
University of Ottawa, Computer Science Technical Report TR-97-08

1

Work Practices as an Alternative Method to Assist
Tool Design in Software Engineering

Janice Singer
Institute for Information

Technology
National Research Council
Ottawa, K1A 0R6, Canada

+1 613 991 6346
singer@iit.nrc.ca

Timothy C. Lethbridge
School of Information

Technology and Engineering
University of Ottawa

Ottawa, K1N 6N5, Canada
+1 613 562-5800 x6685

tcl@site.uottawa.ca

Norman Vinson
Institute for Information

Technology
National Research Council
Ottawa, K1A 0R6, Canada

+1 613 993 2565
vinson@iit.nrc.ca

ABSTRACT
This paper reports our experiences studying the work
practices of professional software engineers(SEs) with the
goal of designing tools that enhance, rather than displace or
replace, these work practices. The rationale being that the
tools we build will actually be used because they have been
created to mesh with existing behaviour. We provide our
reasons for following this approach, and describe some
details of our approach such as the discovery of work
patterns, and the use of synchronized shadowing. We
outline several studies we are currently conducting in a
large telecommunications company and talk about how
these studies have influenced the design of a software
engineering exploration environment.

Keywords
Work practices, tool design, software engineering tools,
programming tools, work patterns, shadowing.

INTRODUCTION
Software engineers (SEs) are heavy users of software
themselves, be that software CASE tools, configuration
management systems, exploration environments, etc.
Unfortunately, little effort has been expended in
understanding how SEs work, what is entailed in their day-
to-day activities, and how some of their difficulties might
be alleviated. This in turn has led to a problem in academic
and industrial efforts to help professional SEs: the problem
of shelfware. SEs often lament that the tools produced to
help them donÕt solve the problems they face and hence end
up sitting on the shelf, rather than really being used.

This shelfware problem has led our research group to study
the work practices of professional SEs with the goal of
designing tools that enhance, rather than displace or
replace, these work practices. Our rationale is that the tools
we build will actually be used because they have been
explicitly designed to permit incremental modification of

existing behaviour.

This paper describes our experiences with the work practice
approach to tool design. First we explain why we chose the
work practice approach. Second, we briefly review a series
of studies we undertook to examine the work practices of a
group of SEs at a large telecommunications company. This
sets the stage for the description of a software engineering
exploration tool based on our studies. Finally, we discuss
how work practices in general can influence tool design.

LACK OF EXISTING RESEARCH
We began our research by reviewing the existing literature.
With respect to work practices, we found a burgeoning field
of endeavor describing specific methodologies (e.g., [3, 6,
15]), research in diverse areas (e.g., [4, 8, 7, 14]), and the
relationship of these studies to human-computer interaction
and design (e.g. [11, 17]).

With respect to SE work practices though, we found little
that could help us. Eleven years ago at the First Workshop
on Empirical Studies of Programmers, Bill Curtis posed
the question, ÒBy the way, did anyone study any real
programmers?Ó [5] We could add an addendum to this
question, ÒAnd by the way, did anyone study any real
programmers really working on real programs?Ó
Unfortunately, with little exception, the answer to this
question eleven years ago was ÒnoÓ, and remains ÒnoÓ
today.

We are interested in designing tools for individual SEs
working in a maintenance environment. The few papers we
did find dealt with the design of new software systems
(e.g., [16, 19]) or collaboration among developers (e.g., [2,
9]). There were no papers describing the day to day
activities of SEs working on real maintenance problems.

There are clear differences between maintenance and the
design of new systems. Indeed, there are many skills
necessary for success in one that are not necessary for
success in the other. For instance, many software
maintainers we have interviewed describe their work
experiences by making an analogy to detective work, i.e.,
delving into someone elseÕs code to find a problem. In
contrast, weÕve never heard designers of new systems talk
this way about their work. Due to this, research literature

University of Ottawa, Computer Science Technical Report TR-97-08

2

that talks only about design of new systems is, at best,
only marginally relevant to our research.

With regard to collaboration, we are interested in designing
tools to help individual SEs. SEs might use our tool to
collaborate with others, but this is not our primary vision
of its use. A tool for an individual SE cannot be designed
by looking at how groups of SEs work together.

