
Data Acquisition from Industrial
Systems Specification

June 2005
Version 1.1

formal/05-06-01

Copyright © 2000, ABB Automation Systems
Copyright © 2000, Alstom ESCA
Copyright © 2000, Langdale Consultants
Copyright © 2005, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this specifica-
tion in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN

ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Contents
1. Overview . 1-1
1.1 Introduction . 1-1
1.2 Problems Being Addressed . 1-3

1.2.1 Data Access . 1-4
1.2.2 Concurrency Control . 1-5
1.2.3 Data Semantics . 1-5

1.3 Problems Not Being Addressed . 1-5
1.4 Design Rationale . 1-5

1.4.1 Adherence to OPC . 1-5
1.4.2 Simplicity and Uniformity 1-5
1.4.3 High Performance Implementations 1-6

1.5 Conformance to the DAIS . 1-7
1.5.1 Conformance to the Server 1-7
1.5.2 Conformance to Data Access 1-7
1.5.3 Conformance to Alarms and Events 1-8

2. Relations to Other Standards . 2-1
2.1 OLE for Process Control (OPC) . 2-1

2.1.1 Objects . 2-1
2.2 Data Access Facility (DAF) . 2-4

2.2.1 Resources and Properties 2-4
2.2.2 Information model/schema 2-5
2.2.3 Data Types . 2-6

2.3 COM and CORBA IDL Differences 2-6
2.3.1 Object Referencing . 2-6
June 2005 Data Acquisition from Industrial Systems, v1.1 i

2.3.2 Interface Management 2-7
2.3.3 Error Management . 2-7
2.3.4 IDL . 2-7

2.4 IEC 1346-1, Structuring and Naming. 2-7
2.5 IEC 61970 EMS API . 2-7
2.6 XPath . 2-8

3. DAIS Server . 3-1
3.1 Common Declarations . 3-1

3.1.1 Character Encoding . 3-1
3.1.2 Common IDL Overview 3-1
3.1.3 DAFIdentifiers IDL . 3-2
3.1.4 DAFDescriptions IDL 3-2
3.1.5 DAISCommon IDL . 3-2
3.1.6 Iterator Methods IDL . 3-10
3.1.7 DAISNode IDL . 3-11
3.1.8 DAISType IDL . 3-16
3.1.9 DAISProperty IDL . 3-19
3.1.10 DAISSession IDL. 3-22
3.1.11 Filter Definitions . 3-25
3.1.12 Logical Expressions and Navigation 3-25
3.1.13 Authorization . 3-28
3.1.14 Requirement Levels . 3-29

3.2 Server . 3-30
3.2.1 DAISServer IDL Overview 3-30
3.2.2 DAIS Server IDL . 3-30

4. DAIS Data Access . 4-1
4.1 Information Model . 4-1

4.1.1 Nodes, Items, Types, and Properties 4-2
4.1.2 Naming . 4-3
4.1.3 Item Values . 4-4
4.1.4 OPC Recommended Properties 4-5
4.1.5 Utility SCADA/EMS Measurement Model . . . 4-5

4.2 API . 4-8
4.2.1 Data Access IDL Overview 4-8
4.2.2 DAISDASession IDL 4-8
4.2.3 DAISDANode IDL . 4-12
4.2.4 DAISItem IDL . 4-15
4.2.5 DAISDAIO IDL . 4-23
4.2.6 DAISGroupEntry IDL 4-32
ii Data Acquisition from Industrial Systems, v1.1 June 2005

4.2.7 DAISGroup IDL . 4-40
4.2.8 DAISDASimpleIO IDL 4-50

5. Alarms & Events . 5-1
5.1 Information Model . 5-2

5.1.1 OPC Recommended Properties 5-5
5.2 API . 5-6

5.2.1 Alarms & Events IDL Overview 5-6
5.2.2 Alarms and Events Common IDL Definitions . 5-7
5.2.3 DAISAESession IDL . 5-10
5.2.4 DAISAESubscription IDL 5-13
5.2.5 DAISAEArea IDL . 5-25
5.2.6 DAISAESource IDL . 5-28
5.2.7 DAISConditionSpace IDL 5-32
5.2.8 DAISAESourceCondition IDL 5-38
5.2.9 DAISCategory IDL . 5-44
5.2.10 DAISAEIO IDL . 5-48

 A - References . A-1

 B - OMG IDL . B-1

 C - UML Model . C-1

 Glossary . 1-1
June 2005 Data Acquisition from Industrial Systems, v1.1 iii

iv Data Acquisition from Industrial Systems, v1.1 June 2005

Preface
About the Object Management Group
The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization’s charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

OMG Documents
The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications
Includes the UML, MOF, XMI, and CWM specifications.
June 2005 Data Acquisition from Industrial Systems, v1.1 v

OMG Middleware Specifications
Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.

Obtaining OMG Documents
The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
Contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.
vi Data Acquisition from Industrial Systems, v1.1 June 2005

Acknowledgments
The following companies submitted parts of this specification:

• ABB Automation Systems
• Alstom ESCA
• Langdale Consultants

Supporting Organizations
The following organizations have been involved in the process of contributing to, and
reviewing this specification. These companies have indicated their support for the
specification. We thank them for participating and giving their valuable input.

• Hitachi Ltd.
• IBM Corporation
• NIIP Project Office
• SISCO Inc.
June 2005 Data Acquisition from Industrial Systems: Acknowledgments vii

viii Data Acquisition from Industrial Systems, v1.1 June 2005

Overview 1
Contents

This chapter contains the following sections.

1.1 Introduction
The purpose of the DAIS Application Program Interface (API) is to support efficient real
time transfer of large amounts of data from an industrial process to a wide range of
clients. It supports discovery of parameters and update of parameter values. The DAIS is
intended for on-line data transfer and cannot be used to configure servers implementing
the API.

Control systems used to monitor and control industrial processes consist of the following
major pieces:

• Process instrumentation making sensor data and actuation capabilities available.

• Process stations or remote terminal units (RTUs) reading sensor data and
controlling actuators.

Section Title Page

“Introduction” 1-1

“Problems Being Addressed” 1-3

“Problems Not Being Addressed” 1-5

“Design Rationale” 1-5

“Conformance to the DAIS” 1-7
June 2005 Data Acquisition from Industrial Systems, v1.1 1-1

1

• Supervisory Control and Data Acquisition (SCADA) system making processed
sensor data and control capabilities available to operators, applications, or other
systems.

• Management systems using SCADA data to make further processing and control.

SCADA and management systems can be regarded having a server part where data
processing is performed and a Human Machine Interface (HMI) part where visualization
and command dialogs are made. The SCADA and management system may have
common or different HMI.

This results in a hierarchical structure shown below.

Figure 1-1 Control system structure

The solid arrows in Figure 1-1 correspond to transfer of data from servers to clients. The
data can be state variables and parameters (for example, measured values, calculated
values, limit values, dead bands, scan rates, engineering units).

The dashed arrows correspond to data written to servers by clients. The data can be
control variables and parameters. The API support simple writes operations. More
complex controls like select and execute (for example, breaker on/off) or raise lower
commands can be implemented combining multiple write and read operations.

As indicated in Figure 1-1 the DAIS API can be used at several levels in a system. For
example, a DAIS server can be an RTU/Process station communication unit, a SCADA
server, or even a Management system.

DAIS support both subscription and read/write operations. A subscription means server
has no a priori knowledge of clients and it is clients that establish connection with
servers. Once connection is established a server calls the clients back when data becomes
available or updated. The callbacks mean the DAIS API also defines an interface that the
client has to implement.

SCADA

Management
system

Instrumentation

RTU/
Process station

Server

Server

HMI

HMI

Data transfer for APIs concerned with

Process data

Data written to process
1-2 Data Acquisition from Industrial Systems, v1.1 June 2005

1

Figure 1-2 Data subscription

Figure 1-2 shows the bi-directional subscription with connection establishment and
callback interfaces.

For historical reasons SCADA systems for different industrial processes has evolved
along different lines. SCADA for power systems has evolved onto a UNIX base and
SCADA for most other industrial processes has evolved onto a Windows NT base. For
UNIX based systems APIs formulated in CORBA (Common Object Request Broker
Architecture) IDL (Interface Definition Language) are now emerging (for example,
DAIS RFP [1] and UMS DAF [2]). For Windows NT based systems, such as OLE for
Process Control (OPC) [3], has become the dominating standard. OPC defines three
different APIs; measurement data access [4], alarms & events [5], and history [6]. OPC
is based on Microsoft COM.

OPC is focused on the interfaces and does not explicitly describe the information model
behind the interface. The information model is however implicit and can be derived from
the OPC specifications. This specification describes both the API and information model
expressed in UML.

Within the CCAPI project an information model Common Information Model (CIM) [7]
has been developed. This model is now evolving into the IEC 61970-30x draft standard
[8]. The CIM contains a SCADA information model (61970-303) with its roots in power
transmission and generation. The DAIS API supports the CIM.

1.2 Problems Being Addressed
The DAIS API is intended for transfer of process data on subscription basis as indicated
in Figure 1-1 and Figure 1-2. Process data consists of quality tagged and time stamped
scalar values. The API is intended to efficiently transfer large amounts of data
simultaneously to many clients (subscribers). Clients and servers involved in data
exchange can be of many kinds (for example, HMI or management systems as indicated
in Figure 1-1). A client may also appear as a server (for example, aggregating data from
other servers or performing calculations as indicated in Figure 1-3). This creates
hierarchical structures of DAIS servers.

Server Client

Establish
connection

Callback
data transfer
June 2005 DAIS, v1.1: Problems Being Addressed 1-3

1

Figure 1-3 Using DAIS as interface between multiple servers

As an example the servers in the leftmost layer in Figure 1-3 might be OPC compliant
RTUs (or IEDs), next right might be communication front ends, and the rightmost server
may provide both telemetered and estimated data.

The DAIS API is intended to be used for a wide range of industrial processes. For
example:

• power transmission

• power generation

• power distribution

• water and sewage management

• oil and gas

• district heating

• pulp and paper

• food manufacturing

The kinds of data that can be reached through the DAIS API are:

• measurement data access

• alarms & events access

This data is typically available from hardware units in the process (for example, RTUs,
PLCs, distributed controllers) or other control centers (for example, SCADA systems).
Refined or calculated data, parameters, and alarms & events might also come from
applications (for example, custom calculations, state estimation, optimization) in
SCADA or Management systems. These data might be provided through the DAIS API
as well.

1.2.1 Data Access
This specification provides interfaces for data access including:

• Discovery of data available in a server.

S erver
S erver

S erver
S erver

S erver
S erver

S erver C lien t

D A IS
D A IS D A IS
1-4 Data Acquisition from Industrial Systems, v1.1 June 2005

1

• Discovery of the information model supported by a server (for example, available
types and their properties).

• Synchronous and asynchronous read or write of server data.

• Creation and maintenance of subscriptions at the server.

• Client side subscription callback interfaces for event driven data transfer.

1.2.2 Concurrency Control
There are no explicit means to synchronize clients. Time stamping of data is provided so
that clients can judge the age.

1.2.3 Data Semantics
Data is hierarchically organized in trees of nodes and items where the items are the leafs.
The nodes in the hierarchy have a type (for example, substation, pump, breaker, or any
collection of items). The type is transparent to the interface. An item is an instance of a
property belonging to a type. Properties can describe any kind of state variables, control
variables, or parameters existing in a control system.

Data transferred by reads or callbacks are time stamped and quality coded.

1.3 Problems Not Being Addressed
The problem of configuring a server or control system with nodes, items, areas, sources,
reasons, condition spaces, and source conditions is outside the scope of this specification.

The problem of supervising the control system equipment (for example, communication
lines, computers, hard disks) and provide specific interfaces for this is outside the scope
of this specification. It is however possible for a DAIS server to provide control system
statuses as measurements.

1.4 Design Rationale
Besides meeting the requirements spelled out in the RFP there are a number of design
goals that have shaped solutions.

1.4.1 Adherence to OPC
OPC has been in use for a number of years and this specification leverages on the
experience gained by OPC. There are a large number of OPC based products in the
market place and cases where DAIS and OPC will be bridged are likely. Adherence to
OPC is important to facilitate simple bridging and porting DAIS software to/from OPC.

1.4.2 Simplicity and Uniformity
Some design principles used when creating OPC were:
June 2005 DAIS, v1.1: Problems Not Being Addressed 1-5

1

• Method behavior is sometimes controlled by an input parameter.

• Related data is transferred in multiple parallel vectors.

• Outputs are always returned in one or more output parameters.

To simplify and get a more uniform interface these principles have been replaced by the
following:

• A method has one single behavior resulting in some OPC methods being replaced
by more than one DAIS method.

• Related data is kept together in structs resulting in reduction of the number of
parameters compared to OPC.

• Outputs are returned as method return results resulting in the OPC HRESULT
parameter being replaced by exceptions and reduced number of output parameters
compared to OPC.

1.4.3 High Performance Implementations
A DAIS server is a real-time system required to deliver data in high rates and volumes.
The performance requirements mean that a typical DAIS server does not use a relational
database management system for on-line operation but some kind of real-time database.
The DAIS API efficiently encapsulates such real-time databases from clients.

To be effectively delivering data DAIS must not introduce performance bottlenecks of its
own. This has influenced the design in several ways, listed below.

1.4.3.1 Subscription
The subscription mechanism consists of two phases. In the first the client negotiates with
the server on what data items to subscribe for and in the second the actual data transfer
takes place. This minimizes the amount of transferred data between the server and the
client during on-line operation.

1.4.3.2 Sequences
DAIS support to use sequences of data in calls rather than having calls requiring single
valued parameters. This allows clients to ask for processing of multiple data in a single
call rather than making multiple calls thus reducing the number of LAN round trips.

1.4.3.3 Iterators
Large volumes of data are not efficiently transferred in one method call. For this reason
many methods return an iterator that is used to transfer optimal volumes of data in each
call.
1-6 Data Acquisition from Industrial Systems, v1.1 June 2005

1

1.4.3.4 Data Value Representation
The basic unit of data is a union type: SimpleValue. SimpleValue exploits our
knowledge of the basic data types needed and eliminates CORBA any from the highest
bandwidth part of the interface. This can make a significant impact on performance when
accumulated across large amounts of data.

1.5 Conformance to the DAIS
The DAIS has three major conformance points:

1. The DAIS Server

2. The DAIS Data Access

3. The DAIS Alarms and Events.

An implementation

• shall conform to point 1.

• shall conform to either point 2 or point 3.

• may conform to both point 2 and point 3.

1.5.1 Conformance to the Server
The DAIS interface as defined in Section 3.2, “Server,” on page 3-30 is a mandatory
conformance point for a DAIS Server with the exception of the following optional
methods:

• DAIS::Server::find_views()

• DAIS::Server::create_data_access_session_for_view()

• DAIS::Server::create_alarms_and_events_session_for_view()

• DAIS::Server::inspect()

A server shall also conform to

• Section 3.1.1, “Character Encoding,” on page 3-1.

The use of XPath as described in Section 3.1.12, “Logical Expressions and Navigation,”
on page 3-25, Section 5.2.4.2, “IDL,” on page 5-14, and Section 5.2.7.3, “Condition
Logic,” on page 5-38 is an optional conformance point.

1.5.2 Conformance to Data Access
The DAIS interface as defined in Section 3.1, “Common Declarations,” on page 3-1 and
Section 4.2, “API,” on page 4-8 is a mandatory conformance point for Data Access.
June 2005 DAIS, v1.1: Conformance to the DAIS 1-7

1

1.5.3 Conformance to Alarms and Events
The DAIS interface as defined in Section 3.1, “Common Declarations,” on page 3-1 and
Section 5.2, “API,” on page 5-6 is a mandatory conformance point for Alarms and
Events.
1-8 Data Acquisition from Industrial Systems, v1.1 June 2005

Relations to Other Standards 2
Contents

This chapter contains the following sections.

2.1 OLE for Process Control (OPC)
Differences and similarities between OPC and DAIS are described in this chapter.

2.1.1 Objects
OPC is a service API providing access to data managed by the server. The data (for
example, nodes, items, areas, sources, conditions, reasons) are not instantiated as objects
at the client. This means that OPC does not define any particular APIs for the data
instances that a client can deal with directly. OPC has a few coarse objects like
OPCGroup and OPCEventSubscription supporting the data access. DAIS has adopted
this principle and is identical to OPC in this respect.

Section Title Page

“OLE for Process Control (OPC)” 2-1

“Data Access Facility (DAF)” 2-4

“COM and CORBA IDL Differences” 2-6

“IEC 1346-1, Structuring and Naming” 2-7

“IEC 61970 EMS API” 2-7

“XPath” 2-8
June 2005 Data Acquisition from Industrial Systems, v1.1 2-1

2

In OPC each client has its own OPC server object. In DAIS there is only one DAIS
server object shared by all clients. To support individual client sessions a new session
interface is defined. There is one interface for data access session objects and one for
alarms & events session objects. The session objects correspond to the OPC server
object.

The OPC server object has interfaces for browsing server data (for example,
IOPCBrowseServerAddressSpace and IOPCEventAreaBrowser) and information model
(for example, IOPCItemProperties). In DAIS each type of data has its own object for
browsing, these objects are called “home” objects. The OPC browse interface methods
are hence divided among the different home objects.

2.1.1.1 Interface, method, and parameter naming
Many OPC interface, method, and parameter names have been kept but recasted
according to the CORBA style guide. But many OPC names have been replaced by new
names to more clearly indicate the meaning. This is particularly the case for the browse
and alarms & events APIs.

2.1.1.2 Error and status codes
In OPC it is common to return arrays of HRESULTs corresponding to arrays of data. In
the case where the data did not contain any errors an array with “no error occurred”
codes still is returned. In DAIS such error codes will be returned as a sequence of error
structs identifying the erroneous data and an error code. In case of no errors the sequence
of error structs is empty.

2.1.1.3 Identifiers, handles, and blobs
OPC data accesses use both server and client side handles created based on identification
texts for nodes and items. To make the translation from identification texts to handles fast
and avoid repeated translation in OPC an intermediate server side identifier called the
blob exists. In DAIS the server side handles and blobs are replaced by identifiers based
on ResourceIDs (both for nodes and items). For a description of ResourceIDs refer to
Section 2.2, “Data Access Facility (DAF),” on page 2-4. The OPC client side handles are
still kept in DAIS.

2.1.1.4 Callbacks
COM/OPC use the standard interfaces IConnectionPoint to set up callbacks. In DAIS
callbacks are set up directly between server and client by updating an attribute holding
the callback object.

2.1.1.5 Enumerators
The COM style enumerators in OPC are replaced by CORBA style iterators in DAIS.
2-2 Data Acquisition from Industrial Systems, v1.1 June 2005

2

2.1.1.6 Parameters and structs
In OPC multiple parallel vectors often pass data. In DAIS a single vector holding structs,
thus reducing the number of parameters, replaces the parallel vectors.

2.1.1.7 Method return data
In OPC all methods return the HRESULT error value. In DAIS HRESULTs are replaced
by exceptions and out parameters are returned as method results instead. Only in a few
cases are there additional output parameters in DAIS.

2.1.1.8 Items, structuring, and naming
In OPC data is generally organized in hierarchical structures. In data access the leafs are
called leaf nodes and the branches branch nodes or items. A leaf node or item is the same
as an instance of property at an object. A branch node corresponds to an:

• Object having properties.

• Arbitrary organization of other branch nodes.

• Object having both properties and other branch nodes as children.

In DAIS data access the branch nodes are called nodes and the leaf nodes are called
items. In DAIS alarms & events, the branch nodes are called areas and the leaf nodes
sources.

In OPC branch and leaf nodes have a name unique among the nodes or items that are
children of the same node. A second name is formed by combining these names from
each branch node in the path from the node or leaf to the root. Both names are called
ItemIDs in OPC and the name created by following the path to the root is sometimes
called a fully qualified ItemID.

In DAIS the name unique among the child’s to the same node is called label and the
name including the labels from all nodes in the path to the root is called pathname. Both
DAIS branch nodes and leaf nodes have both a label and a pathname.

A label is used in the same way as a name but the word label is preferred before the word
name as it denotes something that is atomic; that is, it cannot be further divided.

2.1.1.9 Server side cursors
OPC provides a server side cursor from where browsing is made and the OPC interface
provides methods to move the cursor.

DAIS does not provide server side cursors and requires the client to keep track of browse
positions themselves. The reason for removing server side cursors is it makes clean up
after crashed clients easier and simplifies the server design.
June 2005 DAIS, v1.1: OLE for Process Control (OPC) 2-3

2

2.1.1.10 Properties and types
OPC does not support types meaning it is not possible in OPC to get information about
the type of a node. OPC however supports properties, which means it is possible to
browse the existing properties and what properties a particular node has. DAIS has
extended this to also include types; that is, it is possible to browse existing types, the
properties each type has and each node has a type.

OPC defines the following property sets:

• set 1 of OPC specific properties

• set 2 of OPC recommended properties

• set 3 of vendor specific properties

In DAIS, OPC set 1 properties cannot be browsed through the property-browsing
interface (Property). Instead access of set 1 properties is direct in the interfaces as
parameters or struct members as is the case for OPC. This means that DAIS exposes only
OPC set 2 and 3 properties through the property browse interface.

2.2 Data Access Facility (DAF)
The UMS DAF and DAIS are server APIs for access of object data rather than the data
objects themselves.

2.2.1 Resources and Properties
The DAF describes a generic interface for navigating and reading data from complex
data structures including relations between objects. Both DAF and DAIS support
navigation in a space of hierarchically structured objects (an object is called a node in
DAIS and a resource in DAF). Both support identification of objects and properties at an
object. In DAIS an instance of property at an object is called an item and an ItemID
(item identifier) identifies an item. An ItemID consists of a ResourceID (resource
identifier) for the node and a PropertyID (property identifier) for the property. The DAIS
API uses ItemIDs to access data while the DAF uses ResourceIDs and PropertyIDs
separated.

A system may implement both a DAF server and a DAIS server. In such a system it shall
be assumed that the same object will have the same ResourceID seen through either API.
This means it shall be possible to navigate to an object, retrieve its ResourceID through
one of the APIs, and use that ResourceID with the other API. In the same way
PropertyIDs are the same.

Textual identification of resources and properties in the DAF is by URIs (Uniform
Resource Identifier). ResourceIDs and PropertyIDs have their own URIs. URIs can be
translated into corresponding ResourceIDs and PropertyIDs and vice versa. A property
name is a URI where the container part is a unique schema identifier and the fragment
part is the property name.
2-4 Data Acquisition from Industrial Systems, v1.1 June 2005

2

For example:

http://www.epri.com/schema/CIM-07f.xml#Measurement.positiveFlowIn

DAIS does not support URIs directly but has a textual representation for nodes, items,
types, and properties. This textual representation may correspond to the fragment part of
a URI.

2.2.2 Information model/schema
In the case where a system supports both the DAF and the DAIS interfaces it is expected
that the same object will be identified by the same ResourceID through both interfaces
and the same property by the same PropertyID. Sameness of objects and properties;
however, depends on the information model exposed through the two interfaces and if
the information models are different, then a mapping is required.

In the case where a system supports both the DAF and the DAIS interfaces it is expected
that the same objects will be identified by the same ResourceID and URI fragment
through both interfaces and the same property by the same PropertyID and URI
fragment.

The exact mapping has to be described for each DAIS item – DAF property pair
according to the underlying information models. Section 4.1.5, “Utility SCADA/EMS
Measurement Model,” on page 4-5 elaborates on the information model and a detailed
mapping between IEC 61970-30x and the DAIS can be found in Section 4.1.5, “Utility
SCADA/EMS Measurement Model,” on page 4-5.

The foregoing concepts are fundamental enough that they should find equivalents in any
data repository. Some, perhaps approximate, equivalents are given in Table 2-1 as a
guide.

Table 2-1 Mappings between modeling languages
RDF DAF Relational

Model
UML DAIS

Resource Resource,
ResourceID

Tuple (i.e., row) Object Node, ResourceID

Property Property,
PropertyID

Attribute (i.e.,
column) or foreign
key

Attribute
or
association

Property,
PropertyID

Class Class,
ClassID

Relation (i.e., table) Class Type, TypeID

Resource
Description

Resource
Description

Tuple value - Sequence
<ItemState>

URI URI,
ResourceID

Key value -

Value SimpleValue Field value - SimpleValue

- ResourceID and
PropertyID pair

- - Item, ItemID
June 2005 DAIS, v1.1: Data Access Facility (DAF) 2-5

2

2.2.3 Data Types
DAIS uses the DAF SimpleValue type for data transferred over the API instead of the
OPC type VARIANT. The data types used in OPC are Microsoft COM types and as
DAIS is a CORBA API a mapping of the data types is needed. The translation of
OPC/COM data types to DAF/CORBA data types is listed below.

2.3 COM and CORBA IDL Differences
Interfaces defined in COM and CORBA IDL differ in a number of ways. Important
differences concerning interface definitions are

• object referencing,

• interface management,

• error management, and

• IDL.

A detailed description of the mapping can be found in the CORBA 2.3 specification,
chapters 17, 18, and 19.

2.3.1 Object Referencing
In CORBA each object is uniquely referenced in one step. In COM obtaining an object
usually is a two step process. In the first step a stateless server object is obtained. In the
second step the server object is loaded with state data. In CORBA an object is a unique
individual that contains state from the very beginning.

Table 2-2 Mappings between OPC and DAF data types
OPC/COM basic types DAF Simple Value types
- ResourceID (RESOURCE_TYPE)
- URI (URI_TYPE)
LPWSTR (VT_BSTR) string (STRING_TYPE)
BOOL (VT_BOOL) boolean (BOOLEAN_TYPE)
LONG (VT_R4) long (INT_TYPE)
DWORD (VT_I4) unsigned long (UNSIGNED_TYPE)
double (VT_R8) double (DOUBLE_TYPE)
- Complex (COMPLEX_TYPE)
FILETIME (VT_Date) DateTime (DATE_TIME_TYPE)
- ULongLong (ULONG_LONG_TYPE)
WORD (VT_I2) unsigned long (UNSIGNED_TYPE)
FLOAT (VT_R4) double (DOUBLE_TYPE)
BYTE (VT_UI1) -
HRESULT (VT_ERROR) -
VARIANT (VARTYPE) SimpleValue (SimpleValueType)
2-6 Data Acquisition from Industrial Systems, v1.1 June 2005

2

2.3.2 Interface Management
A CORBA object has a single interface. This interface can be built from several other
interfaces through inheritance. The resulting interface might have many methods and
hence become big. A COM object usually has multiple interfaces and supports the client
to detect and navigate between these interfaces at run time. As a CORBA interface is
defined by inheritance it has to be fully defined at compile time. As COM allows run
time detection of interfaces (the IUnknown::QueryInterface() method) a full match
between interfaces implemented by a server and interfaces known to a client is not
required.

Mapping OPC interfaces to DAIS interfaces can be done in two ways:

1. Inherit a number of OPC interfaces into one CORBA object. This may result in
name clashes that require renaming of methods.

2. Instantiate an OPC interface as an own CORBA object referenced by a container
object.

Both techniques are used in the DAIS specification.

2.3.3 Error Management
CORBA provides exceptions for error handling and COM does not. COM provides error
status through a return parameter called HRESULT. The caller has to explicitly test the
HRESULT to decide if the operation was successful. HRESULT return parameters are
replaced by CORBA exceptions.

