
A Novel Approach to Versioning and Merging
Model and Code Uniformly

Omar Badreddin, Timothy C. Lethbridge, Andrew Forward
University of Ottawa, 800 King Edward, Ottawa, Ontario, Canada

obadr024@uottawa.ca, tcl@eecs.uottawa.ca, aforward@gmail.com

Keywords: Integrated environments, UML, Modeling, coding, version control, model merging and versioning, Model
Drive Development.

Abstract: Model Driven Architecture (MDA) advocates the use of models, rather than code, as the main development
artifact. Yet model versioning and merging tools still lag in capabilities, ease of use and adoption relative to
source code versioning and merging tools. This forces many teams to avoid model-based collaboration and
concurrent model modifications. In this paper, we highlight the main challenges behind the relatively small
adoption of model merging approaches. We present a novel model-based programming technology that
addresses many of those challenges. The approach treats code and models uniformly, effectively enabling
modelers to version and merge models using existing text-based technologies.

1 INTRODUCTION

Software models, in addition to their usefulness in
design and code generation, play an indispensable
role in collaboration and communication. The trend
towards increased software complexity, particularly
larger and more complex models, emphasizes the
need for model-based collaboration. Important
aspects of collaboration include conflict resolution,
as well as artifact comparison, merging and
versioning.

Models are typically rendered visually using a
language like UML, but stored and transferred using
XML-based formats like XMI. This approach gives
rise to complications for merging and versioning,
since simple changes in the visual model tend not to
map straightforwardly to simple changes in the
storage format. Considerable research in the field of
model-based collaboration therefore focuses on
developing tools to adequately version and merge
models. Unfortunately these have seen relatively
little uptake, and have other important limitations.

This situation can be contrasted to source code
versioning and merging. The latter domain has
mature and feature-filled tools that are both widely
adopted, and are very positively perceived, even in
large teams with frequent changes and regular
merging of conflicting changes. Research has shown
that software developers have high confidence in

automated merging of code segments (Adams et al,
1986).

Early source code collaboration products like
RCS and Visual Source Safe relied on pessimistic
locking, requiring users to first secure all required
software artifacts prior to making the necessary
changes. The pessimistic approach can be usable for
small teams and small projects, however it can be
cumbersome for the developer to be in the middle of
a change and discover the need to change one
additional file that turns out to be locked by another
developer. Pessimistic approaches to locking
severely limit collaboration and flexible
evolutionary development of software.

More optimistic locking approaches emerged in
which files do not need to be exclusively locked
prior to editing. These were developed based on the
observation that change sets required to implement
distinct fixes or features of a system do not often
overlap; even within the same source file. And,
when conflicts do arise, intelligent automatic
merging works most of the time. Tools that support
optimistic locking include SVN, Git, and CVS.

In an optimistic environment, where all resources
are available for editing, the onus of maintaining
consistency between versions is placed partially on
the tooling’s merge capabilities. In scenarios when
conflicts cannot be automatically resolved, manual
intervention is required.

Timothy Lethbridge
See http://www.modelsward.org/Abstracts/2014/MODELSWARD_2014_Abstracts.htm

In this paper we present a novel approach to
model collaboration: we align visualizing models
with their textual representation using the Umple
platform. Umple is a model-oriented programming
language that supports modeling using a textual
notation just like other high-level programming
languages. Umple blurs the distinction between code
and modeling, enabling modellers and coders to
collaborate on models in a way similar to code-
based collaboration. This is achieved without loss of
the added value of the visual representation of
models, since Umple tools can display a diagram
unambiguously from the Umple code, and allow
edits to such diagrams to automatically be reflected
in the code. The Umple paradigm leverages existing
textual merging techniques, and facilitates the
transition of code-centric teams towards the use of
more model-centric approaches.

This paper is organized as follows. We first
analyze the barriers to adoption of emerging model
versioning and merging techniques. In section 3, we
introduce the Umple modeling and coding paradigm
and show how it can support uniform versioning and
merging of code and model artifacts. We then
compare and evaluate our approach in terms of
usability of model based versioning and merging.

