
Supporting Software Maintenance by
Mining Software Update Records

By
Jelber Sayyad Shirabad

Thesis submitted to the Faculty of Graduate and Post-Doctoral Studies in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Ottawa-Carleton Institute for Computer Science
School of Information Technology and Engineering

University of Ottawa,
Ottawa Ontario Canada

© Jelber Sayyad Shirabad, May 2003

To my father, mother and sister

for their endless love and support

I have yet to see any problem, however complicated, which, when you looked at it in the

right way, did not become still more complicated.

Poul Anderson (1926-2001) Science Fiction Writer

i

Abstract

It is well known that maintenance is the most expensive stage of the software life cycle.

Most large real world software systems consist of a very large number of source code

files. Important knowledge about different aspects of a software system is embedded in a

rich set of implicit relationships among these files. Those relationships are partly

reflected in system documentation at its different levels, but more often than not are

never made explicit and become part of the expertise of system maintainers. Finding

existing relations between source code components is a difficult task, especially in the

case of legacy systems.

When a maintenance programmer is looking at a piece of code in a source file, one of the

important questions that he or she needs to answer is: “which other files should I know

about, i.e. what else might be relevant to this piece of code?”. This is an example of a

more general Relevance Relation that maps a set of entities in a software system into a

relevance value.

How can we discover and render explicit these relationships without looking over the

shoulder of a programmer involved in a maintenance task? We turn to inductive methods

that are capable of extracting structural patterns or models from data. They can learn

concepts or models from experience observed in the past to predict outcomes of future

unseen cases.

This thesis lies at the intersection of two research fields, which has been widely ignored

by researchers in the machine learning and software engineering communities. It

investigates the application of inductive methods to daily software maintenance at the

source code level. Therefore in this thesis we first lay out the general idea of relevance

among different entities in a software system. Then using inductive learning methods and

a variety of data sources used by maintenance programmers, we extract (i.e. learn) what

we call a maintenance relevance relation among files in a large legacy system. In effect

ii

we learn from past maintenance experience in the form of problem reports and update

records, to be able to make predictions that are useful in future maintenance activities.

This relation, which is called the Co-update relation, predicts whether updating one

source file may require a change in another file.

To learn the Co-update relation we have performed a large number of experiments using

syntactic features such as function calls or variable definitions. We have also performed

experiments that use text based features such as source code comments and problem

reports, and the combination of these features. The results obtained show that while using

syntactic features is encouraging in terms of the predictive power of the results of

learning, using text based features yields highly accurate models, with precision and

recall measures that make these models viable to be used in a real world setting. As part

of the contribution of this thesis we also report on challenges encountered in the process

and the lessons learned.

iii

Acknowledgments

I would like to express my deepest gratitude and thanks to my supervisors Dr. Stan

Matwin and Dr. Timothy C. Lethbridge for imparting their knowledge and wisdom to me,

and their support, care, trust and friendship. I thank Tim for his very generous financial

support through the years, which relieved the financial burden associated with my studies

to a great extent. I would also like to thank Stan for his support for the last few years

which allowed me stay focused on my research at a time that I had to face fluctuations in

funds due to external factors. He also generously provided me with a new and more

powerful PC in the last year of my study, which speeded up running the experiments

quite considerably and was instrumental in allowing me to include some of the more

interesting results in this thesis.

Tim was the primary proofreader of my thesis and I would like to thank him for his

thorough review of its many drafts. His feedback allowed me to present the thesis and our

joint publications in a way that is understandable to an audience who may not necessary

have a background in machine learning. I am also grateful to Stan for corrections and

comments I received from him especially on machine learning related topics and many

pointers he provided me which certainly helped me with improving the quality of my

research and this thesis. I have learned a lot from both my supervisors.

I would like to express my appreciation and thanks to the members of my defense

committee Dr. Eleni Stroulia the external examiner from the University of Alberta, Dr.

Lionel Briand of Carleton University, and Doctors Nathalie Japkowicz and Liam Payton

from the University of Ottawa, for their insightful comments and suggestion to improve

the quality of this thesis. I am grateful to Dr. Robert Holte for his comments on my thesis

proposal and our follow up discussions, which have greatly influenced my research.

Funding for this research was made available by the Consortium for Software

Engineering Research (CSER), Mitel Networks, and The Natural Science and

iv

Engineering Foundation of Canada (NSERC). The University of Ottawa provided me

with an admission scholarship and tuition fee waiver for the first two years of my studies.

This was a great help for me and I am very thankful the university for it.

Many thanks to the members of SX 2000 team, the support staff, and the research

management at Mitel Networks and in particular Steve Lyon, Steve Szeto, Soo Tung, Ian

Duncan, Chris Halford, Peter Perry and Daisy Fung for the assistance they provided.

Special thanks to Dr. Sylvia Boyd who trusted me with teaching Prolog Concepts

Laboratory for the first time, and Dr. Lou Birta for his continuous encouragement and

friendship.

Over the years I have received excellent software and hardware support from Keith

White, Michel Racine, Marc Fortier, Roger Montcalm, and Alan Stewart. Their

assistance is greatly appreciated.

My life as a student would have been more challenging if it wasn’t for many good people

who over years of my study at the University of Ottawa consistently showed their

friendship. In no particular order, I would like to thank my colleagues and friends

Viviana Nastase, the Azizi family, Francisco Herrera, Gina Gonzalez, Rossana Andrade,

Stephane Somé, Alan Williams, Masahide Nakamura, Khalid Khidhir, Felipe Contreras,

the Yeghikian family, the Zamora family, Nicolas Anquetil, Kathia Oliveira, Amy Yi,

Chris Drummond, Artush Abolian, Jack Dadourian, Ana Shannette and Vahik

Manookian for their help, caring and many pleasant memories over years. A special

thank you goes to Vivi for allowing me to use her computer at the department during

those last days before submitting my thesis for the defense. I also thank her for the

excellent work she did as my teaching assistant, as I have come to realize the impact a

knowledgeable and reliable TA has on the time that I have to spend on teaching a course.

Many thanks to my uncle and aunt who are my family in Canada. Visiting them during

Christmas and other occasions helped me to unwind and think less about my research. I

have enjoyed many of casual conversation we had around the dinner table. At this

juncture, let me also thank everyone else who in one way or the other has had a positive

impact on my life and study, and who I have omitted in this acknowledgment.

v

I still remember my mother’s expression when I first told her that I was going to Canada

to continue my studies. I remember my father, mother, and sister’s face as we said

goodbye in the airport. I saw love then, and I have been blessed with their love and

unwavering support during all these years that we have been apart. I feel most blessed for

having them as my family, and from the bottom of my hart I thank them for their

sacrifices and all they have done for me. The road to the PhD had many ups and downs

for me. Now that I am at the end of this road, I feel very humbled by the whole

experience, but I know my family is very proud of me. As a small token of my

appreciation, I am dedicating this thesis to them.

vi

vii

Table of Contents

Abstract .. i
Acknowledgments .. iii
Table of Contents .. vii
Index of Figures ... xi
Index of Tables...xiii
Chapter 1 Motivation.. 1

1.1 Legacy Software Systems and Software Maintenance.. 1
1.2 Comprehending Legacy Systems... 3
1.3 Knowledge Based Software Engineering vs. Application of Inductive Methods in