2.3.4 IDL
The COM and CORBA IDL have several syntactical differences and use different style
guides.

2.4 IEC 1346-1, Structuring and Naming
DAIS (as well as OPC) structure nodes and items hierarchically. Nodes and items have a
label uniquely identifying child’s located at the same node. The labels from the nodes in
the path from a node or item to the root form a pathname. The pathname uniquely
identifies a node or item in the tree.

The same principle for naming objects is described in the IEC 1346-1 standard. IEC
1346-1 call labels for single level designation and the pathname for multi level
designation and supports multiple hierarchical structures. The DAIS supports multiple
structures by allowing multiple views where each view exposes one structure.

2.5 IEC 61970 EMS API
The IEC 61970-30x [8] draft standard (also named CIM) describes a specific
organization of power system objects in a hierarchical structure. DAIS is transparent to
the structure and hence supports the IEC 61970 structure.
June 2005 DAIS, v1.1: IEC 1346-1, Structuring and Naming 2-7

2

DAIS is also transparent to what attributes are defined as long as they can be reached
through the hierarchy. DAIS however defines a set of attributes that a DAIS server is
expected to support. Some of these attributes can also be found in IEC 61970-30x. A
detailed attribute mapping is provided later in this specification and is further elaborated
in Section 4.1.5, “Utility SCADA/EMS Measurement Model,” on page 4-5.

2.6 XPath
The W3C XPath [13] standard describes how navigation in a hierarchical structure (i.e.,
an XML document) is made using an expression.

In DAIS, navigation is made using the various browse APIs. However in one place there
is a need to describe navigation paths as expressions and that is for the condition logic in
Alarms and Events.
2-8 Data Acquisition from Industrial Systems, v1.1 June 2005

DAIS Server 3
Contents

This chapter contains the following sections.

This section describes the DAISServer and IDL common to the server, data access, and
alarms & events.

3.1 Common Declarations

3.1.1 Character Encoding
To support universal character encodings the UTF-8 Unicode standard [12] shall be used
for characters and strings.

3.1.2 Common IDL Overview
The DAIS relies on the Data Access Facility (DAF) for basic data type declarations and
some DAF declarations (for example, ResourceID and SimpleValue) are included
because of this. DAIS common declarations (for example, DAIS::Quality) are made in
DAISCommon. Interfaces for nodes, types, properties, and sessions are also common
between data access and alarms & events. The Interface Definition Language (IDL) files
and dependencies listed in Figure 3-1 are defined.

Section Title Page

“Common Declarations” 3-1

“Server” 3-30
June 2005 Data Acquisition from Industrial Systems, v1.1 3-1

3

Figure 3-1 Dependencies among common IDL files

3.1.3 DAFIdentifiers IDL
Refer to the Data Access Facility specification [2].

3.1.4 DAFDescriptions IDL
Refer to the Data Access Facility specification [2].

3.1.5 DAISCommon IDL

// File: DAISCommon.idl
#ifndef _DAIS_COMMON_IDL
#define _DAIS_COMMON_IDL
#pragma prefix "omg.org"
#include <DAFDescriptions.idl>
module DAIS
{
typedef unsigned short SupportedFunctions;
const SuportedFunctions DAIS_DATA_ACCESS =0x0001;
const SupportedFunctions DAIS_ALARMS_AND_EVENTS =0x0002;

typedef DAFDescriptions::ResourceID ResourceID;
typedef DAFDescriptions::SimpleValueType SimpleValueType;
typedef DAFDescriptions::SimpleValue SimpleValue;
typedef DAFDescriptions::DateTime DateTime;
typedef DAFDescriptions::PropertyID PropertyID;
typedef DAFDescriptions::PropertyValueSequence PropertyValues;

D A IS S es s ion

D AF Ident if ie rs

D AFD e s c ript io n s

D A IS C om m on

D A IS N ode D A IS P rope rtyD A IS Ty pe
3-2 Data Acquisition from Industrial Systems, v1.1 June 2005

3

// sequences of resource ids
typedef sequence<ResourceID> ResourceIDs;
typedef sequence<PropertyID> PropertyIDs;

truct ItemID
{
ResourceID resource;
PropertyID property;
};
typedef sequence<ItemID> ItemIDs;

typedef unsigned long ClientItemHandle;
typedef sequence<ClientItemHandle> ClientItemHandles;
typedef unsigned long long ServerItemHandle;
typedef sequence<ServerItemHandle> ServerItemHandles;

typedef short ServerItemIdentificationType;
const ServerItemIdentificationType ITEM_ID = 0;
const ServerItemIdentificationType PATH_NAME = 1;

union ServerItemIdentification switch(ServerItemIdentificationType)
{

case ITEM_ID: ItemID item;
case PATH_NAME: string pathname;

};
typedef sequence<ServerItemIdentification>ServerItemIdentifications;

typedef unsigned short Error;
struct ItemError
{

Error err;
ClientItemHandle client_handle;
ServerItemHandle server_handle;
string pathname;
string reason;

};
typedef sequence<ItemError> ItemErrors;

// error codes
const Error ERROR_DAISOK = 0;
const Error ERROR_BAD_RIGHTS = 1;
const Error ERROR_UNKNOWN_ITEMID = 2;
const Error ERROR_CLAMPED = 3;
const Error ERROR_OUT_OF_RANGE = 4;
const Error ERROR_UNKNOWN_PATHNAME = 5;
const Error ERROR_BAD_TYPE = 6;
const Error ERROR_UNKNOWN_ACCESS_PATH = 7;
const Error ERROR_INTERNAL_SERVER = 8;
const Error ERROR_INVALID_DAIS_HANDLE = 9;

enum AccessRights
{

READABLE,
June 2005 DAIS, v1.1: Common Declarations 3-3

3

WRITEABLE,
READ_AND_WRITEABLE

};

typedef unsigned long OPCQuality;
typedef unsigned long UserQuality;

struct Quality {
OPCQuality opc_quality;
UserQuality user_quality;

};

// Masks for extracting quality subfields
// (note 'status' mask also includes 'Quality' bits)

const OPCQuality OPC_QUALITY_MASK = 0x000000C0;
const OPCQuality OPC_STATUS_MASK = 0x000000FC;
const OPCQuality OPC_LIMIT_MASK = 0x00000003;

// Values for QUALITY_MASK bit field

const OPCQualityOPC_QUALITY_BAD = 0x00000000;
const OPCQuality OPC_QUALITY_UNCERTAIN = 0x00000040;
const OPCQualityOPC_QUALITY_GOOD = 0x000000C0;

// STATUS_MASK Values for Quality = BAD

const OPCQuality OPC_QUALITY_CONFIG_ERROR = 0x00000004;
const OPCQuality OPC_QUALITY_NOT_CONNECTED = 0x00000008;
const OPCQuality OPC_QUALITY_DEVICE_FAILURE = 0x0000000C;
const OPCQuality OPC_QUALITY_SENSOR_FAILURE = 0x00000010;
const OPCQuality OPC_QUALITY_LAST_KNOWN = 0x00000014;
const OPCQuality OPC_QUALITY_COMM_FAILURE = 0x00000018;
const OPCQuality OPC_QUALITY_OUT_OF_SERVICE = 0x0000001C;

// STATUS_MASK Values for Quality = UNCERTAIN

const OPCQuality OPC_QUALITY_LAST_USABLE = 0x00000044;
const OPCQuality OPC_QUALITY_SENSOR_CAL = 0x00000050;
const OPCQuality OPC_QUALITY_EGU_EXCEEDED = 0x00000054;
const OPCQuality OPC_QUALITY_SUB_NORMAL = 0x00000058;
const OPCQuality DAIS_QUALITY_OCILLATORY = 0x0000005C;

// STATUS_MASK Values for Quality = GOOD

//const OPCQuality OPC_QUALITY_LOCAL_OVERRIDE= 0xD8;
//use EXQ_Source_xxx instead of OPC_QUALITY_LOCAL_OVERRIDE

// Values for Limit Bitfield

const OPCQualityOPC_LIMIT_OK = 0x00000000;
const OPCQualityOPC_LIMIT_LOW = 0x00000001;
const OPCQualityOPC_LIMIT_HIGH = 0x00000002;
const OPCQualityOPC_LIMIT_CONST = 0x00000003;
3-4 Data Acquisition from Industrial Systems, v1.1 June 2005

3

//DAIS Quality extension masks

const OPCQuality EXQ_SOURCE_MASK = 0x00000700;
const OPCQuality EXQ_TEST_MASK = 0x00000800;
const OPCQuality EXQ_OPERATOR_BLOCKED_MASK = 0x00001000;
const OPCQuality EXQ_TIMESTAMP_ACCURACY_MASK = 0x00006000;

//DAIS Quality source extension
const OPCQuality EXQ_SOURCE_NONE = 0x00000000;
const OPCQuality EXQ_SOURCE_PROCESS = 0x00000100;
const OPCQuality EXQ_SOURCE_PRIMARY_SUBSTITUTED = 0x00000200;
const OPCQuality EXQ_SOURCE_INHERITED_SUBSTITUTED= 0x00000300;
const OPCQuality EXQ_SOURCE_CORRECTED = 0x00000400;
const OPCQuality EXQ_SOURCE_DEFAULTED = 0x00000500;

//DAIS Time stamp accuracy
const OPCQuality EXQ_TS_ACC_10_MSEC = 0x00000000;
const OPCQuality EXQ_TS_ACC_100_MSEC = 0x00002000;
const OPCQuality EXQ_TS_ACC_SECOND = 0x00004000;
const OPCQuality EXQ_TS_ACC_BAD_TIME = 0x00006000;
};
#endif // _DAIS_COMMON_IDL

SupportedFunctions

This constant tells what functions the DAIS server (i.e., Data access, Alarms & Events,
or both) supports. In case the server is extended with other functions they are included as
well (e.g., Historical Data functionality (HDAIS)).

DAF declarations

These declarations (for example, ResourceID) import DAF declarations to DAIS.

ItemID

A pair of a ResourceID and a PropertyID. It uniquely identifies an item; that is, a
property at a node.

ClientItemHandle

A client created numeric handle used by the client to efficiently identify data coming
from the server in callbacks.

ServerItemHandle

A server created numeric handle used by the server to efficiently identify items in client
calls.

Member Description
resource The ResourceID.
property The PropertyID.
June 2005 DAIS, v1.1: Common Declarations 3-5

3

ServerItemIdentification

A union that holds either an ItemID or a pathname. Either can be used for identification
of an item.

Error

Numeric error codes that are returned by ItemError.

ItemError

A struct for reporting of item related errors.

EnumValue Description

ERROR_DAISOK Used to indicate an error free result.

ERROR_BAD_RIGHTS The Items AccessRights do not allow the
operation.

ERROR_UNKNOWN_ITEMID The resource or property in the ItemID is
unknown.

ERROR_CLAMPED A value passed to WRITE was accepted but
the output was clamped.

ERROR_OUT_OF_RANGE The value was out of range.

ERROR_UNKNOWN_PATHNAME The pathname was not recognised.

ERROR_BAD_TYPE The server cannot convert the data between
the specified format/ requested data type and
the canonical data type.

ERROR_UNKNOWN_ACCESS_PATH The item's access path is unknown.

ERROR_INTERNAL_SERVER An error has appeared in the server due to
some server internal problem.

ERROR_INVALID_DAIS_HANDLE A client or server handle was invalid.

Member Description

err An error code as described below.

client_handle The client side handle identifying the item.

server_handle The server side handle identifying the item.

pathname The pathname for display or presentation purposes.

reason An additional text explaining the error.
3-6 Data Acquisition from Industrial Systems, v1.1 June 2005

3

AccessRights

Numeric access rights supported per item.

OPCQuality

A flag word giving the OPC quality. Each flag has a specific meaning as described
below. Four groups of flags exist:

1. Main quality telling if a value is good, bad, or suspected.

2. Detailed quality.

3. Limits telling if the value is stuck.

4. Historical data access flags. Those flags are described in the HDAIS specification.

Bit masks are defined to extract these flags.

Quality, status, and limit bit masks

Main quality enumeration numbers

After application of the OPC_QUALITY_MASK the quality shall be compared directly
to the enumeration numbers to decide the quality.

EnumValue Description

READABLE Read only data.

WRITEABLE Write only data.

READ_AND_WRITABLE Both read and write data.

Mask Description

OPC_QUALITY_MASK Bit mask for main quality.

OPC_STATUS_MASK Bit mask for detailed quality.

OPC_LIMIT_MASK Bit mask for the limits.

Enum Description

OPC_QUALITY_BAD The number for bad quality.

OPC_QUALITY_UNCERTAIN The number for uncertain quality.

OPC_QUALITY_GOOD The number for good quality.
June 2005 DAIS, v1.1: Common Declarations 3-7

3

Detailed quality flags for bad quality

Detailed quality flags for uncertain quality

Definition of limit flags

Flag Description

OPC_QUALITY_CONFIG_ERROR There is a server configuration error
concerning this value.

OPC_QUALITY_NOT_CONNECTED The source of the value is not connected.

OPC_QUALITY_DEVICE_FAILURE A device failure has been detected.

OPC_QUALITY_SENSOR_FAILURE A sensor failure has been detected.

OPC_QUALITY_LAST_KNOWN The updating has stopped but there is an
old value available.

OPC_QUALITY_COMM_FAILURE Communication has failed and no value
available.

OPC_QUALITY_OUT_OF_SERVICE The updating of the value is manually
blocked for update (the item is not active).

Flag Description

OPC_QUALITY_LAST_USABLE The value is old. The time stamp gives the
age.

OPC_QUALITY_EGU_EXCEEDED The value is beyond the capability of
representation (for example, counter
overflow).

OPC_QUALITY_SENSOR_CAL The sensor calibration is bad.

OPC_QUALITY_SUB_NORMAL Value is derived from multiple sources
where the majority has less than required
good quality.

DAIS_QUALITY_OCILLATORY If a binary value changes cyclically with a
frequency higher than a specific threshold,
it is oscillating. This quality compliant
with IEC 61850-7-3.

Flag Description

OPC_LIMIT_OK The value is not limited; that is, it moves freely
up or down.

OPC_LIMIT_LOW The value is stuck at a low limit.
3-8 Data Acquisition from Industrial Systems, v1.1 June 2005

3

DAIS Quality extension masks

The part of the flag word giving the DAIS extended quality. Each flag has a specific
meaning as described below. These quality definitions are based on the revised IEC
61850-7-3 definitions of quality. The following masks are defined.

Flags defining source

OPC_LIMIT_HIGH The value is stuck at a high limit.

OPC_LIMIT_CONST The value is stuck constant.

Mask Description

EXQ_SOURCE_MASK Bit mask for the source.

EXQ_TEST_MASK Bit mask for the test status. The test
status indicates that the value is
generated by a test and shall not be
regarded as an operational value.

EXQ_OPERATOR_BLOCKED_MASK Bit mask for the operator blocked status.
The status indicates that the value has
been blocked for update and is old. The
OPC_QUALITY_LAST_USABLE
quality shall be set as well.

EXQ_TIMESTAMP_ACCURACY_MASK Bit mask for the time stamp accuracy.

Flag Description

EXQ_SOURCE_NONE There is no source for this data item. The
code is used for spare items not yet allocated.

EXQ_SOURCE_PROCESS The source for this value is the process.

EXQ__SOURCE_PRIMARY_
SUBSTITUTED

The value is manually substituted.

EXQ_SOURCE_INHERITED_
SUBSTITUTED

A substituted value has been copied or used
as input to some calculation. The result value
is then marked with
EXQ_SOURCE_INHERITED_
SUBSTITUTED.

EXQ_SOURCE_CORRECTED An alternate and more accurate value has
been calculated by some application (e.g., a
State Estimator). If this value has been used
to correct the original value, it shall be
indicated EXQ_SOURCE_CORRECTED.

EXQ_REMOTE_DEFAULTED The value is initialized by a default value.
June 2005 DAIS, v1.1: Common Declarations 3-9

3

Flags defining time stamp quality

Quality

The DAIS quality consists of OPCQuality and ExtendedQuality.

3.1.6 Iterator Methods IDL
Methods that return information about more than one resource may return an iterator.
The resource description iterator allows a client to access a large query result
sequentially, several resources at a time. This is necessary where the ORB limits message
sizes. It also enables implementations to overlap the client and server processing of query
results, if necessary.

The client and the data provider should cooperate to manage the lifetime of the iterator
and the resources it consumes. The destroy() and next_n() methods allow the client
and data provider respectively to indicate that the iterator may be destroyed.

In addition, the data provider may autonomously destroy the iterator at any time (for
resource management or other reasons). If a client detects that an iterator has been
destroyed, it will not interpret this condition in itself as either an indication that the end
of the iteration has been reached, or as a permanent failure of the data provider.

Flag Description

EXQ_LOCAL_NONEEXQ_TS_ACC_
10_MSEC

The value is not updated locally (i.e., it
has a remote source specification). The
flags (=0) indicate that the accuracy is
10 milliseconds or better (IEC61850-7-2
performance class T0).

EXQ_LOCAL_SUBSTITUTEDEXQ_TS_
ACC_100_MSEC

The value is locally substituted
(manually). The flags (=1) indicate that
the accuracy is 100 milliseconds or
better.

EXQ_LOCAL_SE_REPLACEDEXQ_TS_
ACC_SECOND

The value is locally substituted by State
Estimator. The flags (=2) indicate that
the accuracy is in the range of seconds
or better.

EXQ_TS_ACC_BAD_TIME The flags (=3) indicate that the time
stamp is bad.

Member Description

opc_quality The quality as specified by OPC including extensions from
DAIS.

user_quality A user specific quality.
3-10 Data Acquisition from Industrial Systems, v1.1 June 2005

3

next_n()

This operation returns possibly 0 and at most n resource descriptions in the form of a
resource description sequence. In all cases the state of the iteration is indicated by the
Boolean return value.

• True means that there may be more resource descriptions beyond those returned so
far.

• False means all the resource descriptions have now been returned. No further calls
are expected for this iterator and the data provider may destroy the iterator at any
time after the call returns.

reset()

This operation resets the iterator to the first element.

clone()

This operation returns a copy of the iterator.

destroy()

This operation is used to terminate iteration before all the resource descriptions have
been returned. After destroy() is invoked no further calls are expected for this iterator.
The data provider may destroy the iterator at any time after the call returns.

3.1.7 DAISNode IDL

3.1.7.1 DAIS::Node overview
A node may represent a real world object such as a location or a piece of equipment. A
node may also represent a schema item such as a type or property. Nodes correspond to
“branches” in the IOPCBrowseServerAddressSpace or
IOPCEventAreaBrowser interfaces. Nodes correspond to Resources in the RDF
model and the DAF interface. Each node has a universal identity given by its
ResourceID. The ResourceID of a node is the same in all views provided by a DAIS
server. DAIS servers may be coordinated with DAF servers so that a node has the same
ResourceID as the corresponding resource. Each node has zero or more child(s). A
child may be another node or any other type of object (for example, data access items or
alarms & event sources). Each node has a type. The type determines what other types of
child objects a node has.

Nodes are arranged in a strict hierarchy for naming purposes. A DAIS server may
provide more than one such hierarchy, each is called a view. (The view is selected when
the session is initiated.) Within a view, each node, except for the root node, has a single
parent node, a label that is unique among all nodes with the same parent, and a unique
pathname. A node’s pathname is a string that contains its label and the pathname of its
parent. The pathname must be a valid URI, but apart from that the syntax of pathnames
is implementation dependent.
June 2005 DAIS, v1.1: Common Declarations 3-11

3

The Node IDL defines a main interface DAIS::Node::IHome for browsing among the
hierarchically structured nodes. Nodes are described by DAIS::Node::Description
struct.

Figure 3-2 DAIS node IDL in UML

3.1.7.2 IDL

//File: DAISNode.idl
#ifndef _DAIS_NODE_IDL
#define _DAIS_NODE_IDL
#pragma prefix "omg.org"
#include <DAISCommon.idl>

module DAIS {
module Node {

struct Description
{

ResourceID id;
ResourceID parent;
string label;
string descrip;
ResourceID type;
boolean is_leaf;

};
typedef sequence< Description > Descriptions;

interface Iterator
{

boolean next_n (

DAIS::Node::Iterator

max_left()
next_n()
reset()
clone()
destroy()

<<Interface>>

DAIS::Node::IHome

find()
find_each()
find_by_parent()
find_by_type()
get_pathnames()
get_ids()

<<Interface>>

0..n
1
0..n
1

Node
id : ResourceID
label : string
type : ResourceID

0..n

1

0..n

1

NodeItemComponent
pathname : string

1

0 .. *

+parent

1

0 .. *
3-12 Data Acquisition from Industrial Systems, v1.1 June 2005

3

in unsigned long n,
out Descriptions nodes

);
void reset();
Iterator clone();
void destroy();

};

interface IHome
{

exception UnknownResourceID {string reason;};
exception InvalidFilter {string reason;};
exception UnkownTypeID {string reason;};

Description find (
in ResourceID node

) raises (UnknownResourceID);

Descriptions find_each (
in ResourceIDs nodes

) raises (UnknownResourceID);

Iterator find_by_parent (
in ResourceID node,
in string filter_criteria

) raises (UnknownResourceID, InvalidFilter);

Iterator find_by_type (
in ResourceID node,
in string filter_criteria,
in ResourceIDs type_filter

) raises (UnknownResourceID, InvalidFilter, UnknownTypeID);

Strings get_pathnames (
in ResourceIDs nodes

);

ResourceIDs get_ids (
in Strings pathnames

);
};};};
#endif // _DAIS_NODE_IDL

Description

A struct describing a node.
June 2005 DAIS, v1.1: Common Declarations 3-13

3

Iterator

Refer to Section 3.1.6, “Iterator Methods IDL,” on page 3-10. This interface corresponds
to the OPC interface EnumString with the difference that the Iterator returns the
Description struct instead of a string.

IHome

An interface used for browsing nodes. The interface corresponds to the
IOPCBrowseServerAddressSpace with the BrowseFilterType set to
OPC_BRANCH or the IOPCEventAreaBrowser. A major difference to OPC is that
the server does not provide a cursor for clients. Instead clients have to provide the
browse position in each call.

UnknownResourceID

An exception telling that the ResourceID is unknown. For methods taking a sequence
of resource ids the first found unknown id is reported. The likely reason behind this
exception is some misunderstanding between the server and client code due to a
programming error.

InvalidFilter

An exception telling the filter_criteria string is not correct. The likely reason behind
this exception is an erroneously entered string.

UnknownTypeID

An exception telling one or more TypeIDs does not exist.

find()

For a given node, return information about that node.

Member Description

id The identification of this node.

parent The identification of the parent node.

label The label (single level designation) of the node.

descrip A descriptive text for the node.

type A reference to the type of the node.

is_leaf Indicate if the node is a leaf (i.e., it has no child nodes).
3-14 Data Acquisition from Industrial Systems, v1.1 June 2005

3

find_each ()

For a sequence of nodes, return information about each node.

find_by_parent ()

For a given node, return all child nodes at that node. Hence to reach leaf nodes using this
method repeated calls must be made for each level. This corresponds to the OPC method
BrowseOPCItemIDs with the parameter dwBrowseFilterType set to
OPC_BRANCH..

find_by_type()

For a sub-tree given by the node parameter, return all child nodes of the specified type.
This will return all leaf nodes under the given sub-tree root node. There is no
corresponding operation in OPC. Refer to Section 4.2.4.1, “DAIS::Item Overview,” on
page 4-15 for a description of how item browsing is mapped to OPC.

Parameter Description

node A node identification.

return The node description.

Parameter Description

nodes A sequence of node identifications.

return An iterator holding the node descriptions.

Parameter Description

node The parent node identification.

filter_criteria A server specific filter string. This is entirely free format
and may be entered by the user via a text field. An empty
string indicates no filtering. The filter selects nodes with a
pathname matching the filter criteria. For a description of
the filter refer to Section 3.1.11, “Filter Definitions,” on
page 3-25.

return An iterator holding the child node descriptions.

Parameter Description

node The identification of the node defining the sub-tree.
June 2005 DAIS, v1.1: Common Declarations 3-15

3

get_pathnames()

Translate a sequence of node identifications to the corresponding sequence of pathnames.
If a node fails to translate to a pathname (due to an unknown node identification), the
corresponding pathname is an empty string.

get_ids()

Translate a sequence of pathnames to the corresponding sequence of node identifications.
If a pathname fails to translate to a node identification (due to an unrecognized
pathname), the corresponding node identification is NULL.

3.1.8 DAISType IDL

3.1.8.1 DAIS::Type Overview
A type represents a set of related properties and associations. Each node has a type and
all the properties represented by that type apply to the node. Each type is identified by a
ResourceID and has a label and description. A type may be obtained for any node
using the node’s TypeID. Related types may be grouped into a schema. A ResourceID
identifies each schema. All the types in a schema may be obtained given the schema
ResourceID. A schema and its type may be represented as nodes in one or more of
views provided by a DAIS server. When a schema is represented as a node, the node’s
ResourceID and the schema ResourceID are identical. Similarly, when a type is

filter_criteria A server specific filter string. This is entirely free format
and may be entered by the user via a text field. An empty
string indicates no filtering. The filter selects nodes with a
pathname matching the filter criteria. For a description of
the filter refer to Section 3.1.11, “Filter Definitions,” on
page 3-25.

type_filter A list of TypeIDs. Nodes matching any of the TypeIDs
will be held by the returned iterator.

return An iterator holding descriptions for the found nodes.

Parameter Description

nodes The sequence of nodes.

return The corresponding sequence of pathnames.

Parameter Description

pathnames The sequence of pathnames.

return The corresponding sequence of node identifications.
3-16 Data Acquisition from Industrial Systems, v1.1 June 2005

3

represented as a node, the node’s ResourceID and the type’s ResourceID are
identical. The type’s parent is always the node representing its schema, the type’s label is
identical to the node label and the type’s description is identical to the node description.

The type IDL defines a main interface DAIS::Type::IHome for browsing supported
types.

Figure 3-3 DAIS type IDL in UML

3.1.8.2 IDL

//File DAISType.idl
#ifndef _DAIS_TYPE_IDL
#define _DAIS_TYPE_IDL
#pragma prefix "omg.org"
#include "DAISCommon.idl"

module DAIS {
module Type {

struct Description {
ResourceID id;
ResourceID schema;
string label;
string descrip;
ResourceIDs aggregated_types;

};
typedef sequence<Description> Descriptions;

interface Iterator
{

boolean next_n (
in unsigned long n,
out Descriptions types

);

DAIS::Type::Iterator

max _left()
next_n()
destroy()

<<Interface>>

Type
id : ResourceID
schema : ResourceID
label : string
description : string

0..n

+aggregated_types

0..n

DAIS::Type::IHome

find()
find_by_schema()

<<Interface>>

0..n

1

0..n

1

0..n1 0..n1
June 2005 DAIS, v1.1: Common Declarations 3-17

3

void reset();
Iterator clone();
void destroy();

};

interface IHome
{

exception UnknownResourceID {string reason;};

Description find (
in ResourceID type

) raises (UnknownResourceID);

Iterator find_by_schema (
in ResourceID schema

) raises (UnknownResourceID);
};};};
#endif // _DAIS_TYPE_IDL

Description

A struct describing a type.

