
Studying Work Practices to Assist
Tool Design in Software Engineering*

* This work is supported by NSERC and Mitel Corporation and sponsored by the Consortium for Software Engineering

Research (CSER).

Janice Singer
Institute for Information Technology

National Research Council
Ottawa, K1A 0R6, Canada

+1 613 991 6346
janice.singer@iit.nrc.ca

Timothy Lethbridge
School of Information Technology and

Engineering
University of Ottawa

Ottawa, K1N 6N5, Canada
+1 613 562-5800 x6685

tcl@site.uottawa.ca

ABSTRACT

This paper reports our experiences studying the work
practices of professional software engineers (SEs). We
provide our reasons for following this approach, and
describe details such as the discovery of work patterns, and
the use of synchronized shadowing. We outline several
studies we are currently conducting in a large
telecommunications company and explain how these
studies influenced the design of a software engineering
exploration environment.

1. Introduction

Studying program comprehension is fraught with
difficulties. One of the dilemmas researchers must face is
whether to work in a lab setting or in the field: laboratory
experiments are difficult to generalize to the field because
variables that normally vary across field settings are fixed
in experiments and thus it is hard to say how the results
will apply in the ‘real world.’ In field studies however, it
is often impossible to adequately control variables, hence
it is not always clear what factors had a role in the results.
Another dilemma is whether to use students or industrial
software engineers (SEs): Students are easily available to
participate in studies but do not necessarily perform the
same type of work as those in industry; on the other hand
SEs in industry often have no time to participate in
studies.

Due to their respective limitations, then, a number of
approaches must be followed in order to fully understand
program comprehension,. A researcher pursuing one
approach will be able to tell us certain things about
program comprehension, while a researcher pursuing
another approach will learn different things. Where
different approaches converge around the same concepts,
we will start to have a central corpus of knowledge about
the processes used in program comprehension.

Since many laboratory studies already exist, we have
chosen to study industrial practitioners in the field. Using
a set of largely qualitative analysis techniques we are
studying the work practices of software engineers. The
study of work practices is a relatively new field [1, 2, 5]
which integrates methodologies and theories from several
different fields including cognitive and social psychology,
human-computer interaction, business-process re-
engineering, and anthropology. From this understanding,
work practice researchers strive to design appropriate
technologies for the workplace.

This paper describes our experiences with the work
practice approach to tool design. First we explain why we
chose the work practice approach. Second, we briefly
review a series of studies we undertook to examine the
work practices of a group of SEs at a large
telecommunications company. This sets the stage for the
description of a software engineering exploration tool
based on our studies. Finally, we discuss how work
practices in general can influence tool design.

1.1 Work practices, work patterns and tool
design

The Knowledge Based Reverse Engineering (KBRE)
project’s ultimate goal is to provide a group of software
engineers (SEs) in an industrial telecommunications
setting with a toolset to help them maintain the system
more effectively. To this end, we decided that our first
step must be to understand SEs’ daily activities as they
modify and come to comprehend the source. We began by
searching the literature for a cataloguing of SE
maintenance activities; i.e., a list of activities SEs engage
in during their work - for instance, work with the
maintenance control system, go to meetings, read
documentation, search the source, etc. However, in the
literature, we found no clear cataloguing as such of exactly
how SEs go about solving problems and/or
comprehending the source code. While many models of
programmer comprehension exist, generally, they do not
describe details of the comprehension process (but, c.f.,
[6]). Consequently, we decided that our first step would be
to uncover both the low-level activities and high-level
goals of SEs as they are solving a problem.

For us, a critical aspect of this endeavor was that it
focus on the workplace and the work that occurs there.
Because our ultimate goal had us placing a tool in a
particular site, we wanted to make sure that a) the tool fit
into the existing work practices of the site and b) it solved
existing problems. This is because we felt that the best
way to ensure tool acceptance was to solve the real
problems SEs faced, while at the same time not requiring
them to re-think all of the activities in which they
currently engaged. This has been termed an evolutionary
as opposed to a revolutionary approach to tool generation.