2 KEY PROBLEMS: BARRIERS
TO ADOPTION OF MODELING
AND MERGING

Our prior research indicates that modeling practices
are not as widely adopted as might be desired
(Forward et al, 2010). The open source community,
for example, universally uses code-centric
approaches to collaboration and simultaneous code
edits (Badreddin et al, 2013). Practitioners have high
confidence and familiarity with existing code-
merging and versioning technologies.

Existing approaches and tools for versioning and
merging models have failed to catch up with the
adoption of code-based versioning and merging. The
following subsections describe challenges with
existing approaches that might cause this slow
adoption.

2.1 Heavy Reliance on Subjective Conflict
Resolution

When a conflict occurs in model (or source code)
merging, it is desirable to minimize user

intervention. Problems resulting from user
intervention include:

1. The user’s decision may be inconsistent with the
intention of the original modification;

2. The user’s subjective judgment is inevitably not
uniform throughout the project life cycle which
can bring unpredictability in model evolution;

3. Conflicts may arise that tools cannot readily
handle, forcing the user to commit a change
without careful analysis, simply so his or her
work can be saved in the repository.

The third point is particularly important to
consider: Pottinger and Bernstein (Pottinger &
Bernstein, 2003) categorize conflicts based on the
meta-level at which they occur. They identified three
categories: representation, meta-model, and
fundamental conflicts. An example of a meta-model
violation would be merging two class diagrams,
resulting in a subclass being also a superclass of
itself, i.e. violating the strict ordering of the
inheritance hierarchy. The capability to temporarily
support such violations can be very useful, since it
prevents ‘forced’ decisions and allows models to
evolve in the series of steps most convenient to the
modellers, even though intermediate steps may be
unsupported by the underlying meta-model. In the
above example, two different modellers may have
independently created generalizations between two
classes, but each chose a different class to be the
superclass. A tool should be able to merge the
changes and store the result regardless of the
conflict. The tool should then be able to point out the
inconsistency to the developers, who can debate
which should in fact be the superclass, and then once
the decision is settled, commit a change that resolves
the conflict.

Allowing meta-model violations is not easily
supported by graphical modeling tools. In the case of
RSA (IBM, 2009), the compare facility has no
support at all for temporary violations. Merging of
changes that result in a violation is prohibited,
forcing a modeller to artificially resolve a conflict
before committing a new version.

2.2 Handling of Layout Information

A key feature of effective modeling is separation of
the model itself from the (possibly many) diagrams
that offer views of the model. This notion of
multiple separate views is largely absent in source-
code, but this added complexity of multiple views is
a common occurrence in software models and is of
particular importance to modeling. For effective

versioning and merging, separate consideration of
model entities from diagram layout directives is
necessary to reduce the number of potential merging
conflicts. Adams et al (Adams et al, 1986) proposed
a version control system where conflicts in diagram
element coordinates can be ignored. The only
analogy in source code is the need to ignore
cosmetic changes such as indentation and
whitespace in order to reduce the number of merging
conflicts.

Historically, XMI-based tools for model merging
did not allow separation of layout information,
adding considerable complexity to merging. This
situation is changing with the gradual adoption of
Diagram Interchange standards in tools such as
Papyrus (OMG, 2012). Nonetheless, model-merging
tools continue to face a challenge because of the
presence of multiple diagrams, and the fact that the
diagrams are exchanged using a separate notation.

2.3 Adoption of Model Merging Techniques

A number of model merging and versioning tools
have been successfully implemented. However,
their applications have been limited to specific
industrial settings, such as (Adams et al, 1986).
Wide adoption and standardization of these tools has
not yet been achieved. Most available commercial
tools rely on XML-based merging. For example, the
latest releases of Borland Together, MagicDraw, and
RSA continue to rely on XMI serialization for model
versioning and merging. This aspect is further
discussed in Section 2.5.

For a model-versioning technique to be widely
adopted, the additional computational and
infrastructure complexities of the technique should
be kept at a minimum. In addition, the technique has
to be easily extendable to other modeling notations.

