

� f%IF load con�g = lc maing

� f%IF icode enabledg

� f%IF NOT icode enabledg

� f%IF appl d AND (load con�g = lc ss7 OR load con�g = lc main) g

� f%IF NOT appl d AND icode enabledg

Figure 1 shows all conditional compilation variables and their possibles values.

2. Constitution of the possible variable settings.

We obtain 12 possible settings:

#1 f(appl d, UNDEF), (load con�g, UNDEF), (icode enabled, UNDEF)g,

#2 f(appl d, UNDEF), (load con�g, UNDEF), (icode enabled, DEF)g,

7



Variable Abstract Value
appl d UNDEF

DEF
load con�g UNDEF

(=, lc ss7)
(=, lc main)

icode enabled UNDEF
DEF

Figure 1: SRCTEST conditional compilation variables.

#3 f(appl d, UNDEF), (load con�g, (=, lc ss7)), (icode enabled, UNDEF)g,

#4 f(appl d, UNDEF), (load con�g, (=, lc ss7)), (icode enabled, DEF)g,

#5 f(appl d, UNDEF), (load con�g, (=, lc main)), (icode enabled, UNDEF)g,

#6 f(appl d, UNDEF), (load con�g, (=, lc main)), (icode enabled, DEF)g,

#7 f(appl d, DEF), (load con�g, UNDEF), (icode enabled, UNDEF)g,

#8 f(appl d, DEF), (load con�g, UNDEF), (icode enabled, DEF)g,

#9 f(appl d, DEF), (load con�g, (=, lc ss7)), (icode enabled, UNDEF)g,

#10 f(appl d, DEF), (load con�g, (=, lc ss7)), (icode enabled, DEF)g,

#11 f(appl d, DEF), (load con�g, (=, lc main)), (icode enabled, UNDEF)g,

#12 f(appl d, DEF), (load con�g, (=, lc main)), (icode enabled, DEF)g.

3. Parsing of SRCTEST.

The program is parsed assuming each of the above settings. Settings #4 and #6 cause
a parsing error because the conditional compilation directive between lines 25 and 27
is parsed.

The exhaustive parsing ensure that all the possible variants of a source code de�ned by
conditional compilation are considered. There is however a problem with this approach as lot
of parsing may be needed for a same �le. As an example SRCTEST is parsed twelve times. More
generally given a �le F with S

var
= fV ar

1
; � � � ; V ar

n
g a set of all its conditional compilation

variables, lets nb vals be a function such as nb vals(V ar
i
) is the number of possibles abstract

values of the variable V ar
i
, the number of parsing of F is:

Q
n

i=1
nb vals(V ar

i
): This problem

may not be serious for small software systems since, we can arrange to have �les parsed
infrequently and in batch mode. However, the time and resources needed to parse large
software systems (as in our case) may be quite signi�cant.

The exhaustive parsing can be optimized by taking into account the facts that:

1. Our objective is to extract all the information from code �les. Therefore situations
where conditional compilation directives are skipped are not pertinent unless not doing
a such skipping induce errors.

8



As an example, the conditional compilation directive between lines 25 and 27 is the
only one in the SRCTEST program that must be skipped because it always cause an
error.

2. Some directives may be independent enough to be parsed together even if their condi-
tions cannot be logically true at the same moment.

As an example, a syntactic parser can successfully parse the program SRCTEST with
both conditional compilation directives at the line 17 and at the line 19. That is
possible because the language syntax allows that. However the conditions guarding
these directives can not be logically true at the same moment.

3. Erroneous situations can be skipped once detected.

As an example, an error occurs in the SRCTEST program, when APPL D is unde�ned
and icode enabled is de�ned. It is useless to parse with a setting that makes this
condition becomes true more than once.

Using the above, we have developed an optimized multiple parsing algorithm which try to
reduce the number of di�erent parsings needed to extract all the information from source
code. We describe this algorithm in the next section.

4 Optimized multi-parsing

The objectives of the optimizations are: (1) to have as much as possible conditional com-
pilation directives as possible parsed simultaneously ,and (2) to avoid retrying erroneous
conditions. The optimizations are based on relationships which help to split the set of all
conditions guarding conditional compilation directives in a �le, into subsets of syntactically
consistant conditions that may be true simultaneously. In the following, we �rst describe
these relationships and then the optimized algorithm.

4.1 Relationships between conditions

We use two relationships: a dependency relationship and an incompatibility relationship.

4.1.1 Dependency relationship

An atomic condition C1 depends on an atomic condition C2 if each directive D1 guarded by
condition C1 either

1. is nested in a directive D2 guarded by condition C2, or

2. is also guarded by condition C2.