Thus, to understand SE work practices, we began by
designing and implementing a series of studies (described
below) From there proposing technical solutions to some
of their problems. In the course of these studies, we
began to see that specific series of work practices would
be repeated, forming re-occurring patterns

Thus, we use the term work pattern to designate a re-
occurring sequence of work practices meeting a goal. We
incorporate work patterns into our tool by having the
tool, rather than the user, accomplish many of the
intervening actions. This saves the SE from issuing
several commands. This approach can potentially be
iterated to discover higher-level work patterns, that are
themselves composed of work patterns, thus producing a
hierarchy of work patterns from the bottom up.

To find work patterns, we analyzed our work practices
data to find the most frequent, time consuming, and
important activities. Further studies focused on these
activities to extract work patterns.

The next section describes our work practice studies.
In it, we give some general information about the
workplace, followed by a description of the various
methodologies we pursued, with some related results.

2. Work practice studies of software
engineers

We began our study of work practices by finding out
what it is in general that SEs do when they do their work.
Our approach was fourfold; we conducted a web
questionnaire, performed intensive shadowing of an
experienced SE who was a newcomer to this project,
performed various studies of a whole group, and collected
company-wide tool usage statistics. Section 2.1 provides
some general information about the workplace we were
studying. Following this, sections 2.2 - 2.5 outline the
methods and results of each of these studies (for greater
detail see [3,4]). After using the data to understand
individual activities we then analyzed it further to discover
work patterns: Our preliminary analyses of these is in
section 2.6 and 2.7. A discussion of the tool that we
developed using this information is in section 3.

2.1 Workplace characteristics

The group we are studying maintains one of the key
products of the company: a large telecommunications
system. The management of the group is fairly informal,
with group members often able to select the problems on
which they work.

Group members work in close proximity and often
walk over to each other’s desks with questions. The group
also makes use of a laboratory in which the target
hardware is installed.

The system includes a real-time operating system and
interacts with a large number of different hardware devices.
The system contains several million lines of code with
over 16000 routines in over 8000 files. It is also divided
into numerous layers and subsystems written in a
proprietary high-level language.

The system was first fielded in the early 1980s and
has since been continually updated. Its importance to the
company and its evolution are expected to continue for
many years to come.

Approximately 13 people actively work on various
aspects of the system at the current time. Over 100 people
have made changes to the source code during the life of the
system.

The group follows a well-defined process for creating
new system features. They also keep detailed records of
problem reports and the consequent changes to the system.

Other important documents include the ‘practices’ that are
followed by those who install and run the system in the
field.

Careful attention is paid to quality control in the form
of design reviews, informal code inspections, and an
independent test team.

Development work is done on the Sun platform,
although the SEs must spend a considerable amount of
time installing and running the software on various
configurations of the target hardware.

2.2 Questionnaire Study

We began our research by administering a web-based
questionnaire (6 of the 13 SEs completed the
questionnaire). The questionnaire covered many different
aspects of the SEs’ work. Here we report their answers to
two questions about what they spent their time doing.

The first question was open-ended, meaning that SEs
had to identify activities for themselves, rather than
choosing activities from a list. The activity listed by the

most SEs was reading documentation; many also reported
spending time looking at source code, writing
documentation, attending meetings, and writing source
code. Other activities included consulting, both answering
and asking questions, working with the hardware, testing,
designing, and fixing bugs.

The second question asked the SEs how they divided
their time: On average, 57% of their time was spent
fixing bugs, and 35% of their time making enhancements
to the system.

Due to the questionable validity of self-reports, we
only used the questionnaire to obtain a rough initial
indication of what the SEs’ work involved. The next two
subsections of the paper describe studies that allowed us to
improve our knowledge by obtaining direct observations.

2.3 Individual study

We have been following one SE longitudinally from
the time he first joined the company (November, 1996).
For the first six months, we spent about 1-1/2 hours per
week with B. However, as B has became more
knowledgeable about the system, we meet only once every
3 weeks. This is because new things happen less
frequently: B has fewer experiences with new tools and at
the same time is working on larger problems that require
long periods performing tasks such as reading
documentation or reproducing the problem. B is an
experienced SE (he was previously a team-leader), thus
while he is new to the company, he is certainly not new
to either maintenance or telecommunications software.