Software Engineering... 5
1.4 The Goal of the Thesis .. 6
1.5 Definitions and an Application .. 8
1.6 Contribution of this Thesis .. 15

Chapter 2 Related Research ... 17
2.1 Introduction... 17
2.2 AI and Software Maintenance ... 18

2.2.1 Knowledge Based Software Engineering .. 19
2.2.2 Knowledge Based Systems Applied to Software Maintenance 22

2.2.2.1 Code Generation (COGEN) ... 22
2.2.2.2 MACS ... 23
2.2.2.3 Problem Manager (PM) ... 24
2.2.2.4 Intelligent Program Editor (IPE) .. 26
2.2.2.5 Intelligent Semantic Lisp-program Analyzer (ISLA).............................. 27
2.2.2.6 Maintainers Assistant... 27
2.2.2.7 Program Understanding Using Plan Recognition Algorithms 28
2.2.2.8 Model Oriented Reengineering Process for HCI (MORPH) 30
2.2.2.9 Programmer’s Apprentice .. 31
2.2.2.10 Recognizer... 32
2.2.2.11 Program Analysis Tool (PAT).. 33
2.2.2.12 LASSIE ... 34
2.2.2.13 Knowledge-Based Assistant for Reverse Engineering (KARE) 35
2.2.2.14 Summary of Knowledge-Based Maintenance Support Systems 37

2.2.3 Inductive Approaches Applied to Software Maintenance 38
2.2.4 Application of Inductive Learning in Software Maintenance......................... 39

2.2.4.1 Fault Density Prediction... 39

viii

2.2.4.2 Design Recovery.. 40
2.2.4.3 Locating High-Risk Software modules... 40
2.2.4.4 Software Quality Prediction ... 42
2.2.4.5 Case-Base Reasoning and Inductive Logic Programming Applied to

Software Reuse .. 43
2.2.4.6 Estimating Software Development Effort... 44

2.2.5 Summary .. 45
Chapter 3 Methodology .. 47

3.1. Introduction.. 47
3.2. General Approach .. 49

3.2.1 Pre-Learning Stage ... 51
3.2.1.1 Identifying Sources of Data and Knowledge .. 51
3.2.1.2 Acquire Data and Knowledge .. 53

3.2.1.2.1 Creating examples of Relevant and Not Relevant File Pairs 54
3.2.1.2.2 Finding Relevant and Not Relevant File Pairs 54
3.2.1.2.3 Heuristics Based on File Update Information 56
3.2.1.2.4 Features Used in Defining the Relevance Concept........................... 60
3.2.1.2.5 Features Extracted From the Source Code 61
3.2.1.2.6 File Reference Attributes... 63
3.2.1.2.7 Data Flow Attributes ... 65
3.2.1.2.8 Control Flow Attributes... 66
3.2.1.2.9 File Name Related Attributes .. 70
3.2.1.2.10 Text Based Attributes.. 72

3.2.1.3 Preprocessing... 73
3.2.2 Learning Stage.. 73

3.2.2.1 Transformation and Encoding .. 73
3.2.2.2 Learning .. 74
3.2.2.3. Evaluating the Usefulness of the Learned Concept 75
3.2.2.4. Parameter Tuning.. 79

3.2.3 Post Learning Stage .. 79
3.3. Limitations of Our Research... 80

Chapter 4 Experiments... 81
4.1 Background on the System Under Study.. 81
4.2 Creating Training and Testing Data sets .. 82
4.3 Removing Class Noise .. 82
4.4 Background on Experimental Setup... 83

4.4.1 Experiments Using C5.0 ... 84
4.4.2 Experiments With Set Covering Machines.. 95

4.5 The Base Experiments... 101
4.5.1 Creating File Pair Data Sets for the Base Experiments 102
4.5.2 Creating Training and Testing Data Sets for the Base Experiments 106
4.5.3 Repeating Relevant Examples... 110

4.6 Analysis of the Decision Trees .. 113
4.7 Using the 1R Algorithm to Create Classifiers .. 114
4.8 Removing Class Noise .. 116
4.9 Discretizing Numeric Attributes .. 119

ix

4.10 Using Text Based Features .. 128
4.10.1 Source File Comment Words as Features.. 132
4.10.2 Problem Report Words as Features ... 135

4.11 Combination of Features.. 140
4.11.1 Combination of Syntactic and Source File Comment Word Features......... 142
4.11.2 Combination of Syntactic and Problem Report Word Features.................. 145
4.11.3 Combination of Source File Comment and Problem Report Features 148

4.11.3.1 Juxtaposition of Source File Comment and Problem Report Features . 148
4.11.3.2 Union of Source File Comment and Problem Report Features............ 151

4.12 Summary... 155
Chapter 5 Conclusion and Future Work ... 159

5.1 Summary and Concluding Remarks... 159
5.2 Future Work.. 165

Appendix A A Three-Class Learning Problem.. 169
A.1 Heuristics Based on User Interactions... 169
A.2 Collecting the Result of Software Engineers Interactions.................................. 170
A.3 Cleaning the Log .. 171
A.4 Dividing the Logs into Sessions.. 171
A.5 Extracting Pairs of Potentially Relevant Software Units.................................... 172
A.6 Example Label Conflict Resolution .. 173
A.7 Format of log files .. 173

Appendix B An Alternative to the Hold Out Method.. 177
B.1 Basic Training and Testing File Pairs.. 178
B.2 Alternatives to Basic Training and Testing File Pairs .. 179

B.2.1 Alternative to the Training Set ... 179
B.3 Precision, Recall and F-Measure Comparisons.. 181
B.4 A Hold Out Evaluation Approach ... 187
B.5 Summary .. 193

Appendix C Detailed Experiment Results.. 195
Appendix D A Classifier Evaluation Questionnaire .. 207

D.1 A Sample Questionnaire ... 208
D.2 Instructions Accompanying the Questionnaire .. 211

Appendix E A Sample Decision Tree ... 215
E.1 A Decision Tree Learned Form Problem Report Feature Set 215

References ... 227

x

xi

Index of Figures

Figure 1.1 Continues and Discrete Versions of a Relevance Relation R....................... 9
Figure 1.2 A System Relevance Graph and its Two System Relevance Subgraphs..... 10
Figure 3.1 Creating a Classifier from a Set of Examples .. 48
Figure 3.2 Classifying a New Case .. 49
Figure 3.3 The Process of Learning a Maintenance Relevance Relation..................... 50
Figure 3.4 The Process of Submitting an Update to Address a Problem Report.......... 53
Figure 3.5 File pairs, Features, and Examples.. 55
Figure 3.6 Relation Between Relevant and Not Relevant Pairs 60
Figure 3.7 A Decision Tree ... 75
Figure 3.8 A Confusion Matrix.. 75
Figure 3.9 An ROC Curve... 79
Figure 4.1 ROC Comparison of Stratified Training Experiments 94
Figure 4.2 Creating Training Sets with Different Class Ratios 108
Figure 4.3 ROC Plots of Base Experiments 1 and 2 ... 109
Figure 4.4 ROC Plots of Base Experiments 3 and 4 ... 112
Figure 4.5 Comparing the Best ROC Plots when Relevant Pairs are and are not