One specific area of research we thought would be helpful
was the Empirical Studies of Programmers literature, but
there are two problems with this research. First, the vast
majority of it has been conducted with graduate and
advanced undergraduates serving as expert programmers
(but c.f., [18]). It is clear that these subjects do not
accurately represent the population of industrial
programmers. Consequently the results of studies involving
students cannot be generalized to SEs in industry.

Second, even when professional SEs have served as
subjects, researchers have used programs that are very small
(both in terms of lines of code and logic) relative to
industrial software. This is done to control as many
variables as possible. However it poses another
generalization problem: Approaches to working on small
programs will not necessarily scale up to very large
programs. For these two reasons, the ESP literature fell
short of our expectations.

This lack of relevant literature motivated our decision to
pursue work practice studies of professional SEs. The
studies are described in more detail in the ÒWork Practice
Studies of Software EngineersÓ section. Below, we present
our reasons for following this approach.

WORK PRACTICES
Advantages of Work Practices
To design software maintenance tools, we could have
employed a top-down approach as follows. First, analyze
the structure of maintenance tasks, then apply that analysis
to general models of cognition to generate a cognitive
model of software maintenance. This model would provide
specific hypotheses that could be tested under controlled
conditions in a lab. However, as noted above, conclusions
based on the results of lab experiments may not generalize
to an industrial setting. Additionally, a tool design does
not immediately follow from a specification of the userÕs
mental model. Several designs can be generated and tested,
requiring the designers to collect usability data. Even so,
this approach does not guarantee that the resulting tool is
useful [4]. Moreover, the top-down approach does not
guarantee that SEs would use the tool. As noted earlier,
getting SEs to use a new tool is quite difficult.

The study of work practices avoids many of the problems
mentioned above. First, the work practice approach
involves collecting field observations; that is, observing the
daily activities of SEs in their work environment. This
avoids the common problem of generalizing to industrial
settings: since we collected our data in the field, our
findings apply directly to SEs working on industrial code.
However, the possibility that our findings do not generalize
to other industrial settings must be noted. Nonetheless, it

is likely that the similarity between two industrial settings
is greater than the similarity between a lab experiment and
an industrial setting.

Second, a tool designed using the study of work practices
is less likely to end up as shelfware. The reason is that
since data gathered in this manner reflects the existing
behaviour of SEs, it enables us to design a tool that will
mesh with that behaviour. Note that this includes
behaviour that is not related to the tool (such as consulting
colleagues, documentation, notes etc.) but forms part of the
work context into which the tool has to fit. Since the tool
fits into the work context and meshes with existing
behaviour it should be easier for SEs to incorporate tool use
into their daily activities.

Third, such a tool is likely to be useful because it is
designed to increase the effectiveness of existing behaviour.
In other words, the SEs will continue to do what they had
done before, except that they will do it more effectively. For
instance, they will still issue search commands, but they
will issue them to a search engine that is better suited to
their work.

Below we talk about the relation of work practices to tool
design. In the section ÒWork Practice Studies of Software
EngineersÓ we discuss our work-practices studies. We then
explain how we designed a tool using participatory design
and work practice studies as sources of information.

Work Practices, Work Patterns, And Tool
Design
We have encountered two main arguments against moving
directly from work practice data to tool design. In this
section we present and deal with these arguments.

The first argument is that the type of data collected in work
practice studies is not helpful in tool design. Instead of
recording actions (e.g. the issuing of a grep command), we
should instead focus on the goals of those actions (e.g.
searching for a variable V in a series of files). Only when
goals are known, the argument posits, can a tool be built to
help SEs meet those goals. Moreover, the argument
continues, one needs to develop a complex cognitive model
of the task in order to understand goals properly.

We agree that it is essential to understand goals. We can
contrast two approaches to extracting user goals and
relating them to user behaviour: the top-down approach,
which is used with cognitive models, and the bottom-up
approach, which we have used. In the top-down approach, a
pre-existing cognitive model of the task is used to
categorize sequences of user behaviour, such as sequences of
user actions or verbal Òthink-aloudÓ protocols,. It is in the
categorization process that user goals are inferred [6].
Examples of this approach can be found in [12] and with
SEs as users in [18].

