
-1-

Timothy C. Lethbridge

University of Ottawa

Susan Elliott Sim

University of Toronto

Janice Singer1

National Research Council Canada

1 The authors appear in alphabetical order and contributed equally.

Software Anthropology: Performing Field

Studies in Software Companies

Software Anthropology

-2-

Abstract2

There are many things to be learned about software engineering by working directly with

software practitioners in companies. In this paper, we present an overview of some of the

techniques for performing such field studies, focusing on such issues as: What kind of

problems can be addressed by field studies? What techniques are available for gathering

data and analysis of the results? In what situations are these techniques suitable? What

difficulties might the software researcher encounter when performing field studies? We

illustrate the discussion with examples from our own work as well as numerous studies

reported in the literature.

Index TermsÐField Studies, Work Practices, Empirical Software Engineering

2 This work is supported by NSERC and sponsored by the Consortium for Software

Engineering Research (CSER).

Software Anthropology

-3-

I. INTRODUCTION

Software engineering is a labor-intensive activity. Thus to improve software engineering

practice, a considerable portion of our research resources ought logically to be dedicated

to the study of humans as they create and maintain software.

How can such studies be performed? In this paper we will look at one approach3.: a set

of techniques that we collectively call software anthropology because it involves

observing and analyzing the day-to-day work of software engineers in the field.

We define software anthropology to be the use of field study techniques in industrial

software settings whereby researchers study any aspect of software engineering.

Conventional anthropology has two branches that look at different aspects of a group of

subjects. Cultural anthropology seeks to understand how people live or lived by looking

at their interactions and social systems. In the case of software engineering, this means

studying the work practices of individuals and teams during such activities as

development and maintenance. Physical anthropology, on the other hand, seeks to

understand how people live or lived by looking at their artifacts, such as tools and crafts.

In the case of software engineering, this means studying the tools used and the products

3 See Zelkowitz & Wallace[39] for an overview of several different approaches.

Software Anthropology

-4-

of the those tools such as documentation, source code, etc. It is also possible to combine

approaches and look at what are called socio-technical aspects of the group.

While the idea behind software anthropology is borrowed from anthropology, the

techniques have been primarily adapted from fields such as sociology, psychology, and

human-computer interaction. In particular, these methods rely heavily on the use of field

study techniques. Field study techniques are a group of methods that can be used

individually or in sets to understand different aspects of real world environments.

The results of software anthropology can be applied when one has several different

types of research goals. Firstly, they can be used to derive requirements for software

tools and environments. For example, we have performed field studies where not only

have we learned about software design and maintenance, but also successfully applied our

results to tool design and integration [29][30][31]. Secondly, the results can be used to

improve software engineering work practices. For example one of us (Sim) was able to

make useful recommendations following a study of how newcomers adapt to a software

team [28]. Thirdly, analysis of the results can yield new theories or hypotheses that can

then be subjected to formal experimental validation [24] [31].

This latter point illustrates the major difference between software anthropology and

formal experimentation, the most important alternative, but complementary, approach. In

formal experimentation, researchers define and test hypotheses that they desire to

Software Anthropology

-5-

confirm or reject about software engineering processes and products. Field study

techniques can be used to test hypotheses, however hypothesis testing is not a

prerequisite to using field study techniques. A related distinction can be made with

respect to the environment in which the techniques are used: Although field study

techniques are usually used in the field (in vivo) and experimental techniques are normally

employed in the laboratory (in vitro), this need not be the case. Certain techniques lend

themselves to deployment in a particular location, but they are not restricted to these

locations.

In this paper, we will discuss a number of data collection techniques suitable for use in

software anthropology such as observation, interviews, questionnaires, logs of time and

of tool usage, and archival research. These methods are described in Section II along with

an explanation of their advantages and disadvantages. In Section III, we explain how the

data collection techniques can be applied in software anthropology. Finally, some of the

practical and logistical considerations surrounding a field study are described in Section

IV.

II. DATA COLLECTION METHODS

When studying work practices it is important to obtain accurate and reliable information

about how work is actually done. Interviews and questionnaires are the most

straightforward instruments, but the data they produce typically present an incomplete

Software Anthropology

-6-

picture. For example, assume your goal is to assess which programming language features

are most error-prone: A developer may be able to give you general opinions and anecdotal

evidence about this; however the researcher would obtain far more accurate and

quantitative information by recording and analyzing the developerÕs work practices: their

efforts at repeatedly editing and compiling code. Methods such as think-aloud protocols

and work diaries are used for this type of research. In fact, to learn about different aspects

of a phenomenon, it is often necessary to use multiple data collection methods: In effect

one uses different sources of data to triangulate the work practice.

In the remainder of this section, we discuss the field study techniques listed in Table 1.

Each technique is categorized according to the degree of human contact it requires. First

degree contact requires direct access to a subject population. Second degree contact

requires access to subjectsÕ environment as they work, but not necessarily subjects.

Finally, third degree contact requires access to work artifacts, such as source code or

documentation4.

Each technique we present is followed by a list of advantages and disadvantages, and is

illustrated, where possible, using an example taken from the software engineering

4 Second degree contact is distinguished from third degree contact in that second degree

contact requires data acquisition during work, while third degree contact requires only

work artifacts and has no requirements with respect to when data is acquired.

Software Anthropology

-7-

literature. The example is given in the context of the questions the researchers were trying

to answer and how the particular technique allowed them to do so.

First Degree Brainstorming

Surveys

Interviews

Questionnaires

System Illustration

Work Diaries

Think-aloud protocols

Shadowing

 Synchronized Shadowing

Participant Observation

Second Degree Instrumenting Systems

Fly on the Wall

Third Degree Problem Report Analysis

Documentation Analysis

Analysis of Tool Logs

Table 1: Data Collection Techniques Suitable for Field Studies of Software Engineering

Software Anthropology

-8-

All the methods, from the simplest to the most complex, need to be applied with care and

respect. First, questions and forms must be crafted carefully to ensure that the data

collected is meaningful. A poorly-worded question results in ambiguous responses that

cannot be interpreted or analyzed. Second, subjects in the study must be treated with

respect because they are, first and foremost, human beings in social situations.

Researchers need to be sensitive to the disruptions their presence can cause. These

Òresearchers effectsÓ are further discussed in subsection A on First Degree Techniques.

The set of available methods is constantly evolving. A good place to look for new data

gathering and analysis methods is in the human-computer interaction literature (e.g.

[14][32]); there is much in common between trying to improve a software system so

users can use it more effectively, and trying to improve software engineering practices.

A. First Degree Techniques: Direct Contact

The first five techniques listed in Table 1 are what we call inquisitive techniques, while

the remaining three are observational. Each type is appropriate for gathering different

types of information from software engineers.

Inquisitive techniques allow the experimenter to obtain a general understanding of the

maintenance process. They are probably the only way to gauge how enjoyable or

motivating certain tools are to use or certain activities to perform. However, they are

often subjective, and additionally do not allow for accurate time measurements.

Software Anthropology

-9-

Observational techniques provide a real-time portrayal of the studied phenomena.

However, it is more difficult to analyze the data, either because it is dense, or because it

requires considerable knowledge to interpret correctly. Observational techniques can be

used at randomly chosen times or when a software engineer is engaged in a specific type

of activity (such as whenever she is using a debugger). Observational techniques always

run the risk of changing the process simply by observing it; the Hawthorne effect was

first identified when a group of researchers found that output was not related to

environmental conditions as expected, but rather to whether or not workers were being

observed [23]. Careful consideration of this effect is therefore warranted in implementing

the research and explaining its purpose and protocol to the research participants.

1) Brainstorming

In a brainstorming session, several people get together and focus on a particular issue. The

idea is to ensure that discussion is not limited only to ÔgoodÕ ideas or ideas that make

immediate sense; i.e. to work together to uncover as many ideas as possible. This

technique usually works best with a moderator because the moderator can focus the group

when it is drifting and additionally motivate the group when it is floundering. Two

important side benefits of brainstorming are that it can introduce the researchers and

participants to each other and give the participants more of a sense of being involved.

Conducting research in field environments is often stressful to the research participants.

They are more likely to be willing subjects if they feel comfortable with the researchers

Software Anthropology

-10-

and feel they are partners in research that focuses on issues that they consider to be

important.