IHome

An object used to browse the types. There is no corresponding interface in OPC.

UnknownResourceID

An exception telling that the ResourceID is unknown. The likely reason behind this
exception is some misunderstanding between the server and client code due to a
programming error.

Member Description

id The identification of this type.

schema The identification of the schema where the type is defined.

label The label of the type.

descrip A description of the type.

aggregated_types A sequence of type identifications that a node of this type
may contain. This information is intended as a guide when
the type filter is specified for the find_by_type() methods.
3-18 Data Acquisition from Industrial Systems, v1.1 June 2005

3

find()

For a given type, return information about that type.

find_by_schema()

For a given schema, find all types defined by that schema.

3.1.9 DAISProperty IDL

3.1.9.1 DAIS::Property Overview
A property represents a characteristic of a node that can be described with a value. A
given property may apply to many nodes, for each such node there will be an item
corresponding to the property. (See Section 4.2.4, “DAISItem IDL,” on page 4-15).

A DAIS property corresponds to a property in RDF and the DAF. A DAIS property
corresponds to the concept of a property in OPC accessed with the
IOPCItemProperties::QueryAvailableProperties() method. However, the six core
OPC properties (timestamp, quality, value) do not correspond to properties in DAIS.
They are given special treatment in OPC (they are not the same as other OPC properties).
See Section 4.2.4, “DAISItem IDL,” on page 4-15 for interfaces to handle these.

Each property is identified by a ResourceID and has a label, description, and canonical
data type. The canonical data type is a member of the SimpleType enumeration and
indicates the preferred CORBA atomic data type for values of this property. Every item
of a given property has an identical canonical data type. A property may be obtained for
any item via the property member of the ItemID. All properties that apply to a given
node may be obtained, given the node’s ResourceID. All properties that apply to the
nodes of a given type may be obtained, given the TypeID. A property may be
represented as a node in one or more of views provided by a DAIS server. In this case
the node’s ResourceID and the property’s ResourceID are identical. The property’s
parent is always the node representing the type to which it belongs. The property’s label
is identical to the node label and the property’s description is identical to the node
description.

Parameter Description

type A type identification.

return The type description.

Parameter Description

schema The identification of the schema.

return A sequence of type descriptions.
June 2005 DAIS, v1.1: Common Declarations 3-19

3

The property IDL defines a main interface DAIS::Property::IHome for browsing
properties. The information model describing how the properties are related to nodes and
items is found in Section 4.1.1, “Nodes, Items, Types, and Properties,” on page 4-2.

Figure 3-4 DAIS property IDL in UML

3.1.9.2 IDL

//File: DAISProperty.idl
#ifndef _DAIS_PROPERTY_IDL
#define _DAIS_PROPERTY_IDL
#pragma prefix "omg.org"
#include <DAISCommon.idl>

module DAIS {
module Property {

struct Description {
PropertyID id;
string label;
string descrip;
SimpleValueType canonical_data_type;

};
typedef sequence<Description> Descriptions;

interface IHome
{

exception UnknownResourceID {string reason;};

Description find (
in PropertyID property

) raises (UnknownResourceID);

Descriptions find_each (
in PropertyIDs properties

) raises (UnknownResourceID);

Descriptions find_by_node (
in ResourceID node

) raises (UnknownResourceID);

Property
id : Property ID
label : s tring
descript ion : s t ring
canonical_data_type : SimpleValueType

DAIS: :P roperty ::IHome
<<Interface>>

find()
find_each()
find_by_node()
find_by_type()

0.. n1 0..n1
3-20 Data Acquisition from Industrial Systems, v1.1 June 2005

3

Descriptions find_by_type (
in ResourceID type

) raises (UnknownResourceID);
};};};
#endif // _DAIS_PROPERTY_IDL

Description

Describe a property.

Home

An object used for browsing properties defined for a type or existing at a node. It
corresponds to the OPC interface IOPCItemProperties.

UnknownResourceID

An exception telling that the ResourceID is unknown. The likely reason behind this
exception is some misunderstanding between the server and client code due to a
programming error.

find()

For a given property, return information about that property.

find_each()

For a given property, return information about that property.

Member Description

id The identification of this property.

label The label (single level designation) of the property.

descrip A description of the property.

canonical_data_type The data type used for the property in the server.

Parameter Description

property A property identification.

return The property description.

Parameter Description

properties A sequence of property identifications.

return The sequence of property descriptions.
June 2005 DAIS, v1.1: Common Declarations 3-21

3

find_by_node ()

For a node, return information about each property describing its items. This method
corresponds to IOPCItemProperties::QueryAvailableProperties().

find_by_type ()

For a given type, return all property descriptions.

3.1.10 DAISSession IDL

3.1.10.1 DAIS::Session Overview
The session is an interface inherited by data access and alarms & events sessions. A
session represents a single conversation with the DAIS service. A session has a
connection to a shut down callback used by a server to shut down clients in the case of
an ordered shut down of the server. If the session object is destroyed or a failure is
detected by the server when invoking an operation on any callback objects, then the
session is terminated.

A session object corresponds to the OPC server object; hence each OPC server object
will be represented by a session object in DAIS.

Figure 3-5 DAIS session IDL in UML

Parameter Description

node A node identification.

return A sequence of property descriptions.

Parameter Description

type A type identification.

return A sequence of property descriptions.

Client
(f ro m D A IS S e rv e r)

DAIS: :S hutdownC allback
< < Interfac e> >

s hutdown_notify ()

1

0. .1

1

0. .1
DA IS :: Ses s ion
< <Interfac e> >

s tat us () : DA IS :: Sess ionS tat us
c allbac k () : DA IS :: Shut downCallback
c allbac k (c al lbac k : DA IS:: S hut downCallbac k)
des troy()

0..11 0..11
3-22 Data Acquisition from Industrial Systems, v1.1 June 2005

3

The status() method corresponds to the read only SessionStatus attribute in the IDL.
The callback() get and set methods correspond to the ShutDownCallback attribute.

3.1.10.2 IDL

//File DAISSession.idl
#ifndef _DAIS_SESSION_IDL
#define _DAIS_SESSION_IDL
#pragma prefix "omg.org"
#include <DAISCommon.idl>

module DAIS {

struct SessionStatus {
string name;
DateTime start_time;
DateTime current_time;
DateTime last_update_time;
unsigned long group_count;
long band_width;

};

interface ShutdownCallback
{

void shutdown_notify (
in string reason

);
};

interface Session
{

readonly attribute SessionStatusstatus;

attribute ShutdownCallback callback;

void destroy();
};};
#endif // _DAIS_SESSION_IDL

SessionStatus

A struct holding session status.
June 2005 DAIS, v1.1: Common Declarations 3-23

3

ShutdownCallback

An object implemented by clients and used by the server to indicate that it will shutdown
soon. No further calls should be made and no further data callbacks should be expected.

shutdown_notify()

Session

An interface representing a single conversation with the DAIS service. The interface is
inherited into interfaces representing sessions supporting specific services, (for example,
data access or alarms & events).

status

A read only attribute holding the SessionStatus.

callback

An attribute holding a reference to a ShutDownCallback object. A client that wants to
receive shut down callbacks from a server shall update the attribute with a reference to a
ShutDownCallback object.

Parameter Description

name Within the server unique name of the session.

start_time The time when the session was started. This time is not
reset during the session lifetime.

current_time The current time as known by the server.

last_update_time The time when the server sent an event notification for this
session.

group_count The current number of groups for a data access session or
the number of event subscriptions for an alarms & event
session.

band_width If held updated by the server the percentage bandwidth in
use for communication with underlying RTUs or devices.
A value of 100 or more indicates that more bandwidth for
communication with devices is required than available. A
value of -1 indicates the value is unknown by the server.

Parameter Description

reason An explanation of why the server is shutting down.
3-24 Data Acquisition from Industrial Systems, v1.1 June 2005

3

destroy()

A method for deletion of the session object.

3.1.11 Filter Definitions
Some methods have a filter string (for example, the browse methods find_by_type()
and find_by_parent() in DAISNode and DAISItem). The filter string shall contain a
pattern that is used to match a text string (e.g., the pathname). The text strings matching
the pattern are passing the filter.

The strings that may appear in the filter string pattern are listed below.

Some examples of patterns and strings are given below.

3.1.12 Logical Expressions and Navigation
This section defines a little language that is used to describe logical expressions and
navigation in structures. A logical expression evaluates to true or false and can be used in
filters for collection of data or definition of states, etc. The condition_logic described
in Section 5.2.7, “DAISConditionSpace IDL,” on page 5-32 is used to define states.

Characters in pattern Matches in string

? Any single character.

* Zero or more characters.

Any single digit (0-9).

substring The specified substring

[charlist] Any single character in charlist.

[!charlist] Any single character not in charlist.

Pattern String String pass filter

a*a aBBBa Yes

[A-Z] F Yes

[!A-Z] F No

a#a a2a Yes

a[L-P]#[!c-e] aM5b Yes

B?T* BAT123khg Yes

B?T* CAT123khg No
June 2005 DAIS, v1.1: Common Declarations 3-25

3

In DAIS the data model seen through the API is a hierarchical structure of typed nodes.
A typed node may contain other typed nodes and/or property values (called items). This
data model is described in more detail in Section 4.1, “Information Model,” on page 4-1.
In addition to this hierarchy DAIS supports data models where a property value may
refer to one or more other nodes. Hence navigation via such references is needed as well.
An information model that includes both hierarchy and references is the IEC 61970
briefly described in Section 4.1.5, “Utility SCADA/EMS Measurement Model,” on
page 4-5.

To be able to navigate to nodes in the structure the little language shall include support
for describing paths. XML Path Language (XPath) [13] is a language that supports
navigation in structures and this specification uses a subset of XPath as the logical
expression language. XPath requires the exposed data model to be hierarchical (even
though a model is exposed as hierarchical it may internally be organized in other ways).

A logical expression in XPath is called “PredicateExpr” (statement 9 in the XPath
specification [13]). A PredicateExpr evaluates to true or false. A logical expression in
DAIS is called DAIS_Expression. The rules for a DAIS_expression are:

• DAIS_Expression ::= PredicateExpr

The following restrictions of the functionality described in the XPath specification are
defined for DAIS_Expression:

• The union operator "|" is not supported, refer to statement 18 in [13].

• The arithmetic operators "+", "-", "div", "*" and "mod" are not supported, refer to
statements 25, 26 and 27 in [13].

• unabbreviated location paths is not supported.

• abbreviated location paths is supported.

• the following axes are supported; child, parent, descendant, attribute, and self.

• the following XPath functions are supported; id(), position(), not(), true(), false().

The mapping between DAIS and XML data models is listed below.

Table 3-1 Mapping between DAIS and XML data models

DAIS entity XML entity Comment

Node A DAIS Node element
that may be contained by
another DAIS node
element.

The DAIS Node element name is the
DAIS::Type name
(DAIS::Type::Description.label)
referenced by
DAIS::Node::Description.type. If
the DAIS Node element has a parent
element, the parent is given by
Node::Description.parent.

Node::Description.id An id attribute of type ID
at a DAIS Node element.

Accessed by the id() function

Node::Description.label A child element of a
DAIS Node element.

The element name is “label.” The
value is Node::Description.label.
3-26 Data Acquisition from Industrial Systems, v1.1 June 2005

3

XML data example
<MeasurementModel>

<Measurement id="_100">

<label>M100</label>

<description/>

<Measurement.LimitSets>_200</Measurement.LimitSets>

<MeasurementValue id="_500">

<label>TM100</label>

<description/>

<MeasurementValue.value>30</MeasurementValue.value>

<MeasurementValue.MeasurementValueSource>_400

</MeasurementValue.MeasurementValueSource>

</MeasurementValue>

</Measurement>

<LimitSet id="_200">

<label>summer</label>

<description/>

<Limit id="_300">

Node::Description.
descrip

A child element of a
DAIS Node element.

The element name is “description.”
The value is
Node::Description.descrip.

Item A DAIS Item element that
is child of a DAIS Node
element.

The element name is the
DAIS::Property name
(DAIS::Property::
Description.label) concatenated
with the DAIS Node element name
separated by a “.”. The
DAIS::Property is given by
Item::Description.id.property.
The DAIS Node parent element is
given by
Item::Description.id.resource.

Item::Description.value The value of the DAIS
Item element.

Table 3-1 Mapping between DAIS and XML data models

DAIS entity XML entity Comment
June 2005 DAIS, v1.1: Common Declarations 3-27

3

<label>highalarm</label>

<description/>

<Limit.value>50</Limit.value>

</Limit>

<Limit id="_301">

<label>lowalarm</label>

<description/>

<Limit.value>-50</Limit.value>

</Limit>

</LimitSet>

<MeasurementValueSource id="_400">

<label>telemetry</label>

<description/>

</MeasurementValueSource>

</MeasurementModel>

The XML data example is based on the UML schema in Figure 4-3 on page 4-6 and the
mapping from Table 3-1.

3.1.13 Authorization
Through DAIS an operator gets access to data in a control system. The operator can:

• Read data (Data Access) and alarms and events (Alarms & Events).

• Write data (Data Access)

• Acknowledge alarms (Alarms & Events).

Many control systems implement an authorization scheme where it checks if an operator
is allowed to read, write, or acknowledge.

A DAIS server exposes many data objects. If authorization is supported, checks must be
made by the server. The server must then know who the operator is. An interface that can
be used by the server to get this information is described in the Security Service
Specification [14]. The Security Service Specification includes a rich interface
supporting extensive security comprising:

• Identification and authentication

• Authorization and access control

• Security auditing
3-28 Data Acquisition from Industrial Systems, v1.1 June 2005

3

• Security of communication

• Non-repudiation

• Administration

The smallest need for a DAIS server is to be able to identify an operator (a principal in
Security language) so that access control can be made from within the DAIS server.
Authentication is assumed taken care of at the operating system login. The control of
access to a DAIS server itself within the scope of a secure system is not necessarily a
requirement. The other functions (auditing, secure communication, non-repudiation, and
administration) supported by the Security Service are not necessarily required for a DAIS
server.

3.1.14 Requirement Levels
For a DAIS server the following requirement levels for support by the system are
defined:

0 - No authorization and no requirements.

1 - Identification of principal requiring SecurityLevel1 interfaces, refer to
[14] appendix A.

2 - Security levels as described in [14] appendix C, mainly Security Functionality
Level 1.
June 2005 DAIS, v1.1: Common Declarations 3-29

3

3.2 Server

3.2.1 DAISServer IDL Overview
The DAISServer IDL describes the DAIS server interface and depends on the types of
session interfaces (for example, data access or alarms & events) it implements. A server
not implementing a session type (data access or alarms & events) shall still be capable of
reporting the type as not implemented. The IDL files and dependencies in Figure 3-6 are
defined below.

Figure 3-6 Dependencies between server IDL files

3.2.2 DAIS Server IDL

3.2.2.1 DAIS::Server objects Overview
The fundamental DAIS service from which session objects may be obtained.
DAIS::Server would normally be implemented as a persistent object accessed via the
naming service or the trader service. From the DAIS::Server object, the session objects
for data access or alarms & events are created. A client may create as many session
objects as wanted.

A session can be created for a view. A view corresponds to a specific hierarchical
organization of objects (also called nodes in this specification). The same object may
appear in multiple views and hence in different hierarchical structures. An example is a
breaker appearing in a functional structure (having the function of breaking current) and
in a location structure (the place where it is located), refer also to [10]. Another example
is the same object appearing in different areas of authority.

DA IS S erver

DA IS DA S es s ion
(fro m D a ta Acce s s)

DA IS A E S es s i on
(fro m E ve n tAn d Ala rm s)

DA IS S es s ion
(fro m C o m m o n)
3-30 Data Acquisition from Industrial Systems, v1.1 June 2005

3

A DAIS server supporting data access may have a number of persistent public groups.
Public groups can be used and managed through the group interface, refer to
Section 4.2.7, “DAISGroup IDL,” on page 4-40.

Services that are not implemented will raise the CORBA standard exception
NO_IMPLEMENT. Not implemented exceptions can be expected for a data access
session, an alarms & event session, and inspection.

Figure 3-7 DAIS server IDL in UML

3.2.2.2 IDL

//File: DAISServer.idl
#ifndef _DAIS_SERVER_IDL
#define _DAIS_SERVER_IDL
#pragma prefix "omg.org"
#include <DAISDASession.idl>
#include <DAISAESession.idl>

module DAIS {

enum ServerState {
SERVER_STATE_RUNNING,
SERVER_STATE_FAILED,
SERVER_STATE_NOCONFIG,
SERVER_STATE_SUSPENDED,
SERVER_STATE_TEST

};

DAIS::DataAccess: :Session
(f ro m DAISDASession)

<<Interface>>

DAIS::AlarmsAndEvents::Session
(f rom DAISAESession)

<<Interface>>

Client

DAIS::Server
<<Interface>>

status() : DAISServerStatus
create_data_access_session()
create_data_access_session_for_view()
create_alarms_and_events_session()
create_alarms_and_events_session_for_view()
find_views()

0..n

1

0..n

1

0. .n

1

0. .n

1

0. .n1 0. .n1

GroupEntry
(from DAISG roupEntry)

PublicGroup
id : ResourceID
status : DAIS::DataAccess: :Group::State

0..n

1

0..n

1

0..n
1

0..n
1

June 2005 DAIS, v1.1: Server 3-31

3

struct ServerStatus {
DateTime start_time;
DateTime current_time;
ServerState server_state;
unsigned long session_count;
unsigned long major_version;
unsigned long minor_version;
unsigned long build_number;
string vendor_info;

};

interface Inspection {};

interface Server
{

exception DuplicateName {string reason;};
exception InvalidView {string reason;};

readonly attribute ServerStatusstatus;
readonly attribute SupportedFunctions supported_functions;

DataAccess::Session create_data_access_session(
in string session_name

) raises (DuplicateName);

DataAccess::Session create_data_access_session_for_view(
in string session_name,
in string view_name

) raises (DuplicateName, InvalidView);

AlarmsAndEvents::Session create_alarms_and_events_session(
in string session_name

) raises (DuplicateName);

AlarmsAndEvents::Session
create_alarms_and_events_session_for_view(

in string session_name,
in string view_name

) raises (DuplicateName, InvalidView);

Strings find_views();

Inspection inspect();
};};
#endif // _DAIS_SERVER_IDL

ServerState
3-32 Data Acquisition from Industrial Systems, v1.1 June 2005

3

An enumeration of the states a Server may have.

ServerStatus

EnumValue Description

SERVER_STATE_RUNNING The server is running normally. This is the usual
state for a server.

SERVER_STATE_FAILED A vendor specific fatal error has occurred
within the server. The server is no longer
functioning. The recovery procedure from this
situation is vendor specific.

SERVER_STATE_NOCONFIG The server is running but has no configuration
information loaded and thus cannot function
normally. This state implies that the server
needs configuration information in order to
function. Servers that do not require
configuration information should not return this
state.

SERVER_STATE_SUSPENDED The server has been temporarily suspended via
some vendor specific method and is not getting
or sending data. Note that Quality will be
returned as
OPC_QUALITY_OUT_OF_SERVICE.

SERVER_STATE_TEST The server is in Test Mode. The outputs are
disconnected from the real hardware but the
server will otherwise behave normally. Inputs
may be real or may be simulated depending on
the vendor implementation. Quality will
generally be returned normally.

Member Description

start_time Time the server was started. This is constant for the server
instance and is not reset when the server changes states.
Each instance of a server should keep the time when the
process started.

current_time The current time as known by the server.

server_state The current status of the server. Refer to ServerState
enumeration.

session_count The total number of sessions created by clients for this
server.

major_version The major version of the server software.
June 2005 DAIS, v1.1: Server 3-33

3

supported_functions

A constant that tells what functions are implemented by the DAIS server (e.g., Data
Access, Alarms & Events or both.)

Inspection

An optional interface intended to be specialized into a vendor specific inspection object.
The inspection object is intended to expose server internal details for debugging and
inspection purposes.

Server

An object implementing the DAIS server. A DAIS server might provide more than one
view on nodes. A view is a specific hierarchical organization of nodes and nodes may
appear in more than one hierarchical structure (for example, a functional structure or a
location structure as defined by IEC 1346-1), refer also to Section 2.4, “IEC 1346-1,
Structuring and Naming,” on page 2-7.

DuplicateName

An exception raised when an object is created and the name already exists. No object is
created if the exception is raised. Is used for session and group manager objects.

InvalidView

An exception raised when an invalid view is specified. An invalid view is if the view
name does not exist or a view not intended for the type of session is used (for example,
a view for data access is used for alarms & events).

status

An attribute holding the ServerStatus.

create_data_access_session()

A method for creation of a data access session object. The default view will be used.

minor_version The minor version of the server software.

build_number The ‘build number’ of the server software.

vendor_info Vendor specific string providing additional information
about the server. It is recommended that this mention the
name of the company and the type of device(s) supported.
3-34 Data Acquisition from Industrial Systems, v1.1 June 2005

3

create_data_access_session_for_view()

A method for creation of a data access session object using a view of nodes.

create_alarms_and_events_session()

A method for creation of an alarms & events session object. The default view will be
used.

create_alarms_and_events_session_for_view()

A method for creation of an alarms & events session object using a view of areas. This
allows a server to support different area structures for different purposes (for example,
operational responsibility, workorder management).

Parameter Description

name The name of the session. If an empty name is supplied, the
server will create a name for the session. If a duplicate
name is supplied, no session is generated.

return A reference to the created DAIS::DataAccess::Session
object.

Parameter Description

name The name of the session. If an empty name is supplied, the
server will create a name for the session. If a duplicate
name is supplied, no session is generated.

view_name The name of the view to open. If no name is supplied, the
default view will be used.

return A reference to the created DAIS::DataAccess::Session
object.

Parameter Description

name The name of the session. If an empty name is supplied, the
server will create a name for the session. If a duplicate
name is supplied, no session is generated.

return A reference to the created DAIS::DataAccess::Session
object.
June 2005 DAIS, v1.1: Server 3-35

3

find_views()

A method to get the names for the server supported views.

inspect()

A method for creation of an inspection object.

Parameter Description

name The name of the session. If an empty name is supplied, the
server will create a name for the session. If a duplicate
name is supplied, no session is generated.

view_name The name of the view to open.

return A reference to the created DAIS::DataAccess::Session
object.

Parameter Description

return A sequence of view names.

Parameter Description

return The inspection object.
3-36 Data Acquisition from Industrial Systems, v1.1 June 2005

3

Session Management

Figure 3-8 Session management interaction

 : Client : Client : DAIS::Server : DAIS::Server DataAccess :
DAIS::DataAccess::Session

DataAccess :
DAIS::DataAccess::Session

A&E :
DAIS::AlarmsAndEvents::Session

A&E :
DAIS::AlarmsAndEvents::Session

Create a data access session
for a specific structure and do
work, e.g. create groups and
subscribe

find_views()

create_alarms_and_events_session()

Do work with alarms &
events session e.g. create
an AESubscription

create_data_access_session_for_view()

Get the available views

destroy()

destroy()
June 2005 DAIS, v1.1: Server 3-37

3

3-38 Data Acquisition from Industrial Systems, v1.1 June 2005

DAIS Data Access 4
Contents

This chapter contains the following sections.

The data access interface provides a client with a way to read, write, or subscribe for data
(items) held by the server. It has a discovery interface where a client can browse and
select available data. Selected data is used to compose groups and groups are used in
read, write, or subscribe operations. To get subscribed data, a client has to connect a
callback object to the server so that the server can notify the clients with changed data.

4.1 Information Model
Equipment in any industrial process is usually modeled as entities or classes in
computerized systems. The class name usually reflects the type of equipment. Objects
from such classes are called Real World Objects (RWOs) in this document. RWO classes
have properties describing equipment characteristics (for example, size, length,
geometries, material, nameplate data) as well as application specific data (for example,
impedance parameters, state estimated values). Depending on the purpose of a system
and the managed (industrial) process the RWOs are of different types and contain
different properties. Some RWOs are common between systems and independent of
industrial process like process variables; that is, measurement (state) and control
variables. Other RWOs like transmission lines and breakers are specific to power
transmission.

Section Title Page

“Information Model” 4-1

“API” 4-8
June 2005 Data Acquisition from Industrial Systems, v1.1 4-1

4

RWO will typically have properties depending on the RWO type (for example,
measurement, transformer) and what application or usage the RWO is involved in.
Properties are defined per type of RWO.

4.1.1 Nodes, Items, Types, and Properties
In DAIS RWOs are represented by Nodes. Property instances at a node are represented
by Items. An item may represent a measurement value, a control output value, or any
parameter (for example, a limit value, a unit, a name, a description). A Type and
properties belonging to a type represent an RWO type by DAISProperties. Nodes are
hierarchically structured and the leafs are Items. This is shown in Figure 4-1.

Figure 4-1 DAIS data access server information model

The Component class inherited by the Node and Item classes models the hierarchical
structure. The Node may contain any number of Components as described by the
Contains role having the cardinality many (role is a UML concept, refer to [9] for an
explanation). A Component is a member of one Node as described by the MemberOf
role having the cardinality of 1. A Component can be both a Node and an Item through
the inheritance, which means a Node can contain other Nodes or Items. An Item cannot
contain any Components as it only inherits the MemberOf role and not the Contains role.

Instance data, nodes and items

Meta data, data about nodes and items

Item

cache_value : S impleValue
cache_value_last_updated : DateTime
cache_value_qual ity : DAIS::Quality
scan_rate : uns igned long
access _rights : DAIS: :AccessRights

(from DAISItem)

Property

id : PropertyID
label : string
descript ion : st ring
canonical_data_type : S impleValueType

(from DAISProperty)

0..n

1

0..n

+property 1

Type

id : ResourceID
schema : ResourceID
label : string
description : string

(f rom DAISType)

0..n1..n 0..n1..n

0..n
+aggregated_types
0..n

Node

id : ResourceID
label : s tring
type : ResourceID

(from DAISNode)

1

0..n

+type 1

0..n

NodeItemComponent

pathname : string
(from DAISNode)

1

0.. *

+parent 1

0.. *
4-2 Data Acquisition from Industrial Systems, v1.1 June 2005

4

4.1.2 Naming
Node and item names follow OPC [4] and IEC 1346-1 [10]. Each Node has a label
unique among other Nodes having the same parent; that is, are MemberOf the same
Node. An Item does not have an own label but uses the label from the Property. Each
Item in a Node is associated with different DAISProperties so that the label is unique
among other items at the same node. The labels in the path from an item or node to the
root form a pathname. Labels and pathnames are explained in Figure 4-2.

Figure 4-2 Labels and pathnames

A delimiter, the label delimiter, might separate the labels in a pathname. Assuming the
label delimiter is a “.” An example of an item pathname for a measurement value in
Figure 4-2 is

Cobden.G1.P.Value

where the labels are:

A Node

An Item

label = Cobden
pathname = Cobden
type = Station

Root

label = Ceylon
pathname = Ceylon
type = Station

label = Q1
pathname = Cobden.Q1
type = Breaker

label = G1
pathname = Cobden.G1
type = Generator

label = P
pathname = Cobden.G1.P
type = Measurement label = ActivePower

pathname = Cobden.G1.P.ActivePower
value = 50
time_stamp = 2000-11-17 14.28.05
quality = Good

label = Unit
pathname = Cobden.G1.P.Unit
value = MW
time_stamp = 2000-11-17 14.28.05
quality = Good

label = HighLimit
pathname = Cobden.G1.P. HighLimit
value = MW
time_stamp = 2000-11-17 14.28.05
quality = Good
June 2005 DAIS, v1.1: Information Model 4-3

4

• station; Cobden

• generator; G1

• active power measurement; P

• the actual measurement value property; Value

Exactly how the pathname is composed from the labels is server specific and outside the
scope of this specification.

