
File Clustering Using Naming Conventions for Legacy Systems
�

Nicolas Anquetil and Timothy Lethbridge

School of Information Technology and Engineering (SITE)
150 Louis Pasteur, University of Ottawa

Canada
fanquetil,tclg@csi.uottawa.ca

Abstract

Decomposing complex software

systems into conceptually indepen-

dent subsystems represents a signi�-

cant software engineering activity that

receives considerable research atten-

tion. Most of the research in this do-

main deals with the source code; try-

ing to cluster together �les which are

conceptually related. In this paper we

propose using a more informal source

of information: �le names.

We present an experiment which

shows that �le naming convention is

the best �le clustering criteria for the

software system we are studying.

Based on the experiment results,

we also sketch a method to build a con-

ceptual browser on a software system.

Introduction

Maintaining legacy software systems is a prob-
lem which many companies face. To help soft-
ware engineers in this task, researchers are try-
ing to provide tools to help extract the design
structure of the software system using whatever
source of information is available. Clustering
�les into subsystems is considered an impor-
tant part of this activity. It allows the software
engineers to concentrate on the part of the sys-
tem they are interested in, it provides a high
level view of the system, it allows to relate the
code to application domain concepts.

Our research is part of a project that aims
to develop tools to help software engineers more
e�ectively maintain software. An important re-
quirement of this project is that we try to work
in close relationship with the people actually
maintaining software in order to uncover ideas
that will be readily applicable in the industry.

Much of the research in the �le clustering
domain deals with the source code; trying to
extract design concepts from it. However, we
studied a legacy software system, and noticed
that software engineers were organizing �les ac-
cording to some �le naming convention. In this
paper we propose to use this more informal
source of information to extract subsystems.

To set the context of this research, we will
�rst give an overview of the project we are en-
gaged in.

In a second stage, we will review some clus-
tering criterion we have identi�ed in the liter-
ature. We will compare them to the one we
chose: �le naming convention.

Part of the comparison is based on experi-
ments we conducted with our particular legacy
system. We will present the experiments and
discuss their results.

Finally we will sketch a method to build a
conceptual browser that uses �le naming con-
vention as a �le clustering criterion.

�This work is supported by NSERC and Mitel Corporation and sponsored by the Consortium for Software Engi-

neering Research (CSER). The IBM contact for CSER is Patrick Finnigan.

1



1 The project

\Does the method scale up?" is a recurring
question about software reverse-engineering re-
search. This is also true in the �le clustering
domain. A key aspect of our project is to deal
with an actual software system in a real world
company, to ensure that scaling up is not a
problem.

Our goal is to help software engineers to
maintain a legacy telecommunication system.
As is the rule in this �eld, we face many di�-
culties:

� It is a very large system (' 3500 �les, 1.5
million lines of code).

� It is an old system (over 15 years old).

� The code has undergone many modi�ca-
tions and still evolves.

� The software is a main revenue source for
the company and therefore is of the ut-
most importance.

� Nobody has a global understanding of the
system (mainly because of its size).

� The software engineers are very busy and
cannot be distracted from their mainte-
nance task for extended periods of time.

A project goal is to design an environment
that will help software engineers to browse the
code, �nd closely related �les or understand
speci�c parts of the system.

The experiment reported in this paper is
mainly concerned with �le clustering, an activ-
ity which consists of breaking a large set of �les
(the entire software system) down into coher-
ent subsets. These subsets are called subsys-
tems. Identifying subsystems is an important
part of the software design process. In reverse-
engineering, being able to identify subsystems
is a necessary step towards design recovery.

File clustering is a popular research domain;
however the conditions associated with this
project create a set of particular constraints:

� Because the system is large, we cannot
engage in lengthy analyses of source code.

� Because the software engineers are busy
people, we cannot a�ord to disturb them
too often.

� Because we are dealing with a real world
system, we must cope with the usual di�-
culties associated to real world problems
(e.g. size, noise in the data).

On the other hand, because we aim at build-
ing a browser, the precision of the generated
subsystems is not as critical as for other do-
mains like re-engineering where a key require-
ment is precise preservation of semantics.