Bellotti, and Bly [1] used brainstorming during an initial meeting with a product design

group. The goal of their research was to study the process of mobile collaboration among

design team members. The brainstorming meeting was held to identify problems and

possible solutions as seen by the team. This meeting gave the researchers an initial

understanding of the teamÕs work and additionally let the researchers know how existing

technology was either supporting or inhibiting the work. A nice side effect of the meeting

was that it gave the researchers an entry point for communication about the design

process with their colleagues in the design department at Apple.

Advantages: Brainstorming generates ideas that can lead to testable hypotheses. It is an

excellent method for finding out what is important or particularly salient to your subject

population. Brainstorming works best when you are starting a project and looking for

ideas.

Disadvantages: Even with a moderator, brainstorming can be too unfocused. People

can be shy in a group and not say what they really think. Just because a subject

population focuses on a particular issue, it does not mean that it occurs frequently or

even that it is a part of their daily work. It is often hard to schedule a brainstorming

session with the busy schedules of software engineers.

Software Anthropology

-11-

2) Interviews and Questionnaires

In this subsection, the strengths and drawbacks that are common to interviews and

questionnaires will be discussed, followed by an examination of the characteristics of each

method. Each technique will be described in the following two subsections.

Both interviews and questionnaires are centered around asking a series of questions and

the resulting data is respondentÕs answers to these inquiries. The questions can be closed-

ended, i.e. multiple-choice, or they can be open-ended, i.e. long-answer. Therefore, to

implement this method correctly, questions and forms must be crafted carefully to ensure

that the data collected is meaningful [8]. A poorly worded question results in ambiguous

responses that cannot be interpreted or analyzed. If time permits, it makes sense to pilot

test the questions or forms and then redesign them as you see which questions really

attack the pertinent issues.

In order to generate good statistical results from a survey, a sample representative of the

population of interest is needed. This requirement is particularly difficult in software

engineering because we lack good demographic information about the population of

developers and maintainers. However, this drawback should not prevent us from using

surveys to study work practices, particularly when the problem or population is small

and well-defined.

Software Anthropology

-12-

Advantages: People are familiar with answering questions, either verbally or on paper,

and as a result they tend to be comfortable and familiar with this data collection method.

Participants also enjoy the opportunity to talk about their work. Surveys tend to be

relatively quick and cost-efficient. Questionnaires, in particular, can easily collect data

from a large number of respondents in geographically diverse locations.

Disadvantages: Surveys, in any form, rely on respondentsÕ self reports of their

behaviors or attitudes. This dependency can bias the results in a number of ways. People

are not perfect recorders of events around them; they remember events that are

meaningful to them. For instance in one of our questionnaires, subjects reported that

reading documentation was a time-consuming aspect of their job, but in 40 hours of

observation, we hardly saw anyone doing so.

3) Interviews

Face-to-face interviews involve at least one researcher talking, in person, to at least one

respondent at a time. An interview with a number of respondents is called a focus group.

Normally, a fixed list of carefully worded questions forms the basis of the interview.

Depending on the goal of the study, respondents may be encouraged to elaborate on areas

and deviate slightly from the script.

Software Anthropology

-13-

Telephone interviews are the middle ground between face-to-face interviews and

questionnaires. You have the interactivity of an interview, but at the cost of a phone call

rather than traveling to another site. They are not as personal as a face-to-face interview,

yet they still provide the researcher with opportunities to clarify questions and further

probe interesting responses. Although this technique is popular in opinion polling and

market research, it is little used in empirical software engineering.

Interviews have been used in many studies because they fit well with many types of

inquiries. We have used interviews in longitudinal studies as an aid in understanding how

newcomers adapt to a development team and software system [28]. We interviewed

newcomers once every three weeks over a number of months to track their progress as

maintenance team members. Since this was an exploratory study, the questions were

open-ended

Curtis et al. [4]used interviews to study the design process used on nineteen different

projects at various organizations. Their research design was predicated on a layered model

of behaviour that takes into account an individualÕs context when analyzing their

behaviour. Consequently, they interviewed personnel from three different levels of the

projects, systems engineers, senior software designers and the project manager. The

researchers conducted 97 interviews, which resulted in over 3000 pages of transcripts of

the audio recordings. They found three key problems common to the design processes:

communication and coordination breakdowns, fluctuating and conflicting product

Software Anthropology

-14-

requirements, and the tendency for application domain knowledge to be located in

individuals across the company. They characterized the problems at each level of the

model.

Advantages: Interviews are highly interactive. Researchers can clarify questions for

respondents and probe unexpected responses. Interviewers can also build rapport with a

respondent to improve the quality of responses.

Disadvantages: Interviews are time and cost inefficient. Contact with the

respondent needs to be scheduled and at least one person, usually the researcher, needs to

travel to the meeting. Data from interviews tend to be qualitative and as a result, needs to

be transcribed and/or coded.

4) Questionnaires

Questionnaires are sets of questions administered in a written format. These are the most

common field method because they can be administered quickly and easily.

Unfortunately, many poorly-designed questionnaires have been created. Many people

think they know how to design a questionnaire because they have filled out (poorly-

designed) questionnaires in the past. Attention needs to be paid to the wording of the

questions, the layout of the forms, and the ordering of the questions.

Software Anthropology

-15-

Iivari used a paper-based survey to test nine hypotheses about factors affecting CASE

tool adoption in 52 organizations in Finland [9]. The author contacted organizations who

had purchased CASE tools and surveyed key information systems personnel about the

use of the tool. Companies and individuals were more likely to use CASE tools when

adoption was voluntary, the tool was perceived to be superior to its predecessor(s) and

there was management support.

Sim et al. used a web-based questionnaire to study source code searching behaviors [27].

We solicited respondents from seven USENET newsgroups from the comp.* hierarchy

to complete a questionnaire at a given web address. The questionnaire used a two-page

format. The first page informed the participants of the goals of the study and their rights

and the second page displayed the questions. Using a combination of open- and closed-

ended questions, we identified a set of eleven search archetypes.

Advantages: Questionnaires are time and cost effective. Researchers do not need to

schedule sessions with the SEs to administer them. They can be filled out when an SE has

time between tasks, for example, waiting for information or during compilation. Paper

form-based questionnaires can be transported to the respondent for little more than the

cost of postage. Web-based questionnaires cost even less since the paper forms are

eliminated and the data are received in electronic form.

Software Anthropology

-16-

Disadvantages: Since there is no interviewer, ambiguous and poorly-worded

questions are problematic. Even though it is relatively easy for SEs to fill out

questionnaires, they still must do so on their own and may not find the time. Thus, return

rates can be relatively low which can adversely affect the representativeness of the

sample. Responses tend to be more terse than with interviews.

5) System Illustration

During system illustration, subjects illustrate, through drawing, some aspect of their

work. For instance, SEs may be asked to draw the important architectural clusters of their

system. As another example, SEs may be asked to draw a data flow or control flow

diagram. As an orthogonal usage, SEs may be asked to draw a physical map of their

environment, pointing out who they talk to and how often.

Another usage of system illustration involves researchers creating the diagrams and then

asking subjects to either confirm or disconfirm the information contained therein.

In one of our pilot trials, we collected system maps from all members of the researched

group. Additionally, as we followed two newcomers to a system, we had them update

their original system maps on a weekly basis. We gave them a photocopy of the previous

weekÕs map, and asked them to either update it or draw a new one. The newcomers

almost exclusively updated the last weekÕs map.

Software Anthropology

-17-

Originally, our instructions to the study participants were to Ôdraw their understanding of

the system.Õ These instructions turned out to be too vague. Some participants drew data

flow diagrams, some drew architectural clusters, others listed the important data

structures and variables, etc. Not surprisingly, the manager of the group subsequently

noted that the system illustrations reflected the current problems on which the various

software engineers were working.

We learned from this exercise that for illustration data to be useful, it is important to

specify to the greatest extent possible the type of diagram required. It is next to

impossible to compare diagrams from different members of a group if they are not

drawing the same type of diagram. Of course, this limits researchers in the sense that

they will not be getting unbiased representations of a system. Specifying that data-flow

diagrams are required means that SEs must then think of their system in terms of data-

flow.

Advantages: System illustrations provide an accurate portrayal of the userÕs conception

of his mental model of the system. System illustrations are easy to collect and require

only low-tech aids (pen and paper).

Disadvantages: System illustrations are hard to interpret, especially if you do not

have domain knowledge about the system. Some SEs are reluctant to draw.