4.1.3 Item Values
Items are associated with values. Typically an item value provided by a DAIS server is
read from a device and transferred to one or more clients. In a distributed control system
involving remote devices (as indicated in Figure 4-3) communication failures might
make item values not available. To cope with communication failures item values are
associated with a quality. The quality indicates the reliability of the item value. Devices
usually scan item values at a certain rate and item values will be transferred to the DAIS
server at this rate or some other. In the server, item values will appear as time stamped
and quality coded samples. A server that keeps item values in a local cache is expected
to always hold the latest sample. Other item related informations are access-rights and
scan-rate. This information is shown in Figure 4-4. The cache_value is the latest sample
received from a device, the cache_value_last_updated the time when the cache_value
was last updated or validated, and cache_value_quality when the value was last updated
or validated.

For items, a DAIS server exposes the following information to clients:

• the value and its data type,

• the quality of the value,

• the time stamp for the value,

• the fastest scan rate with which the value can be expected to be updated, and

• the access rights.

To make access of item values efficient and avoid reading the values from devices each
time a client requests item values, a DAIS server is expected to have a local cache. The
mechanism for keeping the cache up to date is server specific but a client shall expect the
following from the server:

• Values delivered from the cache reflect the latest value considering update rate and
update dead bands. Based on the agreed update rate (between a client and a server)
a client can expect that the server will validate the values with devices with the
agreed update rate.

• The dead band is expected to be checked at each update or validation. Values that
don’t transgress the deadband will not be reported.

• Time stamps delivered from the cache shall reflect when the values were updated or
validated with the devices according to the agreed update rate. The time stamp
gives the time for the latest successful update or validation.
4-4 Data Acquisition from Industrial Systems, v1.1 June 2005

4

• The quality shall reflect how successful the server has been in keeping the values
updated or validated.

4.1.4 OPC Recommended Properties
DAIS is flexible in terms of what types and properties may exist in a server.

In OPC there is a recommendation of what properties are expected to be supported by a
data access server. These recommended properties are shown in Table 4-1. The column
names correspond to the attributes in the Property class seen in Figure 4-4.

For a system having data described by a particular schema (for example, the CIM for
power systems) the implementation of that schema as seen through DAIS has to be
decided. Either a mapping to the recommended OPC properties can be made or the
schema can be exposed as is through DAIS. This is however outside the scope of this
specification.

4.1.5 Utility SCADA/EMS Measurement Model
The classes and properties defined in the IEC 61970-30x (the CIM) can be mapped onto
the OPC recommended properties. As the CIM is highly structured, this will create a
complicated mapping. An alternative is to expose CIM as is through the DAIS. This
means that the CIM classes and their properties will appear the same as seen through the

Table 4-1 Recommended Properties

label id canonical_data_
type

description

engineeringUnit 100 STRING_TYPE Engineering unit.

description 101 STRING_TYPE Description.

maxValue 102 DOUBLE_TYPE Maximum value.

minValue 103 DOUBLE_TYPE Minimum value.

sensorMaximum 104 DOUBLE_TYPE Maximum value from an analog
input sensor.

sensorMinimum 105 DOUBLE_TYPE Minimum value from an analog
input sensor.

closedLabel 106 STRING_TYPE Text for the closed state for a
discrete status input.

openLabel 107 STRING_TYPE Text for the open state for a
discrete status input.

itemTimeZone 108 UNSIGNED_TYPE

109-4999 Reserved by OPC.
June 2005 DAIS, v1.1: Information Model 4-5

4

DAIS as through the DAF interfaces. As the DAIS requires a hierarchical structuring of
nodes, the CIM equipment hierarchy is selected as the hierarchy exposed through the
DAIS.

Besides the equipment hierarchy the CIM also has a number of other associations. Such
associations may be made visible through the DAIS interface as properties holding
ResourceIDs.

The CIM has several associations between RWOs and ways to structure RWOs. The
requirement from DAIS on the equipment hierarchy is that it is strictly hierarchical, else
DAIS is transparent to any information model.

For RWOs in the equipment hierarchy its properties simply appear as items at the nodes
representing the RWOs. The DAIS supports navigating across associations as
ResourceIDs can be conveyed by SimpleValues.

Utility SCADA/EMS systems have a number of different applications calculating
alternate measurement values. In the IEC61970 draft standard this is modeled by
Measurements containing one or more MeasurementValues, as shown in Figure 4-3.

Figure 4-3 Utility SCADA Measurement Modeling

The Measurement and the MeasurementValue appear as Nodes and their properties as
Items. In the example from Section 4.1.2, “Naming,” on page 4-3, the Measurement
again is represented by the pathname:

Cobden.G1.P

Moving down to MeasurementValue will add its label to the pathname so that it may
look like:

Cobden.G1.P.Telem

Limit
value

Lim itSet

0..*

1

0..*

1

Measurement
<<RWO>>

0..*1

+LimitSets

0..*1

MeasurementValueSource
name

MeasurementV alue
value

<<RWO>>

1..*

1

1..*

1

1
+MeasurementValueSource
1

4-6 Data Acquisition from Industrial Systems, v1.1 June 2005

4

If the MeasurementValue property for the value has the label Value, finally the pathname
for the item will be:

Cobden.16kV.G1.P.Telem.Value

In a system also having a State Estimated MeasurementValue, the pathname for state
estimated value might be:

Cobden.16kV.G1.P.SE.Value

Finally if the state estimated value is to replace the telemetered, this can be implemented
picking the “best” MeasurementValue from Measurement itself shortcutting the
MeasurementValue resulting in the path.

Cobden.G1.P.Value

The CIM classes that shall be navigable and whose data is exposed through DAIS are
listed in Table 4-2.

The table is based on the CIM version given by [11].

Table 4-2 CIM Classes

CIM class Properties and references

Measurement All

MeasurementValue All. MeasurementValues are expected to appear in the
hierarchical structure so that all MeasurementValue instances are
visible in the browser.

MeasurementUnit All

LimitSet All. The Measurement to LimitSet reference has a cardinality
1..*. It is expected that one LimitSet is the current used and
exposed through DAIS.

Limit As the LimitSet to Limit reference has the cardinality 1..* the
mapping through DAIS is expected to be a number of properties
where each property corresponds to one limit value.

ValueAliasSet As the ValueAliasSet to ValueToAlias reference has cardinality
1..* the mapping through DAIS is expected to be a number of
properties where each property corresponds to one translation
from numeric to symbolic value.

Classes in the
hierarchical structure
above Measurement

An implementation is free to expose any hierarchical structure of
classes above the Measurement. Multiple and different structures
are allowed using different views (for views refer to
Section 3.2.2, “DAIS Server IDL,” on page 3-30). An
implementation is also free to expose any properties from these
classes.
June 2005 DAIS, v1.1: Information Model 4-7

4

4.2 API

4.2.1 Data Access IDL Overview
The IDL is divided into files. Each file is modeled as a package in UML. A file that
depends on declarations made in another file needs to include it. Figure 4-4 shows how
the IDL files depend on each other.

Figure 4-4 Dependencies between data access IDL files

4.2.2 DAISDASession IDL

4.2.2.1 DAIS::DataAccess::Session objects overview
The DAIS::DataAccess::Session object implements the data access service on a per client
basis. A data access session object has a number of services provided by one singleton
home object each. Each home object provides methods for manipulation of the data of
the specific type they provide. Rather than exposing data as objects with interfaces it is
exposed as structs or sequences of structs. The reason is that a large number of data items
will become a performance bottleneck if instantiated as objects over an interface. The

DAISGroup

DAISDASession

DAISCommon
(from Common)

DAISNode
(from Common)

DAISItem DAISType
(from Common)

DAISProperty
(from Common)

DAISDAIO DAISGroupEntry

DAISDANode

DAISSession
(from Common)

DAISServer
(from Server)

DAISDASimpleIO
4-8 Data Acquisition from Industrial Systems, v1.1 June 2005

4

DAIS::Group::IHome object is the only object to expose its data as objects; that is, the
DAIS::Group::Manager. Each DAIS::Group::Manager is expected to connect to one
callback object implemented by the client.

Each client may instantiate one or more Sessions. The Session objects have one Type and
Property Home object each. The client shall expect that all Type and Property Home
objects expose the same types and properties.

The session object corresponds to an OPCServer object.

Figure 4-5 DAIS data access session IDL in UML

DAIS::DataAccess:: IO::ConnectionPoint
(f rom DAISDAIO)

<<Interface>>

DAIS::DataAccess:: IO::Callback
(from DAISDAIO)

<<Interface>>

1

0..1

1

0..1

DAIS::Session
(f rom DAISSess ion)

<<Interface>>

status() : DAIS::SessionStatus
callback() : DAIS::ShutdownCallback
callback(callback : DAIS::ShutdownCallback)
destroy()

Client
(f ro m DAISServer)

1

0..*

1

0..*

DAIS::ShutdownCallback
(from DAISSessi on)

<<Interface>>

1 0..11 0..1

1

0..1

1

0..1

DAIS::DataAccess::Group::Manager
(from DAISGroup)

<<Interface>>
DAIS::DataAccess::Group:: IHome

(from DAISGroup)

<<Interface>>

0..n1 0..n1

DAIS::Property: :IHome
(from DAISProperty)

<<Interface>>

DAIS::Type:: IHome
(from DAIST ype)

<<Interface>>

DAIS::DataAccess::Item::IHome
(from DAISItem)

<<Interface>>

DAIS::DataAccess::Node::IHome
(from DAISDANode)

<<Interface>>

DAIS::DataAccess::Session
<<Interface>>

group_home() : DAIS::DataAccess::Group::IHome
simple_io_home : DAIS::DataAccess::SimpleIO::IHome()
node_home() : DAIS::DataAccess::Node::IHome
item_home() : DAIS::DataAccess:: Item::IHome
type_home() : DAIS::Type::IHome
property_home() : DAIS::Property:: IHome

11

11

11

11

11

DAIS::DataAccess::SimpleIO::IHome
(from DAISDASi mp leIO)

<<Interface>>

11
June 2005 DAIS, v1.1: API 4-9

4

4.2.2.2 IDL

//File: DAISDASession.idl
#ifndef _DAIS_DA_SESSION_IDL
#define _DAIS_DA_SESSION_IDL
#pragma prefix "omg.org"

// Common Information
#include <DAISNode.idl>
#include <DAISProperty.idl>
#include <DAISSession.idl>

// Data Access interface
#include <DAISType.idl>
#include <DAISItem.idl>
#include <DAISDANode.idl>
#include <DAISGroup.idl>
#include <DAISDASimpleIO.idl>

module DAIS {
module DataAccess {

interface Session : DAIS::Session
{

readonly attribute Group::IHome group_home;

readonly attribute SimpleIO::IHome simple_io_home;

readonly attribute Node::IHome node_home;

readonly attribute Item::IHome item_home;

readonly attribute Type::IHome type_home;

readonly attribute Property::IHome property_home;
};};};
#endif // _DAIS_DA_SESSION_IDL

Session

Session is an object implementing the data access functions. It inherits common
functionality as shut down callbacks and session status from DAIS::Session.

group_home

A read only attribute holding a reference to a singleton Group::IHome object.
4-10 Data Acquisition from Industrial Systems, v1.1 June 2005

4

node_home

A read only attribute holding a reference to a singleton Node::IHome object.

item_home

A read only attribute holding a reference to a singleton Item::IHome object.

type_home

A read only attribute holding a reference to a singleton Type::IHome object.

property_home

A read only attribute holding a reference to a singleton Property::IHome object.

4.2.3 DAISDANode IDL

4.2.3.1 DAIS::DataAccess::Node overview
The DAIS::DataAccess::Node inherits most of the functionality from DAIS::Node. The
only difference is that it supports to get the tree root node.

Figure 4-6 DAIS data access node IDL in UML

DAIS::DataAccess::Node::IHome

get_root()

<<Interface>>

DAIS::Node::Iterator

max_left()
next_n()
reset()
clone()
destroy()

(from DAISNode)

<<Interface>>

DAIS::Node::IHome

find()
find_each()
find_by_parent ()
find_by_type()
get_pathnames()
get_ids()

(from DAISNode)

<<Interface>>

1

0..n

1

0..n

Node

id : ResourceID
label : string
type : ResourceID

(from DAISNode)

1 0..n1 0..n

NodeItemComponent

pathname : string
(from DAISNode)

1

0..*

+parent

1

0..*
June 2005 DAIS, v1.1: API 4-11

4

4.2.3.2 IDL

//File: DAISDANode.idl
#ifndef _DAIS_DANODE_IDL
#define _DAIS_DANODE_IDL
#pragma prefix "omg.org"
#include <DAISNode.idl>

module DAIS {
module DataAccess {
module Node {

interface IHome : DAIS::Node::IHome
{

ResourceID get_root();
};
};};};
#endif // _DAIS_DANODE_IDL

IHome

An object used for browsing nodes. Most functionality is inherited from the
DAIS::Node::IHome interface.

get_root()

Get the root node of the whole tree of nodes.

Parameter Description

return The root node identification.
4-12 Data Acquisition from Industrial Systems, v1.1 June 2005

4

Hierarchical browsing

Figure 4-7 Hierarchical browsing interaction

Browsing by type

Figure 4-8 Browsing by type interaction

 : Client : Client : DAIS::DataAccess: :Node::IHom e : DAIS::DataAccess: :Node::IHom e : DAIS::Node:: Iterator : DAIS::Node:: Iterator : DAIS: :DataAccess: :Session : DAIS: :DataAccess: :Session

node_home()

get_root()

find_by_parent()

next_n()

find_by_parent()

Get some nodes at the root

P ick one of the nodes at the
root and get it 's children

next_n()

Get some nodes am ong the children
to the node picked at the root

 : Client : Client : DAIS: :DataAccess: :Session : DAIS: :DataAccess: :Session : DAIS: :DataAccess::Node: :IHome : DAIS: :DataAccess::Node: :IHome : DAIS: :Node: :Iterator : DAIS: :Node: :Iterator

node_home()

find_by_type()

next_n()

Find all nodes of a certain type
in sub-tree, in this case the root

get_root ()

next_n()
June 2005 DAIS, v1.1: API 4-13

4

4.2.4 DAISItem IDL

4.2.4.1 DAIS::Item Overview
An item is a property of a node. While a node generally represents a real-world object,
an item represents some characteristic of that object (for example, measurement value,
control variable, or parameter related to the measurement/control process). The concept
of an item in DAIS corresponds to the item in OPC. More precisely, it corresponds to the
“leafs” in the OPC IOPCBrowseServerAddressSpace interface. In the Resource
Description Framework (RDF) data model, the item corresponds to a combination of a
subject and a predicate; that is, a resource and a property.

A node may have many items, each representing a different characteristic of the same
real world object. An item might represent a measured variable, a calculated variable, a
control variable, or a configuration parameter. An item will typically have many values
where each value corresponds to a time stamped sample (a single item value corresponds
to a single statement in the RDF model). Each sample will also have its own quality. An
item value is then qualified by a time stamp and a quality.

An item value and its qualifications are represented by six fixed attributes:

• value - the value.

• time_stamp - the time when the value was last updated.

• quality - the quality of the value.

• canonical_data_type - the data type of the value. This actually belongs to the
property (see Property) but it is mirrored at the item.

• access_rights - tells if the value is read only, write only, or both read/write. The
access right is common for all item values and belongs to the item.

• scan_rate - the fastest rate with which the value can be expected to be updated. The
scan rate is common for all item values and belongs to the item.

For an information model describing this refer to Section 4.1.1, “Nodes, Items, Types,
and Properties,” on page 4-2 and Section 4.1.3, “Item Values,” on page 4-4.

Each item has a universal identity given by its ItemID. The ItemID is made up of the
ResourceID of a node and the PropertyID of a property. The ItemID of an item is the
same in all views provided by a DAIS server. Clients may construct ItemIDs given the
identities of nodes and properties.

DAIS servers may be coordinated with DAF servers so that valid ItemIDs can be
constructed from DAF ResoureIDs.

Within each view provided by the server, an item has a label that is unique among all
items belonging to the same node. Within each view, an item has a unique pathname.
The pathname is a string that contains the item’s label and the pathname of its node.

The pathname must be a valid URI, but apart from that the syntax of pathnames is
implementation dependent.
4-14 Data Acquisition from Industrial Systems, v1.1 June 2005

4

Note – In OPC the pathname is the primary way to identify items and is called the
ItemID. In DAIS the ResourceID, PropertyID pair is the primary identification and so it
is called the ItemID. This is a potential point of confusion. The two ItemIDs play
approximately the same role in OPC and DAIS respectively, but they are not the same
type.

The item interfaces permit the stock of items to be browsed. Once an item is located, the
group interfaces are used to deliver its values, selected by source, at successive times. In
addition, the item interfaces provide the most current value for the default source. In
either case the item value and qualifications are represented by the six fundamental
attributes listed above.

The Item IDL defines a main interface Home for browsing among hierarchically
structured items (leaf nodes). The information model describing the hierarchical structure
is found in Section 4.1.1, “Nodes, Items, Types, and Properties,” on page 4-2.

Figure 4-9 DAIS data access item IDL in UML

4.2.4.2 IDL

//File: DAISItem.idl
#ifndef _DAIS_ITEM_IDL
#define _DAIS_ITEM_IDL
#pragma prefix "omg.org"
#include <DAISCommon.idl>

DAIS::DataAccess:: Item:: Iterator
<<Interface>>

max_left()
next_n()
reset()
clone()
dest roy()

Item
cache_value : S impleValue
cache_value_last_updated : DateTim e
cache_value_quality : DA IS ::Quality
scan_rate : unsigned long
access_rights : DAIS: :AccessRights

DAIS: :DataAccess:: Item:: IHome
<<Interface>>

find()
find_each()
find_by_parent ()
find_by_type()
get_pathnam es()
get_ids()
get_access_paths()

0..n

1

0..n

1

0..n1 0..n1

NodeItem Component
(f rom DA IS Node)

pathnam e : string
June 2005 DAIS, v1.1: API 4-15

4

module DAIS {
module DataAccess {
module Item {

struct Description
{

ItemID id;
string label;
SimpleValue value; //includes the canonical_data_type
Quality dais_quality;
DateTime time_stamp;
AccessRights access_rights;
unsigned long scan_rate;

};
typedef sequence< Description >Descriptions;

interface Iterator
{

boolean next_n (
in unsigned long n,
out Descriptions items

);
void reset();
Iterator clone();
void destroy();

};

interface IHome
{

exception UnknownResourceID {string reason;};
exception UnknownItemID {string reason;};
exception InvalidFilter {string reason;};
exception InvalidValueType {string reason;};
exception UnkownTypeID {string reason;};
exception InvalidAccessRight {string reason;};

Description find (
in ItemID item

) raises (UnknownItemID);

Descriptions find_each(
in ItemIDs items

) raises (UnknownItemID);

Iterator find_by_parent (
in ResourceID node,
in string filter_criteria,
in SimpleValueType data_type_filter,
in AccessRights access_rights_filter

) raises (UnknownResourceID,
4-16 Data Acquisition from Industrial Systems, v1.1 June 2005

4

InvalidFilter,
InvalidValueType,
InvalidAccessRight);

Iterator find_by_type (
in ResourceID node,
in ResourceIDs type_filter,
in string filter_criteria,
in SimpleValueType data_type_filter,
in AccessRights access_rights_filter

) raises (UnknownResourceID,
InvalidFilter,
InvalidValueType,
UnkownTypeID,
InvalidAccessRight);

Strings get_pathnames (
in ItemIDs items

);

ItemIDs get_ids (
in Strings pathnames

);

Strings get_access_paths (
in ItemID item

) raises (UnknownItemID);
};};};};
#endif // _DAIS_ITEM_IDL

Description

A struct describing an item.

Member Description

id The identification of this item.

label The label (single level designation) of the item.

value The current value sample for the item. The SimpleValue
also contains the data type.

dais_quality The current quality of the value.

time_stamp The time stamp for the value sample.

access_rights States if the value is read, write, or both read and write.

scan_rate States the highest update rate that can be expected.
June 2005 DAIS, v1.1: API 4-17

4

Iterator

Refer to Section 4.1.5, “Utility SCADA/EMS Measurement Model,” on page 4-5. This
interface corresponds to the OPC interface EnumString with the difference that the
Iterator return the Description struct instead of a single string.

IHome

An object used for browsing items and corresponds to the
IOPCBrowseServerAddressSpace.

UnknownResourceID

An exception telling that the ResourceID is unknown. The likely reason behind this
exception is some misunderstanding between the server and client code due to a
programming error.

UnknownItemID

An exception stating that the resource or property in the ItemID is unknown. For
methods taking a sequence of item ids the first found unknown id is reported. The likely
reason behind this exception is some misunderstanding between the server and client
code due to a programming error.

InvalidFilter

An exception stating the filter_criteria string is not correct. The likely reason behind this
exception is an erroneously entered string.

InvalidValueType

An exception stating that the SimpleValueType does not exist.

UnknownTypeID

An exception stating one or more TypeIDs does not exist.

InvalidAccessRight

An exception stating that the access rights do not exist.

find()

For a given item browse position, return information about that item.

Parameter Description

item An item identification.

return The item description.
4-18 Data Acquisition from Industrial Systems, v1.1 June 2005

4

find_each ()

For a sequence of items, return information about each item.

find_by_parent ()

For a given node identification, return child items to that node. Hence to reach all items
using this method repeated calls must be made for each node level. This corresponds to
the OPC method BrowseOPCItemIDs with the parameter dwBrowseFilterType set to
OPC_LEAF.

find_by_type()

For a sub-tree given by the node parameter, return all child items matching the filter
criteria. This will return all items under the given sub-tree root node. This will make the
items in the sub-tree to appear flattened out. This corresponds to the OPC method
BrowseOPCItemIDs with the parameter dwBrowseFilterType set to OPC_FLAT.

Parameter Description

items A sequence of item identifications.

return An iterator holding the item descriptions.

Parameter Description

node The parent node identification.

filter_criteria A server specific filter string. This is entirely free format
and may be entered by the user via a text field. An empty
string indicates no filtering. The filter selects only items
with pathnames matching the filter criteria. For a
description of the filter refer to Section 3.1.11, “Filter
Definitions,” on page 3-25.

data_type_filter Select items having the specified canonical data type.

access_rights_filter Select items having the specified access rights.

return An iterator holding item descriptions for items
• that are child to the parent node.
• matching the filter_criteria, data_type_filter, and

access_rights_filter.

Parameter Description

node The identification for the node defining the sub-tree.

type_filter Select nodes in the sub-tree having a type matching any of
the types listed in the type_filter.
June 2005 DAIS, v1.1: API 4-19

4

get_pathnames()

Translate a sequence of item identifications to the corresponding sequence of pathnames.
If an item fails to translate to a pathname (due to an unknown identification), the
corresponding pathname is an empty string.

get_ids()

Translate a sequence of pathnames to the corresponding sequence of item identifications.
If a pathname fails to translate to an item identification (due to an unrecognized
pathname) the corresponding item identification is NULL.

get_access_paths()

Get the possible communication paths how data can be retrieved for the node. An access
path is expected to be human readable so that a human can pick one and feed it back to
the server as the preferred path (via other interfaces).

filter_criteria A server specific filter string. This is entirely free format
and may be entered by the user via a text field. An empty
string indicates no filtering. The filter selects only items
with pathnames matching the filter criteria. For a
description of the filter refer to Section 3.1.11, “Filter
Definitions,” on page 3-25.

data_type_filter Select items having the specified canonical data type.

access_rights_filter Select items having the specified access rights.

return An iterator holding item descriptions for items
• that are child to nodes in the sub-tree and nodes having

a type matching the type_filter.
• matching the filter_criteria, data_type_filter, and

access_rights_filter.

Parameter Description

items The sequence of items.

return The corresponding sequence of pathnames.

Parameter Description

item An item identification.

return A sequence of possible access paths for the item.
4-20 Data Acquisition from Industrial Systems, v1.1 June 2005

4

Browsing Items

Figure 4-10 Browsing items interaction

 : Client : Client : DAIS::DataAccess::Item::IHome : DAIS::DataAccess::Item::IHome : DAIS: :DataAccess:: Item::Iterator : DAIS: :DataAccess:: Item::Iterator : DAIS::DataAccess::Session : DAIS::DataAccess::Session

node_home()

find_by_parent()

next_n()

item_home()

find_by_parent()

Get the items for a
part icular node

Get some item descriptions for
the particular node

Get the items for
another node

Get some node of interest,
refer to browsing of Nodes
June 2005 DAIS, v1.1: API 4-21

4

Navigate across associations

Figure 4-11 Navigating across associations interaction

4.2.5 DAISDAIO IDL

4.2.5.1 DAIS::DataAccess::IO Overview
These are definitions for transmitting item values to clients. Interfaces are defined for
server side read and write operations and client side callback operations. Clients shall
implement the Callback object for the server to use at transfer of data. A client may have
any number of callback objects. The client shall connect each callback object to a server
object implementing ConnectionPoint.

The IO interfaces support three different ways to read data and two different ways to
write data.

Read data
• Synchronous read where the data is received at return from the sync_read() method.

• Asynchronous read where the data is returned at the Callback object.

• Subscription where data is sent spontaneously by the server at the callback object.

Write data
• Synchronous write returning to the client once all the written data has reached the

devices.

 : Client : Client : DAIS::DataAccess: :Item ::IHome : DAIS::DataAccess: :Item ::IHome : DAIS: :DataAccess: :Node::IHome : DAIS: :DataAccess: :Node::IHome

Get information about each
item at a known node

find_by_parent ()

find()
Pick an item holding a
ResourceID and get the node
information for that ResourceID

find_by_parent()

Get the item information
for the new node
4-22 Data Acquisition from Industrial Systems, v1.1 June 2005

4

• Asynchronous write returning when the data is received by the DAIS server. A
callback on Callback is sent by the server once the written data has reached the
devices.

Each item value is transmitted in a struct with a timestamp and quality indication. A
sequence of this struct is either sent via the callback object or directly in read or write
calls.

In OPC the IO interface corresponds to the OPC interfaces IOPCSyncIO, IOPCAsyncIO,
and IOPCDataCallback.

Figure 4-12 DAIS data access IO IDL in UML

The DAISConnectionPoint callback() methods correspond to a get or set method for the
callback attribute.