2 Criteria for �le clustering

When dealing with legacy system, one usually
makes strong assumptions about the existing
constraints:

� external documentation is nonexistent,

� comments are obsolete and misguiding,

� software design information is not avail-
able.

Given this, there are two possible ap-
proaches to subsystem discovery (see for exam-
ple [?]):

The top-down approach consists of analyz-
ing the domain to discover its concepts
and then trying to match part of the code
with these concepts.

The bottom-up approach consists of ana-
lyzing the code and trying to cluster the
parts that pertain to the same concepts.

It is generally admitted that a successful so-
lution should use both approaches. However
the top-down one is very di�cult. It is costly
because it implies \extracting" domain knowl-
edge from experts during long interviews. It is
also domain speci�c which limits the potential
for reuse.

We propose a bottom-up approach that
could help in building a model of the appli-
cation domain (usual outcome of the top-down
approach).

Considering the constraints listed above,
the natural way to perform the bottom-up ap-
proach is to look at the very material software
engineers deal with every day: the source code.

2



However, we propose to use another source
of information: �le names. We shall explain
why we made this choice and discuss its poten-
tial advantages and drawbacks.

We will also compare it to other �le cluster-
ing criteria, including source code.

2.1 Relevance of the �le name cri-

terion

One of the primary goals of our project is to
bridge the gap between academic research and
industrial needs. As such, before trying to ex-
tract subsystems, we wanted to get a better
idea what the software engineers considered a
subsystem. We asked them to give us examples
of subsystems they were familiar with. Four
software engineers provided us with 10 subsys-
tems covering 140 �les. The experience of the
software engineers with the system ranges from
a few months to several years.

Studying each subsystem, it was obvious
that their members displayed a strong simi-
larity among their names. For each subsys-
tem, concept names or concept abbreviations
like \q2000" (the name of a particular subsys-
tem), \list" (in a list manager subsystem) or
\cp" (for \call processing") could be found in
all the �le names.

We were led to conclude that the company
is using some kind of �le naming convention to
mark the subsystems.

This conclusion goes against the common
assumption that source code is the only rel-
evant source of information. Because several
software engineers contributed to this small
sampling, it seems very likely that this prop-
erty applies to the whole system.

We thus decided to experiment with �le
names as our �le clustering criterion.

One can make several objections to this
choice:

1. If �le names are actually marking subsys-
tems in the software we are studying, is
there any chance to generalize the results
to other systems?

2. If the subsystems are marked using �le
names, they must be well known. There-
fore, why should we need a tool to extract
them?

3. If a �le name is representative of its orig-
inal subsystem (when it was created),
does this necessarily mean its contents
still logically belongs in that subsystem
after extensive maintenance has been ap-
plied?

First, we do not think that the system we
are working on is such an exception. In a recent
paper, Tzerpos [?] also noted that \it is very
common for large software products to follow
such a naming convention (e.g. the �rst two
letters of a �le name might identify the subsys-
tem to which this �le should belong)".

Merlo et al. [?] also noticed that routine
names could be related to application domain
concepts. This work will be mentioned in the
next section.

It seems unlikely that companies can suc-
cessfully maintain huge software systems for
years with constantly renewed maintenance
teams without relying on some kind of struc-
turing technique. We do not pretend �le nam-
ing convention is the sole possibility, but it is
one of them. Hierarchical directories is another
commonly used one (e.g. in the Linux project
[?]).

To the second objection, we may answer
that one of the reasons the company is sponsor-
ing our research is that nobody in the company
has a complete understanding of the system.
However, not being aware of all the existing
subsystems, software engineers are still able to
generate �le names that respect some informal
naming convention. For this, they only need
local understanding of the system structure. A
�le name is derived from already existing �les
that are close to the new one. For example,
when a �le \activmon" was split in two, the
second part (new �le) was named \activmonr".
Other similar examples may be found.

Finally maintenance can cause a �le to drift
away from its original purpose. But this can
only be a very slow process and it will mainly
be perceptible with regard to �ne details. The
high level abstract view of the �le should re-
main relevant.

