
Extracting Concepts from File Names; a New File

Clustering Criterion�

Nicolas Anquetil Timothy Lethbridge

School of Information Technology and Engineering
150 Louis Pasteur, University of Ottawa

Ottawa, Canada, K1N 6N5
(1) (613) 562-5800 x6688
anquetil@csi.uottawa.ca

(1) (613) 562-5800 x6685
tcl@site.uottawa.ca

ABSTRACT

Decomposing complex software systems into conceptu-

ally independent subsystems is a signi�cant software en-

gineering activity which received considerable research

attention. Most of the research in this domain considers

the body of the source code; trying to cluster together

�les which are conceptually related.

This paper discusses techniques for extracting concepts

(we call them \abbreviations") from a more informal

source of information: �le names. The task is di�cult

because nothing indicates where to split the �le names

into substrings. In general, �nding abbreviations would

require domain knowledge to identify the concepts that

are referred to in a name and intuition to recognize such

concepts in abbreviated forms. We show by experiment

that the techniques we propose allow about 90% of the

abbreviations to be found automatically.

KEYWORDS

Reverse Engineering, Design Recovery, Arti�cial Intel-

ligence, Program-Understanding

1 INTRODUCTION

Maintaining legacy software systems is a problem which

many companies face. To help software engineers in

this task, researchers are trying to provide tools to help

extract the design structure of the software system using

whatever source of information is available. Clustering

�les into subsystems is considered an important part of

this activity. It allows software engineers to concentrate

on the parts of the system they are interested in; it

provides a high level view of the system, and it allows

them to relate the code to application domain concepts.

�This work is supported by NSERC and Mitel Corporation and

sponsored by the Consortium for Software Engineering Research

(CSER).

Much of the research in the �le clustering domain deals

with the source code; trying to extract design concept

from it. However, we studied a legacy software system,

and noticed that software engineers were organizing �les

according to some �le naming convention. In this paper

we propose to use this more informal source of informa-

tion to extract subsystems.

Our overall project aims at building a conceptual

browser for legacy software systems. A key part of this

is a design recovery facility where �les are clustered ac-

cording to the concepts they refer to. These clusters or

concepts may be called subsystems.

Merlo [7] already proposed to cluster �les according to

the concepts referred to in their comments and the func-

tion names they contain. However an experiment we

conducted [1] shows that in our case, �le names are a

much better clustering criterion than function names or

comments.

But �le names are more di�cult to deal with than func-

tion names: they rarely contain word markers (e.g. cap-

ital letters, hyphens and underscores) which help di�er-

entiate the various concepts they refer to. For example,

in our corpus, only 11 �le names out of more than 1800

have such word markers.

In this paper we propose and study various methods of

decomposing a �le name into a list of \concepts".

We will �rst advocate the need for new clustering crite-

ria in design recovery. We then propose some solutions

to extract \concepts" from �le names. this is done in

three steps:

� In section x3 we discuss the overall strategy we

used.

� In section x4 we propose di�erent methods for the

�rst stage of our strategy: generating candidate

concept names (we call them \abbreviations").

� In section x5 we describe the second stage of our

strategy: how to decompose �le names using the

generated abbreviations.

1

We designed and conducted an experiment to compare

the various methods we propose. This experiment will

be presented and its results discussed.

2 CRITERIA FOR FILE CLUSTERING

Our goal is to build a conceptual browser for a legacy

software system. This activity implies clustering seman-

tically related �les. Each cluster (i.e. subsystem) ob-

tained should correspond to a particular concept.

Traditionally (see for example [9]), there are two possi-

ble approaches to subsystem discovery:

The top-down approach consists of analyzing the

domain to discover its concepts and then trying to

match parts of the code with these concepts.

The bottom-up approach consists of analyzing the

code and trying to cluster the parts that are most

closely related according to certain criteria.

It is generally admitted that a successful solution should

use both approaches. However the di�culties associated

with the top-down approach make it unpopular. It is

costly because it implies extracting knowledge from ex-

perts during long interviews. It is also domain speci�c

which limits its potential for reuse.

The bottom-up approach has received more attention.

The preferred way to perform it is to look at the very

material software engineers deal with every day: the

source code. The di�culty is then to lift the very low

level information available to a suitable level of abstrac-

tion.

In last International Workshop on ProgramComprehen-

sion [4] only one paper [8] on program comprehension

(out of nine papers) was based on criteria other than

source code: it used the comments.

In [7], Merlo proposed to use comments and function

names to perform an activity that is basically bottom-

up but would help achieve the top-down approach. Us-

ing comments and function names, he extracted appli-

cation domain concepts and clustered �les according to

these concepts.