Software Anthropology

-18-

6) Work Diaries

Work diaries require respondents to record various events during the day. It may involve

filling out a form at the end of the day, recording specific activities as they occur, or

noting the current task at a pre-selected time. These diaries may be kept on paper or on

the computer. Paper forms are adequate for recording information at the end of the day. A

computer application can be used to prompt users for input at random times.

Over a series of studies, Perry et al. developed a paper-based time diary designed to

record how SEsÕ spent their time over the course of a day [19]. The final form reflected

the researchersÕ model of the SEsÕ work patterns and was designed to facilitate coding of

the data. Developers tended to spend only about half their time coding, the remaining time

was spent on design, re-work, administrative tasks, etc.

J¿rgensen randomly selected software maintainers and asked them to complete a form to

describe their next task [12]. These reports were used to profile the frequency

distribution of maintenance tasks. Thirty-three hypotheses were tested and a number of

them were supported. For example, programmer productivity (lines of code / unit time) is

predicted by the size of the task, type of the change, but it is not predicted by maintainer

experience, application age, nor application size.

Advantages: Work diaries obtain better self-reports of events because they record

activities on an ongoing basis rather than in retrospect. Random sampling of events gives

Software Anthropology

-19-

researchers a way of understanding how SEs spend their day without a great deal of

observation or shadowing.

Disadvantages: Work diaries still rely on self-reports and ones that require

participants to recall events still have problems with accuracy. Another problem with

work diaries is that they can interfere with respondents as they work. For instance, if

software engineers have to record each time they go and consult a colleague, they may

consult less often. They may also forget or neglect to record some events and may not

record at the expected level of detail.

7) Think-aloud protocols

In think-aloud protocol analysis [7] [16], experimenters ask participants to think out loud

while performing a task. The task can occur naturally at work or be predetermined by the

experimenter. As SEs sometimes forget to verbalize, experimenters may occasionally

remind them to continue thinking out loud. Other than these occasional reminders,

experimenters do not interfere in the problem solving process. Think-aloud sessions are

generally two hours or less.

Think-aloud protocol analysis is most often used for determining or validating a cognitive

model as SEs do some programming task. For a good review of this literature, see Von

Mayrhauser and Vans [34].

Software Anthropology

-20-

Von Mayrhauser and Vans [32] asked professional SEs to think aloud as they performed

a maintenance task for their job that necessitated program comprehension. Both SEs

involved in the experiment chose debugging sessions. The think-aloud protocols were

coded to determine if subjects were adhering to the Integrated meta-model of program

comprehension (defined by von Mayrhauser & Vans). They found evidence for usage of

this model. Because the model usage was confirmed, von Mayrhauser and Vans were able

to suggest tool requirements for software maintenance environments.

As another example of think-aloud protocol analysis, Sen [26] asked student subjects to

think out loud while they drew Entity-Relationship Diagrams during a problem solving

session. Before the experimental session, Sen had participants practice thinking out loud

by having them solve simple math problems. Sen used the think-aloud protocols to draw

cognitive maps for each of his nine subjects. These cognitive maps supported SenÕs

theory of the use of opportunism in the design reuse process. The results from this

experiment were used to define an architecture to support reuse in design.

Advantages: Relatively easy to implement. Additionally, it is possible to implement

think-aloud protocol analysis with manual record keeping [16] obliterating the need for

transcription. This technique gives a unique view on the problem solving process and

additionally gives access to mental model. It is an established technique.

Software Anthropology

-21-

Disadvantages: Think aloud protocol analysis was developed for use in situations

where an experimenter could map out the entire problem space. It's not clear how this

method translates to other domains where it is impossible to know a priori what the

problem space is. Even using manual record keeping, it is difficult to analyze think-aloud

data. Additionally, it can be extremely time intensive.

8) Shadowing

In shadowing, the experimenter follows the participant around and records their activities.

Shadowing can occur for an unlimited time period, as long as there is a willing participant.

We have implemented shadowing in our work in two ways [30]. First, one experimenter

took paper and pencil notes to indicate what the subject was doing and for approximately

how long. This information gave us a good general picture of the work habits of the SEs.

We also developed a method we call synchronized shadowing. Here we used two

experimenters and, instead of pencil and paper, used two laptop computers to record the

SEs actions. One of us was responsible for ascertaining the subjectsÕ high level goals,

while the other was responsible for recording their low-level actions. We used pre-defined

categories (Microsoft Word macros) to make recording easier. We are currently analyzing

this data to see if certain goals are followed by certain actions Ð we term such sequences

work patterns.

Software Anthropology

-22-

To understand the build process at a large telecommunications company, Wolf &

Rosenblum [37]also implemented a shadowing procedure. They observed an SE as he

went about building the software. Wolf and Rosenblum began by defining a taxonomy of

events that could occur during the build process. This taxonomy was then translated into

specific categories of possible events. Then each time an event occurred, the observer

used a simple log sheet to give the event an identifier, note the type of event, the date and

time the event occurred, the names of the subsystems affected, and the names of the

people involved. The data was analyzed by entering it into a relational database and

subsequently performing queries on it. For example, Wolf & Rosenblum were able to

identify possible problem processes by looking at the lag time between when the Build

SE contacted a developer and when the developer answered the query.

Perry, Staudenmayer, & Votta [19] also shadowed SEs as they went about their work.

They recorded continuous real-time non-verbal behavior in small spiral notebooks.

Additionally, at timed intervals they asked the SEs ÒWhat are you doing now?Ó At the

end of each day, they converted the notebook observations to computer files. The direct

observations contributed to Perry, et al.Õs understanding of the software process. In

particular, shadowing was good for observing informal communication in the group

setting.

Advantages: Shadowing is easy to implement, gives fast results, and requires no special

equipment.

Software Anthropology

-23-

Disadvantages: It is often hard to see what the SE is doing, especially when they

are using macros and working quickly. However, for the general picture, e.g., they are now

debugging, shadowing does work well. Observers need to have a fairly good understanding

of the environment to interpret the SEsÕ behavior. This can sometimes be offset by

predefining a set of categories or looked-for behaviors. Of course, again, this limits the

type of data that will be collected.

9) Participant Observervation

In the Participant-Observer method, the researcher essentially becomes part of the team

and participates in key activities. Participating in the software development process

provides the researcher with a high level of familiarity with the team members and the

tasks they perform. As a result, SEs are comfortable with the researcherÕs presence and

tend not to notice being observed.

Participant-Observer was one of the methods used by Seaman and Basili in their studies

of how communication and organization factors affect the quality of software inspections

[24]. The authors were integrated into a newly-formed development team and the process

document for the group included Seaman as a participant in the inspection meetings. Over

seventeen months, she participated in twenty-three inspection meetings. From this study,

they developed a series of hypotheses on how factors such as familiarity, organizational

distance, and physical distance are related to how much time is spent on discussion and

tasks.

Software Anthropology

-24-

Porter, et al. also used the participant-observer method [21]. One of the researchers, a

doctoral student, joined the studied development team as a means of tracking an

experimentÕs progress, capturing and validating data, and observing inspections. Here the

field study technique was used in the service of more traditional experimental methods.

Advantages: Respondents are more likely to be comfortable with a team member and to

act naturally during observation. Researchers also develop a deeper understanding of the

cognitive aspects of a task after performing them.

Disadvantages: Joining a team is very time consuming. It takes a significant amount

of time to establish true team membership. Also, an researcher who becomes too involved

may lose perspective on the phenomenon being observed.

B. Second Degree Techniques: Indirect Contact

Second degree techniques require access to SEsÕ environment as they work, but do not

require direct contact between the participant and researcher during data collection. As a

result, they require very little time from the SEÕs and are appropriate for longitudinal

studies.

Software Anthropology

-25-

1) Instrumenting Systems

This technique requires ÒinstrumentationÓ to be built into the software tools used by the

SE. This instrumentation is used to record information automatically about the usage of

the tools. Instrumentation can be used to monitor how frequently a tool or feature is used,

patterns of access to files and directories, and even the timing underlying different

activities. This technique is also called system monitoring.

In some cases instrumentation merely records the commands issued by users. More

advanced forms of instrumentation record both the input and output in great detail so that

the researcher can effectively play back the session. Others have proposed building a new

set of tools with embedded instruments to further constrain the work environment [3].

