
Parsing Minimization when Extracting Information from Code in the Presence
of Conditional Compilation�

Stéphane S. Som´e, Timothy C. Lethbridge
School of Information Technology and Engineering (SITE)

150 Louis Pasteur, University of Ottawa, Canada
ssome@csi.uottawa.ca

Abstract

Exploring and understanding a software system requires
extracting meaningful information from it. This in turn in-
volves syntactical analysis of source code, an activity that
can be complicated by the use of conditional compilation.

In this paper, we discuss difficulties when parsing code
with conditional compilation. We argue that the effective
way to ensure the extraction of all meaningful information
from a source file is to parse a set of versions of that file
defined by conditional compilation. We then describe a
heuristic-based approach to minimize the amount of pars-
ing.

1. Introduction

The goal of our overall research project is to improve
the productivity of software engineers who are maintain-
ing complex software systems [4, 5]. The purpose of the
research described in this paper is to design facilities that
will allow code exploration and understanding, in the pres-
ence of considerable conditional compilation. To ensure
our work is industrially relevant, we are working with a
large telecommunications system developed by Mitel cor-
poration. This is written in a proprietary language called
Mitel-Pascal and makes extensive use of conditional com-
pilation. The software engineers who work with this system
regularly add new features, fix problems and re-engineer
portions of it.

A conditional compilation directive involves a boolean
expression followed by some source code. This source code
is compiled only if its associated boolean expression evalu-
ates totrueduring pre-processing. The evaluation of a con-
dition depends on values assigned to conditional compila-
tion variables.

�This work is supported by NSERC and Mitel Corporation and spon-
sored by the Consortium for Software Engineering Research (CSER).

Conditional compilation has several uses, including
compiling versions of the software for different platforms
and with different sets of features [9]. Unfortunately, the
use of conditional compilation may result in quite complex
code [11, 2]; thus the tasks of program comprehension and
reverse engineering can be very difficult.

When conditional compilation is used in a program, the
actual file compiled is only one of many possible versions
of the source code – each determined by a particular setting
of conditional compilation variables. The compiler does not
care about the parts of the code that are not included in the
particular compilation. In contrast, program comprehension
and reverse engineering are concerned with understanding
all the information in the code [4]. Effective tools should
therefore be able to show all entities in a system along with
information about which states of conditional compilation
variables permit each entity to be considered by the com-
piler.

Program understanding and reverse engineering tools
obtain their data by parsing source code. We must there-
fore ensure that such parsing can extract every detail in the
code in presence of conditional compilation directives.

Ideally we would write a parser that could accept un-
preprocessed code and process it in one pass. This is,
in general, not possible for three reasons. Firstly, condi-
tional compilation directives may be used in such a way that
only a subset of them are syntactically consistent with each
other. Secondly, it is common to use directives for docu-
mentation purposes, which are, in fact, not supposed to be
parsed. Thirdly, conditional compilation is frequently used
to ' comment-out' code that the programmer wants to pre-
serve, for some reason (e.g. because it is only partially com-
plete or because the programmer is unsure about whether it
is, in fact, safe to delete it). Such commented-out code will
often have syntax errors. More details regarding the above
difficulties will be discussed in the next section.

There are several well known program comprehension
tools, e.g. Sniff+ [12], Source Navigator [8], Rigi [7], Soft-
ware Bookshelf [1] and GHINZU [6]. Due to difficulties



such as those described above, these tools do not, in fact,
consider conditional compilation. They present only the
state of the system under one particular setting of condi-
tional compilation variables. This hampers the ability of
software engineers to use such tools, since they must know
in advance which variables to set, and are not able to easily
discover the effects of different settings. The main objective
of the current research is to overcome this problem.

The next section discusses in more detail the difficulties
of parsing code in the presence of conditional compilation.
We then discuss an approach that uses several heuristics
to minimize the number of parses needed to process every
valid statement in the source code, and hence to extract all
the information in the file.

2. Difficulty in parsing code with Conditional
Compilation

The following is an example of a Mitel-Pascal program
with conditional compilation directives. This is an artificial
example. It is used to motivate subsequent discussions.