Repeated... 112
Figure 4.6 ROC Plots of C5.0 and 1R for Base Experiment 3 115
Figure 4.7 ROC Plots of Class Noise Removal Experiments.................................... 116
Figure 4.8 Decision Tree Size Plots of Class Noise Removal Experiments 118
Figure 4.9 ROC Plots for Method 1 ... 120
Figure 4.10 Decision Tree Size Plots of Method 1 ... 121
Figure 4.11 ROC Plots for Method 2 ... 123
Figure 4.12 Decision Tree Size Plots of Method 2 ... 124
Figure 4.13 ROC Comparison of the Last Stages of Methods 1 and 2........................ 126
Figure 4.14 Decision Tree Size Plots of Methods 1 and 2 .. 126
Figure 4.15 Creation of Bag of Words Vectors .. 129
Figure 4.16 ROC Comparison of the File Comment and Syntactic Attribute Based

Classifiers... 133
Figure 4.17 Creating Source File-Bag of Words Using Problem Reports 135
Figure 4.18 ROC Comparison of the Problem Report and Syntactic Attribute Based

Classifiers... 138
Figure 4.19 ROC Comparison of the File Comment Classifiers with and without

Syntactic Attributes .. 143

xii

Figure 4.20 ROC Comparison of the Problem Report Classifiers with and without
Syntactic Attributes .. 146

Figure 4.21 ROC Comparison of the Problem Report Feature Classifiers with
Juxtaposed Combination of Used Problem Report and Source File Comment
Features Classifiers... 149

Figure 4.22 ROC Comparison of the Problem Report Feature Classifiers with the Union
of Used Problem Report and Source File Comment Feature Classifiers .. 152

Figure 4.23 ROC Comparison of the Problem Report Feature Classifiers with the Union
of Used Problem Report and Source File Comment Feature Classifiers .. 154

Figure B.1 Effect of Different Test Repositories on the Precision of the Relevant Class
Using 1997-1998 G20 Training Sets .. 181

Figure B.2 Effect of Different Test Repositories on the Recall of the Relevant Class
Using 1997-1998 G20 Training Sets .. 182

Figure B.3 Effect of Different Test Repositories on the F1 Measure of the Relevant
Class Using 1997-1998 G20 Training Sets... 182

Figure B.4 Effect of Different Repositories on the Precision of the Relevant Class
Using 1997-1998 NGSL Training Sets ... 184

Figure B.5 Effect of Different Test Repositories on the Recall of the Relevant Class
Using 1997-1998 NGSL Training Sets ... 184

Figure B.6 Effect of Different Test Repositories on the F1 Measure the Relevant Class
Using 1997-1998 NGSL Training Sets ... 185

Figure B.7 Comparison of the Best Precision Results in Figures B.1 and B.4 186
Figure B.8 Comparison of the best Recall Results in Figures B.2 and B.5 186
Figure B.9 Comparison of the Best F1 Measure Results in Figures B.3 and B.6........ 187
Figure B.10 Comparison of the Best Precision Results in Figure B.7 and 2/3 - 1/3 Split

... 189
Figure B.11 Comparison of the Best Recall Results in Figure B.8 and 2/3 - 1/3 Split . 189
Figure B.12 Comparison of the Best F1 Measure Results in Figure B.9 and 2/3 - 1/3 Split

... 190
Figure B.13 Comparison of the Best Precision Results in Figure B.7 and 2/3 - 1/3

Repeated Relevant Split.. 191
Figure B.14 Comparison of the Best Recall Results in Figure B.8 and 2/3 - 1/3 Repeated

Relevant Split ... 192
Figure B.15 Comparison of the Best F1 Measure Results in Figure B.9 and 2/3 - 1/3

Repeated Relevant split .. 192
Figure E.1 Decision Tree Generated by Experiment 16 for Imbalance Ratio 50 215

xiii

Index of Tables

Table 2.1 Summary of KBSE Systems Discussed... 37
Table 3.1 Distribution of Files by Their Type... 58
Table 3.2 Summary of Syntactic Attributes .. 72
Table 4.1 Distribution of SX 2000 Source Code Among Different Files................... 82
Table 4.2 Training and Testing Class Ratios for Skewed Experiments...................... 85
Table 4.3 Result of Removing Class Noise from Skewed Training Sets 86
Table 4.4 Learning from Less Skewed Training Sets.. 88
Table 4.5 The Effect of Removing Class Noise from Training Sets 88
Table 4.6 Removing Training Relevant Examples from Testing Not Relevant

Examples (Noisy Data)... 89
Table 4.7 Removing Training Relevant Examples from Testing Not Relevant

Examples (Noise Free Data) ... 90
Table 4.8 Training and Testing Class Ratios for Single Combination Experiments... 90
Table 4.9 Single Combination Versus All Permutation... 91
Table 4.10 Using Relevant Based Approach to Create the Training Not Relevant

Examples.. 91
Table 4.11 The Effect of Using Relevant Based Training Files................................... 92
Table 4.12 Pascal Only Repositories .. 93
Table 4.13 Results of Experimenting With Pascal Only File Pairs.............................. 93
Table 4.14 Training and Testing Repositories Used for Stratified Training Experiments

... 94
Table 4.15 Conjunction of Balls for Loss Ratio 1 and Distance Metrics L1 and L2 98
Table 4.16 Disjunction of Balls for Loss Ratio 1 and Distance Metrics L1 and L2 99
Table 4.17 Conjunction of Balls for Loss Ratio 10, Distance Metrics L1, and FSF 1 and

2... 99
Table 4.18 Conjunction of Balls for Loss Ratio 10, Distance Metrics L2, and FSF 1 and

2... 100
Table 4.19 Disjunction of Balls for Loss ratio 10, Distance Metrics L2, and FSF 1 and 2

... 100
Table 4.20 Disjunction of Balls for Loss Ratio 10, Distance Metrics L2, and FSF 1 and

2... 101
Table 4.21 Data to which File Pair Labeling Heuristics were Applied 102
Table 4.22 Distribution of Group Sizes Created by Co-Update Heuristic.................. 104
Table 4.23 Training and Testing Repositories Used in Base Experiments 1 and 2 105
Table 4.24 Attributes Used in the Base Experiments .. 107

xiv

Table 4.25 Training and Testing Repositories Used in Base Experiments 3 and 4 111
Table 4.26 Top Nodes in the Decision Trees of Base Experiment 3.......................... 114
Table 4.27 The Normalized Distance of ROC Points from the Perfect Classifier for

Class Noise Removal Experiments ... 117
Table 4.28 Decision Tree Size of Class Noise Removal Experiments 118
Table 4.29 The Normalized Distance of ROC Points from the Perfect Classifier for

Method 1 .. 121
Table 4.30 The Normalized Distance of ROC Points from the Perfect Classifier for

Method 2 .. 124
Table 4.31 The Normalized Distance of ROC Points from the Perfect Classifier for

Methods 1 and 2 ... 127
Table 4.32 Decision Tree Size Comparison of Methods 1 and 2............................... 127
Table 4.33 The Normalized Distance of ROC Points from the Perfect Classifier for

Plots in Figure 4.16... 134
Table 4.34 Decision Tree Size Comparison for Plots in Figure 4.16 134
Table 4.35 The Normalized Distance of ROC Points from the Perfect Classifier for

