
A Little Knowledge Can Go a Long Way
Towards Program Understanding1

1 This work is supported by NSERC and Mitel Corporation and sponsored by the Consortium for Software Engineering Research (CSER).

Jelber Sayyad-Shirabad
Timothy C. Lethbridge

Department of Computer Science
University of Ottawa

Ottawa, Canada, K1N 6N5
{jsayyad, tcl}@csi.uottawa.ca

Steve Lyon

Mitel Corporation
Kanata, Ontario, Canada

Steve_Lyon@software.mitel.com

Abstract
Large, complex software systems are hard to learn and

navigate. In an ideal environment, documentation can help
in this process. However the latter is usually out of date
and hard to use. Others have proposed using large
knowledge bases to model software systems, however
these are very expensive to build and may be as
unmaintainable as the code. In this paper, we propose
instead to use a highly circumscribed, small, conceptual
knowledge base, whose purpose is to help the apprentice
navigate a software system, and facilitate search within the
code. We present our vision, and some initial experiments
which involve building such a knowledge base in a semi-
automated way.

1. Introduction

This paper presents an approach to program
understanding that makes use of a very simple knowledge
base.

We hypothesize that maintainers will more effectively
understand source code if the browsing, search and analysis
tools they use were able to make use of a knowledge base.
Such a knowledge base would describe only the high level
system concepts and properties and would be kept very
small so it could be maintained.

In this paper, we present this approach in some detail
and describe an application of the approach in an industrial
company. We place emphasis on the knowledge
acquisition approach we have used – a semi-automated
method designed to minimize consumption of the
maintainers' scarce time.

2. Overview of the approach

2.1 The scenario

In industrial projects which we have studied, the
following scenario is very common:

• A group of software engineers (SEs) are evolving a
large legacy system, that is hard to maintain due to its
complexity and continuous change.

• Documentation exists, but is little used for program
understanding because of one or more of the following:
It is a) out of date, b) hard to maintain, c) difficult to
understand, d) difficult to access, and/or e) not structured
so as to be useful to typical maintenance problems.

• The information sources maintainers use most are: a)
the source code, b) their mental model of the system, as
developed over time by experience , and c) the
knowledge of other SEs.

• The mental models of 'apprentices' (who may be expert
software engineers, but who are new to the particular
system) are naturally non-existent or poor. The mental
models of experts tend to focus on particular parts of the
system that they have been working on more
frequently.

The initial subject of our studies is a maintenance
team within Mitel corporation, a telecommunications
company. They are working on a large real-time system
that has been evolving since the early 1980's and still
produces a significant component of company revenue.
The above four points are clearly true in this team.

The goals of our work are twofold: a) To improve the
productivity of expert maintainers, and b) To reduce the
amount of time it takes an apprentice to learn the system.

The work reported in this paper is part of a larger
project [1] that has two main thrusts: 1) We study
software engineers scientifically, to learn their work

patterns and needs; 2) We apply the results of this study to
develop tools that satisfy the above goals. Our overall
approach to tool creation uses user-centred design
techniques.

2.2 Some solutions proposed in the past

The following are some alternatives to our approach,
with arguments as to why they are insufficient:

2.2.1 Use a more sophisticated knowledge base.
We believe that once a body of documentation grows
beyond a certain size, its 'marginal usefulness' diminishes
to the point where the cost of production and maintenance
drops below the benefit. A knowledge base is really just a
structured kind of documentation that the computer can
process: We therefore believe it is futile to build a
descriptive knowledge base that is very large [2, 3]

We also observe that software engineers tend to make
the vast majority of their references to a small subset of
the documentation, e.g. conceptual overviews or
maintenance handbooks [4]. This appears to be because
what the SEs really need from documentation are 'key'
items of information, not a large amount of detail. They
can often obtain the detail more easily by examining the
source code.

2.2.2 Improve the conventional documentation. It
might be argued that one should simply improve existing
documentation, and perhaps add hyperlinks from
documentation into code. We agree that this is a useful
approach, however we propose that the presence of formal
relationships in a knowledge base is of more value than
mere descriptive text or non-computer-interpretable
diagrams. We have demonstrated this in earlier research [5,
6].