Kay and Thomas instrumented an existing UNIX editor, sam, to learn about long-term

use of the tool [13]. They wanted to know how power users evolved so they recorded the

commands and operators used from within the editor. They found that a small set of

commands were used very frequently, another small set of commands were used

occasionally, and a large set of commands were almost never used. Commands from the

second group tended to phase in and out of favor. From this data, the authors were able to

build documentation to assist in a computer-aided instruction system for the editor.

Software Anthropology

-26-

Advantages: System monitoring requires no time commitment from SE. People tend to

be very poor judges of factors such as relative frequency and duration of tool use and this

method can be used to provide this information accurately.

Disadvantages: It is difficult to analyze data from instrumented systems

meaningfully; that is, it is difficult to determine the SEÕs thoughts and goals from a series

of tool invocations. The instruments might tell you what the SE was doing, but it does

not direct you to the logic behind that action. This problem is particularly relevant when

the working environment is not well-understood or not constrained. For example, SEÕs

often customize their environments by adding scripts and macros (e.g., in emacs). One

way of dealing with this disadvantage is to play back the events to the SE and ask them to

comment.

2) Fly on the Wall

ÒFly on the WallÓ is a hybrid technique, it allows the researcher to be an observer of an

activity without being present by requesting the participants to record themselves. The

recordings could be video or audio.

Berlin asked mentors and apprentices at a software organization to audiotape their

meetings in order to study how expertise is passed on [2]. She later analyzed these

recordings for patterns in their conversations. She found that their discussions were

highly interactive in nature, using techniques such as confirmation and re-statement to

Software Anthropology

-27-

verify messages. Mentors not only explain features of the system, they also provided

design rationale. While mentoring is effective, it is also time-consuming, so Berlin makes

some suggestions for documentation and short courses for apprentices.

Walz et al. had assistants videotape team meetings during the four-month design phase of

a development project [36]. Researchers did not participate in the meetings and these

tapes served as the primary data for the study. The goal of the study was to understand

how the team work, goals, and design evolved over a period of four months. Initially the

team focused on gathering knowledge about the application domain, then on the

requirements for the application, and finally on design approaches. The researchers also

found that the team did not record a lot of key information and as a result they re-visited

issues that had been settled at earlier meetings

Advantages: This method requires very little time from the participants and is

very unobtrusive. Although there may be some discomfort in the beginning, it fades

quickly.

Disadvantages: The participants may forget to turn on the recording equipment at

the appropriate time and as a result the record may be incomplete or missing.

Software Anthropology

-28-

C. Third Degree Techniques: Analysis of Work Artifacts

Third degree techniques attempt to uncover information about how SEs work by looking

their output and by-products. Examples of their output are source code, documentation,

and reports. By-products are created in the process doing work, for example work

requests, logs and output from configuration management and build tools. These records,

or archives, can serve as the primary information source. Sometimes researchers recruit

SEs to assist in the interpretation or validation of the data. There are some advantages and

disadvantages that are common to all third degree techniques.

Advantage: Third degree techniques require almost no time commitment from SEs.

Disadvantages: The data collected is somewhat removed from the actual

development process. Also, it is sometimes difficult to interpret the data meaningfully.

The information available may not be sufficient to perform some analyses relevant to

research goals.

1) Work Request Analysis

In most large maintenance organizations, modifications to a program are accompanied by a

paper trail. An SE is assigned a work request in the form of a problem report for a defect

repair or a change request for other maintenance tasks. A single change request or a series

of such requests can serve as the data source.

Software Anthropology

-29-

Change requests can be used as the basis for inquiries using first degree techniques. For

example, a researcher can review a recently completed work request with the SE to

document problems encountered or strategies used along the way.

These requests can be used in a number of ways. Pfleeger and Hatton analyzed fault

reports for a system to evaluate the effect of adding formal methods to the development

process of an air traffic control system [20]. Each module in the software system was

designed using one of three formal methods or an informal method. Although the code

designed using formal methods tended to have fewer faults, the results were not

compelling even when combined with other data from a code audit and unit testing.

Advantages: A large amount of data is often readily available. The data is stable and

non-reactive to researchers.

Disadvantages: Little control over the quantity and quality of information on the

work request forms. It is also difficult to gather additional information about requests,

especially if they are very old or the SE who worked on it is no longer available.

2) Documentation Analysis

This technique focuses on the documentation generated by SEs. Data from this category

can come from many different sources. Documentation includes comments and headers in

Software Anthropology

-30-

the program code, as well as any written materials describing the software system. Data

collected from these sources can also be used in re-engineering efforts, such as subsystem

identification. Other sources include local newsgroups, group e-mail lists, memos, and

process documents.

Kemerer and Slaughter wanted to test a model of relationships between types of repairs

performed during maintenance and attributes of the modules being changed [14]. Their

analysis was based on the change history of the modules which contained information

about the moduleÕs creation date and author, the function of the module, the SE making

the change, and a description of the change. They found support for their regression

models and posit that software maintenance activity follows predictable patterns. For

example, modules that are more complex, relatively large and old need to be repaired more

often, whereas, modules with important functionality tend to be enhanced more often.

Advantages: Documents written about the system often contain conceptual information

and present a glimpse of at least one personÕs understanding of the software system.

They can also serve as an introduction to the software and the team. Comments in the

program code tends to provide low-level information on algorithms and data. Using the

source code as the source of data allows for an up-to-date portrayal of the software

system.

Software Anthropology

-31-

Disadvantages: Studying the documentation can be time consuming and it requires

some knowledge of source. Written material and source comments may be inaccurate.

3) Analysis of Tool Logs

Some of the information gathered using other techniques can be gleaned from software

tools with built-in logs, such as configuration management tools, work assignment tools,

and tool servers. This technique can be viewed as a quick-and-dirty version of system

instrumentation.

In the Wolf and Rosenblum study mentioned in the section on Shadowing, the authors

analyzed the log files generated by the build tools [37]. They developed tools to

automatically extract information from relevant events from these files. This data was

input into a relational database along with the information gathered from other sources.

Advantages: The data is already in electronic form, making it easier to code and analyze.

The behaviour being logged is part of SEs normal work routine.

Disadvantage: Companies tend to use different tools in different ways, so it is

difficult to gather data consistently when using this technique with multiple

organizations.

Software Anthropology

-32-

III. APPLYING THE METHODS

In the previous section, we describe a number of diverse techniques for gathering

information in a field study. The utility of data collection techniques becomes apparent

when they can help us to understand a particular phenomenon. In this section, we explain

how these methods can be used in an empirical study of software engineering. Some of

the issues we deal with are: how to choose a data collection method, how to record the

data, and how to analyze the data.

A. Designing the Study

The first step in designing any study is to establish a set of well-understood goals,

because many of the subsequent design decisions depend on them. The goals should

describe the phenomenon being studied and the purpose of the study, i.e. how will the

results be used. Field studies in software engineering have had a variety of goals. Some of

them try to develop tool requirements by studying SEs [27][29][32]. Others want to

make the management of software maintenance easier by characterizing maintenance

activities [12][14]. Other studies attempt to understand existing development and

maintenance processes, so they can prescribe new ones [19][24][28][37].

The goals of the research drive the formulation of the research questions, which in turn

drive the research design, which in turn dictate the choice of data collection technique(s).

This relationship between goals and selection of data collection technique is depicted in

Figure 1. When the goals are clear, many of the later decisions are simplified. It should be

Software Anthropology

-33-

noted that goals are distinct from hypotheses, the latter are formulated at the same time as

the research design. As mentioned earlier, a hypothesis is not necessary to perform a field

study.

Figure 1: Design Decision Sequence

The goals should be fairly specific, so that a small number of research questions can be

derived from them. The questions should be short, so they can be answered easily. There

should not be too many questions and the scope of each question should be narrow, lest

the study become unmanageable. A study can be built around a single well-defined

question.

The research question combined with background knowledge generates a small number of

research designs. There are three basic types of studies that can be performed: case study

[38], surveys [8], and controlled experiments . Any of these designs can be carried out in

the field. If there is little background knowledge and the questions are broad, a case study

could be used. On the other end of the continuum, if there is a great deal of background

knowledge and the questions are specific, a controlled experiment can be performed. A

survey is suited towards quantifying a phenomenon, such as how many programmers

Goals
Research Research Data

Software Anthropology

-34-

there are and what languages they know. Many of the field studies in software engineering

tend to be exploratory in nature, because we are still gathering basic knowledge about the

people factors surrounding software development and maintenance. As a result, a case

study design is commonly used and the study results in a theory or model that can be

tested later. As our knowledge base grows, we can employ designs that test these theories

or models.