Plots in Figure 4.18... 138
Table 4.36 Decision Tree Size Comparison for Plots in Figure 4.18 140
Table 4.37 The Normalized Distance of ROC Points from the Perfect Classifier for

Plots in Figure 4.19... 144
Table 4.38 Decision Tree Size Comparison for Plots in Figure 4.19 144
Table 4.39 The Normalized Distance of ROC Points from the Perfect Classifier for

Plots in Figure 4.20... 147
Table 4.40 Decision Tree Size Comparison for Plots in Figure 4.20 and Syntactic

Attribute Based Decision Trees .. 147
Table 4.41 The Normalized Distance of ROC Points from the Perfect Classifier for

Plots in Figure 4.21... 150
Table 4.42 Decision Tree Size Comparison for Plots in Figure 4.21 150
Table 4.43 The Normalized Distance of ROC Points from the Perfect Classifier for

Plots in Figure 4.22... 152
Table 4.44 Decision Tree Size Comparison for Plots in Figure 4.22 153
Table 4.45 The Normalized Distance of ROC Points from the Perfect Classifier for

Plots in Figure 4.23... 154
Table 4.46 Decision Tree Size Comparison for Plots in Figure 4.23 155
Table 4.47 Experiments Summary ... 157
Table 4.47 Experiments Summary (Continued …) ... 158
Table A.1 Format of the Log Lines ... 174
Table A.2 Log Commands and their Meaning ... 174
Table A.2 Log Commands and their Meaning (Continued …)................................. 175
Table B.1 Alternatives to Basic Training and Testing Pairs..................................... 180
Table B.2 Alternatives to Basic Training and Testing Pairs (Extended Version)...... 188
Table B.3 Training and Testing Sets Using the Hold Out Method with Repeated

Relevant Examples ... 191
Table C.1 Detailed Data for Base Experiment 1 (Table 4.24 First Half) 196
Table C.2 Detailed Data for Base Experiment 2 (Table 4.24 Second Half).............. 196
Table C.3 Detailed Data for Base Experiment 3 (Table 4.26 First Half) 197

xv

Table C.4 Detailed Data for Base Experiment 4 (Table 4.26 Second Half).............. 197
Table C.5 Detailed Data for Experiment 5 .. 198
Table C.6 Detailed Data for Experiment 6 (Single Copy Noise Removal) 198
Table C.7 Detailed Data for Experiment 6 (Multi-Copy Noise Removal)................ 199
Table C.8 Detailed Data for Experiment 8 .. 199
Table C.9 Detailed Data for Experiment 9 .. 200
Table C.10 Detailed Data for Experiment 11 .. 200
Table C.11 Detailed Data for Experiment 12 .. 201
Table C.12 Detailed Data for Experiment 13 .. 201
Table C.13 Detailed Data for Experiment 14 .. 202
Table C.14 Detailed Data for Experiment 15 .. 202
Table C.15 Detailed Data for Experiment 16 .. 203
Table C.16 Detailed Data for Experiment 17 .. 203
Table C.17 Detailed Data for Experiment 18 .. 204
Table C.18 Detailed Data for Experiment 19 .. 204
Table C.19 Detailed Data for Experiment 20 .. 205
Table C.20 Detailed Data for Experiment 21 .. 205

xvi

1

Chapter 1

Motivation

This thesis is devoted to the development and testing of an approach to extract models of

a software system that are geared towards assisting software maintainers. The objective

here is to learn relations from the past maintenance experience that could be useful in

future source code level maintenance activities.

1.1 Legacy Software Systems and Software Maintenance

Legacy software systems are a fact of life in the software engineering community. Many

important software systems controlling essential aspects of modern society were

developed many years ago. Legacy systems are old systems that still need to be

maintained [Sommerville 2001 pp. 582]. It was estimated that in 1990 there were 120

billion lines of code in existence, and at the time the majority of those systems were

already considered to be legacy systems [Ulrich 1990]1.

Most legacy systems exhibit the following properties:

• They are old

• They are large

1 The widely referenced Gartner Group document [McNee et. al. 1997] estimated that up to 250 billion
lines of code needed be scanned to address the year 2000 date problem.

2

• They are essential for the operation of the organization which uses them

• The existing documentation about them is often incomplete or out of date

• Many of them were designed before the time of structured programming [Choi and

Scacchi 1990]

• They have been developed and modified by several people over many years

• There is no single person who possesses a complete understanding of the system

 Although systems written in the 1960’s and running on mainframe systems are classical

cases of legacy systems, in practice much newer systems developed in the 1980’s and

1990’s, using structured design and other modern techniques are also considered to be

legacy at the beginning of the twenty-first century.

 According to ANSI/IEEE standard 729-1983, maintenance is the “modification of a

software product after delivery to correct faults, to improve performance or other

attributes, or to adapt the product to a changed environment” [Chikofsky and Cross 1990

p. 14].

It is known that software maintenance is a time consuming and costly part of the software

life cycle. Whether newer software development technologies, such as object orientation,

have been effective in practice to alleviate the maintenance burden, is perhaps debatable,

but the above statement has been, and is, true for legacy software systems.

 While design decisions and the rationale for them are sometimes documented, more often

modifications to the source code are the main or the only indication of design changes

[Rugaber et al 1990 p. 46]. The lack of up to date requirement, design and code

documents has played a major role in making maintenance a difficult, expensive and

error prone task.

The cost of maintenance varies widely depending on the application domain. It can range

from broadly comparable with system development cost, to up to four times as high as

the cost of development for real time embedded systems2.[Sommerville 2001 p. 607].

There have also been reports of extreme cases in which maintenance cost has been as

 2 Perhaps there are other systems with even higher maintenance cost.

3

high as 130 times the development cost [Boehm 1975]. Other researchers have suggested

that on average 67% of the total cost of the product can be attributed to maintenance

[Lientz, Swanson, and Tompkins 1978][Schach 2002 p. 494]. While [Tracz 1988] put this

number close to 70% [Tracz 1988], there are others who suggest an 80-20 rule, which

says 20% of the development work is performed during original application development,

and the other 80% is performed during maintenance [Conger 1994 p. 740], and the

indications are that the cost is likely to increase [McCartney 1991 p. xvii]. [Shari 2001 p.

479] suggests that this increase in the cost of maintenance in the first decade of the new

century to be 80% of a typical system’s lifetime cost.

Software maintenance has been referred to as a severe problem [McCartney 1991 p.

xviii], or even as being the most difficult of all aspects of software production [Devanbu

and Ballard 1991 p. 26] [Schach 2002 p. 494].

Yet despite developing a general understanding of the importance of maintenance in the

software life cycle, and an abundance of very large legacy software, academia has not

paid as much attention to the topic as it deserves. The papers related to software

maintenance are less than 1% of the papers annually published on software topics [Kwon

et al 1998 p.1].

 1.2 Comprehending Legacy Systems

 Four kinds of maintenance activities are:

• Corrective which is concerned with fixing reported errors

• Adaptive which means changing software to accommodate changes in the

environment such as new hardware

• Perfective which involves implementing new requirements (enhancement)

[Sommerville 2001 p. 605]

• Preventive, also known as software reengineering, which makes changes to computer

programs so that they can be more easily corrected, adapted, and enhanced [Pressman

2001 p. 23].