Sayyad-Shirabad [8], also proposes to use comments to

simplify the process of building an application domain

knowledge base (top-down approach).

For us, an important achievement of Merlo's research

was the introduction of new �le clustering criteria. As

Merlo states: \many sources of information may need

to be used during the [design] recovery process".

Source code analyses o�er very appealing solutions, but

they require lengthy computations that are incompati-

ble with the size of large legacy software systems (mil-

lions of LOC). More informal analyses could be used to

provide a �rst broad decomposition of large systems.

We believe a successful design recovery tool will need

more information of a higher abstraction level such

as that provided by comments or naming conventions.

This could allow associating the modules generated to

application domain concepts.

In [1], we explain how we were led to consider �le names

as a �le clustering criterion: we work on a project whose

primary goal is to bridge the gap between academic re-

search and industrial needs. The software system we

study is big (1.5 million LOC, 3500 �les) and old (over

15 years). Nobody in the company fully understands it

anymore, yet it is the subject of much ongoing enhance-

ment and is very important to the company.

We decided to provide a conceptual browser to the

software engineers maintaining the software system we

study. To this purpose, we asked them to give us exam-

ples of subsystems they were familiar with.

Studying each subsystem, it was obvious that its mem-

bers displayed a strong similarity among their names.

For each subsystem, concept names or concept abbre-

viations like \q2000" (the name of a particular subsys-

tem), \list" (in a list manager subsystem) or \cp" (for

\call processing") could be found in all the �le names.

We were led to conclude that the company is using some

kind of �le naming convention to mark the subsystems.

Because we aim at building a browser, we may a�ord to

use this informal �le clustering criterion. The precision

of the generated subsystems is not as critical as for other

domains like re-engineering where a key requirement is

precise preservation of semantics.

We do not think that the system we are working on is

an exception. We already mentioned Merlo's work with

function names. In another paper, Tzerpos [10] also

notes that \it is very common for large software prod-

ucts to follow such a naming convention (e.g. the �rst

two letters of a �le name might identify the subsystem

to which this �le should belong)".

It seems unlikely that companies can successfully main-

tain huge software systems for years with constantly re-

newed maintenance teams without relying on some kind

of structuring technique. The experiment we conducted

[1] shows that for our software system, �le names is the

best clustering criterion. We do not pretend it is the sole

solution to �le clustering, but it is one of many possibil-

ities. Hierarchical directories is another commonly used

approach (e.g. in the Linux project [6]).

In the following sections, we will propose di�erent meth-

ods to decompose �le names into a list of constituent

concepts. We call the component of a �le name abbrevi-

2

ations because they often consist in abbreviated forms

of words.

3 STRATEGY TO FILE NAMES DECOMPO-

SITION

Our goal is to �nd all the \abbreviations" composing

a �le name. We call abbreviations any substring of the

names that denotes a concept. It may be an applica-

tion domain term (e.g. \q2000"), an English word (e.g.

\list") or an abbreviated form of a word (e.g. \svr" for

server).

File names are much more di�cult to deal with that

function names because they rarely contain \words

markers" (underscore characters, hyphens, or capital

letters) which help in decomposing a name. The ab-

breviations they use are also much shorter, some are

only one or two characters long.

To stress the di�culty of the task, we wish to point

out that for some �le names, manually �nding the right

decomposition involves looking at the �le itself, at its

comments and functions, or at other �les which seemed

to have a related name. Overall we spent more than

5 hours decomposing a little more than 10% of the �le

names in the whole software system. We later used this

manual work as a benchmark against which to test our

automatic techniques.

There can be di�erent approaches to decompose all �le

names of a software system. The task implies two ac-

tivities:

� we need to �nd which character strings form a valid

abbreviation, and

� we need to �nd which abbreviations compose a

name.

The two activities may be conducted concurrently or

one after the other.

For example, while doing it manually, we �rst quickly

identi�ed some valid abbreviations: English words

(\list", \call") or speci�c substrings common to many

�les (e.g. \q2000"). Using these abbreviations, we

could decompose some simple �le names and obtain fur-

ther abbreviations from the remaining substrings of the

names. The process would them be repeated iteratively

until no more abbreviations are forthcoming.

However the process has rapidly diminishing returns,

and we had to study the documentation (mainly com-

ments) carefully to �nd out what some names could

\mean".

From this little study, it was quite evident that the task

is a knowledge intensive one. It requires application

domain knowledge as well as a good deal of intuition to

identify some abbreviations.

The iterative process we described above does seem a

natural way to proceed, but it has several drawbacks:

� It is a very slow process, which would require fre-

quent backtracking were it to be automated.

� It requires a function to tell when we have found

the right decomposition for a name (what is the

right decomposition for \fsblock": \fsb-lock" or \fs-

block" ?). This function would be mainly based on

intuition and seems di�cult to implement.