In contrast, our bottom-up approach is data driven and does
not require a cognitive model of the task. For example,
consider the two following sequence of user actions. First,
the user issues a search command (e.g. grep) over several
files for a particular string S. Second, the user opens one of
the flagged files in an editor, and searches (e.g. with

University of Ottawa, Computer Science Technical Report TR-97-08

3

CNTRL-S) for string S in that file. The search commands,
although syntactically different, are both categorized as
search commands. In addition, the open file command is
recognized as such. Finally, both search strings are encoded
as being the same search item, even though one string may
have been truncated. These categorizations do not require a
model of software maintenance. They simply require a
rudimentary understanding of the SEÕs interface and tools.
As for goals, they can be inferred from the result of user
actions. To continue our example, we can infer that the
goal here was to examine the search string in the context of
the program code. Alternatively, the goal can be expressed
verbally by the user, as his work is observed. (E.g. ÒIÕm
now looking for this string.Ó). These are the types of goals
that interest us with respect to the tool. Determining this
type of user goal does not require a cognitive model.

We use the term work pattern to designate a re-occurring
sequence of user actions meeting a goal, such as the one
illustrated above. We incorporate work patterns into our
tool by having the tool, rather than the user, accomplish
many of the intervening actions. This saves the SE from
issuing several commands. This approach can potentially
be iterated to discover higher-level work patterns, that are
themselves composed of work patterns, thus producing a
hierarchy of work patterns from the bottom up.

Our search for the most significant work patterns also
proceeded without reference to a model. Rather, we simply
analyzed our work practices data to find the most frequent,
time consuming, and important activities. Further studies
focused on these activities to extract work patterns.

To conclude, it is true that some understanding of user
goals is important to tool design, but this can be achieved
in a bottom-up fashion. Thus, in designing our tool, we
avoid the costs of constructing and verifying a complex
cognitive model of software engineering or maintenance.

The other argument we have encountered against work
practice studies is that by designing a tool that incorporates
existing behaviour, we are entrenching the inefficient work
practices of SEs. That is, rather than reinforcing their
behaviour, we should be changing it.

The assumption that work practices of SEs are inefficient is
unwarranted. Other than our data, there is no catalogue of
the work practices of SEs engaged in software maintenance.
Therefore, there is no empirical evaluation of the efficiency
of these work practices. In fact, it is more likely that the
work practices of experienced software maintainers are
efficient and reflect expert performance. This is because
experienced maintainers are the only people who have the
domain knowledge necessary for expert software
maintenance. Indeed, twenty years of research on expert
behaviour has shown that a large body of domain
knowledge is a pre-requisite for expertise [1]. By the same
token, it is extremely unlikely that people with little
experience in software maintenance could design tools that
increased the effectiveness of maintainers without
incorporating the work practices of experienced maintainers
into the design of the tools. We have done this through
participatory design and the study of work practices.

The next section describes our work practice studies. In it,
we give some general information about the workplace,
followed by a description of the various methodologies we
have pursued, with some related results.

WORK PRACTICE STUDIES OF SOFTWARE
ENGINEERS
Workplace Characteristics
We are studying a group that maintains one of the key
products of their company: a large telecommunications
system. The management of the group is fairly informal,
with group members often able to select the problems on
which they work.

Group members work in close proximity and often walk
over to each otherÕs desks with questions. The group also
makes use of a laboratory in which the target hardware is
installed.

The system includes a real-time operating system and
interacts with a large number of different hardware devices.
The system contains several million lines of code with over
16000 routines in over 8000 files. It is also divided into
numerous layers and subsystems written in a proprietary
high-level language.

The system was first fielded in the early 1980s and has
since been continually updated. Its importance to the
company and its evolution are expected to continue for
many years to come.

Approximately 13 people actively work on various aspects
of the system at the current time. Over 100 people have
made changes to the source code during the life of the
system.

The group follows a well-defined process for creating new
system features. They also keep detailed records of problem
reports and the consequent changes to the system. Other
important documents include the ÔpracticesÕ that are
followed by those who install and run the system in the
field.

Careful attention is paid to quality control in the form of
design reviews, informal code inspections, and an
independent test team.

Development work is done on the Sun platform, although
the SEs must spend a considerable amount of time
installing and running the software on various
configurations of the target hardware.