Eisenstadt did a study to characterize particularly difficult bugs [6]. He collected data by

posting a request for anecdotes about such bugs on several electronic forums. The

research questions were: Why were the bugs difficult to find? How were the bugs found?

and What were the root causes of the bugs? Ninety-five anecdotes received in two

batches were used to answer these questions. About half the bugs were difficult to find

because there was a large gap between where the error occurred and where the error

appears, or the bug rendered debugging tools inapplicable. Data gathering, such as using

print statements, and hand simulation accounted for 80% of the reported strategies for

finding a bug. The two main root cases were memory overwrites and faults in vendor-

supplied hardware and software.

In this study, Eistenstadt essentially used a questionnaire to collect data. The first batch

of responses was analyzed using bottom-up techniques, such as generating distributions,

summary statistics, and grounded analysis. From these results, he generated a set of

categories and criteria that he used to analyze the second batch of responses in a top-

Software Anthropology

-35-

down manner. This research design permitted easy collection of data from a large number

of sources about a phenomenon that was relatively uncommonÑvery difficult bugs. One

drawback of the design is that the respondents may not have reported strategies that are

difficult to describe.

The goal of the study was simply to characterize difficult bugs. The research question

reflected this goal because they are exploratory in nature. Such questions can be answered

using either a case study design or a survey design. Although a questionnaire was used,

there are other ways of answering the same research questions using field study

techniques. Indeed, these alternate data sources could serve to validate the results found

by Eisenstadt. Some other approaches are presented below.

Characteristics of difficult bugs can be studied using work diaries, work requests, or work

management tool logs. Use of the latter two sources depends on the information available

from the archives. With a modified work diary technique, SEs complete a form after

repairing a bug to describe the process along key dimensions. The researcher then

interviews SEs about bugs that took a long time to resolve or were rated as very difficult.

One advantage of this approach is that it provides information about the relatively

frequency of different types of bugs. A disadvantage is the researcher has to deal with

uninteresting bugs, such as those that are not difficult.

Software Anthropology

-36-

Another approach it to observe SEs, with or without think-aloud, when they are repairing

bugs. These bugs could be chosen by the SE on the basis that they appear to be difficult

(based on the work request) or the SE has spent some time working on the bug already

and is having little success. Advantages of this approach are that researchers get to see

strategies as they are being used and they may also see bugs that are difficult, but not

memorable. Disadvantages of this approach is it takes more time to watch SEs repair bugs

than to read reports of them, and it may be difficult to co-ordinate observations sessions.

Any of these approaches could have been used to characterize difficult bugs. Depending

on the goals of the research and the field site, one option usually is more attractive than

the others. When there are a small number of equally good options, all of them can be

used to create a more complete picture of the phenomenon. The method chosen by

Eisenstadt is appropriate for his goal of acquiring a basic understanding of the bugs.

However, if the goal of the study to develop debugging tools, then the observation and

think-aloud protocols may be more appropriate. If the goal of the study is to better

manage maintenance processes with respect to debugging, then the strategy using problem

reports/work diaries coupled with interviews may be more appropriate. Hence, it is

important to have well defined goals as the basis of designing a study because they guide

important research decisions.

Software Anthropology

-37-

B. Record-Keeping Options

First degree contact generally involves one of the following three data capture methods:

videotape, audiotape, or manual record keeping. These methods can be categorized as

belonging to several related continua. First, they can be distinguished with respect to the

completeness of the data record captured. Videotape captures the most complete record,

while manual record keeping captures the least complete record. Second, they can be

categorized according to the degree of interference they invoke in the work environment.

Videotaping invokes the greatest amount of interference, while manual recording keeping

invokes the least amount of interference. Finally, these methods can be distinguished with

respect to the time involved in using the captured data. Again, videotape is the most time-

intensive data to use and interpret, while manual record keeping is the least time-intensive

data to use and interpret.

The advantage of videotape is that it captures details that would otherwise be lost, such

as gestures, gaze direction, etc 5. However, with respect to video recording, it is important

to consider the video cameraÕs frame of reference. Videotape can record only where a

video camera is aimed. For instance, consider videotaping a software engineer to follow

his eye movements. To accomplish this, it is necessary to have coordinated videotaping:

5 It is often felt that videotaping will influence the participants actions. However, while

videotaping appears to initially influence behavior, the novelty wears off quite quickly

[11].

Software Anthropology

-38-

one capturing the software engineerÕs back and computer screen6; the other capturing his

eye movements as he looks at the screen. Moving the video camera a bit to the right or a

bit to the left may cause a difference in the recorded output and subsequently in the

interpretation of the data. Another difficulty with videotape is that video formats are

generally of far poorer resolution than that of computer screens Ð thus it is hard to

capture enough of what happens on the screen,

Audiotape also allows for a fairly complete record, however details of the physical

environment and interaction with it will be lost. Audiotape does allow, however, for the

capture of tone. If a subject is excited while talking about a new tool, this will be captured

on the audio record.

Manual record keeping is the most data sparse method and hence captures the least

complete data record, however manual record keeping is also the quickest, easiest, and

least expensive method to implement. Manual record keeping works best when a well-

trained experimenter identifies certain behaviors, thoughts, or concepts during the data

collection process. Using synchronized shadowing as in our laboratory, in order to attain

the benefits of manual record keeping, while at the same time keeping its disadvantages at

6 System logging of the computer screen may provide an alternative in this situation, but

it is still necessary to consider the video frame from the perspective of what data is

required.

Software Anthropology

-39-

bay, we used two record keepers for the same session with each record keeper trained to

capture different data. This method has worked particularly well for capturing high-level

goals, while at the same time capturing low-level actions.

All three data capture methods have advantages or disadvantages. The decision of which

to use depends on many variables, including privacy at work, the subjectÕs degree of

comfort with any of the three measures, the amount of time accorded for data collection

and interpretation, the type of question asked and how well it can be formalized, etc. It is

important to note that data capture methods will affect the information gained and the

information that it is possible to gain. But again, these methods are not mutually

exclusive. They can be used in conjunction with each other.

C. Coding and Analyzing the Data

Field study techniques produce enormous amounts of dataÑa problem referred to as an

Òattractive nuisanceÓ [16]. The purpose of this data is to provide insight into the

phenomenon being studied. To meet this goal, the body of data must be reduced to a

comprehensible format. Traditionally, this is done through a process of coding. That is,

using the goals of the experiment as a guide, a scheme is developed to categorize the data.

These schemes can be quite high level. For instance, a researcher may be interested in

noting all goals stated by a software engineer during debugging. On the other hand the

schemes can be quite specific. A researcher may be interested in noting how many times

Software Anthropology

-40-

grep was called in a half-hour programming session. Often, two raters will categorize

some overlapping portion of the data to ensure to the greatest degree possible that

objective categorization is occurring. Interrater reliability measures quantify the degree to

which raters agree on categorizations, and some acceptable level is determined beforehand.

Generally disagreements about the coding scheme are resolved before coding continues.

Audio and videotape records are usually transcribed before categorization, although

transcription is not necessary. Transcription requires significant cost and effort, and may

not be justified for small, informal studies. Having made the decision to transcribe, getting

an accurate transcription is challenging. A trained transcriber can take up to 6 hours to

transcribe a single hour of tape (even longer when gestures, etc. must be incorporated into

the transcription). An untrained transcriber (especially in technical domains) can do such

a poor job that it takes researchers just as long to correct the transcript. While transcribing

has its problems, online coding of audio or videotape can also be quite time inefficient as

it can take several passes to produce an accurate categorization. Additionally, if a

question surfaces later, it will be necessary to listen to the tapes again, requiring more

time. The issue of finding transcribers is further discussed below under ÒStaffingÓ in

Section VI.

Once the data has been categorized, it can be subjected to a quantitative or qualitative

analysis. Quantitative analyses can be used to provide summary information about the

data, such as, on average, how often grep is used in debugging sessions. Quantitative

Software Anthropology

-41-

analyses can also determine whether particular hypotheses are correct, such as whether

high-level goals are stated more frequently in development than in maintenance.