We will rather use a sequential strategy: �rst we will

try to �nd all the abbreviations used in the software

system. Second, given this set of abbreviations, we will

try to �nd the proper decomposition for each �le name.

This sequential strategy also has drawbacks. The main

one being that all the errors in the �rst step are fed into

the second one, thus rendering it more di�cult.

To try to avoid this as much as possible, it is important

that the �rst step has two contradictory properties:

Precision: It should only generate actual abbrevia-

tions.

Completion: It should not miss any actual abbrevia-

tion.

To promote precision, we want to be conservative when

generating abbreviations, only releasing those which

have a very good chance of being valid. We must, how-

ever, consider more closely this issue: the only wrong

abbreviations we need to avoid are those that we could

reasonably expect to �nd in a �le name. Accepting \sty-

lostixis"1 as a candidate abbreviation would probably

not alter the �nal results.

On the other hand, to promote completion, we want to

generate as many abbreviations as possible.

In general, we will promote precision over completion.

If needed, we hope to achieve completion by combining

di�erent sources of abbreviations. Hopefully, di�erent

sources should provide a better coverage of the set of all

abbreviations.

4 CANDIDATE ABBREVIATIONS

The �rst step of our method may be the most di�cult

one. It requires a lot of knowledge. For example, it

seems unlikely that someone who is not expert in the

1Note: This means acupuncture. We, on the other hand, are

working with a telecommunication software system

3

software system could guess what abbreviations com-

pose a name like \actmnutsg"2.

Intuitively there are several ways to generate our abbre-

viations:

� taking actual English (short) words,

� taking the pre�x of English words (\aud" for au-

dit),

� taking the consonants of a word (\dbg" for debug),

� taking the initials of composed words, i.e. acronym

(\cp" for call processing).

But we wanted our method to be precise. Using these

rules would generate a lot of useless candidate abbre-

viations. In the best case, these rules could be used

to con�rm that a candidate abbreviation (generated by

some other means) is valid.

Our main research path will be to look for valid abbre-

viations used in some sources. For example, software

engineers may use abbreviations in their comments (En-

glish words and application domain terms). Therefore,

comments will be considered a possible source of abbre-

viations.

In the remainder of this section, we present several

sources and methods of extracting abbreviations. We

shall discuss latter how we use the abbreviations to de-

compose �le names.

4.1 Source: File Names; Method: Iterative

The �rst source of abbreviations we will consider is �le

names themselves. We already outlined how we man-

ually extracted some abbreviations from �le names by

starting with \obvious" ones and progressively deducing

new ones from those already asserted. We will describe

here an attempt to automate this process.

Some of the names are very short (2, 3 or 4-character

long). As a heuristic, we assume that these are single

abbreviations, and therefore will become a base set of

\obvious" abbreviations. Study of the names, as well

as experiments, show that 5-character long names (and

longer) are usually combinations of shorter abbrevia-

tions; although names of 6 characters or more may still

occasionally be a single abbreviation (e.g. \kermit").

On the other hand, 4-character long names may be a

combination of two abbreviations (e.g. \swid" stands

for \software-id"). Overall however, this heuristic seems

to o�er a good precision while remaining as complete as

possible.

2

Answer:ACTivityMoNitorUTilitiesSG(aproductname).

Using this base set, we may try to extract further abbre-

viations by decomposing some simple names. We only

look for names pre�xed by one of the known abbrevia-

tions (for example \damsvr" is pre�xed by \dam").

After removing the pre�x abbreviation from a name, if

the remainder is less than or equal to 4 characters long,

it will be considered an abbreviation (\damsvr" gives

\svr" as remainder). Otherwise, we try to �nd another

known abbreviation which pre�x this remainder.

This method does extract wrong candidate abbrevia-

tions (candidates that are not actual abbreviations), its

precision is not perfect. The problem is that some ab-

breviations are pre�xes of other. For example \activ"

and \activity" are two valid abbreviations. If we already

asserted that \activ" is an abbreviation, the algorithm

will wrongly deduce that \ity" is another one. This kind

of wrong abbreviation is dangerous because it may ac-

tually be found in other �le names. We see no simple

way to avoid this problem in general (in the example

given here, we could use an English dictionary to recog-

nize that \activity" is a single word and should not be

decomposed).

The algorithm sketched here does appear to follow the

iterative strategy we dismissed in section x3, but there

are key di�erences:

� The decomposition here is very straightforward,

there is no backtracking. If we �nd several possible

decompositions for a �le, all resulting abbreviations

will be accepted.