4.2.5.2 IDL

//File: DAISDAIO.idl
#ifndef _DAIS_DAIO_IDL
#define _DAIS_DAIO_IDL
#pragma prefix "omg.org"
#include <DAISCommon.idl>

module DAIS {

module DataAccess {
module IO {

DA IS ::DataA ccess::IO::S yncIO
<<Interface>>

sync_read()
sync_write()

DA IS ::DataA ccess::IO::A syncIO
<<Interface>>

async_read()
async_write()
refresh()
cancel()
set_enable()
get_enable()

DA IS::DataAccess:: IO ::Item State
<<struct>>

client_handle : ClientItem Handle
t ime_stam p : DateTime
dais_qualit y : DA IS::Qualit y
value : SimpleValue

Client
(fro m DA IS S erve r)

DAIS: :DataA ccess: :IO::Callback
<< Interface>>

on_data_change()
on_read_com plete()
on_write_complete()
on_cancel_complete()

1

0.. *

1

0.. *

DAIS ::DataA ccess: :IO ::ConnectionPoint
<<Interface>>

callback() : DA IS : :DataAccess:: IO ::Callback
callback(callback : DAIS: :DataA ccess: :IO ::Callback)

0..1

1

0..1

1

June 2005 DAIS, v1.1: API 4-23

4

enum DataSource {
 DS_CACHE,
 DS_DEVICE
};

struct ItemState
{

SimpleValue value;
DateTime time_stamp;
Quality dais_quality;
ClientItemHandle client_handle;

};
typedef sequence<ItemState> ItemStates;

struct ItemUpdate
{

ServerItemHandle server_handle;
SimpleValue value;

};
typedef sequence<ItemUpdate> ItemUpdates;

interface SyncIO
{

ItemStates sync_read (
in DataSource data_source,
in ServerItemHandles server_handles,
out ItemErrors errors

);

ItemErrors sync_write (
in ItemUpdates updates

);
};

typedef unsigned long CancelID;

interface AsyncIO
{

exception NotConnected{string reason;};
exception InvalidCancelID{string reason;};
exception NotActive{string reason;};

CancelID async_read (
in ServerItemHandles server_handles,
in DataSource data_source,
in unsigned long transaction_id

) raises (NotConnected, NotActive);

CancelID async_write (
in ItemUpdates updates,
4-24 Data Acquisition from Industrial Systems, v1.1 June 2005

4

in unsigned long transaction_id
) raises (NotConnected);

CancelID refresh (
in DataSource data_source,

) raises (NotConnected,NotActive);

void cancel (
in CancelID cancel_id
in unsigned long transaction_id

) raises (InvalidCancelID);

attribute boolean enabled;
};

interface Callback
{

void on_data_change (
in unsigned long transaction_id,
in boolean all_quality_good,
in ItemStates states

);

void on_read_complete (
in unsigned long transaction_id,
in boolean all_quality_good,
in ItemStates states,
in ItemErrors errors

);

void on_write_complete (
in unsigned long transaction_id,
in ItemErrors errors

);

void on_cancel_complete (
in unsigned long transaction_id

);
};

interface ConnectionPoint
{

attribute Callback cllbck;
};};};};
#endif // _DAIS_DAIO_IDL
June 2005 DAIS, v1.1: API 4-25

4

DataSource

ItemState

The struct is the major carrier of data conveyed over the interface. It is the “message”
holding the payload.

ItemUpdate

The struct carry an update for an item.

SyncIO

An interface for the synchronous operations.

sync_read()

Synchronous read of items. Inactive items will be reported with OPCQuality set to
OPC_QUALITY_OUT_OF_SERVICE.

Member Description

DS_CACHE Data cached in the server is requested.

DS_DEVICE Data from the device is requested. This will force a read
from the device or RTU. A read from device will be made
regardless of the group or item active status and no group
NotActive exception will be forced.

Member Description

value The value itself.

time_stamp The time stamp when the value was last updated.

quality The quality for the value.

client_handle A client side handle enabling the client to make a quick
look up of the item in its internal data structures.

Member Description

server_handle A server side handle enabling the server to make a quick
look up of the item in its internal data structures.

value The value that shall be used in the update.
4-26 Data Acquisition from Industrial Systems, v1.1 June 2005

4

sync_write()

Synchronous write of item values to devices (not the internal server cache). The active
state of the group or the items is ignored.

AsyncIO

An interface for asynchronous read or write operations.

NotConnected

An exception telling that there is no callback object connected by the client.

InvalidCancelID

An exception telling that the supplied cancel id number is not recognized.

Parameter Description

data_source The source from where to read the data.

server_handles A sequence specifying the whole or a subset of the server
side handles as defined via the DAIS::GroupEntry::Manager
interface.

errors A sequence reporting items for which the read failed. An
empty sequence indicates all read operations succeeded.
Reported errors are:
• ERROR_BAD_RIGHTS (item is write only)
• INVALID_DAIS_HANDLE

return A sequence of ItemStates for the items.

Parameter Description

updates A sequence of ItemUpdates specifying all or a subset of the
items defined for a GroupEntry::Manager. The
ItemUpdate::value member is used to update the items in
devices.

return A sequence reporting items for which the write failed. An
empty sequence indicates write operations for all items
succeeded. Reported errors are:
• ERROR_BAD_RIGHTS (item is read only)
• ERROR_INVALID_DAIS_HANDLE
• ERROR_CLAMPED
• ERROR_OUT_OF_RANGE
• ERROR_BAD_TYPE
June 2005 DAIS, v1.1: API 4-27

4

NotActive

An exception telling that the group or all items in the group is inactive. Only issued when
read from cache.

async_read()

Asynchronous read of items from devices. OPC may report read errors both at return
from async_read() and at on_read_complete(). DAIS will report all errors at
on_read_complete()..

async_write()

Asynchronous write of item values to devices (not the internal server cache). OPC may
report write errors both at return from async_write() and at on_write_complete(). DAIS
will report all errors at on_write_complete().

Parameter Description

server_handles A sequence specifying the whole or a subset of the server
side handles, as defined via the DAIS::GroupEntry::Manager
interface.

data_source The source from where to read the data. When reading from
cache, inactive items will be reported with OPCQuality set
to OPC_QUALITY_OUT_OF_SERVICE.

transaction_id A transaction number unique for the client. The number is
returned in the corresponding on_read_complete call.

return A cancellation number unique for the client. The number is
used by a client to cancel an ongoing asynchronous read
operation.

Parameter Description

updates A sequence of ItemUpdates specifying all or a subset of the
items defined for a DAIS::GroupEntry::Manager. The
ItemUpdate::value member is used to update the items in
devices.

transaction_id A transaction number unique for the client. The number is
returned in the corresponding on_read_complete call.

return A cancellation number unique for the client. The number is
used by a client to cancel an ongoing asynchronous write
operation.
4-28 Data Acquisition from Industrial Systems, v1.1 June 2005

4

refresh()

Initiate a complete asynchronous read transfer for all item entries defined via the
DAIS::DataAccess::GroupEntry::Manager interface. Inactive items will be reported with
OPCQuality set to OPC_QUALITY_OUT_OF_SERVICE.

The cyclic on_data_change reporting continues unaffected by a refresh call. However,
items still unchanged after a refresh will not be reported in a succeeding on_data_change
call.

cancel()

Cancel on ongoing refresh, async read, or async write operations. The server is expected
to acknowledge a successfully initiated cancel operation with an on_cancel_complete()
callback.

enable

An attribute used to enable or disable the spontaneous on_data_change() callbacks. The
enable state does not affect on data change response to refresh calls. When a group is
created it is enabled by default.

Callback

An interface implemented by the client and used by the server to send data to the client.

on_data_change()

The method is called by the server when spontaneous changes occur or when the client
has requested an explicit refresh. Only active items are reported in spontaneous calls.

Parameter Description

data_source The source from where to read the data.

transaction_id A transaction number unique for the client. The number is
returned in the corresponding on_data_change call.

return A cancellation number unique for the client. The number is
used by a client to cancel an ongoing asynchronous refresh
operation.

Parameter Description

cancel_id The server generated cancellation number for the operation
to cancel.
June 2005 DAIS, v1.1: API 4-29

4

on_read_complete()

The method is used by the server to report data in response to an asynchronous read.

on_write_complete()

The method is used to report the success of an asynchronous write operation.

Parameter Description

transaction_id If the call is in response to a refresh, the transaction number
for that refresh call. If the call is autonomous due to one or
more spontaneous changes, the number is zero.

all_quality_good All item quality values are good.

item_states A sequence of requested or spontaneously changed
ItemStates.

Parameter Description

transaction_id The transaction number for the corresponding read.

all_quality_good All item quality values are good. This requires that no
errors are reported in the error parameter below.

item_states A sequence of ItemStates matching the read operation.

errors A sequence reporting items for which the read failed. An
empty sequence indicates all read operations initially
succeeded. Reported errors are:
• ERROR_BAD_RIGHTS (item is write only)
• ERROR_INVALID_DAIS_HANDLE

Parameter Description

transaction_id The transaction number for the corresponding write.

errors A sequence reporting items for which the write failed. An
empty sequence indicates all write operations initially
succeeded. Reported errors are:
• ERROR_BAD_RIGHTS (item is read only)
• ERROR_INVALID_DAIS_HANDLE
• ERROR_CLAMPED
• ERROR_OUT_OF_RANGE
• ERROR_BAD_TYPE
4-30 Data Acquisition from Industrial Systems, v1.1 June 2005

4

on_cancel_complete()

The method is used to acknowledge the completion of a successfully initiated cancel call.

ConnectionPoint

An interface used by the client to connect or disconnect a client callback object at the
server.

callback

An attribute referencing the callback object.

In an implementation one get and one set method will implement the callback attribute.
Due to limitation in the UML tool used to draw the diagrams, the attribute is represented
by the two methods connect and disconnect.

4.2.6 DAISGroupEntry IDL

4.2.6.1 DAIS::DataAccess::GroupEntry Overview
A group has a collection of group entries. Each group entry associates the group with an
item. An ItemID identifies a group entry within its group. The pathname of an item may
be used as an alternative to the ItemID when the group entry is created (see
Section 4.2.4, “DAISItem IDL,” on page 4-15).

In OPC the GroupEntry interface corresponds to the interface IOPCItemMgt.

Parameter Description

transaction_id The transaction number for the corresponding cancel.
June 2005 DAIS, v1.1: API 4-31

4

.

Figure 4-13 DAIS data access group entry IDL in UML

4.2.6.2 IDL

//File: DAISGroupEntry.idl
#ifndef _DAIS_GROUP_ENTRY_IDL
#define _DAIS_GROUP_ENTRY_IDL
#pragma prefix "omg.org"
#include <DAISCommon.idl>

module DAIS {
module DataAccess {
module GroupEntry {

struct Description
{

ServerItemIdentification server_item_id;
string access_path;
ClientItemHandle client_handle;
SimpleValueType requested_data_type;
boolean active;

};
typedef sequence<Description> Descriptions;

struct DetailedDescription
{

ItemID item;
string pathname;
string access_path;
ServerItemHandle server_handle;

DAIS::DataAccess: :GroupEntry:: Iterator
<<Interface>>

max_left()
next_n()
reset()
clone()
destroy()

GroupEntry
pathname : string
item : DAIS:: ItemID
act ive : boolean
access_path : string
client_handle : Client ItemHandle
requested_data_type : SimpleValueType
access_rights : AccessRights
canonical_data_type : SimpleValueType

DAIS::DataAccess: :GroupEntry::Manager
<<Interface>>

create_entries()
validate_entries()
remove_entries()
set_active_state()
set_inact ive_state()
set_client_handles()
set_data_types()
create_group_entry_iterator()

0..*

1

0..*

1 0..n

1

0..n

1

4-32 Data Acquisition from Industrial Systems, v1.1 June 2005

4

ClientItemHandle client_handle;
SimpleValueType requested_data_type;
SimpleValueType canonical_data_type;
AccessRights access_rights;
boolean active;

};
typedef sequence<DetailedDescription> DetailedDescriptions;

struct Result
{

ServerItemHandle server_handle;
ClientItemHandle client_handle;
AccessRights access_rights;
SimpleValueType canonical_data_type;

};
typedef sequence<Result> Results;

struct HandleAssociation
{

ServerItemHandle server_handle;
ClientItemHandle client_handle;

};
typedef sequence<HandleAssociation>HandleAssociations;

struct DataTypeDescription
{

ServerItemHandle server_handle;
SimpleValueType requested_data_type;

};
typedef sequence<DataTypeDescription>DataTypeDescriptions;

interface Iterator
{

boolean next_n (
in unsigned long n,
out DetailedDescriptions entries

);
void reset();
Iterator clone();
void destroy();

};

interface Manager
{

Results create_entries (
in Descriptions entries,
out ItemErrors errors

);

Results validate_entries (
June 2005 DAIS, v1.1: API 4-33

4

in Descriptions entries,
out ItemErrors errors

);

ItemErrors remove_entries (
in ServerItemHandles server_handles

);

ItemErrors set_active_state (
in ServerItemHandles server_handles

);

ItemErrors set_inactive_state (
in ServerItemHandles server_handles

);

ItemErrors set_client_handles (
in HandleAssociations handle_associations

);

ItemErrors set_data_types (
in DataTypeDescriptions descriptions

);

Iterator create_group_entry_iterator ();
};};};};
#endif // _DAIS_GROUP_ENTRY_IDL

Description

The struct describes a group entry for an item. The client to configure new entries in a
group uses it. It directly corresponds to the OPCItemDef struct.

Member Description

server_item_id The identification of the item.

access_path The access path used by the server to connect to the device
and sensor. An empty string as input tells the server to
select the access path.

client_handle The client provided handle to the item.

requested_data_type The data type requested by the client for the value.

active Tells if the item is active and data from devices is updated
in the cache.
4-34 Data Acquisition from Industrial Systems, v1.1 June 2005

4

DetailedDescription

The struct is used to deliver group entry information to the client. In OPC this is made
with the struct OPCITEMATTRIBUTES. Description is used for both these OPC structs.

Result

The struct is used to transfer the result from a create_entries() or validate_entries() call
back to a client. In OPC the corresponding struct is OPCITEMRESULT.

HandleAssociation

The struct is used to change the association between server handles and client handles in
the set_client_handle() method.

Member Description

item The item identification by an ItemID.

pathname A string concatenating the labels for all nodes in the
path from the item up to the root.

access_path The access path used by the server to connect to the
device and sensor. An empty string as input tells the
server to select the access path.

server_handle Server provided handle for the item.

client_handle Client provided handle for the item.

requested_data_type The data type requested by the client for the value.

canonical_data_type The data type the server uses internally for the value.

access_rights The access rights (read, write, and read-write)

active Tells if the item is active and data from devices is
updated in the cache.

Member Description

server_handle The handle given to the client for the item.

client_handle The supplied client handle for the item.

access_rights The access rights (read, write, and read-write)

canonical_data_type The data type the server uses internally for the value.

Member Description

server_handle The handle given to the client for the item.

client_handle The new client handle wanted by the client.
June 2005 DAIS, v1.1: API 4-35

4

DataTypeDescription

The struct is used to change the data type of the value delivered in the ItemState struct.

Iterator

Refer to Section 3.1.6, “Iterator Methods IDL,” on page 3-10. The interface directly
corresponds to the EnumOPCItemAttributes interface.

Manager

An interface for creation and browsing of group entries. The interface directly
corresponds to the IOPCItemMgt interface.

create_entries()

Adds one or more entries to a group.

validate_entries()

Is used to determine if an item is valid (could it be added without error). Also returns
information about the item such as canonical datatype. Does not affect the group in any
way.

Member Description

server_handle The handle given to the client for the item.

requested_data_type The new data type wanted by the client.

Parameter Description

entries Group entry descriptions for entries to be created.

errors A sequence of structs reporting the items that were not
entered due to an error. Reported errors are:
• ERROR_UNKNOWN_ITEMID
• ERROR_UNKNOWN_PATHNAME
• ERROR_BAD_TYPE
• ERROR_UNKNOWN_ACCESS_PATH

return A sequence of result descriptions for the entries that were
entered in the group.
4-36 Data Acquisition from Industrial Systems, v1.1 June 2005

4

remove_entries()

Used to remove entries from a group.

set_active_state()

Used to activate individual items in a group. Activate state means that the server acquires
data from devices. Inactive state means that the server does not acquire any data. The
group enable state control if acquired data shall be sent further to subscribers via
on_data_change.

Parameter Description

entries Group entry descriptions for entries to be validated.

errors A sequence of structs reporting the items that could not be
validated due to an error. Reported errors are:
• ERROR_UNKNOWN_ITEMID
• ERROR_UNKNOWN_PATHNAME
• ERROR_BAD_TYPE
• ERROR_UNKNOWN_ACCESS_PATH

return A sequence of result descriptions for the entries that were
validated.

Parameter Description

server_handles Server handles for entries that shall be removed.

return A sequence of structs reporting the items that were not
recognized or could not be removed due to an error.
Reported error(s):
• ERROR_UNKNOWN_ITEMID

Parameter Description

server_handles Server handles for items to activate.

return A sequence of structs reporting the items that were not
recognized or could not be activated due to an error.
Reported error(s):
• ERROR_UNKNOWN_ITEMID
June 2005 DAIS, v1.1: API 4-37

4

set_inactive_state()

Used to deactivate individual items in a group.

set_client_handles()

Used to change the client handles for items.

set_data_types()

Used to change the requested data types for items.

create_group_entry_iterator()

Used to create a group entry iterator. Used by clients to inspect existing group entries.

Parameter Description

server_handles Server handles for items to deactivate.

return A sequence of structs reporting the items that were not
recognized or could not be deactivated due to an error.
Reported error(s):
• ERROR_UNKNOWN_ITEMID

Parameter Description

handle_associations Change descriptions for the items where to change the
client handles.

return A sequence of structs reporting the items that were not
recognized or could not be updated due to an error.
Reported error(s):
• ERROR_UNKNOWN_ITEMID

Parameter Description

descriptions Change descriptions for the items where to change the data
types.

return A sequence of structs reporting the items that were not
recognized or could not be updated due to an error.
Reported errors are:
• ERROR_UNKNOWN_ITEMID
• ERROR_BAD_TYPE

Parameter Description

return The GroupEntry Iterator.
4-38 Data Acquisition from Industrial Systems, v1.1 June 2005

4

4.2.7 DAISGroup IDL

4.2.7.1 DAIS::DataAccess::Group Overview
A group is a collection of items and a connection to one or more consumers of item
values. Clients create groups and their lifetime is bounded by the session to which they
belong. (See Section 4.2.2, “DAISDASession IDL,” on page 4-8).

The purpose of a group is to convey selected item values to a client. A callback object
may be connected to a group to receive item value information (see Section 4.2.5,
“DAISDAIO IDL,” on page 4-23). Items may be added and removed from a group as
group entries (see Section 4.2.6, “DAISGroupEntry IDL,” on page 4-32). A group has an
update rate that determines how frequently updated values for its entries are notified to
its connected callback objects. A group also has other states that control its notification
behavior.

A group may also be initialized with a predefined set of entries. A set of entries is called
a public group and is identified by a ResourceID. A client can create or remove public
groups. A server may represent a public group as a node such that the ResourceID of the
public group and the node are identical. This would allow clients to locate public groups
by name.

The DAIS:: DataAccess::Group::Manager object implements interfaces from the
DAISDAIO and DAISGroupEntry IDLs. This is specified by inheritance of interfaces as
seen in Figure 4-14. A DAIS::DataAccess::Group::Manager has a state given by the
DAIS::DataAccess::Group::State struct and a DAIS::DataAccess::Group::Manager object
is created from the DAIS::DataAccess::Group::IHome object.

In OPC the Group interface corresponds to the interfaces IOPCGroupStateMgt and
IOPCPublicGroupStateMgt.
June 2005 DAIS, v1.1: API 4-39

4

Figure 4-14 DAIS data access group IDL in UML

4.2.7.2 IDL

//File: DAISGroup.idl
#ifndef _DAIS_GROUP_IDL
#define _DAIS_GROUP_IDL
#pragma prefix "omg.org"

DAIS::DataAccess::IO::SyncIO
(from DAISDAIO)

<<Interface>>

sync_read()
sync_write()

DAIS::DataAccess::IO::AsyncIO
(from DAISDAIO)

<<Interface>>

async_read()
async_write()
refresh()
cancel()
set_enable()
get_enable()

DAIS::DataAccess::Group::State
update_rate : unsigned long
active : boolean
time_bias : long
percent_dead_band : double
locale_id : unsigned long
name : string

DAIS::DataAccess::Group::IHome
<<Interface>>

find_public_groups()
find()
create_group()
clone_group_from_public()
remove_public_group()

DAIS::DataAccess::Group::Manager
<<Interface>>

get_state()
set_state()
clone()
clone_group_to_public()
destroy()

1
1

1
1

1

0..n

1

0..n

DAIS::DataAccess::GroupEntry::Iterator
(from DAISGroupEntry)

<<Interface>>

DAIS::DataAccess::GroupEntry::Manager
(f rom DAISGrou pEntry)

<<Interface>>

create_entries()
validate_entries()
remove_entries()
set_active_state()
set_inactive_state()
set_client_handles()
set_data_types()
create_group_entry_iterator()

0..*

1

0..*

1

DAIS::DataAccess::IO::Callback
(from DAISDAIO)

<<Interface>>DAIS::DataAccess::IO::ConnectionPoint
(f rom DAISDAIO)

<<Interface>>

callback() : DAIS::DataAccess::IO::Callback
callback(callback : DAIS::DataAccess::IO::Callback)

0..1

1

0..1

1

4-40 Data Acquisition from Industrial Systems, v1.1 June 2005

4

#include <DAISCommon.idl>
#include <DAISGroupEntry.idl>
#include <DAISDAIO.idl>

module DAIS {
module DataAccess {
module Group {

exception DuplicateName {string reason;};

struct State
{

string name;
unsigned long update_rate;
boolean active;
long time_bias;
double percent_deadband;
unsigned long locale_id;

};

struct PublicGroupDescription
{

ResourceID id;
State group_state;

};
typedef sequence<PublicGroupDescription>PublicGroupDescriptions;

interface Manager :
GroupEntry::Manager
,IO::AsyncIO
,IO::SyncIO
,IO::ConnectionPoint

{

State get_state ();

unsigned long set_state (
in State group_state

) raises (DuplicateName);

Manager clone (
in string name

) raises (DuplicateName);

PublicGroupDescription clone_group_to_public (
in string name

) raises (DuplicateName);

void destroy ();
};
June 2005 DAIS, v1.1: API 4-41

4

interface IHome
{

exception UnknownResourceID {string reason;};

PublicGroupDescriptions find_public_groups();

PublicGroupDescription find (
in ResourceID public_group

) raises (UnknownResourceID);

Manager create_group (
in State group_state,
out unsigned long revised_update_rate

) raises (DuplicateName);

Manager clone_group_from_public (
in ResourceID public_group,
in string name

) raises (DuplicateName, UnknownResourceID);

void remove_public_group (
in ResourceID public_group

) raises (UnknownResourceID);
};};};};
#endif // _DAIS_GROUP_IDL

DuplicateName

An exception raised when an object is created and the name already exists. No object is
created if the exception is raised. Used for session and group manager objects.

State

The struct contains information about the group state.

Members Description

name Within the session and public groups, unique name of the
group.

update_rate Update rate for the group in milliseconds. When used as
input it specifies the fastest rate at which data changes may
be sent to on_data_change() for items in this group. This
also indicates the desired accuracy of cached data. This is
intended only to control the behavior at the interface. How
the server deals with the update rate and how often it
actually polls the hardware internally is an implementation
detail. Passing 0 indicates the server should use the fastest
practical rate.
4-42 Data Acquisition from Industrial Systems, v1.1 June 2005

4

Manager

An object used to manage a group. It has a set of methods related to the group itself. It
also inherits methods from interfaces for group entry management and data transfer. For
group entry management refer to Section 4.2.6, “DAISGroupEntry IDL,” on page 4-32
and for data transfer refer to Section 4.2.4, “DAISItem IDL,” on page 4-15. The
DAIS::DataAccess::Group::Manager interface corresponds to the IOPCGroupStateMgt
interface.

get_state()

The method gets the group status.

set_state()

The method sets the group status.

active Indicates if the group is active and data from devices is
updated in the cache.

time_bias The time bias in minutes for the group. A zero value when
used as input will tell the server to use the default system
time bias. This bias behaves like the Bias field in the Win32
TIME_ZONE_INFORMATION structure.

percent_deadband The percent change for an item value that will cause a call
back for that value. This parameter only applies to items in
the group that are of analog type. If a client specifies a zero
deadband, the value will be reported with the update rate.

locale_id The localization number for the language used when
returning string values.

Parameter Description

return State

Parameter Description

group_state The State with the updates. All members will be updated. If
the name already exists, a DuplicateName exception is
raised and no update is made.

return The closest update rate the server is able to provide for the
group.
June 2005 DAIS, v1.1: API 4-43

4

clone()

Create a copy of a group.

clone_group_to_public ()

Create a public copy of a group including all items and the group state.

destroy()

Delete the group.

PublicGroupDescription

A struct describing public groups.

IHome

The factory object for groups. The corresponding OPC interface is IOPCServer.

UnknownResourceID

An exception telling that the ResourceID is unknown. For methods taking a sequence of
resource ids the first found unknown id is reported. The likely reason behind this
exception is some misunderstanding between the server and client code due to a
programming error.

Parameter Description

name The name to be given for the new group. If the name
already exists, a DuplicateName exception is raised and no
clone is created.

return A description of the public group.

Parameter Description

name The name to be given for the new group. If the name
already exists, a DuplicateName exception is raised and no
public group is created.

return A description of the public group.

Member Description

id A ResourceID identifying the public group.

group_state The group state struct including the group name.
4-44 Data Acquisition from Industrial Systems, v1.1 June 2005

4

find_public_groups()

Find all public groups defined in the server.

find()

For a given public group, return information about that group.

create_group()

Create a new initially empty group.

clone_group_from_public()

Create a copy from a public group having an existing set of entries and state.

remove_public_group()

Remove a public group.

Member Description

return A sequence of public group descriptions.

Member Description

public_group A ResourceID identifying the public group.

return A public group description.

Parameter Description

group_state The State to be set for the new group.

revised_update_rate The closest update rate the server is able to provide for the
group.

return The new group.

Parameter Description

public_group The identification of the public group.

name The name of the new group.

return The new group.
June 2005 DAIS, v1.1: API 4-45

4

Group management

Figure 4-15 Group management interaction

Parameter Description

public_group The identification of the public group.

return None.

 : Client : Client : DAIS::DataAccess::Session : DAIS::DataAccess::Session : DAIS::DataAccess::Group::IHome : DAIS::DataAccess::Group::IHome : DAIS::DataAccess::Group::Manager : DAIS::DataAccess::Group::Manager

group_home()

create_group()

create_entries()

Do work with group manager,
e.g. activate subscription

destroy()
4-46 Data Acquisition from Industrial Systems, v1.1 June 2005

4

Activate subscription

Figure 4-16 Active subscription interaction

 : Client : Client : DA IS ::DataAccess::Group::Manager : DA IS ::DataAccess::Group::Manager : DA IS ::DataAccess:: IO: :Callback : DA IS ::DataAccess:: IO: :Callback

callback(DAISDACallback)

refresh()
on_data_change()

Forced by
refresh

on_data_change()

Spontaneous

on_data_change()

Spontaneous
June 2005 DAIS, v1.1: API 4-47

4

Activate a subscription silently

Figure 4-17 Activate a subscription silently interaction

 : Client : Client : DAIS::DataAccess::Group::Manager : DAIS::DataAccess::Group::Manager : DAIS::DataAccess:: IO::Callback : DAIS::DataAccess:: IO::Callback

set_inact ive_state()

callback()

set_enable()

set_active_state()

Disable

refresh()
on_data_change()

set_enable()

Enable
on_data_change()
4-48 Data Acquisition from Industrial Systems, v1.1 June 2005

4

Cancel

Figure 4-18 Cancellation interaction

4.2.8 DAISDASimpleIO IDL

4.2.8.1 DAIS::DataAccess::SimpleIO Overview
The purpose of the interface is to provide a simple read and write of data. The
functionality is the same as the synchronous read and write described in Section 4.2.5,
“DAISDAIO IDL,” on page 4-23 but without having to create a group.

