
The University of Ottawa's Software Engineering Program:
Curriculum Design Issues for a New Subdiscipline

T.C. Lethbridge, R.L.. Probert, J. Raymond, D. Gibbons, D. Ionescu,
L. Orozco-Barbosa, S. Szpakowicz

School of Information Technology and Engineering
University of Ottawa, K1N 6N5

Abstract

The University of Ottawa has recently established a new undergraduate
program in software engineering. In this paper we review how we resolved several
issues that were raised during the development of the program. These key issues
are: a) How should the program be made distinct from computer science and
computer engineering programs? b) What should be the core topics in the program?
c) What do we need to do to meet our objective of having the program accredited by
the Canadian Engineering Accreditation Board?

1. Introduction

Undergraduate programs entitled ‘Software Engineering’ are appearing in many
universities. In Europe and Australia, there have been programs for up to ten years (e.g. Cowling
1998, University of Melbourne 1998, Ford 1996b p. 49). More recently, North American
universities have started to offer such programs (e.g. McMaster University 1998, Naveda 1997).
This paper discusses the program recently approved at the University of Ottawa (University of
Ottawa 1997) which will be the first bilingual program in Canada, and may be the first B.A.Sc.
program overall in Canada.

The high level of demand for the graduates of such programs is widely known. However,
the need for programs specifically called ‘Software Engineering’, in contrast to ‘Computer
Science’ or ‘Computer Engineering’ has only been recognized recently. Key reasons for creating
degree programs in software engineering as Engineering programs are: 1) Work governed by
Engineering Acts (affecting public security, safety etc.) is increasingly dominated by software

issues; 2) Existing engineering programs do not have enough time to cover the material that a
software professional needs to know; and 3) It is becoming widely recognized that many
engineering principles should be applied to software development processes.

 Section 2 of this paper discusses the development and content of the University of
Ottawa’s program; section 3 discusses issues that required considerable debate.

2. The University of Ottawa Software Engineering Program

For several years, the University of Ottawa considered establishing a software engineering
stream or option, that would have been taken as part of either the Computer Science or the
Computer Engineering program (Lethbridge et al 1997). Events overtook this initiative, however:
In 1997 the Electrical and Computer Engineering Department and the Department of Computer
Science merged together to form the School of Information Technology and Engineering (SITE).
One of the mandates of SITE has been to establish a software engineering program to
complement the existing programs.

Deciding what material should be taught in the program involved considerable research and
debate. Input was sought from members of SITE’s Industrial Advisory Board which is composed
of executives of a variety of Canadian high-technology and information technology (IT)
companies. Several academics with senior software engineering posts were also consulted, and
the committee examined the content of other software engineering programs or proposals, as well
as a model published by the Software Engineering Institute (Ford 1996a). Finally, input about
educational needs was sought from 187 industrial software practitioners and managers by way of
a survey (Lethbridge 1998a, 1998b).

Most of our sources of input provided very similar recommendations – exceptions are
discussed in section 3. Two important decisions that arose during the committee’s deliberations
were that the program should emphasize telecommunications software and entrepreneurship.
These emphases will serve to distinguish our program from those at other universities.

The program, an outline of which is shown in Table 1, was approved by University Senate
in Fall of 1997. Fifty students will be admitted into the software engineering program at the first
year level in Fall 1998. At the same time, forty students will be selected from computer science
or computer engineering to transfer into software engineering at the second year level. The first

students should thus graduate in 2001, at which time accreditation of the program will be sought
from the Canadian Engineering Accreditation Board.

3. Issues Discussed During the Program's Development

This section presents three issues about which much of the committee’s discussions
revolved: Differentiating the programs in SITE, deciding on the specific topics for the program,
and achieving accreditation.