Our sessions with B consist of 3 distinct
components. First we talk about what has transpired since
the last time we met. This could be anything from code
reviews, to learning about a new tool, to reading
documentation, etc. Second, we ask B to look at a diagram
of the system that he previously constructed and ask him
to modify it if it does not reflect his current understanding
of the system. Finally, we ‘shadow’ B as he works for
half an hour. In this paper, we report the data from the
shadowing.

We classified B’s shadowed events into the 14 distinct
categories described in Table 1. The data reported in this
paper reflects 14 shadowing sessions with B.

Searching and interacting with the hardware were the
most likely events to occur on a daily basis, each
occurring on 8 of the 14 days. B studied the source code
using simple editors on 6 of the days. The reason that B
searched on more days than he studied the source code is
that searching occurred when interacting with the hardware
and debugging. B only looked at documentation on 2 of
the 14 days. This is surprising because, at the time, B was
still a relative novice to the software system and it is

A c t i v i t y Description

Call trace Looking at an execution trace of the
program

Consult Either being consulted or consulting
someone else

Compile Linking or compiling a program

Configur-
ation
management

Entering and using the in-house
configuration management system
(sometimes for updating, and sometimes
to search for past updates)

Debug Using either the high-level or low-level
debugger

Document-
ation

Looking at documentation

Edit Changing the source code

Management General software activities, such as
meetings, code reviews, etc.

In-house
too l s

Using one of the in-house tools,
primarily static software analysis tools

Notes Taking notes, or reading past notes

Search Using grep, in-house search tools, or
searching in an editor

Source Studying source code using editors or
code viewers

Hardware Interacting with the hardware, e.g.,
loading software, running software,
configuring the hardware, etc.

UNIX Issuing a general Unix command, e.g. ls

Table 1: Categories of activities performed
by the SE we shadowed.

commonly assumed that novices will spend much of their
time reading the documentation to get a handle on what
they are doing. The data show that this was not the
strategy B pursued. However, because B was a novice, it
was not surprising to find that editing code, compiling,
and management were each done on only 1 of the 14 days.

If instead of daily activities, we look at the overall
frequency of activities, we see that B searched more often
than he did anything else (37 times over the 14 days). He
also frequently studied the source code (33 times over the
14 days). While B was likely on any particular day to
work with the hardware, he did so on only 22 distinct
occasions.

Thus overall, both in terms of daily activities and
frequency of different activities, search for information
about the system, whether through grep, in-house search
tools, or within a particular editor or debugger, figured
most prominently in B’s attempts to comprehend the
system. A significant amount of B’s effort was also
expended interacting with the hardware and studying the
source code.

2.4 Group study

In the last section, we discussed intensive studies of
one individual. To generalize our findings, we conducted
several studies that focused on various aspects of the work
of an entire group of SEs.

We collected four types of data from the group. First,
we asked the SEs to draw a diagram or picture of their
current understanding of the system, a conceptual map, if
you will. Second, we conducted intensive interviews with
the SEs. Some of these asked about their work in general,
while others focused on how they solved a real problem
with the software. The latter generally involved several 1-
hour interviews over the course of several days. Finally,
we spent one hour shadowing each SE as they went about
their work. This report focuses on this third type of data;
the shadowing data.

Eight group members participated in the shadowing
study. Their experience ranged from the most expert
member of the group (8 years) to the least experienced (6
months, a recent college graduate). All but one of the
shadowed subjects worked on the main controller of the
hardware. One of the subjects worked primarily on the
database component.

The subjects were expert in a wide variety of
platforms and languages, and had experience in both
development and maintenance environments.

Like B’s data, the shadowed events were classified
according to the 14 distinct categories described in Table
1. 356 distinct events were recorded.

All 8 SEs looked at the source, conducted a search,
and changed the source code at least once during the hour.
Most of the SEs also engaged at least once in several
other activities, with 5 of the 8 SEs interacting with the
hardware, debugger, or the in-house tools. On the other
hand, only 3 SEs looked at a call trace, while only one SE
performed a management activity.