Studies
When we began our strides, we found there was no clear
ÔcatalogingÕ as such of exactly how SEs go about solving
problems. Consequently, we began our study of work
practices by finding out what it is in general that SEs do
when they do their work. Our approach was fourfold; we
conducted a web questionnaire, performed intensive
shadowing of an experienced SE who was a newcomer to
this project, performed various studies of a whole group,
and collected company-wide tool usage statistics. The
methods and results of each of these studies is briefly
presented in the next four subsections (see [13, 10]). After
using the data to understand individual activities we then

University of Ottawa, Computer Science Technical Report TR-97-08

4

analyzed it further to discover work patterns: Our
preliminary analyses of these is in the section entitled
ÒSynchronized Shadowing to Discover Work PatternsÓ and
a discussion of the tool that we developed using this
information follows.

Questionnaire Study
We began our research by administering a web-based
questionnaire. The questionnaire covered many different
aspects of the SEsÕ work. Here we report their answers to
two questions about what they spend their time doing.

In response to the first question, the 6 (of 13) SEs who
responded had to decide how to describe their work. The
question was open ended, meaning they had to identify
activities for themselves, rather than choosing activities
from a list. The activity listed by the most SEs was
reading documentation; many also reported spending time
looking at source code, writing documentation, attending
meetings, and writing source code. Other activities include
consulting, both answering and asking questions, working
with the hardware, testing, designing, and fixing bugs.

In another question, we asked the SEs how they divided
their time: They reported an average of 57% of their time

was spent fixing bugs, and 35% of their time making
enhancements to the system.

Due to the questionable validity of self-reports, we only
used the questionnaire to obtain a rough initial indication
of what the SEsÕ work involved. The next two subsections
of the paper describe studies that allowed us to improve our
knowledge by obtaining direct observations.

Individual study
We have been following one SE longitudinally from the
time he joined the company (November, 1996). For the
first six months, we spent about 1-1/2 hours per week with
B. However, as B has become more expert, we have found
that it makes more sense to meet once every 3 weeks. This
is because new things happen less frequently: B has fewer
experiences with new tools and at the same time is working
on much larger problems that require long periods
performing tasks such as reading documentation or
reproducing the problem. B is an experienced SE (he was
previously a team-leader), thus while he is new to the
company, he is certainly new to neither maintenance nor
telecommunications software.

Our sessions with B consist of 3 distinct components. First
we talk about what has transpired since the last time we
met. This could be anything from code reviews, to learning
about a new tool, to reading documentation, etc. Second,
we ask B to look at a diagram of the system that he
previously constructed and ask him to modify it if it does
not reflect his current understanding of the system. Finally,
we ÔshadowÕ B as he works for half an hour. In this paper,
we report the data from the shadowing.

We categorized the shadowing events into 14 distinct
categories which are described in Table 1. Each of BÕs
events was then classified as belonging to one of these
categories. This data reflects 14 distinct shadowing
sessions with B..

Searching and interacting with the hardware were the most
likely events to occur on a daily basis, each occurring on 8
of the 14 occasions. B studied the source code using simple
editors on 6 of the days. The reason that B searched on
more days than he studied the source code is because
searching was an activity that also occurred when
interacting with the hardware and debugging. B only
looked at documentation on 2 of the 14 days. This is
surprising because, at the time, B was still a relative novice
to the software system and it is commonly assumed that
novices will spend much of their time reading the
documentation to get a handle on what they are doing. The
data show that this was not the strategy B pursued.
However, because B was a novice, it was not supposing to
find that editing code, compiling, and management were
each only done on only 1 of the 14 days.

If instead of daily activities, we look at the overall
frequency of activities (e.g., the count of total number of
activities), we see that B searched more often than he did
anything else (37 times). He also frequently studied the
source code (33 times). While B was likely on any

Activity Description

Call trace Looking at an execution trace of the
program

Consult Either being consulted or consulting
someone else

Compile Linking or compiling a program

Configuration
Mgt

Entering and using the in-house
configuration management system
(sometimes for updating, and sometimes
to search for past updates)

Debug Using either the high-level or low-level
debugger

Documentation Looking at documentation

Edit Changing the source code

Management General software activities, such as
meetings, code reviews, etc.

In-house tools Using one of the in-house tools,
primarily static software analysis tools

Notes Taking notes, or reading past notes

Search Using grep, in-house search tools, or
searching in an editor

Source Studying source code using editors or
code viewers

Hardware Interacting with the hardware, e.g.,
loading software, running software,
configuring the hardware, etc.

UNIX Issuing a general Unix command, e.g. ls

Table 1: Categories of activities performed by the SE we
shadowed.