2.4 Synchronizing among Related MDA
Artifacts

Merging different versions of models brings about
additional challenges for MDA. It is often the case
that models have closely-related artifacts, such as
other models, generated code, or hand-written code.
Related artifacts of a model should be properly
handled when merging model versions. Take, for
example, a class diagram and a state machine
diagram for a particular class in that diagram. In
some tools, these two models are stored and
versioned as separate and unrelated artifacts. It
would be beneficial to allow versioning of both the

state and the class diagrams to be managed
collectively or separately, if desired.

Here, three aspects of the versioning approach
are crucial: a) the ability to easily and consistently
extend the same approach to a number of modeling
notations b) the ability to manage a number of
models as a single artifact, or as separate but closely
related artifacts c) finally, the ability to manage
implications to generated artifacts.

2.5 Efficiency of Versioning and Merging

Existing approaches are not efficient for large
models (Treude et al, 2007). Treude reports that
medium to large size models can take five minutes
to one hour of processing for merging. Some tools
implement approaches that result in significant
memory and computational overheads, for example,
the use of Universal Unique ID (UUID) for all
modeling elements, which cannot change once
created, and whose uniqueness must be guaranteed
at all times (Adams et al, 1986). It is common for
those UUIDs to be more than 40 characters in
length, and they are usually combined with the
namespace of the modeling element. Such
approaches are inevitably computationally complex,
and limit extensibility to models created in different
tools. This is comparable to preventing coders from
merging code written in Eclipse with code written
on a text pad.

On the other hand, XML processing is relatively
efficient compared to semantic model merging. Most
tools, such as ArgoUML (ArgoUML, 2009), make
available an XMI interface, typically used with a
version control tool. In particular, the following
modeling tools have interfaces to repositories like
CVS to enable XMI-based versioning: EclipseUML,
Astah (Astah, 2009) and Poseidon (Gentleware,
2013). Although the computational processing of
XML-based documents may be efficient, XML-
based versioning gives rise to a variety of problems.
In particular, XML does not have the appropriate
level of abstraction, resulting in many false
deviations (Altmanninger et al, 2008). XML
generated from diagrams and models also tends to
redistribute the modeling elements in unpredictable
ways, meaning that a very small change that a
software engineer makes can either result in a
considerable number of small changes throughout
the XML file, or worse, an XML file that is arranged
quite differently. This is a central problem for
merging and versioning tools that relies on XMI for
versioning control.

2.6 Non-determinism and unpredictability

Model merging tools need to be deterministic so that
conflict resolution can be predictable and reversible.
SIDIFF (Treude et al, 2007), for example, creates a
directed typed graph from the XMI model where
similar nodes are identified by giving weights to
their attributes. This approach is non-deterministic
because it depends on the weights given for the
specification of level of similarity between modeling
elements. In addition, similarity itself is a factor that
changes over the lifetime of the project. For
example, location proximity on a diagram is usually
taken into consideration when determining how
‘similar’ two modeling elements are. Location
proximity is a factor that changes over time,
rendering the merging tool non-deterministic.

Even when determinism is achieved by storing
users’ merging choices, the model’s evolution can
easily become unpredictable, since users choices can
vary significantly.

3 THE UMPLE SOLUTION

We developed Umple initially as a way to bridge the
model-code divide. In other words, it was designed
with the primary intent to add all important
modeling concepts to programming languages so
programmers can model, and also so that modellers
can use programming language formalisms. An
important additional benefit of Umple however, is
that it brings the elegant power of source-code
versioning to modeling ‘for free’.

Our tool suite has the following main features:

• It provides a high-level textual abstraction of
modeling elements and relationships.

• It provides a textual abstraction of layout
information.

• It separates the layout information from the
modeling elements.

• It weaves together modeling abstractions
with algorithmic code for uniform versioning
and merging.

Umple is particularly suitable for software teams
that currently collaborate using source code, and
wish to adopt modeling. In some cases, teams have
had difficulty adopting modeling due to the
complexities of merging and versioning. Umple does
not require new versioning infrastructure, but rather,
makes use of existing infrastructure available for

code versioning. In the remainder of this section, we
present our tool and report on our experiences.

