
Submitted to Cascon 2001 – 1

GDBTrace: A Tool for Tracing Program
Execution at the Statement Level

François Bélanger and Timothy C. Lethbridge
School of Information Technology and Engineering (SITE)

University of Ottawa
Ottawa, Ontario, Canada

{fbelange, tcl}@site.uottawa.ca

Abstract

It is a well-recognized fact that debugging and
tracking down the cause of a software failure are
particularly difficult tasks in software
development. The complexity of these processes
increases with the size and age of the system.
Often, it is possible to trace the cause of a failure
to a certain routine or file; however, complex
statements or convoluted logic may make finding
the exact cause extremely difficult. This paper
introduces GDBTrace, a statement-level tracing
tool developed at the University of Ottawa.
Although designed with statement level tracing in
mind, this tool is also capable of keeping track of
routine calls and variable modifications during
program execution. GDBTrace has useful options
that enable it to trace only selected parts of a
system, thereby improving efficiency and
reducing the amount of work required to analyse
the trace.

Keywords

Program understanding and recovery, software
engineering, software maintenance, tracing,
software visualisation.

1. Introduction

Maintenance of large systems, and in
particular, debugging and making correct
modifications, are some of the most complex
operations in the software development process.

Currently, it is estimated that over 50% of the
effort employed by software engineers is not
aimed at developing new systems, but rather at
understanding and upgrading older ones [8].

Experience has shown that the maintenance and
operation phases consume, on average, 60%
percent of the effort of software engineers [5]. In
many cases, it is necessary for the software
engineer to understand a system developed over
twenty years ago. Such systems, often called
heritage or legacy systems are often vital to a
corporation’s survival.

 These systems can prove to be very difficult to
understand and correctly modify. The system may
be poorly documented, the original developers
may be unreachable, the system may be written in
an obsolete language, etc. In such cases, it is
necessary to obtain information about the system
using reverse engineering tools.

Generally, reverse engineering is divided into
three types of activities: data gathering,
knowledge organisation and data exploration [11].
This paper deals with tools of the first category
only – specifically, gathering information in the
form of traces from running programs.

2. Alternatives Approaches to Gathering
Information about Programs

When software engineers set out to make
changes to a system, they need to understand the
program sufficiently well so that they know what
to change and have confidence their changes will
be correct.

Programmers can use any of the following
techniques to gather information about programs:

• Reading the program sequentially or
opportunistically.

• Using static analysis tools to extract
information from it such as static call
hierarchies etc. [4]

Submitted to Cascon 2001 – 2

• Using browsing or hypertext tools to follow
relationships among static aspects of the code
[7,9].

• Running the program under a debugger and
following its execution.

• Running the program while gathering a trace
using a tracing or profiling tool [12].

The first three techniques gather static
information; however, the dynamic information
obtained from the latter two techniques is often
essential for understanding complex paths of
execution. [10] In this paper, we will focus on the
dynamic techniques,

2.1 Debuggers

Debuggers have been around since the earliest
days of programming; among the most popular
debuggers today is the GNU Debugger (GDB).
Debuggers allow software engineers to not only
execute a program step-by-step, but also to do
such things as keeping track of variable
modifications and stopping program execution at
specified breakpoints.

To accomplish this last operation, GDB
replaces program instructions with ones that cause
exceptions (such as a divide by zero). When these
exceptions are encountered, the GDB takes
control and awaits user input. This technique is
known as trapping a program [3].

2.2 Tracers and Traces

The tracing of program execution has also been
performed since the earliest days of programming.
In its simplest form, programmers instrument the
code by inserting “print” statements at strategic
points; these print statements can be activated
when the program is run in a special tracing
mode.

More sophisticated tracing tools are available
that automatically instrument code. Some of them
do this at the source-code level, but others work at
the object code level. Tracing can also be
implemented in interpreters or VMs, where
programming languages use such technology.

Tracing facilities allow programmers to gather
information about program execution at different
levels of resolution.

• Inter-process traces record the messages that
are passed between multiple running processes
or threads. Instrumentation is placed around

the primitives that send and receive such
messages

• Routine-call traces record each routine call
and return.

• Statement-level traces follow program
execution one line of code (or one instruction)
at a time.