Figure 2 illustrates this relationship.
What is interesting about this relationship is that if an atomic condition C1 depends on

an atomic condition C2, any directive with C1 is parsed only if both C1 and C2 are true.

9



...
f%IF C2g
...
f%IF C1g
...
f%ENDg

f%ENDg

...
f%IF C1
AND C2g

...
f%ENDg

Figure 2: Situations where a condition C1 may depend on a condition C2. In these two
examples, the directives with C1 can not be parsed when C2 is false.

In the program SRCTEST, condition NOT APPL D (<-, APPL D, DEF>) depends on con-
dition icode enabled (<+, icode enabled, DEF>). Indeed, the single occurrence of NOT

APPL D is at the program line 25 in a condition where icode enabled must also be veri�ed.

4.1.2 Incompatibility relationship

In the following, we de�ne a simple condition as:

� an atomic condition or

� an AND-combination of atomic conditions

Given that, a conditional compilation directive guarding condition is either:

� a simple condition or

� a OR-combination of simple conditions (in this last case, we consider that the corre-
sponding directive is guarded by a set of simple conditions).

Two conditions, C1 and C2, are incompatible if a syntactic error occurs when both C1

and C2 are true.
This is a broad de�nition of incompatibility based on the assumption that there is at least

one variant of the source �le free of parsing errors. The assumption is reasonable since we
are analyzing existing software systems. The de�nition of incompatibility corresponds to the
following cases. Given a source �le F ,

Case 1 An atomic condition C1 is incompatible with all the other conditions in F if there
is a conditional compilation directive D1 not nested in any other directive, guarded
by C1 such that the code within D1 causes a syntactical error. Figure 3 describes an
example of a such case.

Case 2 A set of atomic conditions C = fC
1
, � � �, C

n
g are incompatible with each others if

there is a conditional compilation directive D1 not nested in any other directive, whose

10



...
f%IF C1g

Code with errors

f%ENDg
...

Figure 3: Situation of incompatibility corresponding to Case 1. C1 being an atomic condi-
tion, is incompatible with any other condition in the same source �le.

...
f%IF C1 AND C2g

Code with errors

f%ENDg
...

Figure 4: Situation of incompatibility corresponding to Case 2. Atomic conditions C1 and
C2 are incompatible.

condition is the AND-combination of conditions in C, and the code within D1 causes a
syntactical error. Figure 4 describes an example of a such case.

There is an example of this kind of incompatibility in the program SRCTEST. Conditions
<-, APPL D, DEF> and <+, icode enabled, DEF> are incompatible because the condi-
tional compilation directive from line 25 to 27 guarded by the condition NOT APPL D

AND icode enabled is syntactically incorrect.

Case 3 A simple condition C1 guarding a directive D1, is incompatible with a simple con-
dition C2 guarding a directive D2 if D1 cause a syntactical error and D1 is nested in
D2. Figure 5 describes an example of a such case.

Case 4 A simple condition C1 guarding a directive D1 is incompatible with a simple condi-
tion C2 guarding a directive D2 if there is a break in the syntax when the code in D1

and D2 are considered together. Figure 6 describes an example of such a case.

All these cases of incompatibility involve knowing that source code within directives cause
errors. Moreover, in the fourth case knowing that there is an error does not help determine
which conditions are incompatible because potentially any combination of directives (even
distant in the code) may result in a break in the syntax. Strict incompatibility can there-
fore not be ascertained without syntactically analyzing the source �le. However we have
de�ned a weaker notion of incompatibility which allows us to use a heuristic approach to
guess potentially incompatible conditions by a simple scanning of the source �le. We also
use a heuristic to deal with situations when parsing errors occur because of incompatible
conditions.

11



...
f%IF C1g

...
f%IF C2g

Code with errors

f%ENDg
...

f%ENDg
...

Figure 5: Situation of incompatibility corresponding to Case 3. Conditions C1 and C2 are
incompatible.

...
f%IF C1g

...
f%ENDg
...
f%IF C2g

...
f%ENDg
...

Figure 6: Situation of incompatibility corresponding to Case 4 if an error occurs when both
C1 and C2 are true. Then, conditions C1 and C2 are incompatible.

12



4.2 Heuristics

We use two heuristics in the optimized multiple-parse algorithm. The �rst is used during an
initial scan of the source �le to determine conditions that may be incompatible during an
initial scan of a source �le; the second heuristic is used when a parsing error occurs to �nd
the incompatible conditions which provoked it.

4.2.1 Potential incompatibility

Some incompatible directives (a subset of our fourth case of incompatibility) are used to
de�ne case like situations for source code inclusion. An example of a such use of incompatible
directives in SRCTEST program, is the constant de�nition between lines 4 and 6.