� We do not try to decompose all names, if some �le

is not pre�xed by a known abbreviation, or if the

remainder of this name after removing all pre�xing

abbreviation is longer than 4 characters, we simply

do not decompose it.

The purpose here is not to decompose �le names, but

to try to �nd as many abbreviations as possible. In fact

few �le names were decomposed by this method, less

than 400 out of 1800.

4.2 Source: File Names; Method: Statistical

There is another way we can use �le names to get ab-

breviations: by proposing as a candidate abbreviation

any substring common to several �le names.

The primary reason for decomposing �le names into

their constituent abbreviations is that we want to build

a browser on the �le names. This implies we will want

to gather all �les referring to the same concepts. There-

fore, we are primarily interested in abbreviations that

appear in several �le names.

Extracting all common substrings from a set of names

4

may be very time and space consuming. A naive way to

do it would consist of extracting all the substrings (of

any length) of each name and then trying to �nd simi-

lar substrings in di�erent names. However, in practice

this can prove impossible because there can be many

thousands of names.

We propose instead to extract from each name, all the

substrings of a given length it contains. These strings

are called n-grams [5]; for a length of 3, one speaks of

3-grams. For example, \listdbg" contains the following

3-grams: \lis", \ist", \std", \tdb" and \dbg". The num-

ber of n-grams in a name is linear in the length of this

name, whereas the total number of substrings would be

quadratic in the length of the name.

After extracting all n-grams from the names, we build a

Galois Lattice (see for example [3, 11]). This structure

allows us to cluster �le names which share n-grams. The

Galois lattice has an important property: it will �nd all

clusters of �les sharing at least one n-gram. That way

we are sure we will not miss any substring common to

any set of �les.

The length of n-grams is important, too long and they

will not allow short substrings to be detected, too short

they can produce too many clusters to be manageable.

This is a case where dealing with an actual software

system may be a problem, because of the size of the

system we are studying, we have not yet been able to

generate the Galois Lattice for 2-grams, the program

crashes for lack of memory. We are working on a new

implementation that will avoid having to keep the data

structure entirely im memory.

As a consequence, the experiments reported in this pa-

per (see section x6) were made using 3-grams. This

means we miss the 2-character substrings. Note that

candidate abbreviations of length greater than n (3) are

easily found using the Galois Lattice.

It may happen that two very close names di�er only by

one letter (e.g. \activmon" and \activmonr"). We do

not want the full name to become a candidate abbre-

viation. To avoid this, we decided to keep only those

candidate abbreviations shorter than a given length (5

characters, inclusive).

Then again, some �les contain words longer than our

threshold (e.g. \serial"). We modi�ed the above rule

to accept abbreviations longer than 5 characters if they

were English words. We recognize English words using

an English dictionary (see x4.6).

For the sake of clarity, this algorithm is sumarized in

�gure 1.

foreach �le name

Extract the 3-grams it contains

Build the Galois Lattice for all �le names

foreach cluster in the Galois Lattice

sstr = substring shared by all names in the cluster

if string length(sstr) > 5 then

if not is english word(sstr) then

reject sstr

else

accept sstr as a candidate abbreviation

else

accept sstr as a candidate abbreviation

Figure 1: Algorithm for statistical extraction of abbre-

viations from �le names

4.3 Source: Comments

The algorithm presented in the preceding section may

extract wrong candidate abbreviations. For example

\dial" and \diag" (for diagnostic) are actual abbrevi-

ations, but all �les having them, also share the string

\dia" which is not a valid abbreviation. These wrong

abbreviations are dangerous because they are found in

�le names.

We will now present an attempt to �lter out the wrong

candidates.

Some abbreviations used in �le names are words, ei-

ther English words or application domain terms. For

these reasons, many \abbreviations" appear in the com-

ments. Our �lter will simply consist of taking each can-

didate abbreviation generated by the previous method

and keeping only those one we �nd in the comments.

In the software system we are studying, many �les

(' 70%) have a summary comment which describes the

main purpose of the �le (as opposed to that of func-

tions). We restricted ourselves to these comments. The

primary purpose of this restriction is to limit the size of

data to deal with.

In a �rst experiment, we looked for a candidate abbrevi-

ation only in the summary comment of the �les that had

this particular candidate abbreviation in their names.

In a second experiment, we used abbreviations found in

the summary comments of all �les; this gave better re-

sults. We believe that because comments are only used

as a �lter for pre-generated substrings, the more com-

ments we have, the better it would be.

As a logical conclusion, it seems that although the sum-

mary comments may appear more \focused", we should

get better results using all of them.

5

4.4 Method: Computing Abbreviated Forms

The comments may be a good �lter for those abbre-

viations which are actual words, but some abbreviated

forms of words like \dbg" (for debug) will probably not

be used as such in the comments. Instead only the full

word will appear.