PROGRAM SRCTEST(input,output);(1)

CONST(2)

f%IF appl dg(3)

my cmd line =(4)

f%IF load config = lc ss7 g(5)

ss7 command line;(6)

f%ENDg(7)

f%IF load config = lc main g(8)

dumb maintenance terminal;(9)

f%ENDg(10)

f%ENDg(11)

index = 1;(12)

f%IF icode enabled g(13)

TYPE(14)

proc record = RECORD(15)

name: prog name;(16)

procid: process id;(17)

ENDREC;(18)

f%ENDg(19)

VAR(20)

f%IF icode enabled g(21)

app pid : proc record;(22)

f%ENDg(23)

app name : STRING[10];(24)

f%IF NOT icode enabled g(25)

app pid : INTEGER ; (26)

f%ENDg (27)

PROCEDURE treat proc; (28)

BEGIN (29)

f%IF appl d (30)
AND (load config = lc ss7
OR load config = lc main) g

treat cmd(my cmd line); (31)

f%ENDg (32)

f%IF NOT appl d AND icode enabled g (33)

Error: icode should not be (34)
enabled.

f%ENDg (35)

treat name(app name); (36)

ENDPROC (37)

BEGIN (38)

treat proc; (39)

ENDPROG. (40)

Syntactically, a conditional compilation directive is simi-
lar to a space or a comment as it may appear anywhere in the
source code except inside a token. This makes it impossible
to design a usable grammar for unpreprocessed code. Pars-
ing the above program without selecting appropriate parts
by pre-processing is impossible because the code obtained
by simply removingf%IF � � �g andf%ENDg does not fol-
low the language's syntactical constructs. As an example,
the following constant declaration corresponds to lines 4 to
9 of the program. This code segment does not correspond
to a legal Mitel-Pascal constant declaration.

my cmd line =
ss7commandline;
dumbmaintenanceterminal;

In addition to the above, the programmer may havein-
tendedthat certain variants of the source code never be com-
piled. An example of this in theSRCTEST program is be-
tween lines 33 and 35. This directive clearly shows that the
intention of the programmer is to have a compilation error
when bothappl d is undefined andicode enabled is de-
fined.

Since an invalid program cannot be completely parsed,
we only want to consider variants of the source code that are
syntactically correct. However, to do this, we need to know
which combinations of conditions are valid and which are
not.



A straightforward approach would be to exhaustively
consider all the possible versions induced by conditional
compilation. This approach which is described in [10], sup-
poses 1) finding all the combinations of conditional com-
pilation variables and their possible values, and 2) pars-
ing the source code repeatedly with each of these com-
binations. This will guarantee that each section of the
source code has been parsed; although many sections will
clearly be parsed many times. There is however a prob-
lem with this approach: an excessive amount of parsing
may be needed for each file. As an exampleSRCTESTis
parsed twelve times. More generally given a fileF with
Svar = fV ar1; � � � ; V arng (the set of all its conditional
compilation variables), letnb vals be a function such that
nb vals(V ari) is the number of possible abstract values1

of the variableV ari; then the number of parses ofF is:Q
n

i=1
nb vals(V ari):

The exhaustive parsing can be optimized by taking into
account the facts that:

1. Some directives may be independent enough to be
parsed together even if their conditions cannot be log-
ically true at the same moment.

As an example, a parser that only considers syntax can
successfully parse the programSRCTESTincluding
both conditional compilation directives at line 23 and
at line 27, despite the fact that the conditions cannot be
logically true at the same moment.

2. Erroneous situations can be skipped once detected.

As an example, an error occurs in theSRCTESTpro-
gram, whenappl d is undefined andicode enabled is
defined. It is useless to parse with this conditiontrue
more than once. Without this optimization, multiple
attempts at parsing with this condition may be made
because the condition may be part of several more
complex conditions.

Using the above, we have developed an optimized multi-
ple parsing algorithm which tries to reduce the number of
parses needed to extract all the information from a source
file. We describe this algorithm in the next section.

3. Optimized multi-parsing

The optimizations are based on relationships which help
to split the set of all conditions guarding conditional compi-
lation directives in a file, into subsets of syntactically con-
sistent conditions that may be true simultaneously. In the
following, we first provide some definitions, then we de-
scribe these relationships and the optimized algorithm.

1We defineabstract value in the next section.

3.1. Definitions

A condition guarding a conditional compilation directive
is either anatomic condition, or acomplex conditioncon-
sisting of a set ofatomic conditionsrelated with operators
AND (conjunction) orOR (disjunction).

An atomic conditionC is a triple<Sign, Var, AbstrVal>
with: Signdenoting the fact that the condition isnegated
or not (Sign = “+” or “-”), Var a variable andAbstr Val
an abstract value (defined below). Notice that the sign of
a complex condition is propagated to its atomic conditions
according to De Morgan's laws [3]. Avariablemay be any
legal element in the preprocessing language under consid-
eration which can be used as the left hand side of a boolean
expression. In Mitel-Pascal it may be any expression. Note
that valid variables in the preprocessing language may differ
from valid variables in the underlying language.