4

 About 20 percent of maintenance work is dedicated to “fixing mistakes”. The remaining

80 percent is dedicated to adapting the system to a new external environment,

implementing enhancement requests from users, and reengineering an application for

future use [Pressman 2001 p. 805].

 Regardless of the type of maintenance, to maintain a software system one needs to

understand it. Better understanding of the software system will assist the maintenance

programmer in performing his or her task.

 One of most important research areas related to software maintenance is Reverse

Engineering. Reverse Engineering is the process of analyzing a system to:

• Identify its components and the relations among them;

• Create an alternative representation for the system at the same or higher level of

abstraction

 Two widely discussed areas of reverse engineering are redocumentation and design

recovery.

 Redocumentation involves providing alternative views of a system at relatively the same

abstraction level. For example data flow, or control flow diagrams of a system.

 Design recovery uses domain knowledge, external information, and deductive and fuzzy

reasoning to identify higher level abstractions than the ones that can be obtained by

examining the system directly [Chikofsky and Cross 1990 p.15].

 In general, most tools developed to assist programmers with comprehending software

start from the source code and try to present it in a more abstract level that is easier for a

human to understand.

 Traditional reverse engineering tools supporting redocumentation mostly rely on static

source code analysis methods [Palthepu et al 1997]. They provide graphical views of the

interconnections between components of the software system, sometime at different

levels of abstraction, but tend to leave the answer to the question of the relation of

components to each other in the context of software maintenance to the software

5

engineer. Examples of systems that provide such a capability are Rigi, Imagix4D, and

SNiFF++ [Bellay and Gall 1996]. The software engineer should make this decision by

browsing through provided information. This becomes more problematic, when the

relation is non-trivial and is influenced by a combination of other relations among

components.

 According to Biggerstaff, “Design recovery recreates design abstractions from a

combination of code, existing design documentation (if available), personal experience,

and general knowledge about problem and application domain. In short, design recovery

must reproduce all of the information required for a person to fully understand what a

program does, how it does it, why it does it, and so forth. Thus, design recovery deals

with a far wider range of information than found in conventional software engineering

representations or code” [Biggerstaff 1989 p. 36].

 In relatively recent years there has been a revival of emphasis on the importance of

knowledge and its incorporation in reverse engineering tools [Clayton et al 1998 p.

76][Bellay and Gall 1998][Kontogiannis 1995 p. 95]. Such systems in effect will fall into

the intersection of Reverse Engineering and Knowledge Based Software Engineering

(KBSE).

 1.3 Knowledge Based Software Engineering vs. Application of Inductive
Methods in Software Engineering

The application of artificial intelligence technology to software engineering is known as

Knowledge Based Software Engineering (KBSE) [Lowry and Duran 1989 p.243]. While

this definition is fairly broad, most KBSE systems explicitly encode the knowledge that

they employ [McCartney 1991 p. xix]. KBSE systems designed for assisting software

engineers in low-level everyday maintenance tasks have the potential of representing and

deducing the relations among components of a software system at the expense of

requiring a fairly extensive body of knowledge and employing, sometimes

computationally demanding, deductions and other algorithms. In other words most such

systems are fairly knowledge rich. As we will discuss in Chapter 2, KBSE systems tend

to employ expert systems or knowledge bases as their underlying technology.

6

 While there has been a fair body of work that has applied deductive methods to different

aspects of software engineering, the application of inductive methods (also known as

Machine Learning) in software engineering has received far less attention. In Chapter 2

we will review some of the research conducted in this area.

It has been argued that learning systems have the potential of going beyond performance

of an expert so as to find new relations among concepts by examining examples of

successfully solved cases. In effect this could allow the incorporation of knowledge into a

system without the need for a knowledge engineer. In other words, using inductive

methods to extract the knowledge that helps a software engineer in understanding a

software system, is an alternative to more traditional KBSE techniques. We should point

out that this does not mean that one cannot incorporate expert knowledge in the process.

On the contrary it is believed that such a contribution can increase the potential gain

obtained by using inductive methods [Weiss and Kulikowski 1991 p. 3]. However, as it

will become clearer in Chapters 2 and 3, unlike KBSE systems, expert knowledge is not

coded in the form of a large knowledge base.

 1.4 The Goal of the Thesis

 Software engineers who maintain legacy software systems usually work very close to the

source code. This often implies that they have to know about the components of the

system involved in a problem e.g. files, routines, and the interconnection of these

components with other components of the system. As will be discussed in Chapter 2,

KBSE research, in general, has been concerned with topics that may not be directly

addressing software maintenance activities, or at least not at this level of granularity.

Although we will present examples that provide assistance at the source code level, most

of them are prototypes that are not applied to real world software systems. This general

trend of lack of focus on software maintenance is partly due to the ideal of KBSE that, if

fully implemented, will remove the source level maintenance activities by automating the

process of generating the software from its specification. While this would be of great

value for systems to be created in the future, it does not apply to the large body of

currently existing legacy systems.

7

 On the other hand, inductive methods, which have been successfully used in different

domains, have not been extensively applied to software maintenance. Software

maintenance requires knowledge and experience. Maintenance assistant tools can benefit

from such knowledge. Inductive methods are capable of extracting structural patterns or

models from data. They can learn concepts from experience observed in the past to

predict outcomes of future unseen cases. These methods do not require a knowledge

acquisition step necessary to build a knowledge based system. Consequently, there seems

to be a great opportunity in using these methods to aid software engineers in software

maintenance

 Broadly speaking, the aim of this thesis is to investigate the application of inductive

methods, which are the focus of the field of Machine Learning [Mitchell 1997], to source

code level daily software maintenance. This is the intersection of two research fields,

which has been widely ignored by researchers in these communities. Considering the

importance of maintenance, and the maturity of inductive learning methods, we believe

the time has come for the software engineering and machine learning researchers to join

forces in assisting software engineers in maintenance of software systems, especially

legacy software at the source code level. We also believe research in this area can benefit

machine learning community by providing a rich and nontrivial application area that

challenges the community to improve their existing techniques, algorithms, and the

overall current state of the technology.

 Using inductive learning methods and a variety of data sources used by maintenance

programmers, we extract, or learn, what we call a maintenance relevance relation among

entities in the system under consideration. This can be seen as a design recovery process.

The hope is that the extracted relation will inform and assist the maintenance programmer

to understand some of existing complex relations or interactions within the target system.

These relations may reveal the intrinsic interconnections between different component of

the subject system which:

8

• may or may not be documented;

• are the consequent of the original design and implementation decisions, or side

effects of changes that the system has gone through over its life time

 Therefore in this thesis we lay out the general idea of relevance among entities in a

software system, and then proceed to apply inductive learning methods to learn a specific

relation which is geared towards the daily maintenance task. As part of the contribution

of this thesis we report on challenges encountered in the process, the lessons learned, and

the results that are achieved, whether positive or negative. Since research in the

intersection of machine learning and software engineering is very rare, we strongly

believe in the value of reporting negative results as it may help researchers in adjusting

their expectations and avoiding pitfalls.