We present here an attempt to recognize these abbrevi-

ated forms. This method is intended as an extension of

the previous one.

In section x4, we gave some rules to build abbreviated

forms from words:

1. taking the pre�x of words (\aud" for audit),

2. taking the consonants of words (\dbg" for debug),

3. taking the initials of composed words, i.e. acronym

(\cp" for call processing).

We tried to implement the �rst two rules. For each can-

didate abbreviation (substring common to some names),

we searched for a word for which it would be a pre�x.

We also computed an abbreviated form of the words

by taking their �rst letter and all of their consonants

(e.g. \abbreviate" would give \abbrvt"). If a candidate

abbreviation matches a computed abbreviated form we

keep it.

Here again, the words were taken from the comments.

But because the calculations performed on each word

are more complex than in the preceding section, we lim-

ited ourselves to the summary of those �les which had

a candidate abbreviation in their name. We do believe

considering all summary comments or all comments of

all �les would produce better results.

We know this method is not complete. The second rule

(taking all consonants of a word) should be loosened a

bit. For example, a common abbreviation for server is

\svr", where the �rst \r" is dropped. But it seems di�-

cult to implement this e�ciently, and without loosing all

precision. As future research, it might be possible to use

a dictionary that contains \soundex" information about

words; many abbreviations (e.g. \svr" sound simular to

the full word.

4.5 Source: Identi�ers

Identi�ers are another possible source for abbreviations.

In general, identi�ers would include the names of func-

tions, variables, structured types, etc. However in our

experiments, the only identi�ers we considered are func-

tion names. We made this choice both for practical rea-

sons and because we believed functions have a better

chance of addressing the same concepts as the �les.

Merlo [7] already recognized functions as a useful �le

clustering criterion. Here however, we do not want to

cluster �les based on the identi�er names they contain

(this has already proved unsuccessful in our case; see

[1]). Instead we will use identi�ers as an easy way to

get some abbreviations the software engineers may use.

Identi�er names are much easier to decompose than

�le names. As a rule, identi�er names contain word

markers: the underscore character (\ ") and capital let-

ters. Because of these word markers, breaking down an

identi�er's name into the list of its abbreviations is a

straightforward task.

But identi�er names may be longer than �le names.

As a consequence, some abbreviations are not the same

(mainly the ones that are abbreviated forms of words).

This should not be a problem as those longer abbrevi-

ated forms have few chances of appearing in �le names.

For example, assume the word \abbreviation" may be

abbreviated by \abrv" in �le names and \abbrev" in

identi�er names. For the latter to appear only fortu-

itously in �le names, it would require two contiguous

shorter abbreviations like \abb" and \rev". This seems

highly improbable.

Another di�culty |more serious| is that some func-

tions have the name of the �le that de�nes them in their

own name. We do not want these �le names to be un-

conditionally proposed as abbreviations. To avoid this,

we use the same length �lter as already discussed (x4.2)

and keep only those shorter than 5 characters (unless

they are English words).

4.6 Source: English Dictionary

In several of the above presented methods, we noted the

need for an English dictionary: some abbreviations (e.g.

\list") or �le names (\e.g. \activity") are actual words.

This gave us the idea of using an English dictionary to

produce candidate abbreviations. This will obviously

give poor results by itself, because many abbreviations

are not English words. But we will see that it may be

a good auxiliary technique when combined with other

sources.

The English dictionary we used is the one usually found

in /usr/dict/words on unix systems. On our system

(Solaris 2.5), it contains a little more than 25000 words.

The method here simply consists of assuming any of

these words is an abbreviation and then trying to de-

compose the �le names using these candidate abbrevia-

tions. How we decompose the names will be detailed in

the next section.

The dictionary has some precision problem. It contains

words like \in", \the", or even \AC" that could easily

be found in �le names and may not be abbreviations

6

in our system. We tried to deal with this by using a

standard stop word list (from the Information Retrieval

system Smart [2]), but it proved harmful. Some more

specialized stop list should be set-up.

Using this dictionary also presents completion problem.

It lacks some common words we need (e.g. \display").

It also lacks the ability to in
ect words (conjugate verbs,

put an \s" at the end of nouns). A more intelligent tool

like \ispell" could give better results.

5 DECOMPOSING FILE NAMES

Having extracted a set of abbreviations, we now want

to decompose each �le name into a list of abbreviations.

We call each decomposition of a name a split.