An abstract valuerepresents whatever a variable can be
compared to in a condition. An abstract value may describe
a single value or a set of possibly infinite values. We distin-
guish the following classes of abstract values.

� DEF,

� UNDEF and

� (Comparator,Value).

DEF andUNDEF are predefined values which denote
the fact that a variable is defined or not. As an example,
variableappl d has the valueDEF in SRCTESTline 3. A
condition such asf%IF Var g is true only if the value of
the variableVar is DEF.

An abstract value (Comparator,Value) includes a com-
parator which is a relational operator in the language con-
sidered (“=”, “ in”, “<>”, “<”, “<=”, “>” and “>=” in
Mitel-Pascal), and a value which is an expression. (Com-
parator,Value) represents a set of concrete valuesV such
that the boolean expression “V Comparator Value” is true
for all valuesV . As an example, (>, 5) represents the set of
all values greater than 5.

We define asimple conditionas:

� an atomic condition or

� a conjunction of atomic conditions

The guarding condition of a conditional compilation direc-
tive is then either:

� a simple condition or

� a disjunction of simple conditions (in this last case, we
consider that the corresponding directive is guarded by
a set of simple conditions).

Note that any complex condition can be rewritten as a dis-
junction of simple conditions using distributive laws [3].



3.2. Relationships between conditions

We use two relationships: adependencyrelationship and
an incompatibilityrelationship.

3.2.1 Dependency relationship

An atomic conditionC1 depends onan atomic condition
C2 if each directiveD1 guarded by conditionC1 is either

1. nested in a directiveD2 guarded by conditionC2, or

2. also guarded by conditionC2.

Figure 1 illustrates this relationship.

...
f%IF C2g

...
f%IF C1g
...
f%ENDg

f%ENDg

...
f%IF C1

AND C2g
...

f%ENDg

Figure 1. Situations where a condition C1 may
depend on a condition C2. In these two exam-
ples, the directives with C1 cannot be parsed
when C2 is false.

What is interesting about this relationship is that if an
atomic conditionC1 depends onan atomic conditionC2,
any directive withC1 is parsed only if bothC1 andC2 are
true.

In the programSRCTEST, conditionNOT appl d (<-
, appl d, DEF>) depends onconditionicode enabled
(<+, icode enabled, DEF>). Indeed, the single occur-
rence ofNOT appl d at the program line 33 is in a condi-
tion whereicode enabled must also be verified.

3.2.2 Incompatibility relationship

Two conditions,C1 andC2, areincompatibleif a syntactic
error occurs when bothC1 andC2 aretrue.

This is a broad definition of incompatibility based on the
assumption that there is at least one variant of the source file
free of parsing errors. The assumption is reasonable since
we are analyzing existing (and working) software systems.
This definition ofincompatibilitycorresponds to the follow-
ing cases. Given a source fileF ,

Case 1 An atomic conditionC1 is incompatiblewith all
the other conditions inF if there is a conditional com-
pilation directiveD1 not nested in any other directive,
guarded byC1 such that the code withinD1 causes
a syntactical error. Figure 2 describes an example of
such a case.

...
f%IF C1g

Code with errors
f%ENDg
...

Figure 2. Situation of incompatibility corre-
sponding to Case 1. C1 being an atomic con-
dition, is incompatible with any other condi-
tion in the same source file.

Case 2 A set of atomic conditionsC = fC1, � � �, Cng are
incompatible with each other if there is a conditional
compilation directiveD1 not nested in any other di-
rective, whose condition is the conjunction of atomic
conditions inC, and the code withinD1 causes a syn-
tactical error. Figure 3 describes an example of such a
case.

...
f%IF C1 AND C2g

Code with errors
f%ENDg
...

Figure 3. Situation of incompatibility corre-
sponding to Case 2. Atomic conditions C1
and C2 are incompatible with each other.

There is an example of this kind of incompatibility
in the programSRCTEST. Conditions<-, appl d,
DEF> and<+, icode enabled, DEF> areincompat-
iblebecause the conditional compilation directive from
line 33 to 35 guarded by the conditionNOT appl d
AND icode enabled is syntactically incorrect.