Routine call traces are probably the most
widely used. However, although they are useful
for following the high-level paths of execution,
they do not provide sufficient information for
many tasks.

No matter what kind of tracing is used, most
tracers provide options to output information such
as routine arguments, or the values of certain
variables.

2.3 Comparing tracing and debugging

When working with large programs, software
engineers will often need to use both tracing and
debugging because they have complementary
advantages and disadvantages:

• Debugging is useful when the engineer has
isolated the part of the code he or she needs to
investigate or is working with a small
program. On the other hand, trying to explore
a massive program with a debugger can be
like exploring the world on a bicycle.

• Tracing can give information about every line
or routine executed, but the amount of
information output can be truly massive,
especially in the case of statement level
tracing. With a debugger, the engineer has
fine-grained control over what to look at and
only limited information is output.

• When using a debugger, the engineer looks at
information as the program executes. This
allows the engineer to dynamically change his
or her mind about where to place breakpoints,
or what data to examine. Examining a trace,
on the other hand, can only be done
retrospectively.

• The output of a trace can be massaged and
visualized so that the software engineer can
better understand the dynamics of a program.

• Tracing can be used to run a program through
multiple scenarios; the trace can then be
examined to see, for example, what portion of
lines have been covered.

Submitted to Cascon 2001 – 3

Both techniques share a disadvantage: They
slow the program down. In the case of debugging,
this can be extreme slowing if the engineer is
stepping a statement at a time; but even tracers
can alter the real-time behaviour of a program.

To reduce the real-time impact of tracing,
profiling is sometimes used instead. A profiler
takes a snapshot of the execution at specified

intervals. The overall behaviour of the program
can then be reconstructed [2].

Table 1 summarizes the key disadvantages and
advantages of debuggers and tracers. The final
column describes hybrid technology to be
discussed next

Issue Debugger Tracer GDBTrace
• Easily used to get a big picture of a program (i.e.

generating visualizations of overall patterns of
execution)

No Yes Yes

• Can be used to rapidly try out multiple scenarios Maybe Yes Yes
• Can be used with a large program, where the engineer

has no idea of typical execution paths
No Yes Yes

• Easy control over the parts of the system to be
examined

Yes Only with
manual
instrumentation

Yes

• Produces a manageable amount of output Yes No. Especially
not for statement
level traces.

Possibly

• Permits normal real-time behaviour No Usually not Depends

Table 1: Comparison of typical debuggers, tracers and GDBTrace

2.4 Combining the best features of tracing and
debugging tools

The objective of the work discussed in this
paper is to develop a solution that combines the
advantages of both debugging and tracing,
without the disadvantages of either.

The approach taken is to create a statement-
level tracer that uses a debugger as its means to
generate the trace. We have chosen to implement
the tracer on top of GDB. This makes our tool,
called GDBTrace, very portable and generic.

The resulting tool is a tracer, so it has all three
of the advantages of automatic tracing listed in the
first three rows of Table 1.

The challenges are therefore as follows:

1. Achieving easy control over the parts of the
system to be examined (as in a debugger or with
manual tracing instrumentation). This is
accomplished by providing the tracer with a
variety of powerful commands; these will be
discussed in section 3.3.

2. Ensuring the tool produces a manageable
amount of output. This is also done by options
that give the user control over what is traced, as

well as by piping the trace through a facility that
“compresses” it.

3. Avoiding system slowdowns that would
cause behaviour problems. This is the biggest
challenge, and is the main focus of the latter part
of the paper.

3. Design of GDBTrace

In this section we discuss the overall design of
GDBTrace.

By itself, a debugger is a powerful tool. Its
major drawback resides in the fact that a large
amount of user input is usually required.
GDBTrace requires no input once it has begun
tracing. In order to achieve this, GDBTrace was
designed as an Expect script driving GDB, as
shown in Figure 1.

Submitted to Cascon 2001 – 4

routine
file

command
file

Program

GDBTrace

GDB
Filter

User trace
file

Figure 1: The architecture of GDBTrace. Bold
lines represent continuous communication
between two components. Thin lines represent
a single communication that occurs between
components when the program starts. Dashed
lines represent optional communication
determined by the options the user sets.