Of the total of 356 events (counted over the 8 SEs),
issuing a Unix command was the most frequent activity,
occurring 54 times. A close second was studying the
source which was done 52 times. Interacting with the
hardware (36 times) or the debugger (32 times), searching
(31 times), and changing the source code (30 times) were
the next most frequent activities. Configuration
management, consulting, compiling, and working with
in-house tools were each done about 20 times.

Surprisingly enough, reading the documentation,
although performed by 6 of the 8 SEs, accounted for only
12 separate events. Clearly, the act of looking at the
documentation is more salient in the SEs’ minds (as
evidenced by the questionnaire data) than its actual
occurrence would warrant.

SEs only occasionally wrote notes, looked at the call
trace or did management activities. This is not to say that
these events are not important, but merely that they did
not occur as frequently as other events.

As B did, members of the group frequently examined
the source code. Every SE in the group made at least one
search during their shadowing session, but search was less
prominent than in B’s activities. Search ranked as the
most frequent event type for B, while it was the 4th most
frequent for the group.

Code editing and compiling were more prominent
activities in the group data than in B’s data. This is
probably because B was still learning the system at the
time we shadowed him, so he was not yet in a position to
make many changes. This may also explain the higher
incidence of working with the call trace in his data: doing
the latter may be effective in gaining an initial
understanding of a system.

Interestingly, in-house tools and documentation were
both relatively infrequent activities for both the group and
B.

The group data converge with B’s data to suggest that
looking and searching through the source are prominent
activities for SEs in attempting to comprehend a system.
Editing and compiling are also important. This concurs
with what we would expect in that their work revolves
around the source code.

2.5 Company Study

The final study we report concerns company-wide tool
usage statistics. These data were obtained from the
company’s tool group. This group is responsible for
acquiring, updating, and maintaining the company’s tools.
Collecting usage statistics is part of their mission.

The data presented here represent one week of Sun
tool usage by 367 users in late May 1997. Note that this
week occurred before ‘vacation season,’ so is fairly
representative of peak tool usage. There were 79,295
separate tool calls logged from the Sun operating system.

Invocations of compilers occurred 32,422 times (41%
of all events recorded) due to regular automatic load-builds;
therefore we excluded this data from our studies.

When we factored compiling out, the overwhelming
finding from the company data is that search is done far
more often than any other activity. In fact, search accounts
for 21,146 events over the course of the week, or an
average of about 58 searches per individual user.
Compression and un-compression tools are also used often
(We never actually observed anyone using these tools so
we assume that they are also mostly used by automated
scripts).

The configuration management system was activated
2819 times, accounting for approximately 4% of all
events. At this company, the configuration management
system is central to the work process, both for retrieving
files, filing changes, and searching through past changes
(along with associated documentation).

Editors and viewers account for approximately 3190
events, or 4% of the total number of events. This low
frequency could be due to counting particularities that
apply only to editors. In the company tool data, an editor
command is counted only when the editor is opened. Once
an editor is open, it generally stays open, regardless of
how many changes are made, or how many files are
viewed. In contrast, in the shadowing data, an edit was
recorded each time the source was changed, and a source
event was counted each time the source was examined,
whether the editor was already open or not. Consequently,
it comes as no surprise that in the shadowing data, edit
and source frequency is higher than it is in the company-
wide data.

Again, the in-house tools are not used very
frequently, but that belies their importance. These tools
are important because they perform necessary functions
that cannot be performed by other tools.

Search is the most frequently used tool at the
company wide level. Grep and its variants are the most
frequently used search tools, accounting for 21,117
separate invocations. Clearly, search is an important
aspect of SEs work practices.

2.6 Synchronized shadowing to discover work
patterns

The above studies of SE work practices highlighted
two primary activities: search and navigation. In
continuing our research, we are focusing on these areas. In
particular, we are interested in the recurring sequences of
actions that SEs follow to execute search, i.e., search
work patterns (this term is discussed in section 1.1.