This kind of incompatible conditional compilation directives directly follow1 each other
and are guarded by exclusive conditions. We use a heuristic to determine potentially incom-
patible conditions { a subset that covers most of the full set of conditions. The heuristic
considers that conditions of conditional compilation directives which, (1) follow each other,
and (2) use the same variables but di�erent values or signs, are potentially incompatible.

This heuristic does not guarantee that all the incompatibilities between conditions are
found nor that all potentially incompatible conditions are actually incompatible. The heuris-
tic however allows us to deal with case situations such as that between lines 4 and 6 in the
program SRCTEST. Moreover, potentially incompatible conditions may be found by scanning
source �les.

4.2.2 Dealing with errors

In section 4.1.2, we distinguished four cases of incompatibility between conditions that lead
to parsing errors. The heuristic for �nding potentially incompatible conditions de�ned above
only encompasses conditions that correspond to the fourth case. It does not �nd incompatible
conditions corresponding to other cases. Therefore, some errors may emerge when parsing
with a given set of conditions. In a such a circumstance, it is not possible to determine
with certainty which conditions are incompatible until we perform the parse. However, we
use a heuristic such that when an error occurs, we can have some knowledge about the
incompatibilities which led to that error. This heuristic is as follows:

When an error occurs during a parsing of a source �le F with a particular subset of
conditions C,

1. Let Cerr be:

� the guarding condition of D if the error occurred inside a conditional compilation
directive D, or

� the guarding condition of the latest directive D such that Cerr is in C if the error
occurred outside of a conditional compilation directive.

2. Let CSet last be:

1
Two directives directly follows each other if there is no source code (except comments) between them.

13



� the set of all the guarding conditions of directives inside which D is nested if the
errors occurred inside a conditional compilation directive D, or

� the empty set if the error occurred outside of a conditional compilation directive.

3. If Cerr is an atomic condition and CSet last is empty, we consider that Cerr is incompati-
ble with all the other conditions in F (this corresponds to the case 1 of incompatibility)

4. If Cerr is an AND-combination of conditions Cerr
1
� � �Cerr

n
and CSet last is empty,

then each Cerr
i
is incompatible with the others (this corresponds to the case 2 of

incompatibility).

5. If CSet last is not empty then Cerr is incompatible with each of the conditions in
CSet last (this corresponds to the case 3 of incompatibility).

The heuristic does not ensure that we have found incompatibilities which cause all possi-
ble errors. However, our approach helps in situations such as that between lines 25 and 26,
in the SRCTEST program.

4.3 An optimized multi-parsing algorithm

We have de�ned an optimized version of the exhaustive parsing algorithm. The principle of
this optimization is to analyze as many conditional compilation directives as possible during
a single parse. Starting with the set of all the conditions in a source �le, the idea is to build
subsets of syntactically compatible conditions using the dependency and the inconsistency
relationships.

The dependency relationship is used to �nd conditions that it should be possible to
make true simultaneously. If C1 depends on C2, there is at least one conditional compilation
directive D that can not be parsed unless both C1 and C2 are true. Having C1 true and C2

false prevents us from parsing D. Thus, if D is ever to be parsed, C1 and C2 should hold
together (and then be in a same subset), unless the designers actually intended that D never
be parsed (we will ignore such cases).

Incompatible conditions must not hold together because that will lead to syntactical
errors. If C1 and C2 are two incompatible conditions, we should ensure they are never in the
same combination. But as previously discussed, it is not possible to ensure that a given set
of conditions includes incompatibilities without actually performing parses that involve it.

We use a heuristic based on a weak de�nition of incompatibility to guess conditions that
are potentially not compatible and prevent the system from considering them together. We
also use a heuristic to deal with situations when parsing errors occur. Thus, the optimized
multi-parsing algorithm is as follows:
Given a source �le F ,

1. Scan F to extract CONDS, the set of all the conditions of conditional compilation
directives, along with dependence and potential incompatibility relationships.

2. While there is a condition C not considered in CONDS

(a) Let ACTIVE CONDS = ;

14



(b) add C into ACTIVE CONDS

(c) add all conditions C depends on into ACTIVE CONDS,

(d) add all conditions depending on C into ACTIVE CONDS, if these conditions can
be added without introducing incompatibilities into ACTIVE CONDS,

(e) add into ACTIVE CONDS all conditions of CONDS not yet considered and not
incompatible with any condition of ACTIVE CONDS

(f) parse the input �le with all conditions in ACTIVE CONDS set to be true

if there is an error, we apply our heuristics described above and so add more
incompatibility relationships between some of the conditions in ACTIVE CONDS.

if there is no error, we update the database and set all the condition in AC-

TIVE CONDS as considered.