University of Ottawa, Computer Science Technical Report TR-97-08

5

particular day to work with the hardware, he did so on only
22 distinct occasions.

Thus overall, in terms of both daily activities and frequency
of different activities, search for information about the
system, whether through grep, in-house search tools, or
within a particular editor or debugger, figures most
prominently. A significant amount of effort was also
expended interacting with the hardware and studying the
source code.

Group study
In the last section, we discussed intensive studies of one
individual. To generalize our findings, we have conducted
several studies that focus on various aspects of the work of
an entire group of SEs.

We have collected four types of data from the group. First,
we asked the SEs to draw a diagram or picture of their
current understanding of the system, a conceptual map, if
you will. Second, we conducted intensive interviews with
the SEs. Some of these asked about their work in general,
while others focused on how they solved a real problem
with the software. The latter generally involved several 1-
hour interviews over the course of several days. Finally, we
spent one hour shadowing each SE as they went about their
work. This report focuses on this third type of data; the
shadowing data.

Eight group members participated in the shadowing study.
Their experience ranged from one of the most expert
members of the group (8 years) to the least experienced (6
months, a recent college graduate). All but one of the
shadowed subjects worked on the main controller of the
hardware. One of the subjects worked primarily on the
database component.

The subjects were expert in a wide variety of platforms and
languages, and had experience in both development and
maintenance environments.

Like BÕs data, the shadowed events were categorized into
the 14 distinct categories that are described in Table 1.
Each of the events was then classified as belonging to one
of these event categories. 356 distinct events were recorded.

All 8 SEs looked at the source, conducted a search, and
changed the source code at least once during the hour. Most
of the SEs also engaged at least once in several other
activities, with 5 of the 8 SEs interacting with the
hardware, debugger, or the in-house tools. On the other
hand, only 3 SEs looked at a call trace, while only one SE
performed a management activity.

Of the total of 357 events (counted over the 8 SEs), issuing
a Unix command was the most frequent activity, occurring
54 times. A close second was studying the source which
was done 52 times. Interacting with the hardware or the
debugger, searching, and changing the source code were
done on 36, 32, 31, and 30 occasions respectively.
Configuration management, consulting, compiling, and
working with in-house tools were each done about 20
times.

Surprisingly enough, reading the documentation, although
performed by 6 of the 8 SEs, accounted for only 12 separate
events. Clearly, the act of looking at the documentation is
more salient in the SEsÕ minds (as evidenced by the
questionnaire data) than its actual occurrence would
warrant.

SEs only occasionally wrote notes, looked at the call trace
or did management activities. This is not to say that these
events are not important, but merely that they did not occur
as frequently as other events.

As B did, members of the group frequently examined the
source code. Every SE in the group made at least one
search during their shadowing session, but search was less
prominent than in BÕs activities. Search ranked as the most
frequent event type for B, while it was the 4th most
frequent for the group.

Code editing and compiling were more prominent activities
in the group data than in BÕs data. This is probably
because B was still learning the system at the time we
shadowed him, so he was not yet in a position to make
many changes. This may also explain the higher
prominence of working with the call trace in his data: doing
the latter may be effective in gaining an initial
understanding of a system.

Interestingly, in-house tools and documentation were both
relatively infrequent activities for both the group and B.

The group data converge with BÕs data to suggest that
looking and searching through the source are prominent
activities for SEs. Editing and compiling also seem
important. This concurs with what we would expect in that
their work revolves around the source code.

Company Study
The final study we report concerns company-wide tool
usage statistics. These data were obtained from the
companyÕs tool group. This group is responsible for
acquiring, updating, and maintaining the companyÕs tools.
Collecting usage statistics is part of their mission.

The data presented here represent one week of Sun tool
usage by 367 users in late May 1997. Note that this week
occurred before Ôvacation season,Õ so is fairly representative
of peak tool usage. There were 79,295 separate tool calls
logged from the Sun operating system.

Invocations of compilers occurred 32,422 times (41% of all
events recorded) due to regular automatic load-builds;
therefore we had to exclude this data from our studies.

When we factored compiling out, the overwhelming finding
from the company data is that search is done far more often
than any other activity. In fact, search accounts for 21,146
events over the course of the week, or an average of about
58 searches per individual user. Compression and un-
compression tools are also used often (We never actually
observed anyone using these tools so we assume that they
are also mostly used by automated scripts).