Differentiating Software Engineering from Computer Science and Computer Engineering

A frequently asked question is, “What is the difference between software engineering and
computer science?” At the recent IEEE-sponsored 11th Conference on Software Engineering
Education and Training, participants argued for four contrasting points of view: a) Software
engineering is a clear subset of computer science; b) Software engineering and computer science
are effectively synonymous; c) Computer science is a subset of software engineering; and d) the
two disciplines are distinct – with software engineering being a branch of engineering, unlike
computer science.

Parnas (1998) argues for the latter: He points out that engineers need a different kind of
education from scientists; one that focuses on applying a core body of knowledge to produce
reliable products, as opposed to learning how to extend our knowledge of what is true.

Those who argue in favour of point of view a), b) or c), say that almost all graduates of
computer science programs actually perform an engineering-like activity after they enter the
workforce. In the UK, in fact, the engineering society now considers computer science programs
on an equal footing with engineering programs when it comes to issuing Chartered Engineer
licenses (British Computer Society, 1998).

At the university of Ottawa, we have traditionally taught core software engineering courses
as part of the computer science program, since there was nowhere else to teach them. With the
introduction of software engineering we are attempting to make a clear distinction between the
disciplines.

Important differences are: a) Software engineers will take a common body of courses with
other engineers (italics in figure 1). b) Software engineers will take a significant number of

required courses (bold in figure 1) focusing on methods for producing large-scale high-quality
software. Computer science students and others will only be able to take at most two of these. c)
Computer science students will be able to take more theory courses and courses in specialized
areas such as graphics and artificial intelligence.

We firmly believe that the market will welcome this differentiation in the skills and
knowledge of the two types of graduate. The expectation is that while graduates from both
programs will perform many similar tasks (e.g. software design and programming) computer
science graduates will tend to work more with more specialized computing technology such as
graphics, simulation, compiler design, artificial intelligence etc. Software engineering graduates,
on the other hand, will tend to work more on tasks such as high-level system requirements and
architecture as well as the development of software engineering processes to ensure safety,
reliability, quality and productivity.

 First year Second year Third year Fourth year Any year
Mathematics Calculus 1 & 2

Linear algebra
Probability &
statistics

Logic and
discrete math 1
& 2

Basic
Science

Chemistry
Engineering
mechanics

Physics

 Three other
courses

Software
Engineering
Topics
(Engineering
Science and
Engineering
Design)

Engineering
computing

Software design
1

Data structures
File management
Software design
2 and 3 –
includes
software
architecture

Database
management
systems

Algorithm
analysis and
design

Operating
systems

Large system
development

Software
analysis &
design

User interface
analysis and
design

Telecom
software

Security in
Computing

Project
management

Software
quality
engineering

Software
evolution and
reengineering

Project course

Three electives

principles

Other
Engineering

Introduction to
electrical and
computer
engineering

Digital computer
organization

Microprocessor
systems

Telecom systems
& services

Real-time
systems

Computer com-
munications

Comple-
mentary
studies

Technical
writing

Business
management

Engineering
Economics

SE Professional
practice

Small business
management

Technology &
society

One other course

Table 1: An outline of the University of Ottawa Software Engineering Program. For
details, see University of Ottawa (1997). Courses in italics are taken by all engineering
students. Courses in bold represent the core– courses that have been created specially for
the new program, or adapted from what were previously computer science electives.
Course names have been abbreviated.

It was also considered important to distinguish software engineering from computer
engineering. We had little difficulty doing this: Computer engineering students at the University
of Ottawa take significantly more electrical and computer engineering courses, and
correspondingly fewer software courses than will software engineering students. The expectation
is that computer engineering graduates will work more with hardware and with the interface
between software and hardware, than will software engineering students.

A final criterion for differentiating the programs was to ensure that, in all cases, students
who attempt two degrees require at least one more year of study to obtain their second degree.