3.1 Umple Tools for Model Versioning and
Merging

Umple is model-oriented programming language
with a suite of tools that supports all class diagram
modeling elements (classes, attributes, associations,
multiplicities, role names, comments, inheritance,
association classes) and most of state machine
modeling notation (states, transitions, entry and exit
actions, transition actions, do activities, nested
states).

Umple integrates modeling artifacts mentioned
above with action languages; currently supporting a
Java-based, Php-based and C++-based
implementations. Because the textual representation
of Umple uses syntax that is similar to these
languages, model notation seamlessly integrates
with existing source code repositories so can be
operated on by code merging tools. In Umple,
model and traditional code hence are not
distinguished by such tools. In addition, our
approach enables developers to incrementally
introduce modeling and/or algorithmic code into
their activities.

Writing and editing code or model in Umple can
be achieved in any source code editor, although we
do provide plug-ins to assist with syntax. Modeling
in Umple can be achieved textually by writing the
textual notation for modeling elements, or visually
by using a UML graphical editor. Changes on either
the visual or textual view can be instantaneously
reflected on both views, as both visualizations
represent the same underlying system.

Umple separates model diagram layout
information from the model elements. This
information, which can be hidden from the user, is
nonetheless maintained as with other aspects of the
Umple source code, in the Umple programming
language-like syntax. This layout information allows
the semantics of a model to be versioned and merged
separately from its various diagrams.

3.2 Abstract Textual Notation

The ability to easily version and merge model and
code using Umple stems from its abstract textual
notation that is managed by the human
programmer/modeller, rather than by the persistence
mechanism of a modeling tool. The Umple syntax is
based on a C/Java syntax and so is easily both
human readable and editable.

We present two small Umple model segments in
the following subsections. For further information
on Umple syntax, the reader is referred to (Forward
et al, 2009). We have also built an online version of
Umple (Lethbridge et al, 2013) that provides an easy
forum with examples to demonstrate many of the
concepts available in Umple (with a zero install
footprint).

In addition to using Umple in collaborative
environments to develop software products, we are
conducting an empirical study with Umple users
using a grounded theory approach to analyze and
improve its syntax. Using results of this, details of
which are outside of the scope of this paper, we have
developed a number of design guidelines for Umple.
In particular, its syntax should look similar to and
integrate elegantly with the high level programming
languages in which it is embedded; it should
minimize the use of new keywords, and it should
enable users to embed or call native code.

Figure 1 shows a simple UML state machine,
where ‘E’ is the event to which S1 responds to; ‘G’
is any Boolean expression, or a Boolean function, or
a code segment; and, ‘A’ is a function call, or any
arbitrary implementation code.

S2S1
E [G] / A

Figure 1: state machine transition

Figure 2 shows Umple code in which two
attributes, one association and one state machine are
declared. The state machine is the same one that
appears in Figure 1. Note how Umple treats
modeling abstractions and implementation code
uniformly.

In typical modeling tools, when merging of two
versions of a model any change in the start state, end
state, transition, guard condition, or action may
result in a conflict that may require intervention. On
the other hand, text-based merging tools like those
available within SVN can automatically merge such
changes. Even in situations where the changes occur
on the same line, a tool like SVN is able to
automatically merge the text.

Because the state machine transition is
represented in a single line of text (Line 14 in Figure
2), changes to the transition are limited to this line of
text, significantly reducing the probabilities and
number of conflicts. In addition, when a conflict
occurs, it is relatively straightforward to understand
what modeling element has changed. In our
experience in building systems using Umple,
automatic merging has worked very effectively.

Figure 2: Textual Editor and Outline View

A bi-directional association between class A and
class B is illustrated in Figure 2, line 8. Similar to
state transitions, the Umple representation of the
association is reduced to one line of text. When
conflicts occur, it is straightforward to understand
what aspects of the model have changed.

Figure 3 shows a section of an airline industry
class diagram model. The model can be edited
textually or visually, and the layout information is
modified and stored in real time as the user
manipulates the diagram.