2.3 Generic description of the knowledge bases

Knowledge bases used in our approach have the
following characteristics:

1.They are based on concepts and conceptual relations.
They do not contain rules, procedures or complex
logical conditions. For our current work, we are using a
knowledge management system called CODE4 [7, 8].

2. They are small (200-400 main concepts).
3. They cover the most important high-level concepts of

the system under maintenance.

A new knowledge base will have to be created for
each new system to be understood. Each existing

knowledge base evolves as its corresponding system
changes – some of this maintenance can be automated.

We have used such knowledge bases to help in the
design of software [5] We are now adapting the same
technology to its maintenance.

2.4 Application of the knowledge bases to
program understanding

Once a knowledge base is constructed, we plan to
develop tools that make use of it. The following sections
describe situations where we hypothesize such knowledge
bases could be employed. We are planning to validate
these hypotheses using experiments and observation. Also
note that these tools will fit within the context of a larger
architecture which is shown in figure 1.

2.4.1 Improved navigation. 'Apprentices' will be
able to browse the CODE4 knowledge base in a
systematic way. When they encounter a concept, they will
be able to see its description, how it is implemented,
pointers to relevant documentation and other related
concepts. We hypothesize that they will be able to learn
about code faster by alternating between the
implementation and conceptual levels. All classes of SEs
will be able to use the knowledge base to help work with
more abstract views of the system.

2.4.2 Improved search. Searches within code often
fail because the software engineer does not know the
precise way to which a concept is referred in the code.

If a tool can access a knowledge base, it can
intelligently suggest other terms that might be used as
alternate search keys. For example, imagine somebody
searches for 'call waiting' because they are used to a
telephony feature commonly available on central offices.
In the context of a specific PBX system, this concept may
not be found in the source code. However, the knowledge
base might 'know' that a related concept is 'camp-on', and
point the software engineer to that instead. Another
closely related scenario is when a concept is referred to by
more than one term. An intelligent tool can use the
knowledge base to find these alternative names and expand
the search accordingly.

3. The knowledge acquisition (KA)
process

In this section we will discuss the method that we
have employed to elicit the knowledge regarding the
software system we are studying at Mitel.

Figure 1: Overall System Architecture

From the beginning of the project we were challenged
by the issue of the limitation of the SEs time. Although
we credit the SEs at Mitel for their commitment and
willingness to act as ‘experts’2 in the KA process, it
became obvious to us that:

1) They are not going to be able to find the time to
develop a knowledge base, however small, on their
own; hence a knowledge engineer must be involved.

2) We must automate, as much as possible, the process of
determining which concepts and relations are the most
important. The involvement of the experts must be
limited to responding to automated queries, and

2 In knowledge engineering, the people who provide information for
the construction of a knowledge base are traditionally called the
‘experts’. In our case, these experts are SEs who are performing
software maintenance; many of the same SEs will also end up being
users of the tools we develop.

reviewing versions of the knowledge base to detect
errors.

3.1 Inputs to the process

We use the source code comments as the initial input
to the knowledge acquisition process. We hypothesize
that:

1. Almost all the important high level concepts will be
mentioned in source code comments.

2. High level concepts will be among the most frequent
terms in comments (if we first extract the most
common English words and the names of data
structures, routines and files).

Therefore, our process extracts the most frequent
terms from the source code and uses these as the basis for

SEE (Software
Exploration
Environment)

XCDB (Command
Line-Oriented
Advanced Query Tool)

KGREP (Knowledgeable
Regular Expression
Search Tool)

Other
Tools

User Interface
Subsystems

CDB (source
Code DataBase)

WSDB
(Work State

management)

Data Management
Subsystems

CODE4
(knowledge

management)

GCPM
Interface
(Generic

Configuration
and Problem
Management)

SliSim
(prepares data
for simplified
views of code)

ReformOOlate
(prepares data
for alternate
views of the

entire system)

VisGen
(prepares VRML

virtual worlds)

AbGen
(Abstraction
analyser and
Generator)

Analysis
Subsystems

Mitel Pascal
parser unit

Parser
Module

C
parser unit

other
parser unit

Software Information System

the knowledge base. After initial extraction of terms, the
expertise of the software engineers comes into play; they
are asked to pick those concepts that really are important
and to organize them into a knowledge base.