For each name, we �nd all candidate abbreviations it

could contain. We then generate all combinations of

abbreviations that could compose the name. For more

exibility, we allow free characters in a split (a charac-

ter not belonging to any abbreviation). For example as-

suming we have two candidate abbreviations \list" and

\db", the possible splits for \listdbg" would be:

� list { db { g

� list { d { b { g

� l { i { s { t { db { g

� l { i { s { t { d { b { g

As there are relatively few possible splits for each name,

we are able to generate all of them. But some are ob-

viously wrong (e.g. the last one in the above example).

We use a rating function to assess the correctness of

the splits. We only keep the split(s) with the best rate

(there may be ties).

The current rating function simply gives the higher rat-

ing to the split with fewer members (candidate abbrevi-

ations and free characters). The rationale is to discard

those splits with a lot of free characters.

We considered using more complex rating functions,

with multiple criteria, such as:

� Length of the abbreviations: from informal study,

it seems that 3-character abbreviations are more

numerous than other sizes. We could take this into

account and give more weight to these abbrevia-

tions.

� Number of sources proposing each abbreviation:

when using several sources together, we could give

more weight to an abbreviation proposed by di�er-

ent sources.

� Weighted source for abbreviations: we do not have

the same con�dence in all sources, some could have

a higher weight than other, therefore favoring the

abbreviations they generated.

The rating function does have an in
uence on the qual-

ity of the results (although it seems to be a minor one).

But, because our goal is to compare various sources of

abbreviations, we did not want to alter the results by

using a rating function that is too complex.

6 EVALUATING FILE NAMES DECOMPOSI-

TION

In previous sections, we have proposed several sources

and methods of generating candidate abbreviations and

have explained how to decompose �le names using these

candidate abbreviations.

Each of the abbreviation set generated produces a dif-

ferent result. We now need to evaluate these results to

access which method is the best one.

We will �rst describe the experiment we designed and

then present and discuss the results.

6.1 Experiment Design

To evaluate the quality of the decompositions, we need

some known results against which to compare them.

For this purpose, we manually decomposed some of the

names. To get a representative sample, we decomposed

the �rst 10 names (in alphabetical order) for each ini-

tial letter. As some of the letters have very few or no

�le name beginning with them, we decomposed only 221

names. This sample represents 12% of the whole corpus

(1817 �le names).

We decided to accept several correct splits for some

names. There are di�erent reasons for this:

1. some words may be abbreviated in many ways (\ac-

tiv" or \act" for activity),

2. some words are singular and plural (\error" and/or

\errors"),

3. some abbreviations overlap (\saservice" stands for

\sas service"),

4. some words are composed (\wakeup").

In each of these cases, we did not want to arbitrar-

ily choose one of the alternatives. We will accept all

\sensible" splits. For example, for \activity", we accept

\activity", \activ" and \act". In the last two cases, the

remainder of the word is simply ignored. In the case

of overlapping abbreviations like \saservice", we accept

\sa { service" and \sas" (\ervice" cannot be an abbre-

viation and is ignored).

7

0

20

40

60

80

100

dict f.name cmt fct comp n-gram fct&n-gram all

ef
fic

ie
nc

y
(%

)

31.5%

67.1% 67.5%

80.3%
83.9%

85.1%
88.4%

89.9%

39.2%

55.3%

77.6%
75.3% 76.4%

88% 88.9%

source alone
with dict.

Figure 2: E�ciency of di�erent sources of abbrevia-

tions. The methods are: (dict) abbreviations from En-

glish dictionary, (f.name) from �le names, (cmt) from

comments, (fct) from functions, (comp) computed ab-

breviated forms, (n-gram) substring common to names.

For the 221 names, we accepted 256 splits. Only 31

names have more than one accepted split. The maxi-

mum is four accepted splits (for one name), there are

two names with three accepted splits (like \activity")

and 28 names have two accepted splits.

Using this sample, we measure the e�ciency of a source

of abbreviations by taking the best split it can produce

for each name and counting how many correct abbrevi-

ations it could �nd.

For example if the proposed split for \listdbg" is \list {

db { g", we will give it a score of 50% because it found

half of the two right abbreviations (\list" and \dbg").

When we accept several splits for a name, we take the

best result.

It may happen that the splitting tool returns several

splits for one name (ties). In this case, we take the best

of the ties' scores.

The �nal result for each method is the average percent-

age for the 221 names.

6.2 Experiment Results

The results are presented in �gure 2. E�ciency is mea-

sured as a percentage of abbreviations found.

The height of a column gives the total number of ab-

breviations the corresponding method proposes.