Umple is a full-fledged development platform.
The discussion in this paper is limited to its
relevance to versioning and merging. Other
publications on Umple include (Forward, et al,
2010), (Badreddin et al, 2014), (Badreddin et al,
2014), (Badreddin, 2013), (Badreddin & Lehtbridge,
2013), (Badreddin et al, 2012), (Badreddin &
Lethbridge, 2012).

4 ANALYSIS OF VERSIONING
AND MERGING USING UMPLE

Text-based merging techniques are widely adopted
and familiar to most software developers who
collaborate on source code. In this section, we focus
our attention on demonstrating model versioning
using the SVN diff facility. It is important to note
that versioning and merging in Umple handles both
code and modeling abstractions residing in the same
or separate artifacts uniformly. However, we focus
our attention on modeling abstractions. Modellers
can choose to inspect the results of merging two
versions using a viewer similar to SVN Diff facility
(Figure 4), or view the resulting visual models.

Figure 3: Online visual/textual editor

Figure 4 illustrates merging two versions of the
example shown in Figure 2. The following changes to
the example were applied and merged with the
original model/code:

1. Deletion of Attribute1
2. Creation of a New association (to a New

class C)
3. Editing of the transition action
4. Transition end state is updated

The right hand side of Figure 4 illustrates the
more recent version, while the left hand side
illustrates the original (older) version. Updated lines
are highlighted and new lines are marked with a plus
sign. Similarly, when changes occur only to a
portion of a line, the changes are also highlighted.
Users can selectively apply any number of changes,
without any restrictions on meta-model compliance.

SVN provides a single-pane view and allows for
configurations on how to display and deal with
conflicts.

Figure 4: Umple merging using SVN

If the merge results in an inconsistent model, the
violating lines are highlighted in the textual view,
similar to any high level programming language
editor. Umple’s problem view gives the
modeler/developer more information on how to
resolve the inconsistency. For example, Figure
illustrates a scenario where the entry action is not
followed by “/”.

Figure 5: Problems View

4.1 RSA Compare Facility

In RSA, users can compare and merge model
versions using a CVS repository, ClearCase (IBM,
2004), or by using the RSA compare facility.
ClearCase provides thin clients for remote access,
but does not offer additional functionality for model
merging. In this section, we illustrate the RSA
compare facility.

RSA takes a snapshot of the model with every
save. Model structural changes are listed and each
can either be accepted or rejected. Structural
changes can be addition or deletion of a modeling
element. Each structural change is correlated to the
merging results, which can be visualized in relation
to the model project tree, as in Figure .

The RSA compare facility assumes that the
versions always belong to the same model. If two
different models are being combined into one, every
modification is considered a conflict, which is
delegated to the user for resolution. RSA does not
allow for temporary meta-model violations, and
ignores all layout modifications.

Our choice to compare with RSA is influenced
by our judgement that it is the most widely adopted
model versioning and merging tool. The RSA

approach is similar to operation-based merging
techniques like (Mens, 2000). These approaches
rely on the commands performed in the modeling
environment to track changes to the model. Such
approaches are sometimes referred to as command
histories (Berlage & Genau, 1993).

Figure 6: RSA Compare facility

5 UMPLE IN PRACTICE

As discussed previously, the main benefit of our
approach is providing uniform merging and
versioning for both models and code, because
modeling notation can be embedded within code.

Umple has been used to build several systems.
The Umple compiler has been fully ported to Umple
itself. Umple has been under development since
2007, and all its modeling artifacts have been
versioned since inception. We are able to, with
minimal storage requirements, review a model
revision history (and code) throughout those six
years using the same tools developers are familiar
with for source code management. There have been
over 40 people using and developing Umple, but
since Umple can be managed with third-party
version control tools the team size can grow
indefinitely. In addition, new collaborators require
minimal training to start collaborating on models.

In order to minimize the number of merge
conflicts, we find it useful to adopt fine-grained
revision control (Adams et al, 1986), where we
commit changes frequently. Therefore, any change
conflict will be small and can be easily managed.

Because the merging is automated, and meta-model
violations are allowed, we rely on the facilities
provided by the visual and textual editor to resolve
any inconsistencies. We combine our model-driven
development with a test-driven approach to verify
merging sanity. We use a consolidated build script to
ensure uniformity between releases and automate the
process.