4.2.8.2 IDL

//File: DAISDASimpleIO.idl
#ifndef _DAIS_DA_SIMPLE_IO_IDL
#define _DAIS_DA_SIMPLE_IO_IDL
#include <DAISCommon.idl>

module DAIS {
module DataAccess {
module SimpleIO {

 : DAIS: :DataAccess: :Group::Manager : DAIS: :DataAccess: :Group::Manager : DAIS::DataAccess:: IO::Callback : DAIS::DataAccess:: IO::Callback

Cancel refresh
operat ion

Cancel
async_read

Cancel
async_write

 : Client : Client

refresh()

cancel()
on_cancel_complete()

async_read()

cancel()
on_cancel_complete()

async_write()

cancel()
on_cancel_complete()
June 2005 DAIS, v1.1: API 4-49

4

enum DataSource {
 DS_CACHE,
 DS_DEVICE
};

struct ItemError
{

Error err;
ServerItemIdentification id;
string reason;

};
typedef sequence<ItemError> ItemErrors;

struct ItemState
{

SimpleValue value;
DateTime time_stamp;
Quality dais_quality;
ServerItemIdentification id;

};
typedef sequence<ItemState>ItemStates;

struct ItemUpdate
{

ServerItemIdentification id;
SimpleValue value;

};
typedef sequence<ItemUpdate> ItemUpdates;

interface IHome
{

ItemStates read (
in DataSource data_source,
in ServerItemIdentifications ids,
out ItemErrors errors

);

ItemErrors write_with_qt (
in ItemStates updates

);

ItemErrors write (
in ItemUpdates updates

);
};};};};
#endif // _DAIS_DA_SIMPLE_IO_IDL
4-50 Data Acquisition from Industrial Systems, v1.1 June 2005

4

DataSource

Find all public groups defined in the server.

ItemError

A struct for reporting of item related errors. The struct is different from the
DAIS::ItemError because no handles are used to identify the item in SimpleIO.

ItemState

The struct is the carrier of data conveyed over the interface. It is the “message” holding
the payload. This is basically the same struct as DataAccess::IO::ItemState with the
difference that instead of a handle for identification the full server identification is used.

ItemUpdate

The struct carries an update for an item.

Member Description

DS_CACHE Data cached in the server is requested.

DS_DEVICE Data from the device is requested. This will force a read
from the device or RTU. A read from device will be made
regardless of the group or item active status and no group
NotActive exception will be forced.

Member Description

err An error code as described for DAIS::ItemError.

id The identification of the item.

reason An additional text explaining the error.

Member Description

value The value itself.

time_stamp The time stamp when the value was last updated.

quality The quality for the value.

id The identification of the value in the server.

Member Description

id The identification of the value in the server.

value The value that shall be used in the update.
June 2005 DAIS, v1.1: API 4-51

4

IHome

The interface for simple IO operations.

read

Synchronous read of items. Inactive items will be reported with OPCQuality set to
OPC_QUALITY_OUT_OF_SERVICE.

write_with_qt

Synchronous write of item values including quality and time stamp. The active state of
the group or the items is ignored.

Parameter Description

data_source The source from where to read the data, see DataSource
above.

ids A sequence specifying the server identifications to read.

errors A sequence reporting items for which the read failed. An
empty sequence indicates all read operations succeeded.
Reported errors are:
• ERROR_BAD_RIGHTS (item is write only)
• ERROR_UNKNOWN_PATHNAME
• ERROR_UNKNOWN_ITEMID

return A sequence of ItemStates for the items.

Parameter Description

updates A sequence of ItemStates specifying the updates including
time stamp and quality.

return A sequence reporting items for which the write failed. An
empty sequence indicates write operations for all items
succeeded. Reported errors are:
• ERROR_BAD_RIGHTS (item is read only)
• ERROR_UNKNOWN_PATHNAME
• ERROR_UNKNOWN_ITEMID
• ERROR_CLAMPED
• ERROR_OUT_OF_RANGE
• ERROR_BAD_TYPE
4-52 Data Acquisition from Industrial Systems, v1.1 June 2005

4

write

Synchronous write of item values only. The active state of the group or the items is
ignored.

Parameter Description

updates A sequence of ItemUpdates specifying the update values.

return A sequence reporting items for which the write failed. An
empty sequence indicates write operations for all items
succeeded. Reported errors are:
• ERROR_BAD_RIGHTS (item is read only)
• ERROR_UNKNOWN_PATHNAME
• ERROR_UNKNOWN_ITEMID
• ERROR_CLAMPED
• ERROR_OUT_OF_RANGE
• ERROR_BAD_TYPE.
June 2005 DAIS, v1.1: API 4-53

4

4-54 Data Acquisition from Industrial Systems, v1.1 June 2005

Alarms & Events 5
Contents

This chapter contains the following sections.

The alarms & events interface provides a client with a way to subscribe for alarms and
events generated within RTUs, devices, or any software. The server supports various
filter functions so that the client can compose a filter matching its current interest in
alarms and events. Once the client sets up a filter specification it has to supply the server
a callback object used by the server to notify the client with generated alarms and events.

Events just reports state changes while alarms have an associated alarm state and fault
state. Alarms are generated with the intent to gain attention to a condition that needs
operator intervention. Hence alarms and events are recorded and presented to operators.
Alarm presentation usually involves acoustic annunciation and some highlighting (e.g.,
red color and/or blink, etc.). An operator shall acknowledge the alarm state and the fault
state disappear when the fault causing the alarm disappears.

Equipment and functions that may generate alarms and events are:

• Process instrumentation making sensor data and actuation capabilities available.

• Remote terminal units (RTUs) or substation control systems, reading sensor data,
and controlling actuators.

• Process communication units connecting to RTUs or substation control systems.

• SCADA subsystem making processed sensor data and control capabilities available
to operators, applications, or other systems.

Section Title Page

“Information Model” 5-2

“API” 5-6
June 2005 Data Acquisition from Industrial Systems, v1.1 5-1

5

• Energy Management System (EMS) - subsystem using the SCADA subsystem for
extended processing and control.

An example flow of alarms, events, and acknowledgments are shown in Figure 5-1.

Figure 5-1 Alarms, events and acknowledgment flows in a SCADA/EMS

5.1 Information Model
Alarms and events are generated by a source represented by Source. A source might be a
single measurement, a collection of measurements, or some other object. A collection of
measurements may represent a complex real world object like a generator or some
control function for the generator. A source has a name property. The source is also
associated with a type that describes any additional properties. If a DAIS server
implements both data access and alarms & events, a client shall expect there is a
mapping between sources and nodes. A client shall however not make assumptions on
how the mapping is made and use the method translate_to_item_ids() to get the mapping
from the server.

Sources are organized in areas represented by Area. An area typically represents area of
responsibility concerning supervision and operation of sources. Areas may however also
be used for other groupings of sources. Areas can be hierarchically structured to allow
creation of hierarchically organized responsibilities. Multiple views of areas are
supported.

Alarms and events are categorized. Category represents the categories. Three main
categories are defined and must be implemented by a server:

• simple - describing events that do not have an explicitly modeled condition space.

SCADA

Application
Server

Instrumentation

RTU/
Process station

Server

Server

HMI

Data traffic for use cases

Alarms and Events

Acknowledgments
5-2 Data Acquisition from Industrial Systems, v1.1 June 2005

5

• tracking - describing events generated due to an operator action.

• condition - describing events generated based on an explicitly modeled condition
space.

The categories simple and tracking are used for events, and the category condition is
used for alarms.

For each main category it is possible to define a number of sub-categories. A server is
free to implement any sub-categories. Each type of source is expected to be associated
with at least one main category and one or more sub-categories for each main category.
The main categories are not expected to have an association with a source type. Sub-
categories however are all expected to have an associated source type.

A Condition category is associated with one or more condition spaces. ConditionSpace
represents a condition space. Depending on how limits are applied to the properties
defined by the type associated with a condition category it is possible to create a space
consisting of different discrete conditions. Condition describes each discrete condition. A
condition space will have a number of conditions defined for it. A Transition describes
each possible transition between a pair of conditions. The alarms & event session does
not however provide any methods for direct access of transitions. When a transition is
traversed a condition event is generated.

A source may be associated with one or more condition spaces. Each such association
has status information describing the current condition. The association and its data are
called SourceCondition. The source condition is identified by its associated source and
condition space.

A source is of a specific type (e.g., measurement, breaker, generator, tank, etc.) and the
type has one or more properties in the same way as a node (refer to Section 4.1.1,
“Nodes, Items, Types, and Properties,” on page 4-2). A category may have any number
of properties associated with it. An alarm or event may contain values for the properties
associated with the corresponding category. This is used to convey additional server
specific information with alarms and events. Specification of what properties are
associated with categories is outside the scope of this specification.

The described classes are shown in Figure 5-2. The attributes are described later with the
description of the interfaces.
June 2005 DAIS, v1.1: Information Model 5-3

5

Figure 5-2 DAIS Alarms and Events Information Model

AreaSourceComponent
(f rom DAISAEArea)

id : ResourceID
name : string
descript ion : string

Area
(f rom DAISAEArea)

0..n0..n

+parent

SimpleCategory
(f ro m DAISAECate gory)

TrackingCategory
(f ro m DAISAECate gory)

ConditionEvent
(from DAISAEIO)

Condit ionCategory
(f ro m DAISAECate gory)

11

Transit ion
(f rom DAISAECo ndit ionSp ac e)

0..n
1

0..n
1

ConditionSpace
(f rom DAISAECondit ion Space)

id : ResourceID
name : string
description : string

1..n 11..n 1

Condit ion
(f rom DAISAECondit ion Space)

id_number : unsigned long
name : string
descript ion : string
severity : unsigned long
condition_logic : string

1..n+conditions 1..n

0..n0..n

1

0..n

1

0..n

SourceCondition
(from DAISAESo urceCon di t ion)

condition_op_state : DAISCondit ionOpState
quality : DAIS::Quality
last_acknowledge : DateTime
condition_last_active : DateTime
condition_space_last_active : DateTime
condition_space_last_inactive : DateTime
acknowledger_name : string
comment : string

1
0..n
1

0..n

0..n

1

0..n

+active_condition

1

Source
(from DAISAESourc e)

0..n
1

0..n
1

Type
(f rom DAIST ype)

0..n

+aggregated_types

0..n
0..n

1

0..n

1
Property

(from DAISProperty)1. .n
0..n

1..n
0..n

Category
(fro m DAISAECateg ory)

0..n

0..n

0..n

0..n
5-4 Data Acquisition from Industrial Systems, v1.1 June 2005

5

The objects in DAIS alarms and events has the following mapping to OPC alarms and
events objects.

5.1.1 OPC Recommended Properties
In OPC there is a recommendation of what properties are expected to be supported by an
alarm & event server. The recommended properties are shown in Table 5-1. The column
names correspond to the attributes in the Property class.

DAIS A&E object OPC A&E object

Source Source

Area Area

Property EventAttribute

Category EventCategory

The categories; simple, tracking and condition EventType

ConditionSpace Condition

Condition SubCondition

SourceCondition SourceCondition

Table 5-1 Recommended Properties

label id canonical_
data_type

description

Condition Status 300 STRING_TYPE The current alarm or condition
status associated with the Item (for
example, “NORMAL,” “ACTIVE,”
“HI ALARM”).

Alarm Quick
Help

301 STRING_TYPE A short text string providing a brief
set of instructions for the operator to
follow when this alarm occurs.

Alarm Area List 302 STRING_TYPE
sequence

An array of strings indicating the
plant or alarm areas that include this
ItemID.

Primary Alarm
Area

303 STRING_TYPE A string indicating the primary plant
or alarm area including this ItemID.

Condition Logic 304 STRING_TYPE An arbitrary string describing the
test being performed (for example,
“High Limit Exceeded” or “TAG.PV
>= TAG.HILIM”). Refer to
Section 5.2.7.3, “Condition Logic,”
on page 5-38.
June 2005 DAIS, v1.1: Information Model 5-5

5

5.2 API

5.2.1 Alarms & Events IDL Overview
The dependencies among the different IDL files are shown in Figure 5-3.

Limit Exceeded 305 STRING_TYPE For multistate alarms, the condition
exceeded (for example, HIHI, HI,
LO, LOLO).

Deadband 306 DOUBLE_TYPE Deadband

HiHi Limit 307 DOUBLE_TYPE HiHi Limit

Hi Limit 308 DOUBLE_TYPE Hi Limit

Lo Limit 309 DOUBLE_TYPE Lo Limit

LoLo Limit 310 DOUBLE_TYPE LoLo Limit

Rate of Change
Limit

311 DOUBLE_TYPE Rate of Change Limit

Deviation Limit 312 DOUBLE_TYPE Deviation Limit

312-
4999

Reserved by OPC

Table 5-1 Recommended Properties
5-6 Data Acquisition from Industrial Systems, v1.1 June 2005

5

Figure 5-3 Dependencies between alarms and events IDL files

5.2.2 Alarms and Events Common IDL Definitions

5.2.2.1 IDL

// File: DAISAECommon.idl
#ifndef _DAIS_AECOMMON_IDL
#define _DAIS_AECOMMON_IDL
#pragma prefix "omg.org"
#include <DAISCommon.idl>

module DAIS {
module AlarmsAndEvents {

typedef ResourceID EventID;

struct ResourceError
{

Error err;
ResourceID id;

D A IS A E S e s s io n

D A IS A E S u b s c rip t io n

D A IS A E IO

DA IS A E S o u r ce
C o n d it io n

D AIS C o n d i tio n S p a c e

D AIS AE R e a s o n

D A IS A E S o u rc e

D A IS A E A re a

D A IS S e rve r
(fro m S e r ve r)

D A IS S e s s io n
(fro m C o m m o n)

D A IS P ro p e rt y
(fro m C o m m o n)

D A IS N o d e
(fro m C o m m o n)

D A IS C o m m o n
(fro m C o m m o n)

D A IS A E C o m m o n

D A IS Ty p e
(fro m C o m m o n)
June 2005 DAIS, v1.1: API 5-7

5

string reason;
};
typedef sequence<ResourceError> ResourceErrors;

// error codes
const Error RES_ERROR_DAISOK= 0;
const Error RES_ERROR_UNKOWN_RESOURCE= 1;

typedef unsigned long SourceConditionOpState;
const SourceConditionOpStateCONDITION_ENABLED= 0x0001;
const SourceConditionOpStateCONDITION_ACTIVE= 0x0002;
const SourceConditionOpStateCONDITION_ACKED= 0x0004;

typedef unsigned short EventFormat;
const EventFormat OPC_SIMPLE_EVENT = 0x0001;
const EventFormat OPC_TRACKING_EVENT = 0x0002;
const EventFormat OPC_CONDITION_EVENT= 0x0004;
const EventFormat OPC_ALL_EVENTS = 0x0007;
};};
#endif // _DAIS_AECOMMON_IDL

EventID

A ResourceID uniquely identifying an event notification.

ResourceError

A struct for reporting of resource related errors.

ResourceErrors

ResourceErrors is a sequence containing errors. If no errors are present, no entry shall be
included in the sequence rather than including a large number of no errors. An empty
sequence means no errors.

Member Description

err An error code as described below.

id The identification of the resource.

reason An additional text explaining the error.
5-8 Data Acquisition from Industrial Systems, v1.1 June 2005

5

Error

The error codes for ResourceError.

SourceConditionOpState

Flag word holding for the operational state of a SourceCondition. The definitions of the
state variable in the flag word are listed below.

The combinations of the state variables result in eight states. The valid SourceCondition
operational states are listed below.

When enabled the state {Enabled, Inactive, Acked} is entered and from there the
supervision will generate the appropriate state depending on the result of the supervision.
Each state change results in sending an alarm and event notification. All notifications
contain the state.

Member Description

RES_ERROR_DAISOK No error.

RES_ERROR_UNKOWN_RESOURCE The resource was not found.

Flag Description

CONDITION_ENABLED The Condition is enabled and supervision is active.

CONDITION_ACTIVE The Condition is active; that is, the supervision has
determined that a fault has activated the condition.

CONDITION_ACKED The Condition alarm has been acknowledged.

State Description

Disabled Not supervised by server.

Enabled, Inactive, Acked Supervised by server, no fault detected and all
alarms are acknowledged.

Enabled, Inactive, Unacked Supervised by server, no fault detected and
unacknowledged alarms exist.

Enabled, Active, Unacked Supervised by server, a fault is detected and
unacknowledged alarms exist.

Enabled, Active, Acked Supervised by server, a fault is persistent and all
alarms are acknowledged.
June 2005 DAIS, v1.1: API 5-9

5

EventFormat

This constant tells the format of an event.

5.2.3 DAISAESession IDL

5.2.3.1 DAIS::AlarmsAndEvents::Session Objects Overview
The DAIS::AlarmsAndEvents::Session object implements the alarms & events service on
a per client basis. An alarm & event session object has a number of services provided by
one singleton home object each. Each home object provides methods for manipulation of
the data of the specific type they provide.

The session object corresponds to an OPCEventServer object.

Member Description

OPC_SIMPLE_EVENT The event is a simple event.

OPC_TRACKING_EVENT The event is a tracking event.

OPC_CONDITION_EVENT The event is a condition event.

OPC_ALL_EVENTS This constant value is used to ask for all
event formats in a subscription set up.
5-10 Data Acquisition from Industrial Systems, v1.1 June 2005

5

Figure 5-4 DAIS alarms and events session IDL in UML

5.2.3.2 IDL

//File: DAISAESession.idl
#ifndef _DAIS_AESERVER_IDL
#define _DAIS_AESERVER_IDL
#pragma prefix "omg.org"

DAIS::AlarmsAndEvents::ConditionSpace::IHome
(from DAISAECondi ti onSpace)

<<Interface>>

DAIS::AlarmsAndEvents::SourceCondition::IHome
(fro m DAISAESourceConditi on)

<<Interface>>

DAIS::AlarmsAndEvents::Area::IHome
(from DAISAEArea)

<<Interface>>

DAIS::AlarmsAndEvents::Source::IHome
(from DAISAESource)

<<Interface>>

DAIS::AlarmsAndEvents::Category::IHome
(from DAISAECategory)

<<Interface>>

DAIS::Property::IHome
(from DAISProperty)

<<Interface>>

DAIS::AlarmsAndEvents::Session
<<Interface>>

subscription_home() : DAIS::AlarmsAndEnvents::Subscription::Home
area_home() : DAIS::AlarmsAndEvents::Area::IHome
source_home() : DAIS::AlarmsAndEvents::Source::IHome
condition_space_home() : DAIS::AlarmsAndEnvents::ConditionSpace::Home
source_condition_home() : DAIS::AlarmsAndEvents::SourceCondition::IHome
reason_home() : DAIS::AlarmsAndEvents::Category::IHome
type_home() : DAIS::Type::IHome
property_home() : DAIS::Property::IHome

11

11

11

11

11

11

DAIS::AlarmsAndEvents::Subscription::IHome
(from DAISAESu bscript io n)

<<Interface>>

11
DAIS::AlarmsAndEvents::Subscription::Manager

(fro m DAISAESubscri pti on)

<<Interface>>

1 0..n1 0..n

DAIS::AlarmsAndEvents::IO::Callback
(fro m DAISAEIO)

<<Interface>>

0..1

1

0..1

1

DAIS::Session
(from DAISSession)

<<Interface>>

status() : DAIS::SessionStatus
callback() : DAIS::ShutdownCallback
callback(callback : DAIS::ShutdownCallback)
destroy()

Client
(from DAISServer)

1

0..*

1

0..*

DAIS::ShutdownCallback
(from DAISSession)

<<Interface>>

1 0..11 0..1

1

0..1

1

0..1
June 2005 DAIS, v1.1: API 5-11

5

// Common Information
#include <DAISType.idl>
#include <DAISProperty.idl>
#include <DAISSession.idl>

// Events and Alarms
#include <DAISAESubscription.idl>
#include <DAISAEArea.idl>
#include <DAISAESource.idl>
#include <DAISAEConditionSpace.idl>
#include <DAISAESourceCondition.idl>
#include <DAISAECategory.idl>
#include <DAISAEIO.idl>

module DAIS {
module AlarmsAndEvents {

interface Session : DAIS::Session
{

readonly attribute Subscription::IHome subscription_home;

readonly attribute Area::IHome area_home;

readonly attribute Source::IHome source_home;

readonly attribute ConditionSpace::IHome condition_space_home;

readonly attribute SourceCondition::IHome source_condition_home;

readonly attribute Category::IHome category_home;

readonly attribute Type::IHome type_home;

readonly attribute Property::IHome property_home;
};};};
#endif // _DAIS_AESESSION_IDL;

Session

Session is an object implementing the alarms & events functions. It inherits common
functionality as shut down callbacks and session status from
DAIS::AlarmsAndEvents::Session.

subscription_home

A read only attribute holding a reference to a singleton Subscription::IHome object.
5-12 Data Acquisition from Industrial Systems, v1.1 June 2005

5

area_home

A read only attribute holding a reference to a singleton Area::IHome object.

source_home

A read only attribute holding a reference to a singleton Source::IHome object.

condition_space_home

A read only attribute holding a reference to a singleton ConditionSpace::IHome object.

source_condition_home

A read only attribute holding a reference to a singleton SourceCondition::IHome object.

category_home

A read only attribute holding a reference to a singleton Category::IHome object.

type_home

A read only attribute holding a reference to a singleton Type::IHome object.

property_home

A read only attribute holding a reference to a singleton Property::IHome object.

5.2.4 DAISAESubscription IDL

5.2.4.1 DAIS::AlarmsAndEvents::Subscription Overview
A DAIS::AlarmsAndEvents::Subscription::Manager is an object holding a filter
specification set up by a client. The filter is used to specify what notifications shall be
sent to the client. A server can support various filter functions and a client can ask the
DAIS::AlarmsAndEvents::Subscription::IHome object what filter functions are
supported. The subscription home is also used to create any number of subscription
manager objects. Each subscription manager shall be associated with a client
implemented callback object so that the server can send alarm and event notifications to
the client.

A server may optionally support an event history. The event history shall record all
alarms and events appearing in a server. The method async_read_history() gives clients
access to the event history. The size of the event history is server specific and outside the
control of a client.

In OPC the Subscription interface corresponds to the interface IOPCEventSubscription.
June 2005 DAIS, v1.1: API 5-13

5

Figure 5-5 DAIS alarms and events subscription IDL in UML

5.2.4.2 IDL

//File: DAISAESubscription.idl
#ifndef _DAIS_AESUBSCRIPTION_IDL
#define _DAIS_AESUBSCRIPTION_IDL
#pragma prefix "omg.org"
#include <DAISAEIO.idl>

module DAIS {

DAIS::AlarmsAndEvents: :IO::Callback
(from DAISAEIO)

<<Interface>>

DAIS::AlarmsAndEvents::Subscription::FilterSpec
reason_filter : ReasonFilter
low_severity : unsigned long
high_severity : unsigned long
source_filter : SourceFilter
type_filter : TypeIDs

PropertySelection
category : ResourceID
properties : PropertyIDs

DAIS::AlarmsAndEvents::Subscription::State
active : boolean
buffer_time : unsigned_long
max_size : unsigned long
keep_alive_time : unsigned long

DAIS::AlarmsAndEvents: :Subscription::Manager

callback() : DAIS::AlarmsAndEvents:: IO::Callback
callback(in callback : DAIS::AlarmsAndEvents::IO::Callback)
set_filter()
get_filter()
select_returned_properties()
get_returned_properties()
refresh()
asynch_read_history()
cancel()
get_state()
set_state()
clone()
destroy()

<<Interface>>

0..1

1

0..1

1

1
1

1
1

0..n1 0..n1

1

1

1

1

DAIS::AlarmsAndEvents::Subscription::IHome

query_available_filters()
create_subscription()

<<Interface>>

0..n
1

0..n
1

5-14 Data Acquisition from Industrial Systems, v1.1 June 2005

5

module AlarmsAndEvents {
module Subscription {

struct State {
boolean active;
unsigned long buffer_time;
unsigned long max_size;
unsigned long keep_alive_time;

};

struct OPCSourceFilter {
ServerItemIdentifications areas;
ServerItemIdentifications sources;

};

typedef short SourceFilterType;
const SourceFilterType OPC_SOURCE_FILTER_TYPE = 1;
const SourceFilterType XPATH_SOURCE_FILTER_TYPE = 2;

union SourceFilter switch(SourceFilterType) {
case OPC_SOURCE_FILTER_TYPE : OPCSourceFilter

opc_source_filters;
case XPATH_SOURCE_FILTER_TYPE : string xpath_source_filter;

};

typedef short CategoryFilterType;
const CategoryFilterType OPC_REASON_FILTER_TYPE = 1;
const CategoryFilterType XPATH_REASON_FILTER_TYPE= 2;

union CategoryFilter switch(ReasonFilterType) {
case OPC_CATEGORY_FILTER_TYPE : ServerItemIdentifications

opc_category_filters;
case XPATH_CATEGORY_FILTER_TYPE : string xpath_category_filter;

};

struct FilterSpec {
EventFormat event_format;
CategoryFilter category_filter;
unsigned long low_severity;
unsigned long high_severity;

SourceFilter source_filter;
ResourceIDs type_filter;

};

struct PropSelection {
ResourceID category;
PropertyIDs properties;

};
typedef sequence<PropSelection> PropSelections;
June 2005 DAIS, v1.1: API 5-15

5

enum ReadDirection {
READ_FORWARDS,
READ_BAKWARDS

};

typedef unsigned long CancelID;

interface Manager
{

exception BusyDueToRefresh{string reason;};
exception HistoryNotImplemented{string reason;};

attribute IO::Callback callback;

void set_filter (
in FilterSpec filer_spec

) raises (BusyDueToRefresh);

FilterSpec get_filter ();

void select_returned_properties (
in PropSelections prop_selections

);

PropSelections get_returned_properties (
in ResourceIDs categories

);

CancelID refresh () raises (BusyDueToRefresh);

CancelID async_read_history (
in DateTime start_time,
in unsigned long number_of_events,
in ReadDirection direction,
in unsigned long transaction_id

) raises (HistoryNotImplemented);

void cancel (
in CancelID cancel_id

);

void refresh () raises (BusyDueToRefresh);

void refresh_with_history (
in DateTime start_time,
in DateTime end_time

) raises (HistoryNotImplemented);

void cancel_refresh ();

State get_state ();
5-16 Data Acquisition from Industrial Systems, v1.1 June 2005

5

State set_state (
in State subscription_spec

Manager clone ();

void destroy ();
};

typedef unsigned longFilter;
const Filter FILTER_BY_EVENT_FORMAT = 0x0001;
const Filter FILTER_BY_CATEGORY = 0x0002;
const Filter FILTER_BY_SEVERITY = 0x0004;
const Filter FILTER_BY_AREA = 0x0008;
const Filter FILTER_BY_SOURCE = 0x0010;
const Filter FILTER_WITH_XPATH = 0x0020;
const Filter FILTER_BY_SOURCE_TYPE = 0x0040;

interface IHome
{

Filter query_available_filters ();

Manager create_subscription (
in State subscription_spec,
out State revised_subscr_spec);

};
};};};
#endif // _DAIS_AESUBSCRIPTION_IDL

State

A struct describing the state for the subscription.