Because �le names are short (� 9 charac-
ters in our case), they may express very little
information. If this information describes the
purpose of the �le, it may only do it at a very

3



high level of abstraction. Therefore �le names
may express only very generic concepts, which
barely change over the time.

Using �le names as �le clustering criterion
also brings an advantage that source code does
not have: The clusters they allow one to create
are readily understandable by the software en-
gineers, one can name clusters after those sub-
strings of �le names that cluster members have
in common: \q2000", \2ks" or \mnms" refer
to application domain concepts that they can
understand.

2.2 Other �le clustering criteria

In last International Workshop on Program
Comprehension [?] only one paper on program
comprehension (out of nine papers) was based
on other source than code analysis: it used
the comments. The paper was concerned with
building an application domain knowledge base
[?].

The reason for this predominance of source
code over other sources of information is that
one usually assumes that it is the only reli-
able one. Documentation, either internal (com-
ments) or external is usually considered out-of
date or lacking.

But source code provides information of low
abstraction level. This makes it mandatory to
involve a human expert in the process; for ex-
ample to �lter the candidate clusters or to as-
sociate these clusters with domain concepts.

Very few researchers have considered or pro-
posed using other sources of information:

� Merlo [?] states that \Many sources of
information may need to be used during
the [design] recovery process". He used
comments and the mnemonics of identi-
�ers names to extract application domain
concepts.

� Tzerpos [?] identi�es �le naming conven-
tion as a possible criterion for �le clus-
tering. However he does not propose any
solution to do so.

� Sayyad-Shirabad [?] uses comments to
extract application domain concepts to
build a knowledge base.

To our knowledge, documentation (other
than comments) has never been used, but it
could be considered as well.

The advantages of these informal sources of
information over source code would be:

� They refer to application domain con-
cepts in a more direct way because they
contain words or abbreviations that are
readily understandable by domain ex-
perts.

� They are of a higher abstraction level.

Before experimenting with the above men-
tioned criteria, we will briey discuss their rel-
ative strengths and weaknesses as compared
with �le names:

Identi�er names (used by Merlo [?]) are use-
ful to extract application domain con-
cepts, but our experiments show poor re-
sults for �le clustering.

It must be noted that identi�er names are
more easy to deal with than �le names be-
cause they may be longer and also allow
the use of \words markers" (\ " or cap-
ital letters). We shall come back to this
problem in section x4.1.

Hierarchical directories are also easier to
deal with because concepts correspond
to individual levels in the hierarchy. A
limitation is that directories form a tree,
whereas �le names may refer to several
independent concepts, possibly forming a
general graph of concepts.

Comments (used by Merlo [?] and Sayyad-
Shirabad [?]) may pertain to di�erent
parts of the code. A �rst di�culty con-
sists in identifying comments pertaining
to a whole �le, or to a particular rou-
tine, type de�nition, etc. Comments
also have the same problem as any free
style (in natural language) documents:
nouns have synonyms, verbs are conju-
gated, etc.

4



3 Experiment with �le clus-

tering criteria

To provide a more objective comparison of the
�le clustering criteria, we measured their ef-
�ciency in retrieving the example subsystems
already mentioned.

Before proposing an experiment design to
compare the criteria, we will explain how we
have been using the �le name criterion.

Finally we will present and discuss the ex-
periments' results.

3.1 Using the �le name criterion

Tzerpos [?] suggested using �le names as a clus-
tering criterion, however he did not implement
the idea. Merlo [?] did experiment with identi-
�ers names, but we already explained that they
are much easier to deal with because they con-
tain \word markers". These markers are rarer
in �le names: in our system, only 19 �les out
of 3500 contained the \ " character and none
contain upper case letters. Because nothing in-
dicates that \listaud" should be decomposed in
\list" and \aud" (for audit)|, we need a way
to guess it or to work around the problem.

We call the part of a �le name that refers to
a concept (\list" or \aud") abbreviations, even
though some of them are full words.

Tzerpos proposes to use a simple pattern
matcher, but this implies we know what abbre-
viations to look for. This is not our case. In-
stead, we propose to work around the problem
by relying on statistical techniques.