1.5 Definitions and an Application

In this section we provide the definitions of Relevance Relation and other concepts

closely related to it. We will also describe a specific application that aims to extract a

useful relevance relation in the context of software maintenance.

 Definition: A Software Entity is any semantically or syntactically valid construct in a

software system that can be seen as a unit with a well defined purpose3.

 Examples of software entities include documents, source files, routines, modules,

variables etc.

 Definition: A Predictor is a relation that maps one or more software entities to a value

reflecting a prediction made about these entities.

 Definition: A Relevance Relation is a predictor that maps two or more software entities

to a value r quantifying how relevant i.e. connected or related, the entities are to each

other. In other words r shows the strength of relevance among the entities. Therefore,

“relevant” here is embedded in, and dependent on, the definition of the relation.

3 Unless otherwise stated, in this chapter an entity means a software entity.

9

 In its most general form, a relevance relation maps the entities into a real number

between 0 and 1 showing the strength of the relevance among them. In this setting 0

stands for the lack of relevance, and 1 shows 100% relevance. We call such a relation a

Continuous Relevance Relation. However, a real number may not necessarily always be

the best choice, in which case the strength may be one of k discrete values. In the later

case we call R a Discrete Relevance Relation. For instance if k is two, we could have a

Boolean relevance relation R that maps entities e1,…, en (n≥2) to true if, based on the

definition of R, the entities e1,…, en are Relevant to each other. If R maps e1,…, en to a

false value, this means that, based on the definition of R, e1,…, en are Not Relevant to

each other.

 Figure 1.1 shows the two varieties of relevance relations.

0.80 Relevant

e1

e2

en

R

e1

e2

en

R

Figure 1.1 Continues and Discrete Versions of a Relevance Relation R

 Definition: A System Relevance Graph for R or SRGR is a hypergraph where the set of

vertices is a subset of the set of software entities in the system. Each hyperedge in the

graph connects vertices that are relevant to each other according to a relevance relation

R4. A System Relevance Subgraph SRGR,r is a subgraph of SRGR where software entities

on each hyperedge are mapped to a relevance value r by relevance relation R.

 Figure 1.2-a shows a system relevance graph for a system with five entities e1,…, e5 and a

relevance relation R that maps every two entities to one of two relevance values e.g. a

Boolean relevance relation. Figures 1.2-b and 1.2-c show the subgraphs formed for each

4 Depending on the entities chosen and the definition of R, there could be a large number of SRGs for a
system

10

of these relevance values. Assume the solid lines correspond to a mapping to a true value

and the broken lines correspond to a mapping to false value. In this case, the above

graphs show that based on the definition of relation R the following pairs of entities are

relevant to each other,

 (e1,e3), (e1,e5), (e3,e5), (e4,e5)

 and the following pairs are not relevant to each other,

 (e1,e2), (e1,e4), (e2,e3), (e2,e4), ,(e2,e5), (e3,e4)

 e1

e4

e2

e3

e5

e1

e4

e2

e3

e5

e1

e4

e2

e3

e5

a

b c

Figure 1.2 A System Relevance Graph and its Two System Relevance Subgraphs

 If SRGR has n vertices, and relevance relation R maps m entities to a relevance value, the

maximum number of system relevance subgraphs is:

m

n
˜̃
¯

ˆ
ÁÁ
Ë

Ê
number of hyperedges with m vertices in a graph with n vertices

 Definition: A System Static Relevance Graph or SSRGR is an SRG in which R is defined

in terms of static relations5 in the source code e.g. calls or called-by relations for routines.

5 A static relation can be contrasted with a run time or dynamic relation. For instance, while the source code
of a routine r1 may refer to another routine r2 (a static relation), during execution time, it may never call that

11

 The number of nodes in an SRG in a given release of a software system is constant.

Therefore the topology of the SRG only depends on the definition of the relevance

relation among the nodes. This means that a software system can be depicted by different

SRGs. Two SRGs of the same system may share one or more connected sub-graphs

suggesting the possibility of the existence of a meta-relation between two relevance

relations. For example an SRG based on the Is-In-Subsystem Relevance Relation and an

SRG based on the Documents-Entity Relevance Relation may share a common sub-graph

suggesting that there is documentation for a subsystem.

 We provided the definition of redocumentation and design recovery in section 1.2. Note

that SRGs can be used in both cases during a reverse engineering effort. The level of

abstraction represented by an SRG depends upon the definition of the relevance relation

it is based on. The notion of relevance relation as defined in this thesis is flexible, in that

the definition of the relation can capture simple or very complex interactions between the

entities mapped by the relation. The definition can be based on a combination of the

existing relations among the entities themselves, or between the entities and other entities

in the system. For instance a relevance relation between files can be defined in terms of

the file inclusion relation among files, and a variable reference relation among files and

variables to which they refer.

 Most organizations that produce software have access to tools that allow programmers to

browse or query low level static source code relations, such as ‘what are the routines

called’ or ‘what are the variables referred to in a file’. TkSee [Lethbridge and Anquetil

1997][Lethbridge 2000], a tool in use at Mitel Networks6 to browse and explore software

systems, is an example of this. By using such tools and studying source code it is possible

to reverse engineer and associate design decisions with the source code, however some

SSRGs can speed up this process considerably. TkSee uses a database that stores

information generated by parsing the source files in the system. For instance, for each

routine (a dynamic relation). This can be the case if the call made to r2 is not reachable under any
circumstances. On the other hand the use of function pointers can give rise to tuples that exist in a dynamic
relation but not in a static one.
6 Mitel Networks is our industrial partner in this research.

12

routine r in the software system, this database keeps a list of routines called by r7. Using

this information one can create an SSRGcalls(ri,rj)ÆBoolean in which calls is a relevance

relation that maps two routine entities ri and rj to true if ri calls ri in the source code, and

false otherwise. Note that SSRGcalls(ri,rj)ÆBoolean is an example of an SRG that can be used

in redocumenting a system.

 However, SRGs that are based on relevance relations defined in terms of a single source

code level relation form the most basic and least complex subset of all possible SRGs.

Although these SRGs can be extremely useful for a developer in the maintenance task,

they fail to capture non trivial relations that exists among entities in a software system.

 In this thesis we investigate the existence of other relevance relations that may assist a

maintenance programmer in his or her job. To be more specific, within the context of

maintenance activity, we are trying to seek the answers to the following questions:

• Using a combination of static source code relations and/or other sources of

information, can we find other useful and non trivial relevance relation(s) in a

software system?

 A Static Relevance Relation R is defined in terms of static source code relations.

 Within the context of the system under study, and among different static relations in

the source code that are candidates to be used in the definition of R, we would like to

investigate the existence of an importance order among these relations. In other

words, we would like to be able to answer the following question:

 What are the more important static relations which a maintenance programmer

should be aware of 8?

 We believe finding a Maintenance Relevance Relation (MRR) could provide an answer

to these questions. Such a relation should somehow incorporate information about the

7 This is a static source code call reference. The database stores a variety of additional information to assist
TkSee in the task of browsing the software system.
8 Note that by “important” here we mean that the static relation has more influence in making entities
relevant to each other.