Case 3 A simple conditionC1 guarding a directiveD1, is
incompatible with a simple conditionC2 guarding a
directiveD2 if D1 causes a syntactical error andD1 is



nested inD2. Figure 4 describes an example of such a
case.

...
f%IF C1g

...
f%IF C2g

Code with errors
f%ENDg
...

f%ENDg
...

Figure 4. Situation of incompatibility corre-
sponding to Case 3. Conditions C1 and C2
are incompatible.

Case 4 A simple conditionC1 guarding a directiveD1 is
incompatible with a simple conditionC2 guarding a
directiveD2 if there is a break in the syntax when the
code inD1 andD2 are parsed together while there isn' t
when only one of the directives is considered.

Figure 5 describes an example of such a case.

...
f%IF C1g

...
f%ENDg
...
f%IF C2g

...
f%ENDg
...

Figure 5. Situation of incompatibility corre-
sponding to Case 4 if an error occurs when
both C1 and C2 are true, then conditions C1
and C2 are incompatible.

All these cases of incompatibility involve knowing that
source code within directives causes errors. Moreover, in
the fourth case knowing that there is an error does not help

determine which conditions are incompatible because po-
tentially any combination of directives (even distant in the
code) may result in a break in the syntax [10]. Strict incom-
patibility can therefore not be ascertained without syntacti-
cally analyzing the source file. However we have defined a
weaker notion of incompatibility which allows us to use a
heuristic approach to guesspotentiallyincompatible condi-
tions by some simple scanning of the source file. We also
use a heuristic to deal with situations when parsing errors
occur because of undetected incompatible conditions.

3.3. Heuristics

We use two heuristics in the optimized multiple-parse al-
gorithm. The first is used during an initial scan of the source
file to determine conditions that may be incompatible; the
second heuristic is used when a parsing error occurs to find
the incompatible conditions which provoked it.

3.3.1 Potential incompatibility

A good proportion of incompatible directives (a subset of
our fourth case of incompatibility) are used to definecase
like situations for source code inclusion. An example of
such a use of incompatible directives in theSRCTESTpro-
gram, is the constant definition between lines 4 and 9.

Several such incompatible conditional compilation di-
rectives directly follow2 each other and are guarded by ex-
clusive conditions. We use a heuristic to determine such
potentially incompatible conditions – a subset that covers
most of the full set of conditions. The heuristic considers
that conditions of conditional compilation directives which,
(1) follow each other, and (2) use the same variables but
different values or signs, are potentially incompatible.

This heuristic does not guarantee that all the incom-
patibilities between conditions are found nor that all po-
tentially incompatible conditions are actually incompatible.
The heuristic however allows us to deal withcasesitua-
tions such as that between lines 4 and 9 in the program
SRCTEST. Moreover, potentially incompatible conditions
may be found by quickly scanning source files rather than
full parsing.

3.3.2 Dealing with errors

In section 3.2.2, we distinguished four cases ofincompat-
ibility between conditions that lead to parsing errors. The
heuristic for finding potentially incompatible conditions de-
fined above only encompasses conditions that correspond
to the fourth case. It does not find incompatible conditions
corresponding to other cases. Therefore, some errors may

2Two directivesdirectly follow each other if there is no source code
(except comments) between them.



emerge when parsing with a given set of conditions. We
use a heuristic such that when an error occurs, we can get
some knowledge about the incompatibilities which led to
that error. This heuristic, based on the definition of incom-
patibility, is as follows:

When an error occurs during a parsing of a source fileF

with a particular subset of conditionsC,

1. LetCerr be:

� the guarding condition ofD if the error occurred
inside a conditional compilation directiveD, or

� the guarding condition of the latest directiveD
such thatCerr is inC if the error occurred outside
of a conditional compilation directive.

2. LetCSet last be:

� the set of all the guarding conditions of directives
inside whichD is nested if the errors occurred
inside a conditional compilation directiveD, or

� the empty set if the error occurred outside of a
conditional compilation directive.

3. If Cerr is an atomic condition andCSet last is empty,
we consider thatCerr is incompatible with all the other
conditions inF (this corresponds to the case 1 of in-
compatibility)

4. If Cerr is a conjunction of atomic conditions
Cerr1 � � �Cerrn and CSet last is empty, then each
Cerri is incompatible with the others (this corre-
sponds to the case 2 of incompatibility).

5. If CSet last is not empty thenCerr is incompatible
with each of the conditions inCSet last (this corre-
sponds to the case 3 of incompatibility).

This heuristic helps in situations such as that between
lines 33 and 34, in theSRCTESTprogram.