Our method consists in decomposing the �le
names into all the substrings of a given length
they contain. These strings are called n-grams
[?]; for a length of 3, one speaks of 3-grams. For
example the �le name \qlistmgr" contains the
following 3-grams: \qli", \lis", \ist", \stm",
\tmg" and \mgr".

N-grams are all the substrings of a given
length that can be extracted from a name. Ab-
breviations are part of the names that relate
to a speci�c concept. The length of abbrevia-
tions is not �xed, although with our method,
we cannot extract abbreviations shorter than
the n-grams we are working with (see below).

Two �le names sharing some abbreviations
(e.g. \qlistmgr" and \listaud") will have one

or more n-grams in common (here \lis" and
\ist"). The more n-grams two �le names have
in common, the closer they are.

The length of the n-grams must be chose
carefully. Excessive length will forbid short
abbreviations from coming out and excessive
brevity will mean the n-grams will not be sig-
ni�cant enough.

For example for a length of 5 characters
(too long), abbreviations up to 4 characters
will produce no results: \qlistmgr" has the 5-
grams: \qlist", \listm", \istmg", \stmgr" and
\listaud" has: \lista", \istau", \staud". The
two �les no longer have any n-gram in com-
mon.

With 2-grams (too short) \tm" will be com-
mon to the names \listmgr" and \initmem"
which is only fortuitous.

The right length would be the same as that
of the most common abbreviations. In our case,
abbreviations are mainly of 2, 3 and 4 charac-
ters. There appears to be a signi�cant num-
ber of 2-characters abbreviations, although we
have no precise statistics on this. Nevertheless,
decomposing the �le names into 3-grams gave
good results (see section x3.3).

From discussions with the software engi-
neers it also appeared that the position of an
abbreviation in the �le name have some signi�-
cance. To try to cope with this issue, we added
two virtual letters, at the beginning (\̂ ") and
the end (\$") of the names. This proved useful
and improved the results. It also has the inter-
esting outcome that some 2-characters abbre-
viations are taken into account if they appear
at the beginning or the end of �le names. For
example, the abbreviation \cp" often appears
at the beginning of �le names, therefore, the
3-gram \̂ cp" is shared by all these names.

3.2 Experiments design

We will now describe the experiment we de-
signed to compare all the �le clustering crite-
ria.

The �rst step was to try to de�ne what
the software engineers considered a subsystem.
Four software engineers proposed 10 subsys-
tems containing 140 �les. The subsystems are
small, their size varied from 5 �les to 40 �les.

5



The experiment consists of trying to gener-
ate some subsystems and compare them with
the examples we were provided with. We will
prefer the criterion that allows us to extract
subsystem closest to the examples.

For each of the 140 �les:

1. Use the selected �le as the \seed".

2. Find all other �les close enough to the
seed (according to the tested criterion) to
belong to the same subsystem.

3. Compare this set of �les with the actual
subsystem.

This algorithm is similar to what is done
in Information Retrieval [?, ?]: given a base of
\documents" (the system's �les), �nd all the
documents (a subset of the �les) relevant to a
query (the seed �le).

Although it was for a di�erent purpose, we
should note that Information Retrieval tech-
niques have already been used in software en-
gineering by Patel [?]. His purpose was not to
compare criteria but to de�ne a module cohe-
sion measure.

One measures the e�ciency of Information
Retrieval techniques by comparing the results
they give to known queries with known results.
The e�ciency is measured using two metrics:
precision and recall.

Recall is the percentage of relevant �les
(subsystem's actual �les) that the system did
extract.

recall =
retrieved members

actual members
� 100

Precision is the percentage of relevant �les
among the ones retrieved by the system.

precision =
retrieved members

total retrieved
� 100

A recall of 100% is easily achieved by re-
trieving all �les (thus all the subsystem's actual
�les will be extracted), but the precision will be
very poor. Conversely, by extracting only the
\seed", the precision rate will be 100% (the �le
belongs to its own subsystem), but the recall
will be correspondingly low. One must look for
the right balance between high precision and
high recall. Presumably, we should favor re-
call because it is more important to present the

software engineers all the potentially useful �les
(even if there is some noise) rather than pre-
senting only those we are sure are useful �les
but missing some of them.