5.1 How Umple Addresses the Barriers to
Adoption of Modeling and Merging

In Section 2, we listed some key problems to
adoption of modeling tools that relate to difficulties
merging and versioning. Here is how using Umple
can help resolve these difficulties.

5.1.1 Heavy reliance on subjective conflict
resolution

Software professionals have consistently reported
high satisfaction with the automated merging of
code (Adams et al, 1986). This could be because the
nature of code results in minimal overlapping of
edits. As we discussed above, using Umple brings
these advantages to modeling.

5.1.2 Handling of layout information

Umple has a separate syntax for diagram layout
directives (not given in detail in this paper due to
lack of space). These directives can be maintained in
the same Umple file as the corresponding model, or
kept in separate files. Furthermore, their appearance
follows the conventions of C-family programming
languages just like the rest of Umple, so they can be
seen as a harmonious extension to the Umple model-
oriented source code.

In Umple, changes purely to layout from one
version to another result in deltas that do not impact
the core modeling constructs. This is consistent with
the emerging practice in modeling tools discussed
earlier. Since Umple’s layout information is easily
readable in textual form, conflicting layout changes
during merging can be seen and handled by
developers in exactly the same way as conflicting
model or code changes.

5.1.3 Adoption of model merging
techniques

This is one area where Umple is particularly
beneficial. Umple enables modellers to adopt
version control without having to change the

existing version-control infrastructure. Developers
can therefore benefit from uniform support for
evolution of software artifacts throughout the
lifecycle of the project (Mens, 2002).

5.1.4 Synchronizing among related MDA
artifacts

The changes introduced, whether they are coding,
modeling, or layout-related, and whether performed
visually or textually, are handled uniformly by the
infrastructure. In particular, Umple enables
developers to integrate class-diagram modeling
constructs, state machine models and methods
describing algorithms into the same file should they
wish to, or to keep these entirely separate. This
provides modellers with a lot of flexibility as they
can keep entire systems in as many or few files as
they desire. Either way, version control tools’ native
abilities to manage change sets and merge conflicts
solve the artifact-synchronization problem.

Since algorithmic code is embedded in Umple
models; the need for versioning the generated
artifacts is diminished or eliminated.

5.1.5 Efficiency of versioning and merging

Source code delta algorithms calculate the difference
between versions and reduce storage requirements.
Modern algorithms reduce I/O operations the time
needed to calculate versions compared to historical
ones (Hunt et al, 1998). Efficient delta algorithms
are typically embedded in merging tools that Umple
relies on, like SVN. Scalability is an important
feature of any merging technique (Mens, 2002);
Using Umple, we are able to efficiently scale to
large model sizes with minimal performance
implications.

5 ENHANCING CONFLICT
RESOLUTION

Umple’s textual notation enables developers to
merge code and models uniformly. Merging of
textual models can be further enhanced if the syntax
and semantics of the merging artifacts are taken into
consideration.

Syntactic merging (Buffenbarger, 1995), takes
the syntax of the software artifact into account. A
syntactic merging approach is more powerful than
pure textual merging because it can ignore conflicts
that are not relevant (for execution purposes) to the

syntax of the language, like comments (other than
annotations) and spaces. Merge conflicts can be
reported when the merged result is syntactically
inconsistent. Examples of such approaches include
(Mens, 2000), (Westfechtel, 1991), (Schmidt &
Gloetzner, 2008). Coloring techniques, like
(Adams, 1986), can enhance the visualization of the
changes in the merging process. To apply this to
Umple, it would simply be necessary to add
awareness of Umple’s added modeling constructs to
an existing syntactic diff-merge tool.

Semantic merging takes into consideration the
semantics of the merged result. Examples of
semantic merging include: merging that results in an
undeclared variable (static conflict), or merging that
results in an inconsistent behavior (behavioral
conflict) like (Berzins, 1994) and (Binkley et al,
1995).

Umple merging and versioning tools can be
improved by adopting such enhanced textual
merging techniques. However, there is an inherent
conflict between maintaining language
independence with the merging and versioning tools,
and introducing syntactic and semantic merging.
There are a few approaches that attempt to support
semantic merging without compromising their
language independence, like (Westfechtel, 1991) and
(Edwards, 1997).