The above algorithm constructs a subset of active conditions from the set of all the con-
ditional compilation conditions in F . We build this set by considering as much as conditions
possible, starting with an arbitrary condition C that is not considered yet. The set of active
conditions thus include all the conditional compilation directives conditions except those
incompatible with C. We do not check for incompatibilities when adding the conditions on
which C depends (step 2-b) because of the weakness of our incompatibility relationship.
Theoretically, a veri�cation should be done to see if a condition is compatible with all its
dependents.

4.4 Example

Consider the application of the algorithm to the program SRCTEST.
After scanning the program �le, we obtain CONDS a set of all the conditions of conditional

compilation directives in SRCTEST. Figure 7 shows these conditions with their dependency
and incompatibility relationships as determined by the heuristic.

Condition Depend on Incompatible with
<+, appl d, DEF> <-, appl d, DEF>
<+, load con�g, (=,lc main)> <+, appl d, DEF> <+, load con�g, (=,lc ss7)>
<+, load con�g, (=,lc ss7)> <+, appl d, DEF> <+, load con�g, (=,lc main)>
<+, icode enabled, DEF>
<-, icode enabled, DEF>
<-, appl d, DEF> <+, icode enabled, DEF> <+, appl d, DEF>

Figure 7: Conditions in SRCTEST

In a second step, the algorithm builds subsets of consistent conditions (ACTIVE CONDS)
and parse SRCTEST with them. We build each of these subset around a condition not con-
sidered yet.

15



In the example, imagine <+, appl d, DEF> is picked �rst. The algorithm adds this
condition to ACTIVE CONDS along with any condition that can be added without having in-
compatibilities in ACTIVE CONDS. We obtain the set of conditions f<+,appl d,DEF>, <+,
load con�g, (=, lc ss7)>, <+, icode enabled, DEF>, <-, icode enabled, DEF>g. Notice
that even if <+, icode enabled, DEF> and <-, icode enabled, DEF> are logically incom-
patibles, we consider them together because they are not syntactically incompatibles. Parsing
with this �rst subset of conditions is successful.

The algorithm then looks for another condition not considered yet (e.g. <+,load con�g,
(=, lc main)>) and constructs a new set ACTIVE CONDS. We obtain f<+,appl d,DEF>, <+,
load con�g, (=, lc main)>, <+, icode enabled, DEF>, <-, icode enabled, DEF>g which
also allows a successful parse of SRCTEST.

The algorithm then considers the condition <-,APPL D,DEF> and generates the set
ACTIVE CONDS with f<-,appl d,DEF>, <+,icode enabled DEF>, <-,icode enabled DEF>g.
There is a parsing error with this setting because we parse line 26 of the program. We
therefore apply our heuristic which sets conditions f<-,appl d,DEF> and <+,icode enabled
DEF> to be incompatible.

Given this new information, the algorithm tries again to build a subset of the remaining
conditions with which to parse the �le. The system builds the subset around the condition
<-,appl d,DEF>. We obtain f<-,appl d,DEF>, <-,icode enabled DEF>g which allows a
successful parsing.

We then stop parsing SRCTEST since all the conditions have been considered.

4.5 Limitation of the approach

The SRCTEST example shows that our objective to extract all the information in syntactically
correct variants of the source code is still respected by the optimized multi-parsing algorithm
because we parse the code inside all the conditional compilation directives except those that
cause errors.

The example also shows that the algorithm allows us to reduce the number of parses that
may be needed. In the example, we do four parses rather than twelve in order to consider
all the conditional compilation directives.

However the approach is based on heuristics. Given the de�nition of incompatibility,
we have de�ned a �rst heuristic to determine potentially incompatible conditions during an
initial scanning process, and a second heuristic to �nd additional incompatibilities following
a parsing error. These heuristics were motivated by the nature of incompatibility de�ned in
section 4.1.2. Recall that we distinguish four cases of incompatibility. Our heuristics help
�nding incompatibilities that correspond to the three �rst cases and some incompatibilities
in the fourth case.

There is however a subset of the fourth kind of incompatibility that can not be appro-
priately found using our algorithm because their directives are distant in the source code.
For this problem to arise, it is su�cient to have in the language rules such as following (this
kind of rule can be found in Mitel-Pascal).

R -> A B

| B C

16



Where A, B and C can be terminals or nonterminals. As an example consider a language
with rule R and with A, B and C de�ned as follow:

A -> ``a''

B -> ``b''

C -> ``c''

Figure 8 shows an example of code with conditional compilation corresponding to the
rule R and the three program variants that may correspond to this code.