We used Smart [?], an Information Re-
trieval tool designed for such experiments. The
tool ranks �les according to their similarity to
the seed. Doing so, it does not actually de�ne
subsystems, for one seed it would potentially
extract all the �les, only a lot of them would
have a null similarity. One way to actually de-
�ne a subsystem, is to decide on a threshold.
Only �les ranked higher than the threshold will
be in the subsystem.

However, we did not want to use an arbi-
trary algorithm to set the boundaries of each
subsystem because it could introduce noise into
the measures.

We grouped all �les with the same name
but di�erent extensions (e.g. \.pas", \.if" in
our case, \.c" \.h" for C �les) into one virtual
�le. For some criteria, this was mandatory, for
example for the \included �les" criterion (see
below), only header �les (\.h" in C) contain
the information. This also has the advantage
of reducing the number of �les (from 3500 to
1800).

The criteria we tested are the following:

File names: Each �le name is indexed with
the n-gram it contains as explained in sec-
tion x3.1. We experimented with n-grams
of length 2, 3, 4 and 5.

Routine names: As a mean of comparison
with Merlo's work [?], we decomposed the
names of routines declared in each �le ac-
cording to the word markers they contain
(\ " and capital letters). We clustered
together the �les containing the same ab-
breviations thus obtained.

Included �les: This is our \source code" cri-
terion. In [?], Patel proposes to cluster
together routines that refer to the same
types. We tried to do the same thing on
the �le level.

All comments: Files are compared according
to their comments. The smart system of-
fers mechanisms to deal with free style
text. It may discard the common words

6



(adverbs, articles), and try to put other
words in a canonical form (for example
by suppressing \s" and \ing" at the end
of words).

\Summary" comment: Many �les (' 70%
of all �les and ' 84% of the known sub-
systems' �les) have a summary comment
at the beginning of the �le that describes
the main purpose of the �le as opposed
to that of routines.

References in documentation: We ex-
tracted all the �le names referred to in
the documentation. Each �le is indexed
with all the documents that refer to it.

3.3 Results

Figure 1 presents the results for all criteria ex-
perimented with. For each criterion, the curve
gives di�erent recall rates and the correspond-
ing precision rates.

As we want to promote recall over precision
(see x3.2), a good indicator of a criterion's ef-
�ciency would be the precision rate for 100%
recall (right hand side of the graph).

The �le name criterion with 3-grams ends
up with a precision of 73.1%. It means that
given a subsystem of 10 �les, on average, these
10 �les are ranked among the 14 most similar
to any of them. We consider this result satis-
factory enough.

The \Included �les" criterion ends up with
15.4% precision. This means that on average,
the 10 �les would be ranked among the 65 most
similar to any of them. This is not acceptable,
although one could consider that looking at 65
�les out of 3500 is not so bad a result.

It is no surprise that the �le name crite-
rion is the best one. We already noticed that
the subsystems showed some similarity between
their �le names.

Among the di�erent n-gram for the �le
name criterion, length 3 is the best one as al-
ready mentioned (�nal precision = 73.1%).

Length 4 also gives good results (�nal pre-
cision = 69.3%) although we know there are
many 3 and 2-characters abbreviations in the
�le names. This may be a particularity of our
sample which contains only two small subsys-
tems with 2-characters abbreviations, and one

small subsystem with 3-characters abbrevia-
tions. Thus more than 78% of the �les exper-
imented with have abbreviations of 4 or more
characters.

As expected, 5-grams give very poor results
(�nal precision = 3%).

Results for 2-grams came as a surprise (�-
nal precision = 64.5%) Although our subsys-
tem sampling tends to favor long abbreviations,
the results are quite good (on average, 10 �les
would be ranked in the 16 most similar to any
of them). This would suggest that noise intro-
duced by the inevitable fortuitous similarities
when using so short n-grams is not that impor-
tant.

The other criteria are by far worst than �le
name. One should take some precautions in in-
terpreting these results, there may be several
valid structures for the system. Our sample fa-
vors the �le name criterion (because software
engineers do so), this does not mean it is the
only valid one.