Deciding on Topics to be Taught in the Program

After we completed our research, it was relatively easy to come to an agreement about most
of the topics in the software engineering program as shown in Figure 1. For some material,
students will take courses that remain titled ‘Computer Science’, and have always been part of
computer science programs. This material includes:

• Data structures,
• File systems and database management, and
• Operating systems.
In other cases we will use courses, without modification, that are classified as ‘Computer

Engineering’ or ‘Electrical Engineering’, including
• Introduction to electrical and computer engineering,

• Digital computer organization (including assembly language programming),
• Microprocessor systems, and
• Real-time systems.
A third type of material about which there was little debate consists of material drawn from

courses that were previously offered on an elective basis as computer science courses. This
material has now been packaged and expanded into new, compulsory software engineering
courses, but remains also available as electives to computer scientists:

• User interface design,
• Analysis and design techniques,
• Software quality engineering, and
• Software evolution and reengineering.
Yet another type of material had never been previously taught at the level of depth in which

we were interested. We thus introduced entirely new courses covering:
• Software design principle and architecture (two courses),
• Large scale software development,
• Case tools (integrated into several courses), and
• Computer security.
There remained, however, several types of material about which considerable debate was

required, including:
• How should algorithms and performance be covered? The options were to use a classic

computer science course covering algorithm analysis and design, or to introduce a new software
engineering course that would focus more on performance analysis. The eventual decision was to
adopt the computer science course and integrate performance analysis in other courses.

• Should there be a course in programming languages? Such a course exists in most
computer science courses and gives students exposure to a variety of languages. We decided,
however, to have no separate course and instead to introduce students to a variety of languages,
as well as how to choose a language, in courses throughout the program.

• Should there be a focus on telecommunications, or should this be one of several possible
specializations? Our original idea was that students would choose from several different three-
course ‘streams’ focusing on particular kinds of software: 1) Scientific and engineering software;
2) Telecommunications software; and 3) Business software. There was a request from the faculty

of engineering, however, to boost the core engineering content of the program. Since also the
strongest demand from local industry is for software engineers with telecommunications
knowledge, we decided to require a three-course specialization in telecommunications in our
program, and omit the other proposed streams. The telecom stream consists of two courses in
electrical engineering and one course in telecommunications software engineering; students can
take a second telecommunications software course as one of their technical electives. We expect
that this specialization will differentiate our program from other software engineering programs.

Accreditation: Have We Covered Everything we Need to, And Should Criteria be
Changed?

The criteria governing accreditation of an engineering program are found in a Canadian
Council of Professional Engineers document (1996). We designed our program carefully,
ensuring that it meets academic requirements for such elements as mathematics, basic science,
engineering science, engineering design, complementary studies and exposure to other branches
of engineering.

There was some discussion in the committee about two issues that arose from accreditation
requirements: The first of these was which introductory programming course should software
engineering students take? One option was the introductory programming course taught in first
term of first year to all engineering students – this course emphasizes applications and
programming languages of interest to other branches of engineering. The second option was to
have software engineering students take the corresponding introductory programming course
taught to computer science students. We eventually decided on the first option, in the interest of a
common engineering first term. This necessitated the introduction of a new second-term course
in computing so that at the end of first year the students would have the necessary prerequisite
material they need for second-year computing courses.

The second issue, again resolved in favour of uniformity of engineering programs, was
whether to require software engineers to take the same basic science (particularly chemistry and
mechanics) as other engineers. There was some debate about whether to require material that
research shows will only be of direct use to a small subset of software engineers. We intend to
discuss this issue over time with the CCPE, since we would like to see more flexibility in this
requirement.

Following university approval of the program, we informally asked the Canadian
Engineering Accreditation Board to look at it: Their most significant issue was the fact that we
deliberately left out numerical methods and differential equations – topics which are currently
required of all other engineering programs.

The rationale for the omission is as follows: Our research indicates that the mathematics
required of all engineers, in particular advanced calculus and differential equations, is not of use
to the vast majority of software engineers1: Instead, software engineers need significant coverage
of discrete mathematics. This position is affirmed by the Joint Steering Committee of the IEEE
Computer Society and ACM for the Establishment of Software Engineering as a Profession
(Engel 1998), who have proposed accreditation criteria for software engineering that emphasize
discrete mathematics plus probability and statistics. A similar emphasis is found in the latest
(April 1998) software engineering accreditation criteria proposals from ABET – the United States
engineering accreditation agency (ABET 1998).