3.2 Steps in the process

The following steps constitute our process. The first
6 steps are the KA phase:

1. Build a list of terms (concepts) by scanning the source
code.

2. Ask the experts to rank these terms according to their
importance in the context of the software component
which we are studying and create a refined list of the
most important concepts.

3. Ask the experts to categorize these concepts in terms
of the is-a relation

4. Analyze the expert groupings to come up with an
initial hierarchy of concepts

5. Refine the hierarchy using structured reviews and the
system documentation.

6. Ask the experts to augment the knowledge base by
supplying other relations (e.g. 'part-of', 'implements'
etc.

7. Put the knowledge base into production.
8. Maintain the knowledge base by asking experts to

review it periodically. Since the knowledge base is
small, reviewing it in its entirety should not be time-
consuming. This review process could be triggered
automatically when changes are made to places in the
maintained source code to which the knowledge base
refers.

In what follows we will present more details about
each of the above steps, and our initial experiences.

3.2.1. Creation of a concept l i s t . We create the
initial concept list by simply scanning the code comments
and creating a table of terms3.

The entries in the table are weighted according to the
following empirical formula:

weight = W * (min(Files, W / Files)) + Files

in which
W = NumOccur * Factor
NumOccur is the number of occurrences of a term in all
files

3 A word is a sequence of alphanumeric characters bounded by
whitespace or punctuation. A term is a sequence of 1 to 3 words.

Files are the number of files in which a term has
occurred at least once
Factor for a term depends on the number of words in the
term as shown in the following table:

Number of words in a term Factor
1 1
2 8
3 40

As it can be seen, the above formula gives more
weight to the sequences that contain more than one word.
This is to compensate for the lower probability of such
sequences appearing in comparison to single words. We
also assume that longer sequences of words that appear
more than once have higher information content compared
to single words. This method also gives more credit to
terms that appear many times in many files. We believe
that these terms have a higher probability of representing
important concepts in the system.

We have applied the above method to a core
component of our subject system at Mitel. This
component contains approximately 200K line of
commented code in over 160 files (‘Header’ files that
contain such things as common type definitions were
ignored).The resulting table contained about 13,000 terms
with weights ranging from 145041 to 3.

To bring the table to a manageable size we first
removed the entries that had appeared only once then
browsed through the table to remove the terms that
appear, with a good degree of confidence, to not represent
any valuable information. Examples of these terms are
variables such as i and j, terms that are the abbreviation or
shorter form of other terms in the table, or English words
that are not being used in a technical context. At the end
we chose approximately the first 1000 highest weighed
entries. The resulting table contained terms with a weight
between 27 and 145041 inclusive.

The following are interesting observations about this
first step:

• It is very heuristic, yet appears to do a good job of
selecting important high level concepts. It certainly
formed a good base for the next step, since experts did
not need to change it very much.

• It is a very rapid process, taking only a few hours for a
very large system (even for a knowledge engineer who
has only peripheral knowledge of the system).

• It does not consume any of the experts' time.

Figure 2: Differences in opinions of the experts about the importance rankings of terms.
Left: The number of terms where the experts agreed or disagreed. Right: The magnitude o f
disagreement, among three experts, for those terms where all three disagreed.

3.2.2. Ranking the words by experts. After
creating our initial word list we ask a small subset of the
SEs to rank these words in terms of their importance in
the context of the particular software system.

Each of the participating SEs performs the ranking
individually. To facilitate this task, we provide the SEs
with a simple tool which allows them to assign an
importance value of 1 to 5 to each concept, 1 being not
important and 5 meaning very important. The SEs also
have the option of indicating that they do not know
anything about a specific concept. The concepts are
presented in alphabetical order so the SEs are not affected
by the ranking obtained by occurrence frequency.