The source code criterion (indexing on in-
cluded �les) is the least bad of the alternatives
(�nal precision = 15.4%).

Documentation is the next one (�nal pre-
cision = 6.6%). This could be blamed on the
general nature of the documentation used. An-
other experiment should be made with only
those documents concerned with the design
structure.

Abbreviations found in routine names have
a �nal precision of 5.5%. Maybe this is to blame
on the di�erence of abstraction level between
the �les we clustered and the routines these ab-
breviations describe.

Finally, results for the comments are sim-
ilar, whether we considered them all or only
the �le \summary comment" (respective �nal
precisions 3% and 2.6%).

4 A \conceptual" browser

The method we used to compare �le cluster-
ing criteria did not actually extract subsys-
tems. Rather for each seed �le it was given,
it proposed a (potentially very long) list of �les
ranked by similarity with the seed.

But our goal was to built a browser based
on the subsystems extracted. This section

7



0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

pr
ec

is
io

n 
(%

)

recall (%)
100

 File name-3
 File name-4

 File name-2

 Included files

 Refs. in docum
 Routines’ name
 File name-5
 Comments
 Summary

Figure 1: Recall and precision rates for various �le clustering criteria

presents an early work in this direction. This
work is by no means completed, and some ques-
tions remain open. However, the early results
are encouraging.

A straightforward solution would have been
to cluster together all �les sharing some com-
mon n-gram(s). Each cluster would have de�ne
a subsystem named with the abbreviation com-
mon to all of its member �les. The subsystem
and the name can be considered to form a con-
cept.

However experience shows this method
gives many meaningless \concepts" because
there are many fortuitous n-grams appearing in
di�erent �le names. For example all the names
containing \diag" (diagnosis) and \dial" share
the 3-gram \dia" which means nothing for the
software engineers.

Other candidate abbreviations can be mis-
leading, for example, \clock" and \block" are
two abbreviations found in �le names, but their
intersection, \lock" is not a concept referred
to. This example is more dangerous than the
�rst one because the candidate abbreviation is
a word and therefore seems to be valid.

The �rst step in building the conceptual
browser will be to �lter the substrings.

The second step is to assign to each �le all
the concepts its name contains. This may be a
di�cult task; for example assuming \lock" was
a valid concept, we would not want to assign it
to a �le containing the \clock" concept.

4.1 Abbreviation �ltering

The �rst step to get a list of candidate abbre-
viations is to extract all the n-grams common
to several �le names. We will then try to �lter
out those candidate abbreviations which do not
correspond to concepts.

There are several algorithms that could
cluster the �les names and exhibit the candi-
date abbreviations they have in common. We
chose an algorithm from Godin (see for example
[?, ?]) to built a Galois lattice. This algorithm
clusters together all the �le names which share
some n-grams. This structure has the property
that all possible clusters are extracted. This
would not be the case for most of the cluster-
ing algorithms. Because they build trees, they

8



have to select only part of the possible clusters
and discard the others ([?, ?]).

Using the Galois lattice, we are able to ex-
tract all groups of names possessing some sim-
ilar n-gram. A �rst �ltering process discard
those clusters that do not represent a single ab-
breviation:

� All the n-grams may not be connected,
for example: \memmonstr" and \mon-
pastra" form a cluster with the 3-grams:
\mon" and \str" but do not share a single
abbreviation.

� All the n-grams may be connected dif-
ferently in the �le names, for example
\gwaititem" and \partition" form a clus-
ter with the 3-grams: \iti" and \tit" but
it is \itit" in one �le and \titi" in the
other.

A second �ltering process will try to discard
those candidate abbreviations which are not ac-
tual concepts. Our solution is to look for each
candidate abbreviation in a \dictionnary", the
problem being to �nd a dictionary containing
the application domain concepts and the par-
ticular mnemonics used in the company.

For this, we propose to use the comments.
For each cluster, we look for the associated can-
didate abbreviation in the comments. We only
keep those abbreviations that we found in the
comments. To avoid going through megabytes
of comments for each candidate abbreviation,
we only search the comments in the members
of the given cluster.