3.4. An optimized multi-parsing algorithm

We have defined an optimized version of the exhaustive
parsing algorithm. The principle of this optimization is to
analyze as many conditional compilation directives as pos-
sible during a single parse. Starting with the set of all the
conditions in a source file, the idea is to build subsets ofsyn-
tactically compatible conditions using the dependency and
the inconsistency relationships.

The dependency relationship is used to find conditions
that it should be possible to maketruesimultaneously. IfC1
depends onC2, there is at least one conditional compilation
directiveD that cannot be parsed unless bothC1 andC2
are true. HavingC1 true and C2 false prevents us from

parsingD. Thus, ifD is ever to be parsed,C1 andC2 should
hold together (and then be in the same subset), unless the
designers actually intended thatD never be parsed (we will
ignore such cases).

Incompatible conditions must not hold together because
that will lead to syntactical errors. IfC1 andC2 are two
incompatible conditions, we should ensure they are never
in the same combination.

We use the two heuristics defined below to guess con-
ditions that are potentially not compatible and prevent the
system from considering them together, and to deal with sit-
uations when parsing errors occur. We also suppose that the
parsing information extracted is stored in some “database”.
Thus, the optimized multi-parsing algorithm is as follows:
Given a source fileF ,

1. ScanF to extractCONDS, the set of all the conditions
of conditional compilation directives, along withde-
pendenceandpotential incompatibilityrelationships.

2. While there is a conditionC not considered in
CONDS

(a) LetACTIVE CONDS = ;

(b) addC into ACTIVE CONDS

(c) add all conditions thatC depends oninto AC-
TIVE CONDS,

(d) add all conditionsdependingon C into AC-
TIVE CONDS, if these conditions can be added
without introducing incompatibilities intoAC-
TIVE CONDS,

(e) add into ACTIVE CONDS all conditions of
CONDS not yet considered and notincompati-
blewith any condition ofACTIVE CONDS

(f) parse the input file with all conditions inAC-
TIVE CONDS set to betrue.

If there is an error, we apply our heuristics de-
scribed in section 3.3.2 and so add more incom-
patibility relationships between some of the con-
ditions inACTIVE CONDS.

If there is no error, we update the database with
the information obtained by parsing, and set all
the conditions inACTIVE CONDS as consid-
ered.

The above algorithm constructs a subset of active condi-
tions from the set of all the conditional compilation condi-
tions inF . We build this set by simultaneously considering
as many conditions as possible, starting with an arbitrary
conditionC that is not considered yet. The set of active
conditions thus includes all conditions except those incom-
patible withC.



3.5. Example

Consider the application of the algorithm to the program
SRCTEST.

After scanning the program file, we obtainCONDSa set
of all the conditions of conditional compilation directives
in SRCTEST. Figure 6 shows these conditions with their
dependencyandincompatibilityrelationships as determined
by the heuristic.

Condition Depends on Incompatible
with

<+, appld,
DEF>

<-, appl d,
DEF>

<+,
load config,
(=,lc main)>

<+, appld,
DEF>

<+,
load config,
(=,lc ss7)>

<+,
load config,
(=,lc ss7)>

<+, appld,
DEF>

<+,
load config,
(=,lc main)>

<+,
icodeenabled,
DEF>
<-
, icodeenabled,
DEF>
<-, appl d,
DEF>

<+,
icodeenabled,
DEF>

<+, appld,
DEF>

Figure 6. Conditions in SRCTEST

In a second step, the algorithm builds subsets of con-
sistent conditions (ACTIVE CONDS) and parsesSRCTEST
with them. We build each of these subsets around a condi-
tion not considered yet.

In the example, imagine<+, appld, DEF> is picked
first. The algorithm adds this condition toACTIVE CONDS
along with any condition that can be added without hav-
ing incompatibilities inACTIVE CONDS. We obtain the
set of conditionsf<+,appld,DEF>, <+, loadconfig, (=,
lc ss7)>, <+, icodeenabled, DEF>, <-, icodeenabled,
DEF>g. Notice that even though<+, icodeenabled,
DEF> and<-, icodeenabled, DEF> are logically incom-
patible, we consider them together because they are not syn-
tactically incompatible. Parsing with this first subset of con-
ditions is successful.

The algorithm then looks for another condition not con-
sidered yet (e.g.<+,loadconfig, (=, lcmain)>) and con-
structs a newACTIVE CONDSset. We obtainf<+,appld,
DEF>,<+, loadconfig, (=, lcmain)>,<+, icodeenabled,

DEF>,<-, icodeenabled, DEF>gwhich also allows a suc-
cessful parse ofSRCTEST.