Expect is a powerful automation tool designed
by Don Libes, at NIST. This tool is capable of
recognizing patterns, spawning processes and then
controlling them. Thus, scripts written for Expect
have already been used to automate many UNIX
tools such as rlogin, ftp, etc [1]. Because Expect is
a Tcl extension, scripts written for Expect can
also include Tcl program flow instructions [6]. It
is by the use of the automation capacities of
Expect and the program-flow commands of Tcl
that we can obtain traces.

3.1 Debugger Automation

Major advantages of using the GDB as the base
for GDBTrace are that it makes GDBTrace
language independent and portable. It is capable
of working with programs written in any language
as long as the GDB “knows” how to deal with
them. Likewise it is capable of working on many
different platforms.

GDB has the capacity of stepping through a
program and outputting the instructions executed.
To generate the trace, Expect looks for certain
patterns in the GDB output, analyses their
contents, and takes actions based on what it sees.

Since the GDB’s output always follows a
certain format depending on its state, it is easy to
recognize specific patterns and isolate the
important information contained within it. This
matching operation continues until GDB’s output
indicates program execution has terminated.

Each time a specific pattern is matched,
different instructions are executed in order to deal
with the specific event. This may include end all
tracing, start tracing, trace only the next N lines,

etc. This type of flexibility is achieved by the use
of Tcl program-flow instructions.

3.2 Tcl Commands in GDBTrace

Tcl statements allowed us to program a great
level of flexibility into GDBTrace. The user may
select any specific region of the program to trace
by setting certain options before execution. This
effectively reduces the loss in execution speed by
selectively tracing parts of the program where
errors are known (or are thought) to occur.

 It is also possible for the user to limit the
depth of the trace, or to avoid tracing common
library routines (such as the C “printf”
routine). These last options accelerate the speed of
execution and help overcome challenge 3
discussed above.

Finally, because of the use of Tcl, it is possible
to create command files in order to customize the
tracer. Such files may contain specific instructions
such as a list of routines to ignore while tracing.
Tcl also allows us to write the output of the trace
to a pipe.

3.3 Commands Available with GDBTrace

As mentioned earlier, GDBTrace implements
many commands to allow for flexible use, faster
execution and shorter traces. These commands
can be specified as command-line options or in a
file.

The commands are summarized in Tables 2
thru 5, and are discussed in the next few sections.

3.3.1 Commands to Start and End Tracing

As mentioned previously, statement-level
traces often end up being quite voluminous.
Therefore, it is essential to limit the length of such
traces. GDBTrace implements the -b, -B, -c and -
C commands, which are used to control the start
and end of the tracing process.

 The -b command is used to indicate to
GDBTrace to start tracing indefinitely from this
point. It has the lowest priority of the start/end
tracing commands, in the sense that the other
commands can force tracing to stop. This
command is implemented by having the debugger
set a breakpoint at the specified location. Once
this breakpoint is hit, tracing begins. It can be
terminated if execution reaches parts of the code
marked with the -c or -C options, discussed
below. The -b option allows the software engineer

Submitted to Cascon 2001 – 5

to avoid tracing until some interesting lines or
routines are executed.

The -B option is like -b, except that it indicates
to GDBTrace that it should only trace until the
function returns. This is useful in cases where
only a certain part of the call hierarchy is to be
traced. Upon returning from a function marked
with a -B option, GDBTrace ceases tracing and
resumes full-speed execution of the program.

The -c option is used to instruct GDBTrace to
cease tracing and to resume full-speed execution
whenever a matching line is encountered. Full-
speed execution continues until another line or
routine matching a -b or -B command is reached.

The -C option instructs GDBTrace to delete all
the -b or -B commands and resume full-speed
execution.

The -c and -C options are useful when program
efficiency is a concern or upon reaching a point in
the program that is known to be functioning
correctly.

Command Effect
-b breakpoint Start tracing when breakpoint is

encountered (while not already
tracing)

-B breakpoint Same as -b, but stop tracing
when the routine matching the
breakpoint returns.

-c breakpoint Stop tracing when breakpoint is
encountered (while tracing).

-C breakpoint Same as -c, but prevents the
tracer from subsequently
stopping in response to any -b or
-b command.

-e breakpoint Used to detect a (or many)
occurrence(s) of a particular
statement or routine.