This allows us to solve such problems as the
two presented earlier. No �le containing the
\dia" substring in its name had it in its com-
ments, whereas \dial" and \diag" where found,
same thing for \lock" and \block" or \clock".

Numerous other abbreviations speci�c to
the company are found in the comments such
as \q2000", \cp", etc. Unfortunately, others,
like \svr" for \server", \mgr" for \manager"
etc. do not appear in the comments, instead,
the full word is used. We tried to look for them
among the abbreviations used in identi�ers, but
the results are not satisfactory.

From 1808 �le names, the Galois lattice ex-
tracted 3410 clusters. Among them, 667 were
discarded during the �rst �ltering process (no

single abbreviations in a cluster), leaving 2743
candidate abbreviations.

The second �ltering process (searching for
the candidate abbreviations in a \dictionnary")
found 501 in the comments and 327 in the iden-
ti�er names, 279 being found in both. Which
leaves us with 549 recognized abbreviations.

4.2 File name decomposition

The reason for extracting abbreviations was to
understand the �le names: \actmnutsg" means
\act" (for activity), \mn" (for monitor), \ut"
(for utilities) and \sg" (a product name).

We call the splitting of a �le name in all the
abbreviations it contains a split.

File names rarely contain word markers
therefore, we have to guess how a name like
\actmnutsg" must be split. The task is ren-
dered more di�cult by the following facts:

� one concept may be abbreviated in di�er-
ent ways: \activity", \activ" and \act" or
\mon" and \mn" for monitor.

� a short abbreviation (e.g. \lock") may
appear inside another longer one (e.g.
\clock") or between two abbreviations.

The ideal solution would be to have an ex-
tensive dictionary of all abbreviations. Given
this, we believe it would be possible to �nd a
unique correct decomposition for the great ma-
jority of �le names.

However, building such a dictionary would
be a di�cult task, comparable to building an
application domain knowledge base. Maintain-
ing this dictionary would be a hard task as well.
We chose a more lightweight solution where the
work is done automatically, and we accept the
possibility of errors. These errors or of two
kinds:

� we split the �le name using a wrong ab-
breviation, for example in \actmnutsg",
we could detect \mnu", abbreviation
which means \menu" whereas it's in fact
\mn" and \ut"

� we miss an abbreviation, like \mn" in the
above example.

9



The �rst problem does not seem critical be-
cause while browsing the system the software
engineers will be able to correct these errors
easily. If the system present them with 10 �les
(out of 1800), it's an easy task for them to de-
tect the few wrong ones.

The second problem seems more serious be-
cause it could cause the software engineers to
miss a �le (possibly precisely the one with a bug
in it). To solve this we decided to propose more
than one possible split of a �le name, therefore
increasing a bit the �rst problem, but we saw
it is not critical.

Our algorithm for splitting the �le names
consists of generating all possible splits with
the abbreviations. All remaining characters
(not belonging to any abbreviation) are left
alone (free characters). For example, assum-
ing we recognize \act", \mnu" and/or \ut", the
possible splits for \actmnutsg" will be:

� \act", \mnu", \t", \s" and \g"

� \act", \m", \n", \ut", \s" and \g"

We then rate the splits according to some
function. Hopefully, the best rating corre-
sponds to the correct split.

We �rst tried to generate splits only consid-
ering the recognized abbreviations (both from
the comments and the identi�ers names). But
too few recognized abbreviations are available
and the results did not satis�ed us.

We opted for another solution which con-
sists of generating the splits with all the candi-
date abbreviations (recognized or not), aware
that a lot of them are erroneous. The splits
with more recognized abbreviations (from com-
ments or routine names) get a higher rating.

The rating function includes several crite-
ria:

� Number of abbreviation in the split, the
less, the better. The rationale behind this
is to discard those splits with a lot of free
characters.

� Proportion of recognized abbreviations in
a split, the higher, the better.

� Source for recognized abbreviation. This
is intended as an improvement upon the
last criterion. One can put di�erent

weights on comments and routine names.
In our case, we were also recognizing
abbreviations which were �le names by
themselves. But we gave a smaller weight
to this source because we did not want to
accept splits consisting of only 1 abbrevi-
ation (the �le name itself). A tendency
that is already enforced by the �rst crite-
rion.