The configuration management system was activated 2819
times, accounting for approximately 4% of all events. At
this company, the configuration management system is

University of Ottawa, Computer Science Technical Report TR-97-08

6

central to the work process, both for retrieving files, filing
changes, and searching through past changes (along with
associated documentation).

Editors and viewers account for approximately 3190 events,
or 4% of the total number of events. This low frequency
could be due to counting particularities that apply only to
editors. In the company tool data, an editor command is
counted only when the editor is opened. Once an editor is
open, it generally stays open, regardless of how many
changes are made, or how many files are viewed. In
contrast, in the shadowing data, an edit was recorded each
individual time the source was changed, and a source event
was counted each time the source was examined, whether
the editor was already open or not. Consequently, it comes
as no surprise that in the shadowing data, edit and source
frequency is higher than it is in the company-wide data.

Again, the in-house tools are not used very frequently, but
that belies their importance. These tools are important
because they perform necessary functions that cannot be
performed by other tools.

Search is the most frequently used tool at the company
wide level. Grep and its variants are the most frequently
used search tools, accounting for 21,117 separate
invocations. Clearly, search is an important aspect of SEs
work practices.

Synchronized Shadowing to Discover Work Patterns
The above studies of SE work practices highlighted two
primary activities: search and navigation. In continuing our
research, we have focused on these areas. In particular, we
are interested in the recurring sequences of actions that SEs
follow to execute search, i.e., search work patterns (this
term is discussed in the section ÒWork Practices, Work
Patterns, And Tool DesignÓ).

To find work patterns, we implemented a methodology we
call synchronized shadowing. Here, two observers shadow
an individual SE at the same time. Each observer records
observations on their own laptop computer. The clocks on
the two computers are synchronized, so that the two data
sets can later be matched. One researcher records the low-
level work practices of the SE, such as Ôexecute grepÕ,
Ôopen an editorÕ, Ôlook at the sourceÕ, etc.1 The other
researcher has the SE Òthink-aloudÓ while working, and
records the SEÕs immediate goals and whether and when
they are achieved. For example, the second researcher
would record that the SE was looking for a variable,
looking for a constant, looking for a routine name, etc. The
high-level goals recorded are only those directly mentioned
by the SE; the very low-level goals are partly interpreted or
inferred from the sequences of actions and from the higher
level goals (see section ÒWork Practices, Work Patterns,
And Tool DesignÓ).

To find the work patterns, then, the two data sets are
merged so that the goals can be matched up with the

1 Unfortunately, this level of observation cannot be done by

automatic logging of keystrokes and mouse movements.

specific actions that were taken to achieve them. Over time
and after studying many more SEs, we expect that certain
goals will always be matched with the same or very similar
actions to form work patterns.

We implemented the synchronized shadowing method
because we found that no other technique would work
effectively. A single researcher could not record both types
of information; videotaping was too time-consuming, and
automated recording missed important data.

Work Patterns of Particular Importance
During the course of our studies we began to notice several
important work patterns. We are still in the process of
extracting these patterns, but our preliminary attention
became focused on patterns common to several SEs and
having mechanical, time-consuming and/or inefficient
elements that could perhaps be automated.

The following are four of the most important such patterns:

1. Searching for some target string using grep,
successively opening each file that had grep ÔhitsÕ,
searching for the same target in the file, and then
studying the code around the hits. In most cases the grep
target was a very simple string and the search involved a
very large number of files; the SE was often forced to wait
for many seconds for the result, and some SEs developed
the habit of starting searches in the background, and then
performing some other task while they waited for the
search to complete.

2. Saving the results of grep searches to act as checklists
for future work (either lists of places to study, or lists of
places where changes are needed), and then working
through the checklists. This pattern was fraught with
errors, however: On several occasions we observed SEs
repeating searches because they could not find previous
results (e.g. they had scrolled too far off the top of the
screen).

3. Suspending an investigation of a checklist item to
perform some other search or study, then resuming work
at a later time. This task switching involved considerable
overhead, and it was hard for the SEs to keep their work
organized.

4. Jumping back and forth between tools, primarily Unix
command line (performing grep) to editor and back. This
jumping involved the use of cut and paste to transfer data
and was frequently awkward.

The next section describes how we have developed a tool
that helps SEs more effectively achieve the goals implicit in
the above patterns.