The algorithm then considers the condition<-, appl d,
DEF> and generates the setACTIVE CONDS with
f<-, appld, DEF>, <+, icodeenabled, DEF>, <-,
icodeenabled, DEF>g. There is a parsing error with this
setting because we parse line 34 of the program. We there-
fore apply our heuristic which sets conditionsf<-, appl d,
DEF> and<+, icodeenabled, DEF>g to be incompatible.

Given this new information, the algorithm tries again to
build a subset of the remaining conditions with which to
parse the file. The system builds the subset around the con-
dition <-,appld,DEF>. We obtainf<-,appld,DEF>, <-
,icodeenabled DEF>g which allows a successful parsing.

We then stop parsingSRCTESTsince all the conditions
have been considered.

3.6. Application of the approach

We are doing this research with a large telecommunica-
tions system developed by Mitel corporation. This system
has about 1.5 million lines of Mitel-Pascal code distributed
in 3460 files. It makes extensive use of conditional com-
pilation; there are 107 different conditions used to guard
conditional compilation directives.

Tests with this software system show that there is a real
gain with the optimized approach. Using the exhaustive ap-
proach, the average numbers of parses of each file, needed
to consider all the conditional compilation directives and
then extract all the information used for code exploration
and understanding is 3.75. This average drops to 1.29 with
the optimized version.

4. Conclusion

Conditional compilation is a powerful tool that helps
in developing multiple versions of a software system. All
these versions should be taken into account by browsing or
code comprehension tools working on the source code of
the software system. Therefore, the parsing process used
to extract the relevant information from code source should
take conditional compilation directives into account.

A direct way of doing that would be to exhaustively con-
sider all the possible combinations of conditions that can
be used for pre-processing, and then performing a separate
parse for each. Because of the potential great number of
parses needed with this approach, we propose an optimiza-
tion based on heuristics. The application of our approach to
a large software system shows a real gain in performance.

Our approach has been developed for Mitel-Pascal.
However, the relationships and heuristics on which it is
based can be adapted to other languages such as C or C++,



since the semantics of conditional compilation used in these
languages are the same as in Mitel-Pascal.

Acknowledgements

The authors would like to thank all the members of the
KBRE research group, expecially Nicolas Anquetil and Jel-
ber Sayyad-Shirabad, for fruitful discussions we have had
with them.

References

[1] R. Holt. Software Bookshelf: Overview And Construction.
http://www.turing.toronto.edu/ holt/ papers/bsbuild.html.

[2] K. Jameson.Multi-Platform Code Management. O' Reilly
& Associates, Sebastopol,CA, 1994.

[3] R. Kowalski. Logic for problem solving. New York : Else-
vier North Holland, 1979.

[4] T. C. Lethbridge and N. Anquetil. Architecture of a
Source Code Exploration Tool: A Software Engineering
Case Study. Technical Report TR-97-07, University of Ot-
tawa, Computer Science, Dec. 1997.

[5] T. C. Lethbridge and J. Singer. Strategies for Studying Main-
tenance. InWorkshop on Empirical Studies of Maintenance,
pages 79–84, Monterey, California, Nov. 1996.

[6] P. E. Livadas and D. T. Small. Understanding code contain-
ing preprocessor constructs. In3rd Workshop on Program
Comprehension, pages 89–97, Nov. 1994.

[7] H. Müller, M. Orgun, S. Tilley, and J. UHL. A Reverse-
engineering Approach to Subsystem Structure Identifica-
tion. Software Maintenance: Research and Practice, 5:181–
204, 1993.

[8] Power Software Corporation home page. http://www.power-
soft.co.uk/.

[9] G. Snelting. Reengineering of configurations based on math-
ematical concept analysis.ACM Transactions on Software
Engineering and Methodology, 5(2):146–189, Apr. 1996.

[10] S. S. Som´e and T. C. Lethbridge. Minimizing Parsing when
Extracting information from Code in the Presence of Condi-
tional Compilation. Technical Report TR-98-01, University
of Ottawa Computer Science, Jan. 1998.

[11] H. Spencer and G. Collyer. #ifdef Considered Harmful, or
Portability Experience With C News. InProc. Summer'92
USENIX Conference, pages 185–197, June 1992.

[12] Take5 Corporation home page. http://www.takefive.com/in-
dex.htm.