When choosing a statistical analysis method, it is important to know whether your data is

consistent with assumptions made by the method. Traditional, inferential statistical

analyses allow for tests of statistical significance, which can include characterization of

population parameters with error estimates. However, these tests are only applicable in

well-constrained situations. The type of data collected in field studies often require

nonparametric statistics. Nonparametric statistics are often called Òdistribution-freeÓ in

that they do not have the same requirements regarding the modeled distribution as

parametric statistics. Additionally, there are many nonparametric tests based on simple

rankings, as opposed to strict numerical values. Finally, many nonparametric tests can be

used with small samples. For more information about nonparametric statistics, Siegel and

Castellan [25] provide a good overview.

Qualitative analyses do not rely on quantitative measures to describe the data. Rather,

they provide a general characterization based on the researchersÕ coding schemes. For

example, after interviewing SEs at 12 organizations, Singer [31] found characteristics

common to many of the organizations, such as their reliance on maintenance control

systems to keep historical data. Again, the different types of qualitative analysis are too

complex to detail in this paper. See [17] for a very good overview.

Software Anthropology

-42-

In summary, the way the data is coded will affect its interpretation and the possible

courses for its evaluation. Therefore it is important to ensure that coding schemes reflect

the research goals. They should tie in to particular research questions. Additionally,

coding schemes should be devised with the analysis techniques in mind. Again, different

schemes will lend themselves to different evaluative mechanisms. However, one way to

overcome the limitations of any one technique is to look at the data using several different

techniques (such as combining a qualitative and quantitative analyses). A triangulation

approach will allow for a more accurate picture of the studied phenomena.

As a final note, with any type of analysis technique, it is generally useful to go back to

the original subject population to discuss the findings. Subjects can tell researchers

whether they believe an accurate portrayal of their situation has been achieved. This, in

turn, can let researchers know whether they used an appropriate coding scheme and

analysis techniques

IV. LOGISTICAL ISSUES IN STUDIES OF SOFTWARE ANTHROPOLOGY

Since studies of software anthropology are undertaken in the field, many logistical issues

have to be resolved. Some logistical issues arise in all research involving human subjects

(e.g., scheduling sessions, obtaining ethics approval, etc.). Other logistical issues are

unique to field studies (e.g. making contact with organizations, negotiating access to

informants, obtaining permission to publish results, etc.). In this section, we describe

Software Anthropology

-43-

some of the practical concerns associated with software anthropology. Drawing upon our

experience performing such studies, we also give suggestions for dealing with these issues.

A. Establishing Field Research Co-operation with Organizations

The biggest practical problem in studying work practices is obtaining participants.

Although it is possible to conduct a study using participants who are solicited

individually, it is usually necessary to work with teams within an organization. Hence,

participation needs to be obtained from organizations.

Finding suitable organizations is the first hurdle. While many researchers or their

institutions may have a few companies that are their perennial ÔcontactsÕ in industry,

software anthropology researchers should give thought to involving companies of several

different types to avoid introducing bias. The companies most likely to be willing to

participate are those already involved in research Ð particularly medium to large

companies whose primary business is software or computer products. Much harder to

penetrate are companies in other industries that develop specialized software or in-house

software, for example, banking and health care. In the past, we have experienced

considerable frustration finding suitable managers to contact. Our only advice is that

unbiased research often requires considerable effort of this type.

Two levels of management must be convinced to participate: Higher management must

agree to the involvement of the company as a whole, while first-level managers must agree

Software Anthropology

-44-

to the involvement of their teams. In both cases, obtaining commitment can be hard.

Management will naturally be concerned about the costs of the research, particularly in

terms of time. Researchers have to effectively, but realistically, show that there are

benefits to the company which can balance the costs. Some of these benefits are

presented below:

1) The results of the research can sometimes help the company to improve its product or

process. Work-practices studies can show, for example, the benefits of certain techniques,

or highlight training requirements of the staff. Since there is considerable a priori

uncertainty about the success of such research, this assistance should not be presented as

the only benefit. The benefits below may prove more convincing.

2) Students will be exposed to the company and thus may be more inclined to work there

when their research is finished. Furthermore, they will have a head-start on the learning

curve faced by new employees. In todayÕs market, this can be very attractive to

companies.

3) Cooperation between companies and faculty can result in technology transfer in both

directions. Companies absorb knowledge from faculty through presentations or informal

discussions. By the same token, faculty absorb knowledge about the corporate

environment that they will take back to academia.

Software Anthropology

-45-

4) The research can improve the companyÕs profile through publicity in the press and in

the academic literature.

It is easier to make a case for the above benefits when establishing a long term relationship

with a company. We have found companies are more open to anthropological studies

when other members of the research team are tackling the companyÕs engineering

problems.

Once a company has established its willingness to participate, it is important to reach

agreement on a number of issues. The formality of the agreements varies with the size and

duration of the research. A study with a low level of involvement over a short period of

time only need casual discussions. A very large project requires more detailed

negotiations, particularly if financial support is involved. Sometimes a company will be

interested in the project, but reluctant to make certain commitments because it is

unfamiliar with empirical software engineering or the proposed methods. In such cases,

the researcher should treat educating the organization as part of the negotiation process,

so they can proceed as partners in the endeavor. The following are areas where

agreements should be established to help ensure the projectÕs success.

• Commitment to project. The first point of mutual agreement should be the level of

commitment to the project. What is the expected duration of the project? How much

support (e.g. space, time, equipment) is expected from the company? What kind of

Software Anthropology

-46-

results or deliverables are expected from the researchers? Agreement on these issues

often forms the basis for agreement on other issues below.

• Access to informants. Both sides need to agree on how many employees will

participate in the study and how much time is required from each employee.

Sometimes an organization will find it difficult to provide the personnel required by

the ideal research design and some compromise may be necessary.

• Selection of informants. A company may want only certain employees to

participate, e.g. ones not involved in critical tasks or ones who present a particular

point of view. A researcher needs to ensure that the sample participating in the study

is representative. However, a researcher does not need to retain complete control over

the selection process to obtain an appropriate sample.

• Confidentiality of data. Some data need to be kept confidential for corporate

reasons; for example a company may not allow highly sensitive information to be

taken off-site, for example aggregate source code or defect logs. Other data need to be

kept confidential for reasons of experimental ethics: A researcher needs to keep raw

data confidential, in order to protect the informants involved. Data that are not

confidential for either of the above reasons can serve as the basis for discussions of

the next point, publication of results.

Software Anthropology

-47-

• Publication of results. It is difficult to predict which results will be sufficiently

interesting to publish, particularly before data collection has begun. Understandably,

companies are reluctant to give blanket approval to disclosure of information. One

solution is to set some ground rules at the beginning, and deal with publications on a

case-by-case basis. Although this approach adds a step to the process of writing a

paper, it has the benefit of providing researcher swith an opportunity to verify their

observations and conclusions. Often, a paper is reviewed for publication by

companies at the same time that peer review occurs7. We have never had a case where

a company rejects a paper outright.

Another decision to be made is whether or not to identify the organization in the

publication. A company may want its contributions acknowledged, or it may not

want to be associated with ÒnegativeÓ findings. Also, it may not be possible to

publish the identity of the company without compromising the anonymity of the

participants. This question can be dealt with in using the same approach described

above for results.

7 If corporate lawyers review a research agreement, they may insist on a lengthy pre-

submission approval period (e.g. 90 days) to protect the company. Researchers should be

careful not to unwittingly accept such a clause.

Software Anthropology

-48-

A final comment regarding the co-operation of companies: One should keep in mind the

possibility of a long term relationship with the company. After going through the effort

of establishing a relationship it will likely be useful to extend it either by performing a

series of different studies, each building on the previous, or by performing longitudinal

studies where software engineers are followed over many years.

B. Establishing Research Co-operation with Individual Participants

After establishing a research relationship with the company, the next step is to establish

relationships with individual participants. Whether potential respondents are willing to

participate depends on several factors:

• The type of research. Being watched is of more concern to most people than, for

example filling out a survey. Also, long-term or time-consuming research will likely

attract fewer participants.

• Whether the participants perceive management to be supportive: We have found

it essential that management appear enthusiastic about the work, so that employees

feel they are not at risk of being penalized for not getting their ÔregularÕ job done while

taking time out for the research.

Software Anthropology

-49-

• Whether the participant perceives some benefit to participation: Some

participants will enjoy taking time away from their daily work; others may be

interested in the research for its own sake or because they feel they may gain

something from the results.

• The personality and beliefs of the participants. We have found some employees

are more willing to participate than others. In fact, we have had situations where

participants actively dissuade us by saying that the work they are doing would not be

interesting enough for us to study. It is important but difficult to guard against these

types of biases introduced into the research .