6 CONCLUSION

We have shown how Umple, a textual notation that
combines modeling elements with traditional
algorithmic code, can facilitate merging and
versioning of both models and code.

We highlighted our view of the problems of
model merging and versioning and how Umple can
help solve them. We have reliably used the Umple
platform, along with merging and versioning using
SVN, to develop Umple itself and other applications.

Key items of future work include exploring the
benefits of intelligent merging, as discussed in the
last section, and conducting additional empirical
evaluation, such as formal usability studies.

Using Umple does not preclude the use of other
modeling tools. For example, we have integrated
Umple with IBM Rational tools and are working on
doing this with open source tools like Papyrus. Such
integration enables modellers to use the visual
editing capabilities in these tools, and still benefit
from the added benefits provided by Umple.

REFERENCES

Adams, E., Gramlich, W., Muchnick, S. S. and Tirfing, S.
"SunPro: Engineering a Practical Program
Development Environment," in An International
Workshop on Advanced Programming Environments,
1986. pp. 86-96.

Alanen, M. and Porres, I. "Difference and Union of
Models". 2003. Lecture Notes in Computer Science,
Springer. pp. 2-17.

Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger,
W., Seidl, M., Schwinger, W. and Wimmer, M.
"AMOR-Towards Adaptable Model Versioning," in
Proc. of the 1st International Workshop on Model Co-
Evolution and Consistency Management, 2008.

ArgoUML, " ArgoUML Modeling Tool.", accessed 2009,
http://argouml.tigris.org/.

Astah Co. "Astah". 2009.
Schneider, C. and Zündorf, A. "Experiences in using

Optimisitic Locking in Fujaba". 2007. Softwaretechnik
Trends, vol 27, Citeseer.

Badreddin, Omar, Andrew Forward, and Timothy C.
Lethbridge. "Exploring a Model-Oriented and
Executable Syntax for UML Attributes." Software
Engineering Research, Management and Applications.
Springer, 2014. 33-53.

Badreddin, Omar, Andrew Forward, and Timothy C.
Lethbridge. "Improving Code Generation for
Associations: Enforcing Multiplicity Constraints and
Ensuring Referential Integrity." Software Engineering
Research, Management and Applications. Springer,
2014. 129-149.

Badreddin, Omar. "Empirical evaluation of research
prototypes at variable stages of maturity", User
Evaluations for Software Engineering Researchers
(USER), 2013 2nd International Workshop ,
10.1109/USER.2013.6603076. 2013 , Pages: 1- 4.

Badreddin, Omar, Lethbridge, Timothy C., “Model
Oriented Programming: Bridging the Code-Model
Divide”. ICSE Workshop on Modeling in Software
Engineering, 2013, Modeling in Software Engineering
(MiSE), 2013 5th International Workshop ,
10.1109/MiSE.2013.6595299. 2013 , Pages: 69 - 75.

Badreddin, Omar, Andrew Forward, and Timothy C.
Lethbridge. "Model oriented programming: an
empirical study of comprehension." 2012 Conference
of the Center for Advanced Studies on Collaborative
Research. IBM Corp., 2012.

Badreddin, Omar. ; Lethbridge, Timothy C. "Combining
experiments and grounded theory to evaluate a
research prototype: Lessons from the umple model-
oriented programming technology", User Evaluation
for Software Engineering Researchers (USER), 2012.
10.1109/USER.2012.6226575 , 2012 , Page(s): 1- 4.

Badreddin, Omar, Timothy C. Lethbridge, and Maged
Elassar. "Modeling Practices in Open Source
Software." Open Source Software: Quality
Verification. Springer, 2013. 127-139.

Berlage, T. and Genau, A. "A Framework for Shared
Applications with a Replicated Architecture," 6th
Annual ACM Symposium on User Interface Software
and Technology, 1993. pp. 249-257.

Binkley, D., Horwitz, S. and Reps, T. "Program
Integration for Languages with Procedure Calls".
1995. ACM Transactions on Software Engineering
and Methodology, vol 4, ACM New York, NY, USA.
pp. 3-35.