To try to give the reader an objective idea
of the results, we present, in table 1, splits for
the �rst 10 �les in alphabetical order . The ta-
ble gives the two best rated splits for each �le
along with the correct one.

Usually when there is a recognized abbrevi-
ation, it appears in one of the two best rated
split (generally in the �rst one). Errors arise
because we do not have enough recognized ab-
breviations, which is due to the following prob-
lems:

� Because we used 3-grams, all 2 characters
long abbreviations are not extracted and
therefore cannot be subsequently recog-
nized.

� A lot of correct abbreviations are still not
recognized.

The solution to the �rst problem is to use
2-grams instead of 3-grams. This should work
as we saw in section x3.3 that 2-grams give rel-
atively good results.

A solution to the second problem could be
to add a new �ltering of the candidate abbrevi-
ations after the splitting. In table 1, we see that
\activmon" is splitted correctly even though
\activ" is not a recognized abbreviations. Af-
ter the split, we could add \activ" as a new
recognized abbreviation, and do the split again.
Thus, by iterating over splitting and �ltering,
we may be able to improve our results.

Conclusion and future work

Discovering subsystems in a legacy software
system is an important research issue. Most
of the research tries to do so by analysing the
source code because it is considered the only
relevant source of information on the actual
state of the software.

10



�le name best split 2nd best split correct split
abrvdial ab rv dial ab rv di al abrv dial (abbreviated-dialing)
accessdta access dta acc es sd ta access dta (accesses-resource-data)
accessfwd access fwd acc ess fwd access fwd (access-call-forwarding-data)
accntcode acc nt code ac cnt code accnt code (account-code)
activity activ ity activ it y activity (activity-control)
activmon activ mon activ m on activ mon (activity-monitor)
activmonr act i vmo nr activ mon r activ mon r (activity-monitor-redundant-system)
actmnuts act mnu ts ac t mnu ts act mn ut s (activity-monitor-utilities-s)
actmnutsg actm nut sg act mnu tsg act mn ut sg (activity-monitor-utilities-sg)
actmonsrv act mon srv act monsrv act mon srv (activity{monitor-server)

Table 1: Splits for the 10 �rst �le names. Upper case abbreviations are the recognized ones. Note:
\sg" and \s" are two product names.

One of the requirements of our project is to
try to work in close relationship with the peo-
ple that are actually maintaining legacy soft-
ware. By studying them, we hope to discover
new ideas that will be readily applicable in the
industry.

Thus, while studying a telecommunication
legacy software, and the software engineers
who maintain it, we discovered their de�nition
of subsystems was mainly based on the �les'
names. This goes against the commonly ac-
cepted idea that source code is the sole reliable
source of information when doing �le cluster-
ing.

We experimented some �le clustering crite-
ria and proved that the �le name criterion was
the most likely to rediscover what the software
engineers called a subsystem.

Although this result could be a particular-
ity of the software we are studying, we gave
some reasons to believe that it could be more
widely applicable.

Based on these results, we proposed a
method to build a conceptual browser on the
software system. The browser is based on split-
ting �le names retrieved as members of subsys-
tems into their logical components. This part
of the research is still in an early stage and we
proposed several possible improvements.

Thanks

The authors would like to thank the software
engineers at Mitel who participated in this
research by providing us with data to study
and by discussing ideas with us. We are also
indebted to Janice Singer an Jelber Sayyad-
Shirabad for fruitful discussions we had with
them.

About the authors

Nicolas Anquetil recently completed is Ph.D. at
the Universit�e de Montr�eal and is now working
as a research associate and part time professor
at the university of Ottawa.

Timothy C. Lethbridge is an Assistant Pro-
fessor in the newly-formed School of Informa-
tion Technology and Engineering (SITE) at the
University of Ottawa. He leads the Knowledge-
Based Reverse Engineering group, which is one
of the projects sponsored by the Consortium
for Software Engineering Research.

The authors can me reached by
email at anquetil@csi.uottawa.ca and
tcl@site.uottawa.ca. The URL for the
project is http://www.site.uottawa.ca/ tcl/kbre.

11