13

changes applied to the system as part of the maintenance process. Consequently, it has

the potential to reflect the interconnections among the entities of a system, which are

influenced by the changes applied to the system. Such interconnections may or may not

conform to the original or perceived design of the system. Instead they could show the

existence and interplay of the actual interconnections among the entities, which cause

changes in one entity to influence another ones

 The definition of software entity given above is very broad in nature. It ranges from a

single variable, to the whole system. In the context of software maintenance activity,

there is a much smaller set of software entities that seem to be interesting. Examples of

such software entities are files, routines, variables, modules, subsystems and documents.

 When a maintenance programmer is looking at a piece of code, such as a file or a routine,

one of the important questions that he needs to answer is:

 “which other files should I know about, i.e. what else might be relevant to this piece of

code ?”.

 While this is a question faced in daily source level maintenance tasks, the ability to

answer it is essential in understanding and maintaining any software system regardless of

the type of maintenance activity.

 In this thesis we will be focusing on a special kind of SRG in which the nodes are files9.

We would like to learn a special class of maintenance relevance relations called the

Co-update relation:

 Co-update(fi, fj) Æ {Relevant, Not-Relevant} where,

 i ≠ j and fI and fj are any two files in the system.

 Co-update(fi, fj) Æ Relevant means that a change in fi may result in a change in fj, and

vice versa10.

 9 In general, there is also no need to restrict the type of nodes to files, as will be discussed in Chapter 3

14

 A relevance relation such as Co-update could be used to assist a maintenance

programmer in answering the above question about files.

 To learn the Co-update MRR we propose the application of inductive learning methods to

the data extracted from11 the following sources of data corresponding to a real word

legacy system12:

• Static source code analysis

• Historical maintenance records

 In other words we mine13 these sources of data to extract the Co-update relation. The idea

here is that such a relation learned from the examples of the past maintenance experience

could be used to assist the software engineers, specially the newcomers to the team, in

future similar maintenance activities.

 In theory there is no need to restrict the number of entities to be two. Our decision to

learn this special case of relevance relation is based on the following observations:

• A two-entity relation provides the most basic kind of relevance relation in terms of

number of entities. This also implies that it can potentially capture more general

interconnections among entities of the system. A relation with three or more entities

is more restricted than the basic two-entity relation; since, by its nature, it is a more

constrained and specialized form of relation.

• On a more pragmatic note, as one would expect there are usually fewer examples of

individual changes involving larger numbers of entities. As will be discussed in

Chapter 4, this is also the case for the particular software system used in this study.

10 Please note that this definition is the same as Co-update(fi, fj) Æ Boolean, where Relevant is the same as
true, and Not-Relevant is the same as false.
11 In Appendix A we will present the idea of using data collected while software engineers perform
maintenance tasks.
12 Real world systems introduce challenges that are not present when working with artificial or ‘toy’
systems. Unfortunately, in many cases, past research has not dealt with large systems and consequently the
methods proposed in such a research usually do not scale up.
13 Data Mining can be defined as a set of methods and practices for extracting interesting, actionable,
relationships from large datasets.

15

 It could also be argued that a mapping to a value between 0 and 1 is a better choice. Our

more restricted definition is partly due to the learning method that we have experimented

with, namely decision tree learning, and partly due to the fact that in a large software

system SRG can be very complex. It is not clear to us whether providing a software

engineer with a large set of objects with different relevance rankings will be more

beneficial than providing him or her with a smaller set that is believed to contain the

relevant objects. Of course a real valued variable can be easily discretized to a Boolean

variable, however this will introduce the issue of finding the proper threshold value14.

 One of the challenges that we have faced in our research is labeling the examples from

which the above MRR is learned. As will be discussed in Chapter 3, this thesis also

proposes heuristics to automatically label the examples, without direct involvement of

expert software engineers.

 The remainder of this thesis is structured as follows:

 In Chapter 2 we present a subset of research conducted in the area of software

maintenance that is relevant to the subject of this thesis. We will cover research in KBSE

and the application of inductive methods to software maintenance. Chapter 3 will provide

the details of the method used to learn a Maintenance Relevance Relation. In Chapter 4,

we present the experiments we have performed and results we have obtained. Chapter 5

will discuss our conclusions and plans for future work.

1.6 Contribution of this Thesis

 Below we list the contributions of this thesis, i.e. the specific technical issues that to the

best of our knowledge were not addressed before, and whose solutions presented in this

work add to the state of the art in either machine learning or software maintenance

methods:

• Proposing a representation of the maintenance task conducive to the use of machine

learning.

14 It is also possible to assign a confidence value to a discrete relevance value should there be a need for
such a finer ranking.

16

• Engineering attributes such that on the one hand they can represent properties of

software modules and on the other hand, values for these attributes can be acquired

from the source code and software maintenance records.

• Producing a large repository of examples15 from real-life data appropriate for the use

of machine learning tools and techniques.

• Experimenting with a number of machine learning methods including decision tree

learning, one rule learner, and set covering machines to learn the Co-update

maintenance relevance relation and running empirical comparisons of these methods.

• Setting up an experimental protocol for the above including performing more than

570 training and testing runs using the syntactic attribute set, collecting the results,

representing them in the form of ROC curves, tables etc.

• Analyzing the results and drawing conclusions about the relative performance of

different training/testing split methods, learning methods, and example refinement

techniques such as class noise removal etc.

• Introducing the textual attributes which exploit the semantic information implicit in

the source file comments and problem reports

• Performing more than 140 experiments with textual attributes and their combinations

together and with syntactic attributes. Collecting results and representing them in the

form of variety of tables and plots including ROC curves

• Analyzing the results and drawing conclusions about on the relative performance of

source file comment, problem report, and combination feature sets

• Preparing and submitting (at the time of this writing) several research publications.

Publishing of [Sayyad Shirabad et al 2000, 2001]

15 In excess of 2 million file pairs and more than 10 million examples.

17

 Chapter 2

 Related Research

 2.1 Introduction

 It is a known fact that software maintenance is a time consuming and costly part of

software life cycle.

 Software maintenance encompasses a wide range of topics including reverse engineering,

re-engineering, program transformation, program comprehension, impact analysis,

regression testing, reuse, software configuration management, web-based software

maintenance, maintenance process models, and maintenance standards [Kwon et al 1998

p.3].

 Considering the wide range of topics falling under the umbrella of software maintenance,

no single method or paradigm is expected to provide an answer all of its problems. Our

focus is assisting maintenance programmers with the following problem:

 When a maintenance programmer is looking at a piece of code, such as a source file, one

of the important questions he needs to answer is,

 “Which other files should I know about, i.e. what else might be relevant to this piece of

code ?”.

18

 As discussed in Chapter 1, to provide an answer to this question we will learn a special

kind of relevance relation among files in the system called the Co-update Maintenance

Relevance Relation. We do this by applying machine learning techniques to data sets

created by extracting information from the source code and program update history

 The more traditional approach to the application of AI to software engineering has

focused on the usage of expert systems and more generally, knowledge based techniques.

However, the lack of direct attention to support maintenance programmers can also be

seen in KBSE community research. In the relatively recent ICSE 16 workshop on

Research Issues in the Intersection between Software Engineering and Artificial

Intelligence, the discussions were about Knowledge representation and acquisition, reuse

and reverse engineering, validation and verification, and software process [Kontogiannis

and Selfridge 1995 p. 94]. However maintenance was identified as being one of the areas

of high cost leverage [Kontogiannis and Selfridge 1995 p.96].