The �rst source is the English dictionary (1st column:

\dict"; see x4.6). It gives poor result, but we mentioned

it was only intended as an improvement over the other

methods. For all other sources, the lower result in �gure

0

500

1000

1500

2000

2500

3000

3500

4000

dict f.name cmt fct comp n-gram fct&n-gram all

nb
 o

f a
bb

re
vi

at
io

n

25117

81

130

1132

181

238

1208
1216

413
238

979

579

1630

2267 2403

-20%

-40%

-60%

-80%

% scale

Methods efficiency
whitout dictionnary (in %)

english word
non-word

Figure 3: In
uence of the number of English words and

non-word on the e�ciency of the methods. The meth-

ods are: (dict) abbreviations from English dictionary,

(f.name) from �le names, (cmt) from comments, (fct)

from functions, (comp) computed abbreviated forms,

(n-gram) substrings common to names.

2 (plain box) is the e�ciency of the source alone and the

upper result (dashed box) is the e�ciency when com-

bined with the English dictionary.

Also, to try to understand a bit more what is happen-

ing, we give in �gure 3 the number of English words

(dashed box) and non-words (plain box) each method

extracted. The non-words may be application domain

terms or abbreviated forms of a word.

In this second �gure we also give a reminder of the e�-

ciency of each method used alone, without the auxiliary

dictionary.

In both graphics, the methods are presented in ascend-

ing e�ciency order, but we will discuss them in the or-

der they were introduced (in section x4) which is more

natural.

It may appear that �le names (2nd column: \f.name";

see x4.1) are a poor source for abbreviations. Taken

alone it only scores 39.2%. When combined with an

English dictionary, it gives better results (67.1%) but

still less than other methods. We will see however that

\n-gram" also based on �le names (see below) but using

a di�erent extracting method gives better results.

Looking at the second �gure, one can see this �rst

source"f.name" gives very few abbreviations which are

English words. This may be an explanation for its bad

score. But we also see that extracting a lot fewer abbre-

viations and barely more English words, \cmt" scores

a lot better. It de�nitely seems the method measured

here has poor precision and completion.

8

Common substrings 's result (6th column: \n-gram"; see

x4.2) comes as a surprise. We did not think a simple

statistical method would score so well. The result with-

out dictionary is comparable to the best \intelligent"

method. It is signi�cantly improved by the addition of

the dictionary.

However, we must consider more closely this improve-

ment. As the abbreviations proposed by the method

are all substrings common to some names, the improve-

ment may only come from words that are used in a

single name. For this reason they are less interesting

because they won't help gathering related �le names

together. They may, nevertheless, help di�erentiate un-

related names.

Comments (3rd column: \cmt"; see x4.3) constitute a

�lter over \n-gram". One can see they do propose many

fewer candidate abbreviations (' 20%) and still give a

relatively good result. We de�nitely improved the pre-

cision of the candidate abbreviations set. Unfortunately

it appears to have been done at the expense of comple-

tion.

We proposed a way to improve results of the comments

by trying to compute some abbreviated forms (5th col-

umn: \comp"; x4.4). The method de�nitely proves

worthy. However simple the rules were, e�ciency is

among the best, and is almost the same as the origi-

nal method (\n-gram") with only half the number of

abbreviations. This seems to support the analysis we

made: comments are useful to extract full words and

application domain concepts, whereas computing abbre-

viated forms will provide the other abbreviations. One

can note that between comment and computed abbre-

viated forms, the number of English words is multiplied

by only 1.4 whereas the number of non English words

is multiplied by 2.4.

Abbreviations from function names (4th column: \fct";

x4.5) give very good results, either alone or with a dic-

tionary. The e�ect of the dictionary becomes less no-

ticeable. It seems natural that with better and better

results, it becomes more and more di�cult to get signif-

icant improvements. Another explanation is that func-

tion names already contain many words, therefore, the

addition of a dictionary does not have the same impor-

tance.

Finally the last two results are a combination of sev-

eral sources, �rst the two best single ones (\fct" and

\n-gram") and then all of them. The �nal best results

(90%) are very good and should prove di�cult to im-

prove. These two results are somehow deceiving. We

hoped that combining several methods would notice-

ably improve the score. Here we only gain 5%, thus it

may not be worth the extra work to compute all the dif-

ferent methods. A better solution seems to concentrate

on one of the two best (\fct" or \n-gram") and try to

�nd another way to improve the result.

7 CONCLUSION AND FUTURE WORK

Discovering subsystems in a legacy software system is

an important research issue. While studying a legacy

telecommunication software system, and the software

engineers who maintain it, we discovered their de�nition

of subsystems was mainly based on the �les' names.

This goes against the commonly accepted idea that the

body of the source code is the sole reliable source of

information when performing �le clustering.

Following these results, we wanted to build a conceptual

browser on the software system. We believe extracting

concepts from names could greatly contribute to the

design recovery activity by providing information of a

higher abstraction level.

For this we need to extract the constituent abbreviations

of �le names. This is a di�cult task because it requires

a lot of knowledge to �nd the concepts �le names refer

to, and intuition to associate abbreviated forms to the

concepts.