We will adjust the University of Ottawa program if necessary to achieve accreditation.
However we believe that since the criteria were designed before software engineering programs
were envisioned, it might be more appropriate to consider minor criteria changes that would
recognize the establishment of software engineering as a distinct subdiscipline.

In addition to seeking accreditation by CEAB, we will also seek accreditation by CIPS, the
body that currently accredits computer science programs. The rationale for this is that in addition
to being engineers, our graduates will also need to be computing professionals.

4. Conclusions

A report of Professional Engineers Ontario (Frise 1997) states: “If PEO doesn’t bring these
people [software developers] in now, it will be done by the next royal commission after an
accident.” By starting to issue engineering degrees in the software field, the University of Ottawa
is helping to ensure that it serves this societal need.

References

1 For example, Lethbridge (1998a and 1998b) showed that software practitioners forget most of their calculus,

and have made little use of it in their work.

ABET, “Software Engineering Program Criteria”, Accreditation Board for Engineering and Technology,
www.abet.org, 1998.

British Computer Society, Web Page, April 1998, http://www.bcs.org.uk/aboutbcs/overview.htm

Canadian Council of Professional Engineers, “Canadian Engineering Accreditation Board: 1996 Accreditation
Criteria and Procedures”.

Cowling, A.J., A Multi-Dimensional Model of the Software Engineering Curriculum”, Proc. 11th Conference on
Software Engineering Education and Training, Atlanta, 1998, pp. 44-55.

Engel, G. L., & LeBlanc, R.J., “Draft Accreditation Criteria for Software Engineering”, IEEE Computer, 31, 4,
April 1998, pp. 73-77.

Ford, G., “The SEI Undergraduate Curriculum in Software Engineering”, Software Engineering Institute, 1996a.

Ford, G. & Gibbs, N., “A Mature Profession of Software Engineering”, Software Engineering Institute Technical
Report CMU/SEI-96-TR-04, 1996b.

Frise, P. et al., “Final Report: PEO Task Group on Emerging Engineering and Multidisciplinary Groups”,
Professional Engineers Ontario, 1997.

Lethbridge, T., "A Survey of the Relevance of Computer Science and Software Engineering Education", Proc. 11th
Conference on Software Engineering Education and Training, Atlanta, 1998a, pp. 56-66.

Lethbridge, T., “The Relevance of Software Education: A Survey and Some Recommendations”, Annals of Software
Engineering,, 1998b to appear.

Lethbridge, T., Ionescu, D., Mili, A. & Gibbons, D., “An Undergraduate Option in Software Engineering: Analysis
and Rationale”, Proc. 10th Conference on Software Engineering Education and Training, Virginia Beach, 1997,
pp. 120-129.

University of Ottawa, Faculty of Engineering Calendar, April 1998 (www.uottawa.ca). An on-line version of a
slightly earlier version containing rationale is in “Proposal for a Software Engineering Program”, School of
Information Technology and Engineering, http://www.site.uottawa.ca/~tcl/sepc/CompleteSEProgram.pdf, 1997.

McMaster University, “Software Engineering at McMaster University: Report of the Ad Hoc Curriculum
Committee”, March 1998.

Naveda, J.F. “Crafting a Baccalaureate Program in Software Engineering”, Proc. 10th Conference on Software
Engineering Education and Training, Virginia Beach, 1997, pp. 74-79.

Parnas, D., “Software Engineering Programmes are not Computer Science Programs”, draft paper, Department of
Computing and Software, McMaster University, 1998.

University of Melbourne, School of Electrical Engineering and Computer Science,
http://www.unimelb.edu.au/HB/areas/NELEENG.html, 1998.