Member Description

active Indicates if the subscription is active; that is, is sending data on the
call back interface. Events that are appearing in the server will be
lost for clients connected to inactive subscriptions.

buffer_time The requested buffer time in milliseconds. This is a minimum time
- do not send event notifications any faster that this UNLESS
max_size is greater than 0, in which case the server will send an
event notification sooner to obey the max_size value. A value of 0
for buffer_time means that the server should send event
notifications as soon as it gets them. This parameter along with
the max_size parameter is used to improve communications
efficiency between client and server. This parameter is a
recommendation from the client, and the server is allowed to
ignore the parameter. The server will return the buffer time it is
actually providing in revised_buffer_time.
June 2005 DAIS, v1.1: API 5-17

5

OPCSourceFilter

The struct specifies source filtering by enumerating the areas and sources the way OPC
does it.

SourceFilter

The union specifies OPCSourceFiltering or XPath filtering. A prerequisite for XPath
filtering is that the area and source hierarchy has an XML mapping. The same mapping
is used as described in Section 3.1.12, “Logical Expressions and Navigation,” on
page 3-25 with the additional comments:

• an Area corresponds to a Node (Area inherits Node).

• a Source corresponds to a Node (Source inherits Node).

max_size The requested maximum number of events that will be sent in a
single callback. A value of 0 means that there is no limit to the
number of events that will be sent in a single callback. Note that a
value of max_size greater than 0, may cause the server to make
callbacks more frequently than specified by buffer_time when a
large number of events are being generated in order to limit the
number of events to the max_size. This parameter is a
recommendation from the client and the server is allowed to ignore
this parameter. The server will return the actual number of events
it is actually providing in revised_max_size.

keep_alive_time The time in milliseconds for the server to send a callback to client.
The intention is to indicate to the client that the server is alive and
avoid the need to "poll" the server to check it is alive. If no data is
available an empty message is sent. If the time is less than the
buffer_time the buffer_time is used.

Member Description

areas A sequence of ResourceIDs for the areas that shall be notified.
All sources below an area node will be notified.

sources A sequence of ResourceIDs for sources that shall be notified.
An empty sequence means all sources shall be notified.

Member Description

opc_source_filters An OPCSourceFilter

xpath_source_filter An XPath filter.
5-18 Data Acquisition from Industrial Systems, v1.1 June 2005

5

CategoryFilter

The union specifies OPC style filtering or XPath filtering of categories. A prerequisite
for XPath filtering is that the resource hierarchy has an XML mapping. The same
mapping is used as described in Section 3.1.12, “Logical Expressions and Navigation,”
on page 3-25 with the additional comments:

• a Resource corresponds to a Node (Resource inherits Node).

FilterSpec

A struct holding the specification for how the server shall filter notifications sent to the
client. The struct is used to specify the filtering a client wants a server to do for it. All
specified filter criterias shall be fulfilled for a notification to be sent.

PropSelection

A struct identifying what properties shall be included in an event notification for a
specific reason.

Member Description

opc_category_filters An OPCSourceFilter

xpath_reason_filter An XPath filter

Member Description

event_format An EventFormat bit mask specifying the event formats to
be returned.

reasons A sequence of CategoryFilter for the categories for which
the client wants to get notifications. Observe that specifying
a main category (for example, Simple, Tracking, Condition)
will result in notifications for all sub-categories specified
for that main category.

low_severity The client wants all events with greater or equal severity.

high_severity The client wants all events with less or equal severity.

sources A SourceFilter for the sources that shall be notified.

types A sequence of TypeIDs for the types that shall be notified.

Member Description

reason The reason for which the property selection is made.

properties A sequence of PropertyIDs for the selected properties.
June 2005 DAIS, v1.1: API 5-19

5

ReadDirection

An enumeration that tells if a read of history shall be forward or backwards in time.

Manager

An object managing subscription and filtering of event notifications per client.

BusyDueToRefresh

An exception stating that a refresh is already going on.

HistoryNotImplemented

An exception stating that the server does not record the event history.

callback

An attribute holding a reference to the callback object. The client is required to update
the attribute with a by the client implemented callback object to get event notifications
from the server. The attribute corresponds to the IConnectionPoint interface in OPC.

set_filter()

The method updates the filter specification. A try to change the filter spec during an
ongoing refresh will give an exception. The method corresponds to
IOPCEventSubscriptionMgt::SetFilter().

get_filter()

The method gets the filter specification. The method corresponds to
IOPCEventSubscriptionMgt::GetFilter().

Member Description

READ_FORWARDS Read events after the given start time.

READ_BAKWARDS Read events before the given start time.

Member Description

filer_spec The filter specification.

return none.

Member Description

return The filter specification.
5-20 Data Acquisition from Industrial Systems, v1.1 June 2005

5

select_returned_properties()

The method sets what properties shall be included in a notification specified per reason.
The method corresponds to IOPCEventSubscriptionMgt::SelectReturnedAttributes().

get_returned_properties()

The method gets what properties currently are included in a notification specified per
category. The method corresponds to
IOPCEventSubscriptionMgt::GetReturnedAttributes().

refresh()

The method forces notifications for all currently active source conditions. The
notifications will not include the history but only the current source condition operational
state. The method corresponds to IOPCEventSubscriptionMgt::Refresh().

async_read_history()

The method read historic events recorded by the server. If the server does not support
recording of alarms and events an exception is raised. No corresponding method exists in
OPC.

Member Description

prop_selections A sequence specifying what properties to include per reason.

return none.

Member Description

categories The categories for that shall be used to fetch the properties.

return A sequence specifying what properties currently are
included per reason.

Member Description

return A server generated handle that the client can use to cancel
the operation.

Member Description

start_time The time where to start the read. An unspecified time
(=0) will make the read start from the oldest recorded
event.

number_of_events The max number of events to deliver as a response to
the read operation.
June 2005 DAIS, v1.1: API 5-21

5

cancel()

The method cancels an ongoing refresh operation or async_read_history() operations. It
corresponds to IOPCEventSubscriptionMgt::CancelRefresh().

get_state()

The method gets the current subscription state and corresponds to
IOPCEventSubscriptionMgt::GetState().

set_state()

The method sets the current subscription state and corresponds to
IOPCEventSubscriptionMgt::SetState(). The actual parameters set are returned and an
exception is raised if any input parameters are not accepted and hence changed.

clone()

The method creates a copy of the subscription.

direction Tells if events before or after the start time shall be
read.

transaction_id A transaction number unique for the client. The number
is returned in the corresponding on_read_complete call.

return A server generated handle that the client can use to
cancel the operation.

Member Description

cancel_id A server generated handle that is given back to the server
when a started operation shall be cancelled.

return none.

Member Description

return The current subscription state.

Member Description

subscription_spec New state wanted for the subscription.

return The accepted subscription state.

Member Description
5-22 Data Acquisition from Industrial Systems, v1.1 June 2005

5

destroy()

The method destroys the subscription object.

Filter

A flag word holding flags specifying the filters that are implemented by the server.

IHome

A factory object for creation of subscription management objects.

query_available_filters()

Gets by the server implemented filter functions. The method corresponds to
IOPCEventServer::QuearyAvailableFilters().

create_subscription()

Creates a subscription management object. An invalid state will give an exception.

Member Description

return The copied subscription.

Flag Description

FILTER_BY_MAIN_CATEGORY Filtering by main category is supported.

FILTER_BY_CATEGORY Filtering by sub-category is supported.

FILTER_BY_SEVERITY Filtering by severity is supported.

FILTER_BY_AREA Filtering by area is supported.

FILTER_BY_SOURCE Filtering by source is supported.

FILTER_WITH_XPATH XPath as filter description is supported.

FILTER_BY_SOURCE_TYPE Filtering by source type is supported.

Member Description

return Filter specification flagword.

Member Description

subscription_spec State wanted for the subscription.
June 2005 DAIS, v1.1: API 5-23

5

Set up Subscription

Figure 5-6 Set up subscription interaction

revised_subscr_spec State accepted by the server.

return The new subscription manager.

 : Client : Client : DAIS::AlarmsAndEvents: :Subscript ion: :IHome : DAIS::AlarmsAndEvents: :Subscript ion: :IHome : DAIS::AlarmsAndEvents: :Subscription: :Manager : DAIS::AlarmsAndEvents: :Subscription: :Manager

query_available_filters()

Check what filters are
supported by the server

create_subscription()

callback(DAISCallback)

select_returned_properties()

Set the callback for
server to use

set_filter()

Set up filter to get only
wanted event notificat ions

Select what property values to be
included in event notifications

Do some browsing to prepare for setting up the
filter. Browse for reasons, areas and sources

Do some browsing to prepare for
selecting properties
5-24 Data Acquisition from Industrial Systems, v1.1 June 2005

5

Refresh

Figure 5-7 Refresh interaction

5.2.5 DAISAEArea IDL

5.2.5.1 DAIS::AlarmsAndEvents::Area Overview
An area is a specialization of a node and is a collection of other areas or sources. Areas
are intended for arbitrary hierarchical structuring of sources for various usages (for
example, areas for authority or responsibility).

DAIS::AlarmsAndEvents::Area::IHome is used for browsing the area hierarchy. The find
methods in the interface correspond to the IOPCEventAreaBrowser with the filter type
parameter set to OPC_AREA. The interface also implements the following OPC
methods:

• IOPCEventServer::EnableConditionByArea()
• IOPCEventServer::DisableConditionByArea().

 : Client : Client : DAIS: :AlarmsAndEvents: :Subscript ion::Manager : DAIS: :AlarmsAndEvents: :Subscript ion::Manager : DAIS: :AlarmsAndEvents:: IO::Callback : DAIS: :AlarmsAndEvents:: IO::Callback

refresh()

Initiate transfer of the
currently active source
conditions

on_event()

on_event()

on_event()

As many
notificat ions sent
as needed to
report all source
conditions
June 2005 DAIS, v1.1: API 5-25

5

Figure 5-8 DAIS alarms and events area IDL in UML

5.2.5.2 IDL

//File: DAISAEArea.idl
#ifndef _DAIS_AEAREA_IDL
#define _DAIS_AEAREA_IDL
#pragma prefix "omg.org"
#include <DAISNode.idl>
#include <DAISAECommon.idl>

module DAIS {
module AlarmsAndEvents {
module Area {

interface IHome : Node::IHome
{

ResourceID get_root();

ResourceErrors enable_condition (
in ResourceIDs areas

);

ResourceErrors disable_condition (

AreaSourceComponent
id : ResourceID
name : string
descript ion : string

Area

0. .n

+parent

0. .n

DAIS::AlarmsAndEvents: :Area:: IHome
<<Interface>>

get_root()
enable_condition()
disable_condit ion()

0..n

1

0..n

1

DAIS::Node::IHome
(f rom DAISNode)

<<Interface>>

find()
find_each()
find_by_parent()
find_by_type()
get_pathnames()
get_ids()

Source
(from DAISAESource)
5-26 Data Acquisition from Industrial Systems, v1.1 June 2005

5

in ResourceIDs areas
);

};
};};};
#endif // _DAIS_AEAREA_IDL

IHome

An object for browsing areas.

get_root()

A method to get the root node for the area tree.

enable_condition()

A method for enabling the sources contained by the specified areas. The corresponding
OPC method is IOPCEventServer::EnableConditionByArea().

disable_condition()

A method for disabling the sources contained by the specified areas. The corresponding
OPC method is IOPCEventServer::DisableConditionByArea().

Member Description

return The root area node.

Member Description

areas A sequence of area identifications.

return The resource identifications that failed.

Member Description

areas A sequence of area identifications.

return The resource identifications that failed.
June 2005 DAIS, v1.1: API 5-27

5

Browse areas

Figure 5-9 Browse areas interaction

5.2.6 DAISAESource IDL

5.2.6.1 DAIS::AlarmsAndEvents::Source Overview
A source is a specialization of a node and is contained by areas. A source represents an
object that generates alarms and events. A source may have source conditions. The find
methods in the interface correspond to the IOPCEventAreaBrowser with the filter type
parameter set to OPC_SOURCE. The interface also implements the following OPC
methods:

• IOPCEventServer::TranslateToItemIDs
• IOPCEventServer::EnableConditionBySource()
• IOPCEventServer::DisableConditionBySource()

 : Client : Client : DAIS: :A larmsA ndE vents : :A rea:: IHome : DAIS: :A larmsA ndE vents : :A rea:: IHome : DA IS ::Node:: Iterator : DA IS ::Node:: Iterator

get_root ()

Get the root
of all areas

find_by_parent()

next_n()

Repeat find_by_parent and next_n
unti l the areas are explored
5-28 Data Acquisition from Industrial Systems, v1.1 June 2005

5

Figure 5-10 DAIS alarms and events source IDL in UML

5.2.6.2 IDL

//File: DAISAESource.idl
#ifndef __DAIS_AESOURCE_IDL
#define __DAIS_AESOURCE_IDL
#pragma prefix "omg.org"
#include <DAISNode.idl>
#include <DAISAECommon.idl>

module DAIS {
module AlarmsAndEvents {
module Source {

DAIS::Node::IHome
(from DAISNode)

<<Interface>>

find()
find_each()
find_by_parent()
find_by_type()
get_pathnames()
get_ids()

DAIS::AlarmsAndEvents::Source:: IHome
<<Interface>>

translate_to_item_ids()
enable_conditions()
disable_conditions()

SourceCondition
(f rom DAISAESo urceCon di t ion)

condition_op_state : DAISCondit ionOpState
quality : DAIS::Quality
last_acknowledge : DateTime
condition_last_act ive : DateTime
condition_space_last_active : DateTime
condition_space_last_inact ive : DateTime
acknowledger_name : string
comment : string

Source

0..n

1

0..n

1

0..n

1

0..n

1

Area
(from DAISAEArea)

AreaSourceComponent
(from DAISAEArea)

id : ResourceID
name : string
descript ion : string 0..n

+parent

0..n
June 2005 DAIS, v1.1: API 5-29

5

interface IHome : Node::IHome
{

exception PropertyDidNotTranslate{string reason;};

ItemIDs translate_to_item_ids (
in ResourceID source,
in ResourceID category,
in PropertyIDs properties

) raises (PropertyDidNotTranslate);

ResourceErrors enable_conditions (
in ResourceIDs sources

);

ResourceErrors disable_conditions (
in ResourceIDs sources

);
};};};};
#endif // __DAIS_AESOURCE_IDL

IHome

An object for browsing sources at areas.

PropertyDidNotTranslate

An exception telling that one or more properties did not translate to ItemIDs.

translate_to_item_ids()

A method for translation of information about a source to ItemIDs for use with the data
access interface. If one or more properties did not translate to ItemIDs, an exception is
raised. The corresponding OPC method is IOPCEventServer::TranslateToItemIDs().

Member Description

source The identification of the source.

category The identification of the category.

properties A sequence of properties for which ItemIDs are wanted.

return A sequence of ItemIDs. Properties that did not translate to
ItemIDs are returned as empty ItemIDs.
5-30 Data Acquisition from Industrial Systems, v1.1 June 2005

5

enable_conditions()

A method for enabling the specified sources. The corresponding OPC method is
IOPCEventServer::EnableConditionBySource().

disable_conditions()

A method for disabling specified sources. The corresponding OPC method is
IOPCEventServer::DisableConditionBySource().

Browse sources

Figure 5-11 Browse sources interaction

Member Description

sources A sequence of area identifications.

return The resource identifications that failed.

Member Description

sources A sequence of area identifications.

return The resource identifications that failed.

 : C lient : C lient : DAIS: :A larmsA ndE vents : :S ource::IHome : DAIS: :A larmsA ndE vents : :S ource::IHome : DA IS ::Node:: Iterator : DA IS ::Node:: Iterator

find_by_parent()

Get all sources that has a
given area as parent

nex t_n()

Repeat get ting all found sources
from the i terator and continue with
anot her area as parent to sources .
Repeat this until al l want ed sources
are explored.

For each source inspec t the
condit ions i t might have, refer t o
ConditionSpace
June 2005 DAIS, v1.1: API 5-31

5

5.2.7 DAISConditionSpace IDL

5.2.7.1 DAIS::AlarmsAndEvents::ConditionSpace Overview
A condition space describes a set of conditions; that is, it is a space of conditions. Each
condition space is associated with a particular sub-reason of the main reason
ConditionReason. Each condition has logic describing when the condition is active. The
logic is described in a little language having the following constructs:

• arithmetic operators

• logic operators

• references to properties

The referred properties must be included in the set of properties defined by the associated
reason. The little language grammar is server specific and is outside the scope of this
specification. Transitions describe what transitions between conditions are allowed. The
interface does not support exploration of the transitions.

In OPC the ConditionSpace interface is implemented by the methods:
• IOPCEventServer::QueryConditionNames()
• IOPCEventServer::QuerySubConditionNames()
5-32 Data Acquisition from Industrial Systems, v1.1 June 2005

5

.

Figure 5-12 DAIS alarms and events condition space IDL in UML

5.2.7.2 IDL

//File: DAISAEConditionSpace.idl
#ifndef _DAIS_AECONDITION_SPACE_IDL
#define _DAIS_AECONDITION_SPACE_IDL
#pragma prefix "omg.org"
#include <DAISAECommon.idl>

module DAIS {
module AlarmsAndEvents {
module ConditionSpace {

DAIS::AlarmsAndEvents::ConditionSpace::IHome
<<Interface>>

find()
find_each()
find_by_reason()
find_by_source()
get_names()
get_ids()

ConditionCategory
(from DAISAECategory)

ConditionSpace
id : ResourceID
name : string
description : string

0..n

1

0..n

1

11..n 11..n

Condition
id_number : unsigned long
name : string
description : string
severity : unsigned long
condition_logic : string

1..n+conditions 1..n

Transition

0..n0..n

0..n

1

0..n

1

ConditionEvent
(from DAISAEIO)

1
0..n
1
0..n
June 2005 DAIS, v1.1: API 5-33

5

struct ConditionDescription {
unsigned long id_number;
string name;
string condition_logic;
unsigned long severity;
string descrip;

};
typedef sequence<ConditionDescription> ConditionDescriptions;

struct Description
{

ResourceID id;
string name;
string descrip;
ConditionDescriptionsconditions;

};
typedef sequence< Description >Descriptions;

interface IHome
{

exception UnknownResourceID {string reason;};

Description find (
in ResourceID condition_space

) raises (UnknownResourceID);

Descriptions find_each (
in ResourceIDs condition_spaces

) raises (UnknownResourceID);

Descriptions find_by_category (
in ResourceID category

) raises (UnknownResourceID);

Descriptions find_by_source (
in ResourceID source

) raises (UnknownResourceID);

Strings get_names (
in ResourceIDs condition_spaces

);

ResourceIDs get_ids (
in Strings names

);

};};};};
#endif // _DAIS_AECONDITION_SPACE_IDL
5-34 Data Acquisition from Industrial Systems, v1.1 June 2005

5

ConditionDescription

A struct describing a condition.

Description

A struct describing the condition space.

IHome

An object for browsing the condition spaces defined by a server.

Member Description

id_number A numeric identification unique within the condition space.

name The name of the condition.

condition_logic The logic telling when the condition is active. Refer to
Section 5.2.7.3, “Condition Logic,” on page 5-38 for a
description.

severity Severity is a number between 1 and 1000 having the
following meaning:
• Low severity 1-200
• Medium low severity 201-400
• Medium severity 401-600
• Medium high severity 601-800
• High severity 801-1000

description A text that to be included in event notifications when the
condition is active.

Member Description

id A ResourceID identifying the condition space.

name The name of the condition space.

description A description of the condition space.

conditions A sequence of the conditions creates the condition space.
In OPC the conditions are called sub-conditions and are
retrieved by the method
IOPCEventServer::QuerySubConditionNames().
June 2005 DAIS, v1.1: API 5-35

5

find()

A method for getting the description of a condition space.

find_each()

A method for getting the descriptions for a number of condition spaces.

find_by_category()

A method for finding all condition spaces defined for a category. The corresponding
OPC method is IOPCEventServer::QueryConditionNames().

find_by_source()

A method for finding all condition spaces defined for a source. The corresponding OPC
method is IOPCEventServer::QuerySourceConditions().

get_names()

A method translating a number of condition space identifications into name strings.

Parameter Description

condition_space A ResourceID identifying a condition space.

return The condition space description.

Parameter Description

condition_spaces A sequence of ResourceID identifying condition spaces.

return A sequence of condition space descriptions.

Parameter Description

category A ResourceID identifying the category for which to get the
condition spaces.

return A sequence of condition space descriptions.

Parameter Description

source A ResourceID identifying the source for which to get the
condition spaces.

return A sequence of condition space descriptions.
5-36 Data Acquisition from Industrial Systems, v1.1 June 2005

5

get_ids()

A method translating a number of condition space names into ResourceIDs.

Browse condition space by source

Figure 5-13 Browse condition space by source interaction

Browse condition space by category

Figure 5-14 Browse condition space by category interaction

Parameter Description

condition_spaces A sequence of ResourceID identifying condition spaces.

return A sequence of condition space names. Non-translated
identifications are returned as empty strings.

Parameter Description

names A sequence of condition space names.

return A sequence of condition space ResourceIDs. Non- translated
identifications are returned as NULL IDs.

 : Client : Client : DAIS::AlarmsAndEvents::ConditionSpace::IHome : DAIS::AlarmsAndEvents::ConditionSpace::IHome

find_by_source()

Get all condition space
descriptions for one source.
Explore each condition space
from the retrieved descriptions.

 : Client : Client : DAIS::AlarmsAndEvents::ConditionSpace::IHome : DAIS::AlarmsAndEvents::ConditionSpace::IHome

find_by_category()

Get all condition space description
for one category. Explore each
condition space from the retrieved
descriptions.
June 2005 DAIS, v1.1: API 5-37

5

5.2.7.3 Condition Logic
The reduced XPath language as defined in Section 3.1.12, “Logical Expressions and
Navigation,” on page 3-25 is used to describe the condition_logic. This allows
description of a path through a data structure picking up property values to be used in a
logical expression.

A common case is property values at objects associated with a source, hence the starting
point for navigation is the source. An example from the CIM model where the
Measurement is the source can be found in Figure 4-3 on page 4-6.

Examples how to use DAIS_Expressions starting from a source are shown below:

Measurement.value < 500 assuming that the tested value is an element at the source.

MeasurementValue[id(MeasurementValue.MeasurementValueSource)/label='telemetry']/
MeasurementValue.value < id(Measurement.LimitSets)[LimitSet.label = 'summer']/Limit[label =
'highalarm']/Limit.value

Based on the model in Figure 4-3 on page 4-6, the XML example in Section 3.1.12,
“Logical Expressions and Navigation,” on page 3-25 and the source as a Measurement.

5.2.8 DAISAESourceCondition IDL

5.2.8.1 SourceCondition Overview
A source condition associates a source with a condition space. A source condition holds
the current information specific to a source using a particular condition space for the
supervision. A source condition has no own identification and is identified by its
associated source and condition space. Information about a source condition is accessed
through its home object. In OPC a source condition is sometimes called an instance of a
condition.

In OPC the SourceCondition interface is implemented by the methods:
• IOPCEventServer::QuerySourceConditions()
• IOPCEventServer::AckCondition().
5-38 Data Acquisition from Industrial Systems, v1.1 June 2005

5

.

Figure 5-15 DAIS alarms and events source condition IDL in UML

5.2.8.2 IDL

//File: DAISAESourceCondition.idl
#ifndef _DAIS_AESOURCE_CONDITION_IDL
#define _DAIS_AESOURCE_CONDITION_IDL
#pragma prefix "omg.org"
#include <DAISAECommon.idl>

module DAIS {
module AlarmsAndEvents {
module SourceCondition {

struct Id {
ResourceID source;
ResourceID condition_space;

};
typedef sequence<Id>Ids;

struct Description
{

DAIS::AlarmsAndEvents::SourceCondition:: IHome
<<Interface>>

find()
find_each()
ack_condition()

Condit ionSpace
(from DAISAECondi ti onSpace)

id : ResourceID
name : string
descript ion : st ring

Source
(from DAISAESource)

Condition
(from DA ISAECondi ti onSpace)

id_number : unsigned long
name : string
descript ion : st ring
severity : unsigned long
condit ion_logic : string

SourceCondition
condit ion_op_state : DAISConditionOpState
quality : DAIS::Quality
last_acknowledge : DateTime
condit ion_last_active : DateTime
condit ion_space_last_active : DateTime
condit ion_space_last_inactive : DateTime
acknowledger_name : string
comment : string

0. .n

1

0. .n

1

10..n 10..n

0..n

1

0..n

1

1

0..n

+active_condit ion

1

0..n
June 2005 DAIS, v1.1: API 5-39

5

Id source_condition;
SourceConditionOpState source_condition_op_state;
unsigned long active_condition;
string ac_logic;
unsigned long ac_severity;
string ac_description;
Quality dais_quality;
DateTime last_acknowledge;
DateTime condition_last_active;
DateTime condition_space_last_active;
DateTime condition_space_last_inactive;
string acknowledger_name;
string comment;
PropertyValues property_values;

};
typedef sequence< Description > Descriptions;

struct AcknowledgeSpec {
Id source_condition;
DateTime active_time;
EventID cookie;

};
typedef sequence<AcknowledgeSpec>AcknowledgeSpecs;

interface Iterator
{

boolean next_n (
in unsigned long n,
out Descriptions c_descriptions

);
void reset();
Iterator clone();
void destroy();

};

interface IHome
{

exception UnknownId {string reason;};
exception UnknownPropertyID {string reason;};

Description find (
in Id source_condition,
in PropertyIDs properties

) raises (UnknownId, UnknownPropertyID);

Iterator find_each(
in Ids source_conditions,
in PropertyIDs properties

) raises (UnknownId, UnknownPropertyID);

Descriptions ack_condition (
5-40 Data Acquisition from Industrial Systems, v1.1 June 2005

5

in string acknowledger_name,
in string comment,
in AcknowledgeSpecs ack_spec

);
};
};};};
#endif // _DAIS_AESOURCE_CONDITION_IDL

Id

A struct that identifies a source condition.

Description

A struct describing the source condition.

Member Description

source The ResourceID identifying the associated source.

condition_space The ResourceID identifying the associated condition space.

Member Description

id The Id identifying the source condition.

source_condition_op_state The DAISSourceConditionOpState as described in
Section 5.2.2, “Alarms and Events Common IDL
Definitions,” on page 5-7.

active_condition The identification number of the currently active
condition.

ac_logic The condition logic from the active condition.

ac_severity The severity from the active condition.

ac_description The description from the active condition.

dais_quality The quality is evaluated from the qualities from the
properties used to evaluate the condition logic.

last_acknowledge The last time the condition was acknowledged.

condition_last_active Time for the latest condition transition.
June 2005 DAIS, v1.1: API 5-41

5

AcknowledgeSpec

A struct specifying an alarm to acknowledge.