In this paper we described an experiment to compare

several methods of extracting abbreviations.

The overall strategy we chose seems appropriate as it

allows us to get good results (90% of correct decompo-

sitions). It consist of �rst trying to extract probable

abbreviations and then trying to decompose �le names

according to the abbreviations extracted.

From all the methods we proposed, two de�nitely prove

better:

� Extracting abbreviations from function names.

The great appeal of this method is its extreme sim-

plicity.

� Extracting common substrings in �le names. This

is the best of all, but it may be di�cult to compute

for large software systems.

The results these methods achieve are very good (80% to

85% of abbreviations found when used with an English

dictionary). They should prove di�cult to improve.

Some simple steps may be taken:

� Recompute the common substrings with 2-grams.

This would give us access to the 2-character abbre-

viations which we don't have right now.

� Improved the ranking function in the splitting tool

(second stage of our strategy).

� Assess more precisely the precision and completion

of each method. Up to now we have only been

9

able to estimate them. Having a precise compar-

ison scale should help improve the methods. The

problem is it seems to require manually computing

all �les exact decomposition.

However, we think that signi�cant improvement may

only come from a quite di�erent direction:

� It may be a good time to reconsider the overall

strategy, and taking advantage of the good results

we obtained, to try to iteratively improve them.

� We plan to experiment with a method we call the

\�le names evolution tree". New �le names are of-

ten derived from already existing ones (e.g. \activ-

monr" derived from \activmon"). By �nding from

which other name a �le name is derived, it could be

possible to deduce more easily what abbreviations

it is made of.

We are mostly able to extract the abbreviations from

the names. If we actually want to help in the design

recovery activity and provide information on a higher

abstraction level, we should soon try to associate the

abbreviations with concepts. Another important step

will be to combine our methods with more traditional,

code based, �le clustering methods.

THANKS

The authors would like to thank the software engineers

at Mitel who participated in this research by providing

us with data to study and by discussing ideas with us.

We are also indebted to all the members of the KBRE

research group Jelber Sayyad-Shirabad, Janice Singer

an St�ephane Som�e for fruitful discussions we have had

with them.

The authors can be reached by email

at anquetil@csi.uottawa.ca and

tcl@site.uottawa.ca. The URL for the project

is http://www.csi.uottawa.ca/~tcl/kbre.

REFERENCES

[1] Nicolas Anquetil and Timothy Lethbridge. File

Clustering Using Naming Conventions for Legacy

Systems. In CASCON'97. IBM Centre for Ad-

vanced Studies, nov 1997. Accepted for publica-

tion.

[2] Maintained by Chris Buckley. Smart

v11.0. available via anonymous

ftp from ftp.cs.cornell.edu, in

pub/smart/smart.11.0.tar.Z.

[3] Robert Godin and Hafedh Mili. Building and Main-

taining Analysis-Level Class Hierarchies Using Ga-

lois Lattices. ACM SIGplan Notices, 28(10):394{

410, 1993. OOPSLA'93 Proceedings.

[4] IEEE. 5th International Workshop on Program

Comprehension. IEEE comp. soc. press, may 1997.

[5] Roy E. Kimbrell. Searching for text? send an n-

gram! Byte, 13(5):197, may 1988.

[6] DEBIAN Gnu/Linux web page.

http://www.debian.org.

[7] Etore Merlo, Ian McAdam, and Renato De Mori.

Source code informal information analysis using

connectionnist models. In Ruzena Bajcsy, editor,

IJCAI'93, International Joint Conference on Ar-

ti�cial Intelligence, volume 2, pages 1339{44. Los

Altos, Calif., 1993.

[8] Jelber Sayyad-Shirabad, Timothy C. Lethbridge,

and Steve Lyon. A Little Knowledge Can Go a

Long Way Towards Program Understanding. In

5th International Workshop on Program Compre-

hension, pages 111{117. IEEE Comp. Soc. Press,

mai 1997.

[9] Scott R. Tilley, Santanu Paul, and Dennis B.

Smith. Towards a Framework for Program Under-

standing. In Fourth Workshp on Program Compre-

hension, pages 19{28. IEEE Comp. Soc. Press, mar

1996.

[10] Vassilios Tzerpos and Ric C. Holt. The Orphan

Adoption Problem in Architecture Maintenance.

Submited to Working Conference on Reverse En-

gineering, oct 1997.

[11] R. Wille. Restructuring Lattice Theory: an Ap-

proach Based on Hierarchies of Concepts. In I. Ri-

val, editor, Ordered Sets, pages 445{70. Reidel,

Dordrecht-Boston, 1982.

10