Berzins, V. "Software Merge: Semantics of Combining
Changes to Programs". 1994. ACM Transactions on
Programming Languages and Systems , vol 16, ACM
New York, NY, USA. pp. 1875-1903.

Buffenbarger, J. "Syntactic Software Merging". 1995.
Lecture Notes in Computer Science, Springer. pp. 153-
153.

Edwards, W. K. "Flexible Conflict Detection and
Management in Collaborative Applications," 10th
Annual ACM Symposium on User Interface Software
and Technology, 1997. pp. 139-148.

Timothy C. Lethbridge, Andrew Forward, Omar
Badreddin. “Problems and Opportunities for Model-
Centric vs. Code-Centric Development: A Survey of
Software Professionals”, C2M:EEMDD 2010.
Available:
http://www.esi.es/modelplex/c2m/docum/C2M2010_s
urvey.pdf.

Forward, A., Badreddin, O. and Lethbridge, T. C. "Umple:
Towards Combining Model Driven with Prototype
Driven System Development," in IEEE International
Symposium on Rapid System Prototyping (RSP), 2010.

Forward, A., Lethbridge, T. C. and Brestovansky, D.
"Improving Program Comprehension by Enhancing
Program Constructs: An Analysis of the Umple
Language," in IEEE International Conference on
Program Comprehension (ICPC), 2009. pp. 311-312.

Forward, A. " Umple Language Online.", accessed 2012,
http://try.umple.org.

Gentleware. "Poseidon for UML". Available:
http://www.gentleware.com. Accessed 2013.

Hunt, J. J., Vo, K. P. and Tichy, W. F. "Delta Algorithms:
An Empirical Analysis". 1998. ACM Transactions on
Software Engineering and Methodology, vol 7, ACM
New York, NY, USA. pp. 192-214.

IBM. "IBM Rational Software Architect Modeling Tool",
accessed 2009, http://www-
01.ibm.com/software/awdtools/architect/swarchitect/.

IBM, "IBM Rational ClearCase". 2004. Rational
clearcase.

Mens, T. "Conditional Graph Rewriting as a Domain-
Independent Formalism for Software Evolution".
2000. Lecture notes in computer science, Springer. pp.
127-144.

Mens, T. "A State-of-the-Art Survey on Software
Merging". 2002. IEEE Trans.Software Eng.. pp. 449-
462.

OMG. "UML Diagram Interchange (UMLDI)", accessed
2012,
http://www.omg.org/technology/documents/modeling_
spec_catalog.htm#UML_DI.

Omondo. "EclipseUML". 2007.
Pottinger, R. A. and Bernstein, P. A. "Merging Models

Based on Given Correspondences," 29th International
Conference on very Large Data Bases,Volume 29,
2003. pp. 873.

Rho, J. and Wu, C. "An Efficient Version Model of
Software Diagrams," 5th Asia-Pacific Software
Engineering Conf, 1998. pp. 2-4.

Schmidt, M. and Gloetzner, T. "Constructing Difference
Tools for Models using the SiDiff Framework". 2008.
ACM New York, NY, USA.

Treude, C., Berlik, S., Wenzel, S. and Kelter, U.
"Difference Computation of Large Models," 6th Joint
Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, 2007. pp. 295-
304.

Lippe, E. and van Oosterom, N. "Operation-Based
Merging". 1992. ACM SIGSOFT Software
Engineering Notes, vol 17, ACM New York, NY,
USA. pp. 78-87.

Westfechtel, B. "Structure-Oriented Merging of Revisions
of Software Documents," 3rd International Workshop
on Software Configuration Management, 1991. pp. 68-
79.

Yang, W. "How to Merge Program Texts". 1994.
J.Syst.Software, vol 27, Citeseer. pp. 129-135.

Yang, W., Horwitz, S. and Reps, T. "A Program
Integration Algorithm that Accommodates Semantics-
Preserving Transformations". 1992. ACM
Transactions on Software Engineering and
Methodology, vol 1, ACM. pp. 354.