DEVELOPING A TOOL USING THE RESULTS O F
WORK PRACTICE STUDIES
In this section, we discuss how we have used work-
practices studies to inform the design of a software
engineering tool.

In late 1995 we started our research project whose goal was
to discover techniques whereby SEs could more effectively
maintain large legacy systems. We performed two

University of Ottawa, Computer Science Technical Report TR-97-08

7

approaches in parallel: participatory design and work
practices.

Participatory Design: The First Release
The participatory design approach rapidly yielded the first
version of our tool: We brainstormed a group of SEs for
their needs, and then designed, with their continued
involvement, a tool called SEE (Software Exploration
Environment); its main features were:

a) Hypertext-like abilities to select any word in the code,
and build a list of relevant information that describes that
word (e.g. a variable, a routine or even a word in
comments).

b) Abilities to build, in a hierarchical manner, a list of
items related to the file, routine, identifier etc. on the
screen.

Both of these facilities were ranked high in the
brainstorming sessions. They proved useful to the SEs (as
evidenced by ongoing use) and remain, in improved form,
in the version developed after we incorporated the results of
our work-practice studies.

Work Studies Based Design: The Second
Release
Our work practice studies proceeded in parallel with the
above, and have so far been underway for over a year. These
studies clearly could not inform tool design for the first
release since we had to amass data. We therefore used them
to develop the second release.

We used the work patterns discussed earlier to guide our
tool design, and thus implemented the following features in
the second version of SEE. We call this tksee, and a screen
snapshot is shown as figure 1:

• Persistent hierarchical history2. This
facility automatically records the entire
state of each exploration and presents it to
the user in a compact, but graphical
manner. It allows the user to jump among
states or return to earlier states, and thus
facilitates work patterns 2 and 3.
Information recorded in each state includes
the object the SE was studying (right
pane in figure 1), as well as the
exploration hierarchy Ð i.e. the path that
led the SE to this object (left pane). Each
time the SE starts a new search, a new
history record is created (top pane). These
history records are themselves
hierarchical. Any given level of the
hierarchy represents search tasks that the
user considers to be peers; if the user
selects one of these search records and
performs new search work, then a lower
level in the hierarchy will be started.

• Visual grep. Although the user can
perform useful queries with a combination of hypertext
and relationship-expanding that were available in the
original tool, users persisted in using grep, jumping from
our first release to the command line and back. In order to
help users better perform work patterns 1 and 4, therefore,
we integrated grep into tksee. There are three ways to
access this functionality: 1) Requesting an ÔordinaryÕ grep
whereby the search hits are displayed as a fresh search in
the history hierarchy. 2) Selecting some items in the
bottom left pane and requesting a grep in each of these;
the hits being displayed indented below the places where
they were found in the bottom-left pane. 3) Selecting (in
the bottom-left pane) an item that is the destination of a
relationship, and requesting that the places in that item
that establish the relationship be highlighted as grep hits.
In all three cases, the user can select a grep hit and
immediately see the context of the hit in the right pane.

Conclusions From Tool Development
The second release of the tool has been eagerly adopted by
a variety of SEs. This is an achievement, since it is hard to
encourage these people to adopt new techniques Ð many of
them have not even adopted emacs, and prefer to use more
primitive editors they know better.

We attribute our success to the following: a) we focused on
tasks that they do most frequently (i.e. search); b) we
developed tools that specifically helped with work patterns
that appeared cumbersome previously; c) we allowed them
to continue their existing work practices (e.g. use of grep),
rather than forcing them to adopt a radical new paradigm.

One criticism we have received about our research is that
there are already commercial and freeware tools that

2 Although a rudimentary version of history was available

in the original tool, it was little use since it was not
persistant nor automatic enough

Figure 1: An example of the Tksee main window.

University of Ottawa, Computer Science Technical Report TR-97-08

8

incorporate some of the facilities we have developed. Well
known examples include Sniff+ and emacs. Our counter-
argument to this is to ask, why are those tools not being
used by our SEs? We believe that our work-practices
studies have allowed us to develop a tool that fits more
precisely with the SEsÕ needs. The other tools either do
not integrate all the facilities needed (especially the
persistent hierarchical history) or are overly complex.