The interface allows the SEs to add a new concept to
the existing term list if they think that it is an important
concept which is missing. During the process of ranking,
we maintain a minimal interference policy. We present the
user interface and explain its features and what we are
expecting from the SEs; then we let them to do the
ranking alone.

After the ranking process, we calculate an average
weight for each concept. The concepts with an average
weight of 3 and higher are kept for further processing in
the next stages.

In our experiment, we asked three of the Mitel
software engineers to rank the concepts. The experts had
different amounts of work experience with the subject
software, ranging from 3 to 7 years (including the most
experienced team member). After the process was
complete, the number of concepts had been reduced to
403, of which 30 had been added by one or more software
engineers. Each software engineer took about 1 hour to
perform this step. Figure 2, describes the differences of
opinions among the software engineers.

3.2.3. Categorizing concepts. In the next stage we
want to see how the experts group the concepts that we
generated in stage 2. The experts are provided with another
tool which is shown in figure 3. This allows them to
create 'groups' of concepts, and hence more general and
abstract concepts. They can put any existing concept in
one or more groups, and they can add whatever groups and
names they desire.

There are a variety of ways to group concepts; we ask
the experts to categorize the concepts given to them in
terms of the is-a relation (where the group name represents
the superconcept). Not all of them will be able to
accurately do this, but such deviations will be dealt with
later.

To keep the interface simple we do not provide
facilities to create several levels of nested groups. If they
want to do this, we ask them to use a period, "." to
separate a category from its subcategories e.g.
device.sets.display might be a low level category, with
device.sets and device as higher categories.

In our experiment at Mitel, we used a different but
intersecting set of experts than we used in the previous
step. The idea is to maintain continuity, but also allow
others to inject their ideas. The result of this process were
four rather different groupings.

3.2.4. Analyzing the expert groupings. One
reason to create multiple categorizations (one for each
expert), as opposed to creating a single one by asking a
group of experts to do the categorization together, is to
capture the different ways of looking at the same data. We
want to give our experts the opportunity to show us how
they see the system from their own perspective. Our other
alternative, i.e. categorization done by a group had the
following drawbacks:

17.8%

52.8%

28.9%

0.5%
0

50

100

150

200

250

1 2 3 4

Maximum difference in ranking

n
u

m
b

er
 o

f
te

rm
s

45%
50%

5%

0
50

100
150
200
250
300
350
400
450
500

All Three
Agreed

Two Agreed All Three
Disagreed

Expert's opinion

N
u

m
b

er
 o

f
te

rm
s

Figure 3: The user interface for the categorization tool.

• Arranging a meeting between a group of experts, with
a diverse range of assignments, specially during a
major release, is not an easy task.

• Junior members of the group in the presence of the
more expert members may not present their views,
specially when they find their view is different from
the senior SE.

While it is true that more experienced SEs have a
better global view of the system; we have found that
different SEs tend to have a better understanding of
particular subcomponents of the system, as compared with
their coworkers (including the expert members of the
group). In typical legacy systems there is no single person
who knows each and every part of the system. Instead,
people learn the details of a component of the system
during working on an assignment that involves that
component.

To find out the equivalent categories among different
experts, we group the categories that share the same
concepts together. These groupings are sorted based on the
number of common concepts between categories. The
higher the number of shared concepts, the stronger the
possibility of equality of categories in a group. In
generating the groups, our program creates the biggest
possible grouping of categories.

At the end of this stage, and after discarding groups
that only shared in one concept, we were left with 153
groups and 379 total concepts.

3.2.5. Creating the first version of the
hierarchy of concepts. After creating the equivalent
category groups, the knowledge engineer manually
studies the groups to select the most appropriate name to
represent a concept.

In our experiment, the experts' application of the dot
notation assisted us in the creation of the original
hierarchy of concepts. The resulting hierarchy of concepts
was stored in a CODE4 knowledge base [7, 8]. From this
point onward every change in the concept hierarchy was
directly applied to the CODE4 knowledge base.