Some difficulties can be overcome if management demonstrates their commitment to the

project. One way is to have a group meeting where they introduce the researchers, and

explain the nature of the research and its benefits to the company. However for ethical

reasons, managers should make it clear that they are not ordering people to participate. In

the case of long-term research relationships, management and researchers should report on

the projectÕs progress at a similar meeting at least once a year.

An important step before collecting data from participants is obtaining written, informed

consent. To do this, we use two forms. The first form is signed by the participantÕs

manager and given to each respondent when their participation is solicited. The document

serves as evidence of management support for their participation. The second form is

Software Anthropology

-50-

signed by the participant and ensures that respondents understand the nature of the

research and their rights.

C. Planning Software Anthropology Field Studies

There are almost as many potential delays in a study of a software engineering project, as

there are for a software engineering project itself. The researcher planning the study must

take these factors into consideration.

1) Ethics Approval

As a standard part of their work, social scientists submit research plans for approval by

their institutionsÕ Human Subjects Research Committee (HSRC), or equivalent. Software

engineering researchers should do the same when they are studying human beings.

The HSRC normally wants quite detailed plans, and evaluates them to ensure that there is

little risk of violating ethical norms. Research should not start until the HSRC gives

approval.

2) Staffing

Work practice studies involve a lot of work that is not traditional in computing

departments. Normally, most of the legwork in academic research is put in by graduate

Software Anthropology

-51-

students. However, software engineering graduate students often lack the skills to design

studies, perform interviews, and analyze the data. They also lack the interest to perform

rudimentary tasks such as videotaping, transcribing recordings, and coding the data.

Software engineering graduate students enter the field expecting to work with technology,

not people. They may be willing to do endless programming or statistical analysis, but

will likely complain about transcribing or coding videotapes. This is partly because they

are not likely to enjoy the latter work, and partly because they feel with justification that

it will not help their careers. For the students who are interested in learning to perform

good field studies, a small number of courses in research methodology from related

disciplines can provide the necessary research skills.

We see no immediate remedy for the lack of interested students and qualified staffÐ

researchers should seriously consider this to be the single biggest obstacle to effective

work practices research. Some possible solutions are as follows:

• Use secretarial support. We have unsuccessfully tried this on several occasions.

Having a secretary transcribe a tape filled with project-specific technical jargon and

incomplete sentences, tends to give a result that takes as much time to edit as if the

researchers had transcribed the text themselves. Even an engineer unfamiliar with the

context was unable to produce an accurate transcript. And coding the transcript so

that data can be statistically analyzed takes very considerable skill. It might be

Software Anthropology

-52-

possible to engage a technically knowledgeable secretary to work full time on the

project (i.e. to be present at interviews and observation sessions so he understands

the context), but such people are hard to find and the process is expensive.

• Involve social science experts. University researchers might be able to establish

collaborative research projects with faculty from psychology, sociology, or

anthropology departments. The work of course is not lessened, but graduate students

in these disciplines might be more motivated to do what is necessary. The drawback is

that students and researchers are not always able to understand the technical issues

and terminology from outside their own disciplines.

Given the above difficulties, the work practices researcher might feel inclined to fall back

on data collection methods that require far less work to analyze because they are

inherently quantitative: Surveys with closed-ended questions, and logs. Unfortunately

such methods only give a partial picture.

3) Pilot Studies and Training

It is essential for the entire research team to practice and refine the research methodology

before taking it on the road, otherwise many mistakes will be made and data will be lost.

Researchers unfamiliar with the techniques discussed in this paper will be surprised about

how many difficulties can arise. For example the wording of questions must be

Software Anthropology

-53-

thoroughly tested to remove ambiguities. Also the process of setting up cameras,

recording, transcribing, and coding should be well rehearsed.

In addition to understanding field study techniques, researchers should spend considerable

time in learning about the field site. ÒPrior ethnologyÓ needs to be established so

researchers can effectively interact with the participants and correctly interpret data. The

researchers needs a basic understanding of key aspects of the respondentsÕ work, such as

the problem domain, the business context for the application, and the tools and process

they are using. Some of this knowledge can be gained during the study itself, but we have

found it more effective to have a learning phase in advance of the study.

4) Scheduling Access

Field research can be mentally intense for researcher and informant. In order to get the

most out of the work, the pace should not be rushed. Plenty of flexibility should be built

into the dayÕs schedule and no more than two sessions should be held in any day.

It is also important to understand that software engineers follow a development cycle.

This means that they are doing different things at different times. Finding what SEs do

during design and coding does not necessarily reflect what they do during bug-fixing or

requirements gathering. Therefore, data collection has to focus on one aspect of the

Software Anthropology

-54-

development cycle, or must extend over several time points to get an overall view of SE

work.

Another consideration is SEÕs time constraints. Researchers need to find, to the greatest

extent possible, data collection methods that do not affect SEÕs productivity.

Unfortunately, it is not always possible to gather key information researchers

unobtrusively. When a time commitment is required from SEs, researchers need to make

sure that they get the largest possible return for that time.

In this section we discussed many of the issues we have faced in doing software

anthropology. We also gave suggestions for resolving these issues. Our goal in presenting

this information is to provide guidance for others undertaking similar studies for the first

time. The issues discussed, such as establishing contact with organizations and

respondents, staffing, and scheduling, can be accommodated through planning.

However, there are many events that cannot be anticipated. For example, participants

may leave the team or company, change their work, or withdraw from the study.

Similarly, companies may reorganize or lose interest in the research. A contingency plan

for such situations is to work with two or three different field sites. But in cases where

this option was not possible or feasible, valuable lessons can still be learned from the data

collected. The data can reported as preliminary results, they can serve as a point of

departure for a new study, or it can be combined in a later study to triangulate a

Software Anthropology

-55-

phenomenon. We have been able to apply information collected from an aborted study to

an entirely different user study.

Finally, these unexpected events serve to illustrate why field studies are necessary. If

software engineering sites were completely understood and predictable, we would no

longer need to study them.

V. CONCLUSIONS

In this paper we have discussed issues that software engineering researchers need to

consider when studying practitioners in the field Ð an activity we call software

anthropology. Software anthropology is one of several complementary approaches to

software engineering research and is based on a recognition that software engineering is

fundamentally a human activity: Software Anthropology is particularly useful when one

is gathering basic information to develop theories or understand practices.

The material presented in this paper will be useful to both the producer and consumer of

software engineering research. Our goal is give researchers a perspective on how they

might effectively perform a field study Ð we believe that more such studies are needed.

The material presented here will help others evaluate published field studies: For example,

readers of a field study may ask whether appropriate data gathering or analysis

techniques were used.

Software Anthropology

-56-

In this paper, we divided the set of field study techniques into three main categories.

First-degree techniques such as interviewing, brainstorming, and shadowing place the

researcher in direct contact with subjects. Second-degree techniques allow researchers to

observe work without needing to communicate directly with subjects. Third-degree

techniques involve retrospective study of work artifacts such as source code, problem

logs, or documentation. Each technique has advantages and disadvantages that we

described in Section II.

To perform good field studies a researcher must first create effective plans. The plans

should describe the study techniques and also how various practical issues are to be

handled. To choose study techniques, we espouse a modification of the GQM

methodology, originally developed to choose metrics, but described here to choose data

collection techniques. The researcher must have firm goals in mind, choose study

questions that will help achieve the goals, and then choose one or more techniques that are

best suited to answer the questions

In addition to deciding which techniques to use, the researcher must also determine the

level of detail of the data to be gathered. For the first degree techniques a typical choice, in

increasing order of information volume and hence difficulty of analysis, is manual notes,

audio-taping and videotaping. In all three cases, a key difficulty is encoding the data so

that it can be analyzed.

Software Anthropology

-57-

Regardless of the approach to gathering and analyzing data, software anthropology also

raises many logistical concerns that should be dealt with in the initial plan. For example:

How does one approach and establish relationships with companies and employees in

order to obtain a suitable sample of subjects? Will the research be considered ethical,

considering that it involves human subjects? And finally, will it be possible to find

research staff who are competent and interested, given that most of the techniques

described in this paper are labor intensive but not yet part of mainstream software

engineering research?

In conclusion, software anthropology provides empirical studies researchers with a

unique perspective on software engineering. As such, we hope that others will pursue this

approach. The techniques described in this paper are well worth considering to better

understand how software engineering occurs, thereby aiding in the development of

methods for improving software production.