To find work patterns, we implemented a
methodology we call synchronized shadowing. Here, two
observers shadow an individual SE at the same time. Each
observer records observations on their own laptop
computer. The clocks on the two computers are
synchronized, so that the two data sets can later be
matched. One researcher records the low-level work
practices of the SE, such as ‘execute grep’, ‘open an
editor’, ‘look at the source’, etc.1 The other researcher has
the SE “think-aloud” while working, and records the SE’s
immediate goals and whether and when they are achieved.
For example, the first researcher may record that the SE
executed grep, while the second researcher would have
recorded that the SE was looking for a variable, looking
for a constant, looking for a routine name, etc. The high-
level goals recorded are only those directly mentioned by
the SE; the very low-level goals are partly interpreted or
inferred from the sequences of actions and from the higher
level goals (see section 1.1).

To find the work patterns, then, the two data sets are
merged so that the goals can be matched up with the
specific actions that were taken to achieve them. Over
time and after studying many more SEs, we expect that
certain goals will always be matched with the same or
very similar actions to form work patterns.

We implemented the synchronized shadowing method
because we found that no other technique would work
effectively. A single researcher could not record both types
of information; videotaping was too time-consuming, and
automated recording missed important data.

2.7 Work patterns of particular importance

During the course of our studies we began to notice
several important work patterns. We are still in the
process of extracting these patterns, but our preliminary
attention became focused on patterns common to several
SEs and having mechanical, time-consuming and/or
inefficient elements that could perhaps be automated.

1 Unfortunately, this level of observation cannot be done

by automatic logging of keystrokes and mouse
movements.

The following are four of the most important such
patterns:
1. Searching for some target string using grep,

successively opening each file that had grep ‘hits’,
searching for the same target in the file, and then
studying the code around the hits. In most cases the
grep target was a very simple string and the search
involved a very large number of files; the SE was often
forced to wait for many seconds for the result, and some
SEs developed the habit of starting searches in the
background, and then performing some other task while
they waited for the search to complete.

2. Saving the results of grep searches to act as checklists
for future work (either lists of places to study, or lists
of places where changes are needed), and then working
through the checklists. This pattern was fraught with
errors, however: On several occasions we observed SEs
repeating searches because they could not find previous
results (e.g. they had scrolled too far off the top of the
screen).

3. Suspending an investigation of a checklist item to
perform some other search or study, then resuming
work at a later time. This task switching involved
considerable overhead, and it was hard for the SEs to
keep their work organized.

4. Jumping back and forth between tools, primarily
Unix command line (performing grep) to editor and
back. This jumping involved the use of cut and paste to
transfer data and was frequently awkward.

The next section describes how we developed a tool
that helps SEs more effectively achieve the goals implicit
in the above patterns.

3. Developing a tool using the results o f
work practice studies

In this section, we discuss how we used work-
practices studies to inform the design of a software
engineering tool.

In late 1995 we started our research project whose
goal was to discover techniques whereby SEs could more
effectively maintain large legacy systems.

3.1 The first release

For the first release, we brainstormed a group of SEs
for their needs, and then designed, with their continued
involvement, a tool called SEE (Software Exploration
Environment); its main features were:

a) Hypertext-like abilities to select any word in the
code, and build a list of relevant information that describes

that word (e.g. a variable, a routine or even a word in
comments).

b) Abilities to build, in a hierarchical manner, a list
of items related to the file, routine, identifier etc. on the
screen.

Both of these facilities were ranked high in the
brainstorming sessions. They proved useful to the SEs (as
evidenced by ongoing use) and remain, in improved form,
in the current version.

3.2 Work studies based design: The second
release

Our work practice studies proceeded in parallel with
the above, and have so far been underway for over a year.
These studies clearly could not inform tool design for the
first release since we had to amass data. We therefore used
them to develop the second release.

We used the work patterns discussed in section 2.2.6
to guide our tool design, and thus implemented the
following features in the second version of SEE. We call
this tksee, and a screen snapshot is shown as figure 1:
• Persistent hierarchical history2. This facility

automatically records the entire state of each exploration
and presents it to the user in a compact, but graphical
manner. It allows the user to jump among states or
return to earlier states, and thus facilitates work patterns
2 and 3. Information recorded in each state includes the
object the SE was studying (right pane in figure 1), as
well as the exploration hierarchy – i.e. the path that led
the SE to this object (left pane). Each time the SE starts
a new search, a new history record is created (top pane).
These history records are themselves hierarchical. Any
given level of the hierarchy represents search tasks that
the user considers to be peers; if the user selects one of
these search records and performs new search work, then
a lower level in the hierarchy will be started.