-E breakpoint Same as -e, but does not detect
multiple occurrences of a
statement or routine.

Table 2: Commands to start and end tracing

Multiple use of the -b, -B, -c, -C, -e and -E
commands is permitted, giving the software
engineer fine-tuned control over what is to be
traced. For example:

• The program can be made to record only the
visits to a specific set of lines or routines by
specifying -b and -c for each of them.

• It can be used to detect if a particular routine
(or line) is ever hit, without noticeably
affecting performance, by specifying a -e or -E
command for that routine. The output should
be just one line, or zero lines if the routine is
never hit. This can be done in a debugger too,
but when the routine is hit, the engineer would
then have to manually remove all breakpoints
and resume execution. Doing so might perturb
the timing of the system.

3.3.2 Controlling Trace Depth and Length

GDBTrace implements options to limit the
depth of the trace. They are -d, -x, -y, -w, -W and
-n. All of these options limit the length of the
trace in order to achieve faster execution.

Command Effect
-d depth Trace depth levels of the call

hierarchy only.
-x routine Do not step into anything called

by routine while tracing, but
trace routine itself.

-w file Do not trace any of the routines
listed in file

-W routine Do not trace routine, or anything
below it.

-n lines Stop tracing after n lines have
been traced

Table 3: Commands to control trace depth and
length

The -d command limits the depth of the trace to
a specific number of levels of the call hierarchy
below the level at which tracing is started (i.e. by
-b or -B). This can be used to prevent the tracing
of low-level facilities such as utilities. It also
permits the software engineer to get a skeletal
overview of the higher levels of the hierarchy,
drastically shortening the trace. Specifying -b
routine1 -d 1, for example, can ensure that
only the statements in or below routine1 are
traced. The -d option is implemented by passing
the next command to the debugger instead of the
step command, once the required tracing depth
has been reached.

The -x command is used to instruct GDBTrace
to trace the specified routine (if encountered while
tracing), but not its subroutines. This command is
useful in cases where the software engineer
knows that a routine is functional in nature, so

Submitted to Cascon 2001 – 6

there would be no need to trace the routines it
calls.

The -w command is used to prevent GDBTrace
from tracing common library routines. The
argument to the -w option is a filename containing
the names of these common routines. Such
routines include C’s printf command. This
command was added to deal with GDB 5.0 and
higher. Starting with GDB 5.0, all routines,
including standard library routines are stepped
into. It is usually assumed that standard library
routines return correct results and it is therefore
not necessary to trace them. Also, many standard
library routines are quite long and, if included,
greatly augment the length of the trace.

The -W option is like -w, except that it
specifies a particular routine that should not be
traced. The difference between -W and -x is that
with -x, the routine is traced, but not its
subroutines; with -w, even the routine itself is not
traced.

The -n option is used to instruct GDBTrace to
trace only for a specified number of steps
whenever tracing is started. This command is
useful to limit the length of the trace in cases
where the depth limiting commands are
inadequate (e.g. in the case of a loop that executes
many times).

Multiple uses of the -d, -x, -w and -W
commands are permitted.

3.3.3 The Variable Tracing Command: -u

A very powerful aspect of GDBTrace is its
ability to trace up to the point where a variable
changes in value.

The -u command instructs GDBTrace to
resume full-speed execution when hitting a line
that sets the specified variable to any, or a
specific, value.

Command Effect
-u var Stop tracing and resume full-

speed execution whenever var
changes in value.

-u var=value Stop tracing and resume full-
speed execution whenever var is
set to value.

Table 4: Two forms of the -u command

There are two ways of using this command,
illustrated in Table 4. The first involves only
specifying the variable name; in this case if an

instruction changes the value of that variable, full-
speed execution resumes. The other way of using
this command is specifying a variable name and a
value. GDBTrace will resume full-speed
execution of the program when an instruction sets
the specified variable to the specified value.

This command is useful because one of the
questions frequently asked by software engineers
is, “How did that variable get set to that value?”

Multiple use of the -u command is permitted.
The major drawback of this feature is the
slowdown associated with its use.

3.3.4 Commands that Control Input and
Output

GDBTrace incorporates many commands that
allow the user to customize input and output to his
or her current needs. They are -r, -v, -o, -i, -s, -t
and -l.