Iterator

A standard iterator. Refer to Section 3.1.6, “Iterator Methods IDL,” on page 3-10.

IHome

An object for browsing and accessing source conditions.

UnknownDAISSourceConditionID

An exception telling that the source condition identification was not recognized.

UnknownPropertyID

An exception telling that a property identification was not recognized.

condition_space_last_active The last time when the condition space became
active. After this time more condition transitions
may occur. The condition_last_active will then be
later than condition_space_last_active.

condition_space_last_inactive The last time when the condition space became
inactive; that is, no conditions are active.

acknowledger_name The name of the client making an acknowledge.

comment A comment passed by the client making an
acknowledge.

property_values A sequence of property values as selected by the
Manager::select_returned_properties call.

Member Description

source_condition The Id identifying the source condition for which to
acknowledge an alarm.

active_time The time when the alarm activated.

cookie A identification of the alarm.
5-42 Data Acquisition from Industrial Systems, v1.1 June 2005

5

find()

A method for getting the description of a source condition. The corresponding OPC
method is IOPCEventServer::GetConditionState().

find_each()

A method for getting the descriptions for a number of source conditions.

ack_condition()

A method to acknowledge a number of source condition alarms. The corresponding OPC
method is IOPCEventServer::AckCondition().

Inspect a specific source condition

Figure 5-16 Inspect a specific source condition interaction

Parameter Description

source_condition A ResourceID identifying a source condition.

return The source condition description.

Parameter Description

condition_spaces A sequence identifying source conditions.

return A sequence of source condition descriptions.

Parameter Description

acknowledger_name The name of the client making the acknowledge.

comment A comment to be added to source condition and the event.

ack_spec A sequence specifying the alarms to acknowledge.

return A sequence containing descriptions for the acknowledged
source conditions.

 : C lient : C lient : D A IS :: Alarm s A ndEvent s ::S ourc eC ondi tion:: IH om e : D A IS :: Alarm s A ndEvent s ::S ourc eC ondi tion:: IH om e

find()

Get al l det ails on
a s pec i fic s ourc e
c ondit on
June 2005 DAIS, v1.1: API 5-43

5

Acknowledge alarm

Figure 5-17 Acknowledge alarm interaction

5.2.9 DAISCategory IDL

5.2.9.1 DAIS::AlarmsAndEvents::Category Overview
These are definitions for manipulating categories. A category describes the content of an
event. Categories are organized in a two level hierarchy where the first level has the three
mandatory main categories; simple, condition, and tracking.

Simple category does not have a condition space (refer to ConditonSpace). Generation of
simple category alarms or events is coded into some software function and cannot be
configured. Typical simple categories are program errors, hardware device failures, etc.

Sources of different types (e.g., breaker position, breaker current, generator active power,
etc.) may have different ways an alarm or event is generated (e.g., breaker trip, breaker
over current, generator active power generation overload, etc.). Condition categories are
used to describe source type specific alarm and event contents.

The alarm and event generation for a condition category is configured using condition
spaces and several condition spaces can be created for the same condition category. This
corresponds to variations in the way the alarms and events are generated using different
condition logics.

Alarms or events due to operator actions or control functions (intended alarms or events
rather than spontaneous) use tracking categories.

A category has a set of properties associated with it. Some or all of the properties may be
included in event notifications. The properties come from the source type and may be
used by the logic generating an event notification.

The get_main_ category () method is used to obtain the three main categories. The
find_by_parent() is used to get the child categories. Categories at this second level
correspond to the OPC EventCategories. The labels for the three main reasons are
“DAIS_CONDITION_CATEGORY,” “DAIS_TRACKING_CATEGORY,” and
"DAIS_SIMPLE_CATEGORY.”

 : C lient : C lient : DAIS: :A larmsA ndE vents : :S ourceCondition: :IHom e : DAIS: :A larmsA ndE vents : :S ourceCondition: :IHom e

ack_condition()

Acknolwedge a set of
source condit ions in
one call
5-44 Data Acquisition from Industrial Systems, v1.1 June 2005

5

In OPC the Category interface is implemented by the methods
IOPCEventServer::QueryEventCategories() and
IOPCEventServer::QueryEventAttributes().

Figure 5-18 DAIS alarms and events categories IDL in UML

5.2.9.2 IDL

//File: DAISAECategory.idl
#ifndef _DAIS_AECATEGORY_IDL
#define _DAIS_AECATEGORY_IDL
#pragma prefix "omg.org"
#include <DAISNode.idl>

module DAIS {
module AlarmsAndEvents {
module Category{

interface IHome : Node::IHome
{

Node::Descriptions get_main_categories ();

TrackingCategory

SimpleCategory

ConditionCategory

DAIS::AlarmsAndEvents::Category::IHome

get_main_categories()
get_event_properties()

<<Interface>>

DAIS::Node::IHome

find()
find_each()
find_by_parent()
find_by_type()
get_pathnames()
get_ids()

(from DAISNode)

<<Interface>>

Node

id : ResourceID
label : string
type : ResourceID

(f rom DA ISNo de)

1 0..n1 0..n

Category
June 2005 DAIS, v1.1: API 5-45

5

PropertyIDs get_event_properties (
in ResourceID category

);
};
};};};
#endif // _DAIS_AECATEGORY_IDL

IHome

IHome is an object for browsing categories. Most of the browsing functionality is
inherited from DAIS::Node.

get_main_categories()

Get the three main categories; simple, condition, and tracking. The three main categories
appear as three different roots.

get_event_properties()

Get all properties that are used in the supervision of the source type for a specific
category. The corresponding OPC method is IOPCEventServer::QueryEventAttributes().

Parameter Description

return The descriptions for the three main categories. The labels
for them are:
• “DAIS_CONDITION_CATEGORY”
• “DAIS_TRACKING_CATEGORY”
• “DAIS_SIMPLE_CATEGORY”

Parameter Description

category The identification of the categories to get the properties for.

return A sequence of property identifications.
5-46 Data Acquisition from Industrial Systems, v1.1 June 2005

5

Browse categories

Figure 5-19 Browse category interaction

 : DAIS: :AlarmsAndEvents: :Category:: IHome : DAIS: :AlarmsAndEvents: :Category:: IHome : Client : Client

get_main_reasons()

Get the three main
reasons

find_by_parent()

Get the sub reasons for one
main reason.
For each sub reason
explore
1) the condit ion spaces that
are defined, refer to
ConditionSpace
2) the propert ies that are
used in supervision of
sources

Continue and explore all main
reasons
June 2005 DAIS, v1.1: API 5-47

5

Browse properties

Figure 5-20 Browse properties interaction

5.2.10 DAISAEIO IDL

5.2.10.1 DAIS::AlarmsAndEvents::IO Overview
The IO interface for alarms & events only supports callbacks and the client shall
implement callback.

The event notifications sent over the callback are of three different formats
corresponding to the three main categories (simple event, condition event, and tracking
event). All three event formats have the common part Event. The tracking event has
additional information on the operator and the condition event has additional information
on the source condition causing the notification.

In OPC the IO interface is implemented by the interface IOPCEventSink

 : DAIS: :Alarm sAndE vents: :Category:: IHom e : DAIS: :Alarm sAndE vents: :Category:: IHom e : Client : Client

get_main_categories()

Get the three m ain
categories

find_by_parent()

Get the sub categories for
one main category.
For each sub category
explore
1) the condition spaces that
are defined, refer to
ConditionSpace
2) the properties that are
used in supervision of
sources

Continue and explore all main
categories
5-48 Data Acquisition from Industrial Systems, v1.1 June 2005

5

Figure 5-21 DAIS alarms and events IO IDL in UML

5.2.10.2 IDL

//File: DAISAEIO.idl
#ifndef _DAIS_AEIO_IDL
#define _DAIS_AEIO_IDL
#pragma prefix "omg.org"
#include <DAISAECommon.idl>

module DAIS {
module AlarmsAndEvents {
module IO {

typedef unsigned long ChangeSpec;
const ChangeSpec CHANGE_ACTIVE_STATE = 0x0001;

Source
(from DA IS AES ource)

Event
source : ResourceID
source_pathname : string
time_stamp : DateTime
message : st ring
event_format : EventFormat
category : ResourceID
category_name : string
severity : unsigned long
property_values : PropertyValues

11

Sim pleCategory
(f rom DAIS AECa tegory)

SimpleEvent 11

ConditionCategory
(from DAIS A ECategory)

Condit ionEvent
condit ion_space_name : string
condit ion_space : ResourceID
condit ion_name : st ring
condit ion_number : unsigned long
ack_required : boolean
active_time : DateTime
event_id : EventID
change_specification : ChangeSpec
source_condit ion_op_state : SourceCondit ionOpState
dais_quality : Quality

11

TrackingCategory
(from DA ISAE Category)

TrackingEvent
actor_name : string

11

DAIS: :A larm sAndEvents: :IO::Callback
<<Interface>>

on_event ()
on_read_complete()
June 2005 DAIS, v1.1: API 5-49

5

const ChangeSpec CHANGE_ACK_STATE = 0x0002;
const ChangeSpec CHANGE_ENABLE_STATE = 0x0004;
const ChangeSpec CHANGE_QUALITY = 0x0008;
const ChangeSpec CHANGE_SEVERITY = 0x0010;
const ChangeSpec CHANGE_CONDITION = 0x0020;
const ChangeSpec CHANGE_MESSAGE = 0x0040;
const ChangeSpec CHANGE_ATTRIBUTE = 0x0080;

struct SimpleEvent {
ResourceID source;
string source_pathname;
DateTime time_stamp;
string message;
EventFormat event_format;
ResourceID category;
string category_name;
unsigned long severity;
PropertyValues property_values;

};

struct TrackingEvent {
string actor_name;

};

struct ConditionEvent {
string condition_space_name;
ResourceID condition_space;
string condition_name;
unsigned long condition_number;
boolean ack_required;
DateTime active_time;
EventID event_id;
ChangeSpec change_specification;
SourceConditionOpState source_condition_op_state;
Quality dais_quality;

};

struct Event {
SimpleEvent simple_event;
TrackingEvent tracking_event;
ConditionEvent condition_event;

};
typedef sequence<Event> Events;

interface Callback
{

void on_event (
in boolean refresh,
in boolean last_refresh,
in Events the_events

);
5-50 Data Acquisition from Industrial Systems, v1.1 June 2005

5

void on_read_complete (
in Events the_events,
in unsigned long transaction_id

);
};
};};};
#endif // _DAIS_AEIO_IDL

ChangeSpec

A flag word having a number of flags telling what change caused the event notification.

SimpleEvent

A struct holding the simple event data.

Flag Description

CHANGE_ACTIVE_STATE Alarm active has changed.

CHANGE_ACK_STATE Alarm acknowledge has changed.

CHANGE_ENABLE_STATE Enable has changed.

CHANGE_QUALITY The quality has changed.

CHANGE_SEVERITY The severity has changed.

CHANGE_CONDITION A condition has become active/inactive.

CHANGE_MESSAGE The message has been updated.

CHANGE_ATTRIBUTE An attribute value has changed.

Member Description

source The identification of the source for which the event
notification was created.

source_pathname The full pathname of the source.

time_stamp Time of the event occurrence - for conditions, time that the
condition transitioned into the new state or condition. For
example, if the event notification is for acknowledgment of
a condition, this would be the time that the condition
became acknowledged.

message Event notification message describing the event.

event_format The identification for one of the three main formats.
June 2005 DAIS, v1.1: API 5-51

5

TrackingEvent

A struct holding tracking event data.

ConditionEvent

A struct holding the condition event data.

category The identification of the sub-category why the event
notification was sent.

category_name The label for the sub-category.

severity The severity for the event, a number between 0 and 1000.

property_values A sequence of property values as selected by the
select_returned_properties() method.

Member Description

actor_name The name of the actor or operator causing the event
notification.

Member Description

condition_space_name The name of the condition space that caused the
event notification.

condition_space Identification of the condition space.

condition_name The name of the condition that caused the event
notification.

condition_number Identification of the condition.

ack_required An indication that an alarm is generated and that
an acknowledgment is required.

active_time The time when the condition became active.

event_id An identification of the event notification.

change_specification Indicates to the client which properties of the
condition have changed.

source_condition_op_state The new state for the source condition.

quality The quality.
5-52 Data Acquisition from Industrial Systems, v1.1 June 2005

5

Event

A struct composed of the three above event structs. The simple event struct always
contains valid information and which of the tracking or condition event structs are valid
is decided from the main_reason simple event member.

Callback

The callback object implemented by the client and used by the server to send event
notifications.

on_event()

The callback method.

on_read_complete()

A callback method for the async_read_history() method. After an async_read_history()
call from a client the server will deliver the historical events using this method. There is
no corresponding OPC method.

Member Description

simple_event The simple event.

tracking_event The tracking event.

condition_event The condition event.

Parameter Description

refresh Indicates if this callback is due to a refresh.

last_refresh Indicates if this callback is the last in a sequence
initiated by a refresh.

the_events A sequence of event notifications.

return None.

Parameter Description

the_events A sequence of historical events.

transaction_id The transaction number matching the client call number.
June 2005 DAIS, v1.1: API 5-53

5

Event notification callbacks

Figure 5-22 Event notification callbacks interaction

Refresh callbacks

Figure 5-23 Refresh callbacks interaction

 : D AIS: :A larm s AndE vents : :IO :: Cal lbac k : D AIS: :A larm s AndE vents : :IO :: Cal lbac k : DA IS :: A larm s A ndEvent s :: Subs c rip tion: :M anager : DA IS :: A larm s A ndEvent s :: Subs c rip tion: :M anager

on_event()

on_event()

The on_event m ethod is c a l led by the
s erver at
1) ex pirat ion of t he s ubs c rip tion
buffe r_t im e tim eout
2) s ubs cr ip t ion event buffer fu l l

F or a la rm s the c l ient m ay want to
c a ll S ourc eC ondi tion: :ac k _alarm () t o
ac k nowledge. A ll in form ation needed
for do ing th is is found in t he event
noti fic at ions .

 : DAIS::AlarmsAndEvents:: IO::Callback : DAIS::AlarmsAndEvents:: IO::Callback

On_event is called as response to a
refresh. All refresh calls are made with
the refresh parameter set and the last
call also has the last_refresh parameter
set .

 : DAIS: :AlarmsAndEvents::Subscription::Manager : DAIS: :AlarmsAndEvents::Subscription::Manager

on_event()
5-54 Data Acquisition from Industrial Systems, v1.1 June 2005

 References A
A.1 List of References
1. OMG DAIS RFP dtc/99-01-02

2. OMG Utility Management Systems Data Access Facility (DAF) formal/01-06-01

3. OPC Overview; www.opcfoundation.org.

4. OPC Data access version 2.03; www.opcfoundation.org.

5. OPC Alarm and events 1.02; www.opcfoundation.org.

6. OPC Access to Historical data; www.opcfoundation.org.

7. Guidelines for Control Center APIs; EPRI TR-106324

8. Energy management system APIs; IEC standard 61970 and 61970-30x.

9. UML Toolkit; Eriksson & Penker, ISBN 0-471-19161-2

10. Structuring principles and reference designations; IEC standard 1346-1

11. CIM UML model from the Rose file cimu09a.mdl.

12. The Unicode Standard Version 3, ISBN 0-201-61633-6. Refer also to
www.unicode.org.

13. XML Path Language (XPath) Version 1.0, http://www.w3.org/TR/xpath

14. Security Service Specification version 1.7. formal/01-03-08.
June 2005 Data Acquisition from Industrial Systems, v1.1 A-1

A

A-2 Data Acquisition from Industrial Systems, v1.1 June 2005

 OMG IDL B
The complete IDL can be found in the zip archive mfg/2001-01-04. The following URL
should be used to access this file:

http://www.omg.org/cgi-bin/doc?mfg/01-01-04
June 2005 Data Acquisition from Industrial Systems, v1.1 B-1

B

B-2 Data Acquisition from Industrial Systems, v1.1 June 2005

 UML Model C
The complete UML model can be found in the Rose file mfg/2001-01-05. The following
URL should be used to access this file:

http://www.omg.org/cgi-bin/doc?mfg/01-01-05

Note – This file is produced in Rose 2000 and is backward compatible at least to Rose
98. It is also possible to open the file with Microsoft Visual Studio 6 Enterprise, Visual
Modeler.
June 2005 Data Acquisition from Industrial Systems, v1.1 C-1

C

C-2 Data Acquisition from Industrial Systems, v1.1 June 2005

 Glossary
List of Definitions
API - Application Program Interface.

CIM - Common Information Model. The CIM is a power system information model that
was developed in an EPRI sponsored project. The EPRI report was published in 1996.

DAF - The Utility Management System Data Access Facility.

DAF Client - A program or software entity that uses the DAF interfaces to obtain
information. Abbreviated to client in most of this specification.

Data Provider - An implementation of the DAF. That is, a program or software entity
that supplies information via the DAF interfaces. Also referred to as a DAF server or
just a server.

DMS - A Distribution Management System. This is a UMS for operating an electric
power sub-transmission and distribution system.

EMS - An Energy Management System. This is a UMS for operating an electric
power main transmission and/or production system.

EPRI - Electric Power Research Institute. A power industry body that is engaged in an
effort to define APIs and data models for EMS systems and applications.

EPRI CIM - The EPRI Common Information Model. A data model defined in UML that
can be used to describe power systems and related concepts.

HMI - Human Machine Interface (also GUI - Graphical User Interface).

OPC - OLE for Process Control.

PLC - Programmed Logic Controller, a device that controls an item or items of
equipment. A PLC may transmit data it gathers to a UMS and receive control commands
from the UMS. In this case it fills a role similar to an RTU.
June 2005 Data Acquisition from Industrial Systems, v1.1 Glossary-1

Power System - The integrated facilities and resources that produce, transmit and/or
distribute electric energy.

RDF - Resource Description Framework. A model of data that has been defined by a
W3C recommendation and is used in conjunction with XML notation.

RTU - Remote Terminal Unit, a device located at a (usually) remote site that connects
equipment with a central UMS. An RTU gathers data from equipment, and transmits that
data back to the UMS. It also receives commands from the UMS and controls the
equipment.

SCADA - Supervisory Control and Data Acquisition, a system that gives operators
oversight and control of geographically dispersed facilities.

UML - Unified Modeling Language. The OMG standard modeling language, which has
been used to define the EPRI Common Information Model.

UMS - Utility Management System, a control system that incorporates simulation and
analysis applications used by a water, gas or electric power utility for operations or
operational decision support.

WQEMS - A Water Quality and Energy Management System. This is a UMS for
operating water supply and/or waste water systems.

XML - Extensible Markup Language. A generic syntax defined by a W3C
recommendation that can be used to represent UMS data and schema, among other
things.
Glossary-2 Data Acquisition from Industrial Systems, v1.1 June 2005

Index
A
Alarms & Events 1-7, 5-6
API 4-8
Authorization 3-28

C
Callbacks 2-2
Character encoding 3-1
CIM classes 4-7
COM and CORBA IDL Differences 2-6
Common declarations 3-1
Common IDL Overview 3-1
Common Information Model (CIM) 1-3
Concurrency Control 1-5
Conformance 1-7
CORBA

contributors vii
documentation set vi

D
DAIS Server IDL 3-30
DAISAEArea 5-23
DAISAEIO 5-44
DAISAESession 5-8
DAISAESource 5-25
DAISAESourceCondition 5-34
DAISAESubscription 5-11
DAISCommon IDL 3-2
DAISConditionSpace 5-28
DAISDAIO 4-23
DAISDASession IDL 4-9
DAISDASimpleIO 4-49
DAISGroup 4-40
DAISGroupEntry 4-32
DAISItem 4-14
DAISNode IDL 3-12
DAISProperty IDL 3-19
DAISReason 5-40
DAISSession IDL 3-22
DAISType IDL 3-16
Data Access 1-4, 1-7
Data Access Facility (DAF) 2-4
Data Semantics 1-5
Data Types 2-6

E
Enumerators 2-2
Error and status codes 2-2
Error management 2-7

F
Filter definitions 3-25

H
Hierarchical structure diagram 1-2
High Performance Implementations 1-6

I
Identifiers, handles, and blobs 2-2
IEC 1346-1, Structuring and Naming 2-7
IEC 61970 structure 2-8
Information Model 4-1

Information model/schema 2-5
Interface management 2-7
Item Values 4-4
Items, structuring, and naming 2-3

L
Logical Expressions and Navigation 3-25

M
Method return data 2-3

N
Naming 4-3

O
Object Management Group v

address of vii
Object referencing 2-7
OLE for Process Control (OPC) 2-1
OPC 1-3
OPC names 2-2
OPC Recommended Properties 4-5, 5-5

P
Parameters and structs 2-3
Properties and types 2-4

R
Real World Objects (RWOs) 4-1
Remote terminal units (RTUs) 1-1
Requirement levels 3-29

S
SCADA system 1-1
Security Service A-1, B-1, C-1, 1
Server 1-7, 3-29
Server side cursor 2-3

T
Typographical conventions vii

U
UNIX based systems 1-3
Utility SCADA/EMS Measurement Model 4-6

W
Windows NT based systems 1-3

X
XPath 2-8
June 2005 Data Acquisition from Industrial Systems, v1.1 Index-1

Index
Index-2 Data Acquisition from Industrial Systems, v1.1 June 2005

Data Acquisition from Industrial Systems, v1.1
Reference Sheet

The document history for this specification is as follows:

• dtc/04-10-02 - RTF report

• dtc/04-10-05 - convenience document

This document supersedes formal/02-11-07 (v1.0).

	Contents
	Preface
	1 Overview
	1.1 Introduction
	1.2 Problems Being Addressed
	1.2.1 Data Access
	1.2.2 Concurrency Control
	1.2.3 Data Semantics

	1.3 Problems Not Being Addressed
	1.4 Design Rationale
	1.4.1 Adherence to OPC
	1.4.2 Simplicity and Uniformity
	1.4.3 High Performance Implementations
	1.4.3.1 Subscription
	1.4.3.2 Sequences
	1.4.3.3 Iterators
	1.4.3.4 Data Value Representation

	1.5 Conformance to the DAIS
	1.5.1 Conformance to the Server
	1.5.2 Conformance to Data Access
	1.5.3 Conformance to Alarms and Events

	2 Relations to Other Standards
	2.1 OLE for Process Control (OPC)
	2.1.1 Objects
	2.1.1.1 Interface, method, and parameter naming
	2.1.1.2 Error and status codes
	2.1.1.3 Identifiers, handles, and blobs
	2.1.1.4 Callbacks
	2.1.1.5 Enumerators
	2.1.1.6 Parameters and structs
	2.1.1.7 Method return data
	2.1.1.8 Items, structuring, and naming
	2.1.1.9 Server side cursors
	2.1.1.10 Properties and types

	2.2 Data Access Facility (DAF)
	2.2.1 Resources and Properties
	2.2.2 Information model/schema
	2.2.3 Data Types

	2.3 COM and CORBA IDL Differences
	2.3.1 Object Referencing
	2.3.2 Interface Management
	2.3.3 Error Management
	2.3.4 IDL

	2.4 IEC 1346-1, Structuring and Naming
	2.5 IEC 61970 EMS API
	2.6 XPath

	3 DAIS Server
	3.1 Common Declarations
	3.1.1 Character Encoding
	3.1.2 Common IDL Overview
	3.1.3 DAFIdentifiers IDL
	3.1.4 DAFDescriptions IDL
	3.1.5 DAISCommon IDL
	3.1.6 Iterator Methods IDL
	3.1.7 DAISNode IDL
	3.1.7.1 DAIS::Node overview
	3.1.7.2 IDL

	3.1.8 DAISType IDL
	3.1.8.1 DAIS::Type Overview
	3.1.8.2 IDL

	3.1.9 DAISProperty IDL
	3.1.9.1 DAIS::Property Overview
	3.1.9.2 IDL

	3.1.10 DAISSession IDL
	3.1.10.1 DAIS::Session Overview
	3.1.10.2 IDL

	3.1.11 Filter Definitions
	3.1.12 Logical Expressions and Navigation
	3.1.13 Authorization
	3.1.14 Requirement Levels

	3.2 Server
	3.2.1 DAISServer IDL Overview
	3.2.2 DAIS Server IDL
	3.2.2.1 DAIS::Server objects Overview
	3.2.2.2 IDL

	4 DAIS Data Access
	4.1 Information Model
	4.1.1 Nodes, Items, Types, and Properties
	4.1.2 Naming
	4.1.3 Item Values
	4.1.4 OPC Recommended Properties
	4.1.5 Utility SCADA/EMS Measurement Model

	4.2 API
	4.2.1 Data Access IDL Overview
	4.2.2 DAISDASession IDL
	4.2.2.1 DAIS::DataAccess::Session objects overview
	4.2.2.2 IDL

	4.2.3 DAISDANode IDL
	4.2.3.1 DAIS::DataAccess::Node overview
	4.2.3.2 IDL

	4.2.4 DAISItem IDL
	4.2.4.1 DAIS::Item Overview
	4.2.4.2 IDL

	4.2.5 DAISDAIO IDL
	4.2.5.1 DAIS::DataAccess::IO Overview
	4.2.5.2 IDL

	4.2.6 DAISGroupEntry IDL
	4.2.6.1 DAIS::DataAccess::GroupEntry Overview
	4.2.6.2 IDL

	4.2.7 DAISGroup IDL
	4.2.7.1 DAIS::DataAccess::Group Overview
	4.2.7.2 IDL

	4.2.8 DAISDASimpleIO IDL
	4.2.8.1 DAIS::DataAccess::SimpleIO Overview
	4.2.8.2 IDL

	5 Alarms & Events
	5.1 Information Model
	5.1.1 OPC Recommended Properties

	5.2 API
	5.2.1 Alarms & Events IDL Overview
	5.2.2 Alarms and Events Common IDL Definitions
	5.2.2.1 IDL

	5.2.3 DAISAESession IDL
	5.2.3.1 DAIS::AlarmsAndEvents::Session Objects Overview
	5.2.3.2 IDL

	5.2.4 DAISAESubscription IDL
	5.2.4.1 DAIS::AlarmsAndEvents::Subscription Overview
	5.2.4.2 IDL

	5.2.5 DAISAEArea IDL
	5.2.5.1 DAIS::AlarmsAndEvents::Area Overview
	5.2.5.2 IDL

	5.2.6 DAISAESource IDL
	5.2.6.1 DAIS::AlarmsAndEvents::Source Overview
	5.2.6.2 IDL

	5.2.7 DAISConditionSpace IDL
	5.2.7.1 DAIS::AlarmsAndEvents::ConditionSpace Overview
	5.2.7.2 IDL
	5.2.7.3 Condition Logic

	5.2.8 DAISAESourceCondition IDL
	5.2.8.1 SourceCondition Overview
	5.2.8.2 IDL

	5.2.9 DAISCategory IDL
	5.2.9.1 DAIS::AlarmsAndEvents::Category Overview
	5.2.9.2 IDL

	5.2.10 DAISAEIO IDL
	5.2.10.1 DAIS::AlarmsAndEvents::IO Overview
	5.2.10.2 IDL

	A References
	B OMG IDL
	C UML Model
	Glossary