3.2.6. Refining the hierarchy by interviewing
the experts. Having an initial hierarchy of concepts, we
asked two of the SEs in the team to review our hierarchy
together and assist us in refining it. One of the SEs was
very experienced and was among the original four SEs
assisting us with ranking and categorizing. The other SE
had the same number of years of experience with the
system but did not participate in the earlier stages of the
KA process. This allowed us to benefit from the feedback
and expertise of yet another SE.

We found that the mere fact of doing the interviews
with two SEs at the same time initiated very interesting
discussions and helped us with the better understanding of
the system while giving us higher confidence in the
accuracy of the generated hierarchy. As we reviewed each
concept and its place in the hierarchy, we solicited ideas
for other relationships among concepts as well as a simple
English description for the concept.

The review process took 5 sessions, each lasting
about 2 hours. After each interview we updated our
hierarchy by applying the suggested changes by SEs and
referring to the existing system documents. These were
mostly documents that describe the functionality of the
system without going into very many details of the
implementation.

Having a hierarchy before starting our interviews
helped us to save a large amount of time. If we had started
to gather knowledge about the important concepts in the
system, without the earlier semi-automatic phases, we
would have had little to guide our work.

3.2.7 State of our work. In the next stage we are
planning to present the resulting hierarchy to the most
expert member of the team and acquire his feedback about
the concept hierarchy. Our hope is to benefit from his
global view of the system. Once this stage is over, the
software engineers will start adding other important
details about the concepts.

We plan to start experimenting with the use of the
knowledge base to assist program understanding as soon
as the hierarchy is complete.

4. Conclusions

We are experimenting with the use of very simple
conceptual knowledge bases as an aid to program
understanding. Such knowledge bases draw on technical
terms found in source code comments and the combined
knowledge of experts in the software system. They do not
consume much of the time of busy software maintainers
to build, and should be maintainable due to their small
size.

Initial results show that such knowledge bases can be
efficiently constructed and that they give a useful view of
the system. We plan next to enhance various searching
and browsing tools. Such tools will use the knowledge
base to assist beginners to understand the system better
and to help everybody search more effectively within the
code.

Acknowledgments

We would like to thank the software engineering team
at Mitel who we are using to develop and test our
approach, including Steve Szeto, Soo Tung, Ian Duncan,
Marc Beauregard and Glen Ala. We thank Pierre Fauvel for
testing the user interfaces. Also, we thank Nicolas
Anquetil and other members of our research group for their
comments.

References

[1] T.C. Lethbridge and J. Singer, "Strategies for Studying
Maintenance", proc Workshop on Empirical Studies o f
Software, Monterey, November 1996.

[2] P.J. Layzell, M.J. Freeman and P. Benedusi, "Improving
Reverse-engineering through the Use of Multiple Knowledge
Sources", Software Maintenance 7, 279-299, 1995.

[3] J. Mylopoulos, A. Borgida, M. Jarke and M. Koubarakis.
“Telos: a Language for Representing Knowledge about
Information Systems”, ACM Transactions on Information
Systems,. 8 (4), pp. 325-362, 1990.

[4] S.R. Tilley and D.B. Smith, "Coming Attractions in
Program Understanding", CMU/SEI-96-TR-019, Software
Engineering Institute, Carnegie Mellon University.

[5] D. Skuce, “Knowledge Management in Software Design: a
Tool and a Trial”, Software Engineering Journal, Sept. 1995,
pp 183-193. [6] T. C. Lethbridge, & D. Skuce, "Beyond
Hypertext: Knowledge Management for the Technical
Documenter" Proc. SIGDOC 92. Ottawa: ACM.

[7] D. Skuce and T.C. Lethbridge, "CODE4: A Unified System
for Managing Conceptual Knowledge", Int. J. Human-
Computer Studies 42 (1995), 413-451.

[8] T.C. Lethbridge, Practical Techniques for Organizing and
Measuring Knowledge, Ph.D. Thesis, Department of
Computer Science, University of Ottawa, 1994.