Command Effect
-r Output only lines that represent

routine calls (or variable value
changes if v is used as well)

-v var Whenever var changes in value,
output the change.

-o file Direct output to file
-i file Obtain extra commands from file
-s Output a stack trace whenever

tracing is resumed (by -b, -B, -e
or -E) so the context is clear,

-t Output a timestamp on each line,
at the highest resolution
available

-l Indent the trace according to the
depth in the routine call
hierarchy to make the trace
easier to read.

Table 5: Commands to control trace depth and
length

The -r command instructs GDBTrace to only
output lines that contain routine call traces or
variable change traces. This permits the user to
obtain a higher-level view of the system – a
routine-call trace or the trace of the use of certain
variables (as specified using the -v command
below). Only a single use of the -r command is
permitted. Note the debugger still has to step
through every line when the -r command is used;
the command merely hides un-needed output.

Submitted to Cascon 2001 – 7

The -v command instructs GDBTrace to
display value changes of a certain variable,
specified by the argument to the command. This
command’s major drawback is the slowdown
associated with its use. Multiple usage of the -v
command is permitted.

The -o command instructs GDBTrace to send
its output to a file rather than to stdout. Under
DOS or Unix, the effect of the -o command can
also be obtained by using the “>” redirection
operator.

The -i option instructs GDBTrace to obtain
additional commands from a file. This is useful to
avoid having to type all commands on the
command line. Multiple use of the -i command is
permitted.

The -s option instructs GDBTrace to obtain a
stack trace from the debugger after encountering a
start tracing instruction. This option is useful in
order to allow the user to understand the path the
program followed before arriving at this point if it
was not being traced. Only a single use of the -s
command is permitted.

The -t command instructs GDBTrace to output
a timestamp on each line. This allows the user to
determine the execution speed of the program
while being traced. Only a single use of this
command is permitted.

The -l command instructs GDBTrace to indent
the trace depending on the level at which it is
located. This allows for easier visualization of the
trace. Only a single use of this command is
permitted.

4. Making GDBTrace Useful by Allowing it to
Gather Data Quickly

As discussed earlier, because GDBTrace
makes use of GDB there will be a performance
penalty in using it to gather a trace. In order to
make GDBTrace useful, we must therefore
quantify this penalty, and determine modes of use
in which the penalty has little impact.

GDBTrace works sufficiently fast for programs
that only execute a few thousands of lines, so in
those cases the performance penalty will not be a
problem. We therefore performed our experiments
on tasks that consume considerable CPU time. We
chose an open-source program: Xpaint, as well as
a simple program we wrote, to exercise the
features of GDBTrace. This test program is
composed of three files. These files mostly
consist of loops executing mathematical functions

and printf statements in order to allow us to
control the length of execution. This program
also contains a recursive call that is fifteen levels
deep. Table 6 summarizes the tasks we utilised to
test the functionality of GDBTrace.

Task Statements executed
in complete trace

Xpaint – Normalize
Contrast

5555745

Xpaint – Spray 3354
Xpaint – Greyscale 2458587
Xpaint – Solarize 1228821
Test program 600 to 10M

Table 6: Program runs used to experiment
with GDBTrace

4.1 Measuring slowdown

Slowdown can be measured both in terms of
CPU time used and elapsed time.

Overall CPU slowdown for full tracing ranges
from about 60 to over 175, whereas elapsed time
slowdown ranges from about 600 to over 1100.
The differences between these the two types of
slowdown, and the presence of ranges can be
accounted for by the fact that a lot of time is
consumed in operating system facilities that are
not actually traced.

The most useful figure is the elapsed time
slowdown; this is the figure that has practical
relevance to the software engineer, and it is what
we will try to reduce.

Table 7 shows the slowdown when particular
features of GDBTrace are switched on, while still
obtaining a full trace.

Submitted to Cascon 2001 – 8

Feature Average slowdown
(From basic
GDBTrace)

-u var=value 1.281-Varies
depending on number
of lines traced and
number of variables
to check.

-v var (trace a variable) 1.281-Varies
depending on the
number of variables
to be traced.

-t (output timestamp) 1.009
-l (indent output) 1.235

Table 7: Slowdowns associated with various
GDBTrace commands that make performance
worse.