Our work also allows us to compare participatory design
with work-practices-based design. We feel that both are
important and should be used together, however in our case
no amount of brainstorming and discussion with users gave
rise to ideas about history or the details of how to integrate
grep. It was only the work-practices studies that allowed us
to make the extra step Ð and obtain considerably higher
rates of tool adoption as a result.

CONCLUSION
This paper has described experiences with several
techniques that can help SEs and user interface specialists
to develop systems that are not only usable, but are also
used.

We have demonstrated that by studying work practices, it
is possible to develop tools that meet the needs of users,
and are adopted by those users. Furthermore, this can be
done without the need to perform cognitive modeling.

In our work practice studies, we first discovered what our
users did in broad terms using interviews, shadowing
questionnaires etc. Then we focused on the most frequently
performed tasks to discover what we call work patterns.

We have also shown that by using the technique we call
synchronized shadowing, it is possible to gather
information about both activities and goals fairly efficiently.
The analysis of this data leads to the discovery of work
patterns that are most amenable to automation.

We will now continue our work-practices research and
perform tool development iteratively. We will study the
extent and manner with which the SEs use the facilities we
have developed as a result of this research. We also plan to
study the work patterns of SEs in more depth as we amass
more observations.

ACKNOWLEDGMENTS
This research is supported by NSERC and sponsored by
the Consortium for Software Engineering Research (CSER).
We would like to thank the SEs who participated in our
studies.

REFERENCES
1. B�dard, J., & Chi, M.T.H. Expertise. Current

Directions in Psychological Science, 1 (1992), 135-139.

2. Berlin, L. Beyond program understanding: A look at
programming expertise in industry, in Empirical
Studies of Programmers, Fifth Workshop, (New
Brunswick, NJ, 1991.)

3. Beyer, H., & Holtzblatt, K., Apprenticing with the
customer. Communications of the ACM 38 (1995), 45-
52.

4. Blomberg, J., Suchman, L., & Trigg, R., Reflections
on a Work-oriented Design Project. Human Computer
Interaction 11, (1996), 237-265

5. Curtis, B. By the way, Did anyone study any real
programmers. In Empirical Studies of Programmers,
Ô86, 256-261.

6. Ericsson, K.A., & Simon, H.A. Protocol Analysis:
Verbal Reports As Data. MIT Press, Boston MA,
1984.

7. Harper, R., Sellen, A.. Collaborative tools and the
practicalities of professional work at the International
Monetary Fund, in Proceedings of CHI '95 (Denver
CO, May 1995), ACM Press.

8. Hutchins, E.. Cognition in the Wild. MIT Press:
Boston, MA, 1996.

9. Kraut, R. & Streeter, L. Coordination in large scale
software development. Communications of the ACM 38,
3, (1995) 69-81.

10. Lethbridge, T., and Singer, J. (1997). Understanding
software maintenance tools: Some empirical research, in
Workshop on Empirical Studies of Software
Maintenance, (Bari, Italy, October 1997), to appear.

11. Nardi, B. Studying context: A comparison of Activity
Theory, Situated Action Models, and Distributed
Cognition In B. Nardi (ed.), Context and
Consciousness : Activity Theory and Human-Computer
Interaction. MIT Press, Boston, MA, 1996

12. Newell, A., & Simon, H. Human Problem Solving.
Prentice Hall:Englewood Cliffs, NJ, 1972.

13. Singer, J., Lethbridge, T., Vinson, N. and Anquetil N.
An Examination of Software Engineering Work
Practices, in Proceedings of CASCON Ô97 (Toronto,
November 1997), to appear.

14. Sellen, A., Harper. R. Paper as an analytic resource for
the design of new technologies. In CHI Ô97.

15. Snelling, L, Bruce-Smith, D. The work mapping
technique. Interactions, 4, 4, (1997) 25-31.

16. Sonnetag, S., Brodbeck. F., Heinbokel, T., & Stolte.,
W. Stressor-burnout relationship in software
development teams. J. Occupational and Organization
Psychology, 67, (1994), 327-341.

17. Vicente, K and Pejtersen, A. Cognitive Work Analysis,
in press.

18. von Mayrhauser, A and & Vans, A., Program
Comprehension During Software Maintenance and
Evolution, Computer Aug. 1995, 44-55.

19. Walz, D., Elam, J., Curtis, B. (1993). Inside a software
design team: Knowledge Acquisition, sharing, and
integration. CACM 36, 10, (1993), 63- 76.