VI. REFERENCES

[1] V. Bellotti and S. Bly. ÒWalking Away from the Desktop Computer: Distributed

Collaboration and Mobility in a Product Design TeamÓ Conference on Computer

Supported Cooperative Work (CSCW96), pages 209-219, Cambridge, MA.

Software Anthropology

-58-

[2] L.M. Berlin. ÒBeyond Program Understanding: A Look at Programming Expertise

in IndustryÓ, Empirical Studies of Programmers, Fifth Workshop., pages 6-25, Palo

Alto, USA, 1993.

[3] J. Buckley and T. Cahill. ÒMeasuring Comprehension Behaviour Through System

MonitoringÓ, International Workshop on Empirical Studies of Software Maintenance

(WESSÕ97), pages 109-113, Bari, Italy.

[4] B. Curtis, H. Krasner, and N. Iscoe. ÒA Field Study of the Software Design

Process for Large SystemsÓ, Communications of the ACM, pages 1268-1287, Volume

31, Number 11, November, 1988.

[5] D.A. DeVaus. Surveys in Social Research, Fourth Edition. UCL Press: London,

1996.

[6] M. Eisenstadt. ÒMy Hairiest Bug War StoriesÓ, Communications of the ACM,

Volume 40, Number 4, April, 1997.

[7] K.Ericcson, and H. Simon. Protocol Analysis: Verbal Reports as Data. Cambridge,

MA: The MIT Press, 1984

[8] W. Foddy. Constructing Questions for Interviews and Questionnaires: Theory and

Practice in Social Research. Cambridge University Press, 1994.

[9] J. Iivari. ÒWhy are CASE Tools Not Used?Ó, Communications of the ACM,

Volume 39, Number 10, October, 1996.

[10] B. Jordan. ÒEthnographic Workplace Studies and CSCWÓ, In D. Shapiro, M.

Tauber, and R. Traunmuller, editors, The Design of Computer Supported Cooperative

Work and Groupware Systems, Elsevier. 1996.

Software Anthropology

-59-

[11] B. Jordan and A. Henderson. ÒInteraction Analysis: Foundations and PracticeÓ,

The Journal of the Learning Sciences, Volume 4, Number 1, pages 39-103, 1995.

[12] M. J¿rgensen. ÒAn Empirical Study of Software Maintenance TasksÓ, Software

Maintenance: Research and Practice, Volume 7, pages 27-48, 1995.

[13] J. Kay and R.C. Thomas. ÒStudying Long-Term System UseÓ, Communications

of the ACM, Volume 38, Number 7, July, 1995.

[14] F. Kensing. ÒPrompted Reflections : A Technique for Understanding Complex

Work.Ó interactions, pages 7-15, January/February, 1998.

[15] C.F. Kemerer and S.A. Slaughter. ÒDeterminants of Software Maintenance

Profiles: An Empirical InvestigationÓ, Software Maintenance: Research and Practice,

Volume 9, pages 235-251, 1997.

[16] M.B. Miles. "Qualitative Data as an Attractive Nuisance: The Problem of

Analysis." Administrative Science Quarterly, Volume 24, Number 4, pages 590-601,

1979.

[17] M.B. Miles and A.M. Huberman. Qualitative Data Analysis: An Expanded

Sourcebook. 2nd Edition. Thousand Oaks, CA: Sage Publications, 1994.

[18] J. Nielsen, ÒEvaluating the Thinking-Aloud Technique for Use by Computer

ScientistsÓ,. in H. Hartson and D. Hix, editors, Advances in Human-Computer

Interaction, Vol. 3, Norwood, NJ: Ablex Publishing.

[19] D.E. Perry, N. Staudenmayer, and L. Votta. People, Organizations, and Process

improvement. IEEE Software, July, 94, 37-45.

Software Anthropology

-60-

[20] S.L. Pfleeger and L. Hatton. ÒInvestigating the Influence of Formal MethodsÓ,

Computer, pages 33-43, February, 1997.

[21] A.A. Porter, H.P. Siy, C.A. Toman and L.G. Votta, ÒAn Experiment to Assess

the Cost-Benefits of Code Inspections in Large Scale Software Development, IEEE

Trans. Software Engineering, 23, 6 pp. 329-346

[22] W.J. Ray, Methods Toward a Science of Behavior and Experience, Pacific Grove,

CA: Brooks/Cole Publishing, 1993

[23] S.P. Robbins. Essentials of Organizational Behavior: Fourth edition. 1994.

Englewood Cliffs, NJ: Prentice Hall.

[24] C.B. Seaman and V.R. Basili. ÒCommunication and Organization: An Empirical

Study of Discussion in Inspection MeetingsÓ, IEEE Trans.s on Software Engineering,

24, 6, June 1998.

[25] S. Seigel and N.J. Castellan, Nonparametric Statistics for the Behavioral Sciences,

Second Edition, McGraw Hill, 1988

[26] A. Sen. The role of opportunism in the software design reuse process. IEEE

Transactions on Software Engineering, 23, 7, pp. 418 Ð 436.

[27] S.E. Sim, C.L.A. Clarke, and R.C. Holt. ÒArchetypal Source Code Searches: A

Survey of Software Developers and MaintainersÓ, International Workshop on

Program Comprehension (IWPCÕ98), pages 180-187, Ischia, Italy.

[28] S.E. Sim and R.C. Holt. ÒThe Ramp-Up Problem in Software Projects: A Case

Study of How Software Immigrants NaturalizeÓ. In 20th International Conference on

Software Engineering, Kyoto, Japan, April, 1998.

Software Anthropology

-61-

[29] J. Singer, T.C. Lethbridge., and N. Vinson, (1998), "Work Practices as an

Alternative Method to Assist Tool Design in Software Engineering", International

Workshop on Program Comprehension (IWPCÕ98), pages 173-179, Ischia, Italy..,

1998.

[30] J. Singer., T. Lethbridge., N. Vinson. and N. Anquetil. "An Examination of

Software Engineering Work Practices", CASCON 1997, Toronto, October, pp. 209-

223.

[31] J. Singer. "Practices of Software Maintainence," to appear in International

Conference on Software Maintainence, Washington, DC, November, 1998.

[32] L. Snelling and D. Bruce-Smith. ÒThe Work Mapping TehniqueÓ. interactions,

pages 25-31, July/August, 1997.

[33] A. VonMayrhauser, and A.M. Vans. ÒFrom Program Comprehension To Tool

Requirements for an Industrial EnvironmentÓ. In Proceedings of the 2nd Workshop on

Program Comprehension, pages 78-86, Capri, Italy, July 1993.

[34] A. VonMayrhauser, and A.M. Vans. ÒProgram Understanding: Models and

ExperimentsÓ. In M.C. Yovita and M.V. Zelkowitz, editors, Advances in Computers,

Vol. 40, pages 1-38, Academic Press, 1995.

[35] L.G. Votta, A. Porter and D. Perry. ÒExperimental Software Engineering: A

Report on the State of the ArtÓ, Proc. 17th Int. Conf. on Software Engineering, April

1995, pp. 277-279.

Software Anthropology

-62-

[36] D.B. Walz, J.J. Elam, and B. Curtis. ÒInside a Software Design Team: Knowledge

Acquisition, Sharing, and IntegrationÓ, Communications of the ACM, Volume 36,

Number 10, October, 1993.

[37] A. Wolf and D. Rosenblum. A study in software process data capture and

analysis. In Proceedings of the 2nd International Conference on Software Process.

February, 1993, pp. 115-124.

[38] R.K. Yin. Case Study Research: Design and Methods, Second Edition. Sage

Publications: Thousand Oaks, 1994.

[39] M.V. Zelkowitz and D.R. Wallace. ÒExperimental Models for Validating

TechnologyÓ. Computer, May, 1998.

Software Anthropology

-63-

Affiliation of the Authors

Timothy C. Lethbridge

University of Ottawa

School of Information Technology and Engineering

Ottawa, Ontario K1N 6N5

CANADA

tcl@site.uottawa.ca

Susan Elliott Sim

University of Toronto

Department of Computer Science

10 Kings College Circle, Toronto, Ontario M5S 3G4

CANADA

simsuz@cs.utoronto.ca

Janice Singer

National Research Council Canada

Institute for Information Technology

Montreal Rd, Building M-50

Ottawa, Ontario K1A 0R6

CANADA

janice.singer@iit.nrc.ca