4.2 Approaches to reducing the slowdown

A software engineer will often want to use
GDBTrace on a large program, either when the
slowdown of a full trace becomes prohibitive or
when timing is being interfered with so behaviour
changes. The following are some of the strategies
he or she can use:

The first set of strategies can be used when the
engineer knows nothing about the program

Strategy 1. Generate a top-level skeletal trace
using the -d command. Clearly the effectiveness
of this will depend on the depth of the dynamic
call hierarchy of an individual program. If a
program does everything in its main program,
there can be no benefit at all. Table 8 shows how
slowdown changes as the argument to -d is
increased for each of the Xpaint and test program
full-trace runs.

Task -d 2 -d 4 -d 6 -d 8
Xpaint -
Normalize
Contrast

843 843 843 843

Xpaint- Spray 1296 2475 19619 51071
Xpaint-
Greyscale

1158 1158 1158 1158

Xpaint-
Solarize

667 667 667 667

Test program
(1134 lines)

91 137 153 157

Test program
(41 453 lines)

112 149 156 157

Table 8: Slowdown when tracing to different
levels of depth.

As the results in Table 8 suggest, the more we
augment the argument to the -d option, the longer
the trace takes. This is normal as the deeper into
the system we trace, the longer the execution time
will be. Therefore, in the case of CPU intensive
operations, it is better to begin tracing the higher-
level routines first and then gradually drop levels,
while at the same time using commands to limit
the depth of the trace, than obtaining a full trace
immediately.

Using the results from Table 8, we have been
able to determine that Xpaint’s Greyscale
operation is confined to two levels of depth. This
conclusion is confirmed by an examination of
Xpaint’s source code. The same conclusion can
be applied to the Solarize and Normalize Contrast
functions.

The Spray function results led us to believe
that this function dives deeply into subroutines.
An analysis of the Xpaint source code confirmed
our hypothesis.

The test program results are exactly what we
expected. However, this program was specifically
written to test GDBTrace’s functionality and
therefore contains up to 15 levels of depth.
However, all levels do not contain the same
number of statements to execute, which explains
the difference between the version with 1134 lines
and the one with 41 453 lines.

Strategy 2: Generate a true routine-call trace,
setting breakpoints for each routine. This can be
accomplished by first gathering a trace of the
routines called (using -r). This can be put in a file,
and then run through a simple Unix script call
‘gtlistroutines’ that we would provide to extract

Submitted to Cascon 2001 – 9

the unique routines and turn them into -b
commands. The file can then be imported using
the -i option; additionally -n 1 can be specified to
ensure that tracing occurs only whenever a routine
is entered.

Of course, in order to generate the file of
routines, the software engineer must first run the
trace slowly using -r; however once this is done,
he or she can then speed up subsequent
experiments.

This strategy would only provide a high-level
view of the system. In the case where specific
details are needed, it would be better to use other
commands provided by GDBTrace.

Strategy 3: Same as strategy 2, except using -n
100 and -n 1000 instead of -n 1. This strategy
would generate a larger amount of information
than the previous one, but would also provide
more details as to the working of the system. The
volume of information should not be
overwhelming.

The next set of strategies can be used when the
software engineer begins to understand the
behaviour of the program, and can therefore be
selective about what he or she will execute.

The key to these strategies is to pick a set of
routines to include, exclude or exclusively trace.
The software engineer can explore the trace to
determine this set, but we will also provide a set
of options on gtlistroutines that will help him or
her do so.

Running ‘gtlistroutines -c’ will count the total
number of statements executed while in any
routine in the system (based on a full trace, or a
trace that was truncated using -n).

The output of ‘gtlistroutines -c’ has three
columns: The routine name; the number of
statements executed while in that routine, and the
number of statements executed while in that
routine or (recursively) any routines it calls.

Running ‘gtlistroutines -f’ will take a trace and
give a list of routines sorted in descending order
by fan-in. This list can be used to eliminate
utilities.

The following strategies are other strategies
that could be used by software engineers in order
to avoid severe performance penalties while
running GDBTrace.

Strategy 4: Only tracing the five most CPU-
intensive routines using -B -d1.