...
f%IF C1g

a
f%ENDg

b
f%IF C2g

c
f%ENDg
...

...
a
b
c
...

...
a
b
...

...
b
c
...

Figure 8: Program and its variants.

Conditions C1 and C2 are incompatible since a syntactically erroneous program corre-
sponds to the case where both are true. However our heuristics incorrectly determine the
incompatibility because:

� C1 and C2 do not directly follow each other and

� after the syntactical error while parsing with both C1 and C2, we end up having:

{ if C2 is an atomic condition not nested in another directive, C2 incompatible with
all the other conditions in the source �le (not only C1), or

{ if C2 is AND-combination of atomic conditions not nested in another directive,
all the atomic conditions that make up C2 incompatible with each other, or

{ if the directive guarded by C2 is nested in other directives, C2 incompatible with
the guarding conditions of all these directives.

Notice that we still have a successful parse of the source �le. However, our objective
to consider all the information is not longer respected because of a directive being wrongly
skipped.

The di�culty with this kind of incompatibility is that the directives involved may be
arbitrary distributed in the source �le. In fact, the rule R can be a non terminal rule, and
therefore there may be several conditional compilation directives between the two incompat-
ible ones.

17



5 Conclusion

Conditional compilation is a powerful tool that helps in developing multiple versions of
a software system. All these version should be taken into account by browsing or code
comprehension tools working on the source code of this software system. Therefore, the
parsing process used to extract the relevant information from code source should consider
conditional compilation directives. We have developed an exhaustive approach for to parsing
such a program but because of its potential cost, we have proposed an optimized version of
this approach. The optimizations are based on relationships between conditions found using
heuristics.

Tests with a software system consisting of Mitel-Pascal �les, shows that there is a real
gain with the optimized approach. Using the exhaustive approach, the average number of
di�erent parses of each �le having conditional compilation is 3.75. This average number
drops to 1.29 with the optimized version.

The optimized approach however may fail for certain source �les with a particular use of
conditional compilation directives. That is, we can not ensure for these �les that our objective
to extract all the information is met. In fact, we can only guarantee that this objective is
satis�ed if there is no error when parsing the input �le. This is the only situation where
we are sure that the �le considered does not fall in the class of �les that we are not able
to parse accurately. Finding a solution for this problem is still open. We suggest using the
optimized approach as long as there are not errors and parsing problematic �les using the
exhaustive approach. The burden of this solution might be low because of the number of
such problematic �les. In our example, only three �les cause parsing errors and the average
number of parses with this approach goes from 1.29 to 1.47.

Thanks

The authors would like to thank all the members of the KBRE research group Nicolas
Anquetil and Jelber Sayyad-Shirabad for fruitful discussion we have had with them.

References

[1] R. Holt. Software Bookshelf: Overview And Construction.
http://www.turing.toronto.edu/~holt/ papers/bsbuild.html.

[2] K. Jameson. Multi-Platform Code Management. O'Reilly & Associates, Sebastopol,CA,
1994.

[3] T. C. Lethbridge and N. Anquetil. Architecture of a Source Code Exploration Tool: A
Software Engineering Case Study. Technical Report TR-97-07, University of Ottawa,
Computer Science, December 1997.

[4] T. C. Lethbridge and J. Singer. Strategies for Studying Maintenance. In Workshop on

Empirical Studies of Maintenance, pages 79{84, Monterey, California, November 1996.

18



[5] P. E. Livadas and D. T. Small. Understanding code containing preprocessor constructs.
In 3rd Workshop on Program Comprehension, pages 89{97, November 1994.

[6] H.A. M�uller, M.A. Orgun, S.R. Tilley, and J.S. UHL. A Reverse-engineering Approach
to Subsystem Structure Identi�cation. Software Maintenance: Research and Practice,
5:181{204, 1993.

[7] T. T. Pearse and P. W. Oman. Experiences Developing and Maintaining Software in
a Multi-Platform Environment. In IEEE Computer Society, editor, Proc. International
Conference on Software Maintenance, pages 270{277, 1997.

[8] Power Software Corporation home page. http://www.power-soft.co.uk/.

[9] G. Snelting. Reengineering of con�gurations based on mathematical concept analysis.
ACM Transactions on Software Engineering and Methodology, 5(2):146{189, April 1996.

[10] H. Spencer and G. Collyer. #ifdef Considered Harmful, or Portability Experience With
C News. In Proc. Summer'92 USENIX Conference, pages 185{197, June 1992.

[11] Take5 Corporation home page. http://www.take�ve.com/index.htm.

19