• Visual grep. Although the user can perform useful
queries with a combination of hypertext and
relationship-expanding that were available in the original
tool, users persisted in using grep, jumping from our
first release to the command line and back. In order to
help users better perform work patterns 1 and 4,
therefore, we integrated grep into tksee. There are three
ways to access this functionality: 1) Requesting an
‘ordinary’ grep whereby the search hits are displayed as a
fresh search in the history hierarchy. 2) Selecting some
items in the bottom left pane and requesting a grep in
each of these; the hits being displayed indented below

2 Although a rudimentary version of history was available

in the original tool, it was little use since it was not
persistent nor automatic enough

the places where they were found in the bottom-left
pane. 3) Selecting (in the bottom-left pane) an item that
is the destination of a relationship, and requesting that
the places in that item that establish the relationship be
highlighted as grep hits. In all three cases, the user can
select a grep hit and immediately see the context of the
hit in the right pane.

3.3 Conclusions from tool development

The second release of the tool has been eagerly
adopted by a variety of SEs. This is an achievement, since
it is hard to encourage these people to adopt new
techniques – many of them have not even adopted emacs,
and prefer to use more primitive editors they know better.

We attribute our success to the following: a) we
focused on tasks that they do most frequently (i.e. search);
b) we developed tools that specifically helped with work
patterns that appeared cumbersome previously; c) we
allowed them to continue their existing work practices
(e.g. use of grep), rather than forcing them to adopt a
radical new paradigm.

One criticism we have received about our research is
that there are already commercial and freeware tools that
incorporate some of the facilities we developed. Well
known examples include Sniff+ and emacs. Our counter-
argument to this is to ask, why are those tools not being
used by our SEs? We believe that our work-practices
studies allowed us to develop a tool that fits more
precisely with the SEs’ needs. The other tools either do
not integrate all the facilities needed (especially the
persistent hierarchical history) or are overly complex.

4. Conclusions and future
work

This paper has described experiences
with several techniques that can help us
to develop systems that are not only
usable, but are also used.

In our work practice studies, we first
discovered what our users did in broad
terms using interviews, shadowing,
questionnaires, etc. Then we focused on
the most frequently performed tasks to
discover what we call work patterns.

We have also shown that by using
the technique we call synchronized
shadowing, it is possible to gather
information about both activities and
goals fairly efficiently. The analysis of
this data leads to the discovery of work
patterns that are most amenable to
automation.

We will now continue our work-practices research and
perform tool development iteratively. We will study the
extent and manner with which the SEs use the facilities
we developed as a result of this research. We also plan to
study the work patterns of SEs in more depth as we amass
more observations.

Acknowledgments

This research is supported by NSERC and sponsored
by the Consortium for Software Engineering Research
(CSER). We would like to thank the SEs who participated
in our studies.

References

1. Beyer, H., & Holtzblatt, K., Apprenticing with the
customer. Communications of the ACM 38 (1995), 45-
52.

2. Blomberg, J., Suchman, L., & Trigg, R., Reflections on a
Work-oriented Design Project. Human Computer
Interaction 11, (1996), 237-265

3. Lethbridge, T., and Singer, J. (1997). Understanding
software maintenance tools: Some empirical research, in
Workshop on Empirical Studies of Software Maintenance,
(Bari, Italy, October 1997), pp. 157-162..

4. Singer, J., Lethbridge, T., Vinson, N. and Anquetil N. An
Examination of Software Engineering Work Practices, in
Proceedings of CASCON ‘97 (Toronto, November 1997).

5. Vicente, K and Pejtersen, A. Cognitive Work Analysis, in
press.

6. von Mayrhauser, A and & Vans, A., Program
Comprehension During Software Maintenance and
Evolution, Computer Aug. 1995, 44-55.

Figure 1: An example of the Tksee main window.