Strategy 5: Only tracing the routine that takes
the median number of statements, using -d3. This
is designed to illustrate a typical use of the
system.

Strategy 6: Excluding from the trace the top
five routines using -w.

Strategy 7: Excluding from the trace the set of
utilities using -w.

5. Future work

The following are some of the ideas we have
for improving GDBTrace:

• Creating a GUI that will allow the software
engineer to rapidly repeat traces, specifying
different options.

• Automatically display the results of
gtlistroutines so the user can select some
routines to include or exclude.

• Allowing the user to nest -i commands.

6. Conclusions

In this paper, we have discussed the design of
GDBTrace, a trace generation tool designed as an
Expect script running on top of the GDB
debugger.

The main objective was to obtain a trace
generator that has the level of control found in
debuggers, with the power of a tracer to let the
program run at full speed.

The actual instrumentation provided by GDB
and the expect script take a very large toll on
performance of the program being traced; the
software engineer therefore has to judiciously use
options that limit the amount of information being
gathered. We presented experiments showing the
kinds of slowdowns the user of GDBTrace can
expect when various options are employed.

It can be seen from the experiments that there
are ways to use GDBTrace without suffering a
significant performance penalty.

Source code for GDBTrace can be obtained at
http://www.site.uottawa.ca/~tcl/kbre/GDBTrace.

Acknowledgements

This work is supported by Mitel Corporation
and NSERC and sponsored by the Consortium for
Software Engineering Research (CSER).

The authors would like to thank (in no
particular order) the following people who gave

Submitted to Cascon 2001 – 10

us references or feedback for this paper: Dr.
Robert Laganière, Abdelwahab Hamou-Lhadj,
Abdelouahab Zaghrouti, Huixiang Liu and Sonia
Vohra.

Expect is a public-domain tool written by Don
Libes of NIST.

About the Authors

François Bélanger is a second-year
undergraduate student in Computer Engineering
at the University of Ottawa’s School of
Information Technology and Engineering (SITE).
He can be contacted via email at
fbelange@site.uottawa.ca.

Timothy C. Lethbridge is an associate
professor at SITE. His research interests include
reverse engineering and software visualization.
He can be contacted via email at
tcl@site.uottawa.ca

References

[1] See http://expect.nist.gov for a library of
these scripts.

[2] Ball, T. and Larus, J. “Optimally Profiling
and Tracing Programs”, Proceedings of the
19th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming
languages, 1992, pp. 59-70.

[3] Gilmore, J. and Shebs S. “GDB Internals”,
http://sources.redhat.com/gdb/onlinedocs/gdb
int_3.html#SEC8

[4] Gouranton, V. and Le Metayer D. “Formal
Development of Program Analysers”,
Proceeding of the 8th Israeli Conference on
Computer-Based Systems and Software
Engineering, 1997, pp. 101-110

[5] Lethbridge, T. C. and Laganière R. “Object-
Oriented Software Engineering: Practical
Software Development Using UML and
Java” McGraw-Hill, 2001

[6] Libes, D. “Exploring Expect”, O’Reilly, 1996

[7] Sim, S.E.; Clarke, C.L.A; Holt R.C. and Cox,
A.M. “Browsing and Searching Software
Architectures”, Proceedings of the IEEE

International Conference on Software
Maintenance, 1998, pp. 381-390.

[8] Standish, T.A. “An Essay on Software
Reuse”, IEEE Transactions on Software
Engineering vol. SE-10, no. 5, Sept 1984,
pp.494-497.

[9] Storey, M.-A.; Wong, K. and Müller, H.A.
“How Do Program Understanding Tools
Affect How Programmers Understand
Programs?”, Proceedings of the 4th Working
Conference on Reverse Engineering, 1997,
pp. 12-23.

[10] Systä, T. “Understanding the Behavior of
Java Programs”, Proceedings of the 7th
Working Conference on Reverse
Engineering, 2000, pp. 214-223.

[11] Tilley, S.R.; Smith, D.B. “Coming
Attractions in Program Understanding”,
Carnegie Mellon University, 1996

[12] Walker, R.J.; Murphy, G.C.; Steinbok, J. and
Robillard, M.P. “Efficient Mapping of
Software System Traces to Architectural
Views”, Proceedings of CASCON 2000, pp.
31-40.