 In the following section we will review the research projects that employ AI technology,

and which we believe are directly applicable to the daily task of software maintenance. In

general, these projects fall in one or more of reverse engineering, re-engineering,

program transformation, and program comprehension research areas.

 2.2 AI and Software Maintenance

 Artificial intelligence is one of the oldest research areas in computer science. The

Dartmouth Summer Research Project on Artificial Intelligence, organized in 1956 by

John McCarthy, has been considered by many the birthplace of AI [Russell and Norvig

1995]. To that extent, AI covers a large body of methods and algorithms. Software

engineering has been an application target for AI since the early 1980’s, when research in

Knowledge Based Software Engineering (KBSE) started16. In general, the methods used

in traditional KBSE rely heavily on coded knowledge and sometimes deductive methods.

On the other hand, inductive classification methods that are mostly considered to be part

of Machine Learning research, attempt to extract models of the subject of interest from a

set of labeled examples, without encoding a large amount of knowledge.

19

 In following two sections, we will survey some of previous research that could be

considered relevant to this thesis topic. Section 2.2.1 focuses on KBSE, while section

2.2.2 presents research that employs inductive methods.

 2.2.1 Knowledge Based Software Engineering

 In 1983, the Rome Air Development Center (now Rome Laboratory) published a report

calling for the development of a Knowledge-Based Software Engineering Assistant

(KBSA) which would employ artificial intelligence techniques to support all phases of

the software development process [Green et al 1983]. This initiative eventually evolved

into KBSA conferences, which later were renamed as Knowledge-Based Software

Engineering (KBSE) conferences, and as of 1996 as Automated Software Engineering

Conferences.

 Knowledge Based Software Engineering, KBSE, is the application of AI technology to

software engineering [Lowry and Duran 1989 p.243]. Expressed another way, it is an

approach that integrates methods from AI and software engineering [McCartney 1991 p.

xvii]. The prevalent feature of KBSE technology, as far as AI is concerned, is the use of

knowledge-based technology through explicit coding of the knowledge. Practically, the

focus of AI is dealing with knowledge in terms of representation, reasoning, and

extracting useful information from large amounts of it [McCartney 1991 p. xix].

 While different people have used the term “knowledge base” to refer to different things,

it seems that the following two definitions are widely applicable across different projects

 A knowledge base is:

• “A collection of simple facts and general rules representing some universe of

discourse” [Frost 1986 p. 3], or

• “A database augmented with the rules for reasoning about the data and inference

engine that applies the rules” [Lowry and Duran 1989 p. 245]

 An alternative definition that includes the notion of inheritance and type is:

 16 At least as far as reported research is concerned.

20

• “A knowledge base is a collection of interrelated concepts17” [Lethbridge T.C. 1994

pp. 193, 190].

 To go beyond capabilities of CASE tools of the 1980’s, KBSE uses knowledge-based and

other AI techniques. The overall objective is to provide intelligent computer based

assistance for all parts of the software life cycle [Lowry and Duran 1989 p. 245].

 According to Green, KBSE has the following five goals: [Green et al 1983 pp. 381-382]

• “To formalize the artifacts of software development and software engineering

activities that produce these artifacts [Scherlis and Scott 1983].

• To use knowledge representation technology to record, organize, and retrieve the

knowledge behind the design decisions that result in a software system.

• To produce knowledge-based assistance to synthesize and validate source code from

formal specification. This will enable maintenance to be performed by altering the

specification and then replaying the steps for synthesizing source code, with

appropriate modifications. There is also a need for knowledge-based assistance to

recover high level specifications from source code.

• To produce knowledge-based assistance to develop and validate specifications.

• To produce knowledge-based assistance to manage large software projects. [Lowry

and Duran 1989 pp. 245-246].”

 The third goal above sheds some light on why maintenance, particularly at the source

code level, has not been the primary focus of the KBSE research community. According

to Lowry, the view of KBSE regarding the software evolution and maintenance envisions

the changes happening by modifying the specification and re-deriving implementation

rather than by directly modifying the implementation. This is a fundamental change in

approach to the software life cycle [Lowry and Duran 1989 p. 245].

 17 A concept is, “A representation of a THING or set of things. A discrete unit of knowledge representation
to which it is possible to explicitly refer. Something that acts as the locus or possessor of a set of facts
about a thing or set of things. … A more restrictive meaning is often intended in other literature. The words
`unit' or `frame' are used for `concept' in other literature” [Lethbridge T.C. 1994 pp.193, 190].

21

 From early days of KBSE, researchers have attempted to create systems that will allow

the synthesis of programs by going from a formal specification to executable code. Some

of the approaches to the problem are theorem proving, transformational implementation,

and interactive programming environments. [McCartney 1991 p. xxi].

 The above view is perhaps very attractive for forward engineering. Once the technology

is feasible and software is created in this manner, it could also be maintained by altering

the specification and regenerating an updated version of the system. Some of the issues

with this point of view of software development/maintenance:

• The researchers have mostly focused on the application of purely deductive methods

in theorem proving which have the following problems:

• The proof procedures are computationally expensive, which means that large

programs can not be produced

• These techniques require that the user provide a formal domain theory and

specification, which is expensive and demands skills which are not commonly

possessed by the average programmer. [McCartney 1991 p. xxii].

• There exist a large number of legacy software systems that have not been specified

formally. It is highly unlikely that these systems will ever be formally specified,

unless this can be done automatically. Unfortunately automatic extraction of formal

specifications can turn out to be an even a more challenging task than one would

expect [Kontogiannis and Selfridge 1995 p.95].

 The goal of KBSE research in specification acquisition is to help users produce complete,

consistent, and correct specifications. Specifications here refers to the following

categories:

• a requirements document describes what the customer wants;

• a specification document describes the external behavior of a software system

including the user interface; and

• a design document describes the internal structure of the software system,

particularly, the hierarchical decomposition of the system into modules and the

external data formats used by the modules. [Lowry and Duran 1989 p. 253].

22

 The major idea is to use knowledge acquisition techniques to formulate a semantic model

of a domain. Having such a semantic model in place, intelligent assistants can help users

in developing the above mentioned specifications Duran 1989 p. 253]. Unfortunately, as

is the case for program synthesis, domain modeling is the bottleneck in developing

intelligent assistants for specification acquisition [Lowry and Duran 1989 p. 253][Iscoe et

al. 1989].

 Reverse Engineering is the process of analyzing, documenting and abstracting existing

code. It is the first step in re-engineering. Despite the fact that the potential for applying

KBSE techniques to reverse engineering has existed since the late 80’s and early 90’s, the

task of extracting high level specifications from the code has always been a challenge

[Green 1991 p. xv] especially for large complex systems [Kontogiannis and Selfridge

1995 p.95] .

 KBSE applied to software re-engineering uses knowledge bases to represent detailed

formal representations of software objects ranging from requirements to code. The

argument here has been that these detailed representations will result in a more intelligent

analysis, which in turn will result in better reverse engineering and re-engineering [Green

1991 p. xv].

 2.2.2 Knowledge Based Systems Applied to Software Maintenance

 In this section we briefly describe some of the knowledge based systems that are

designed to assist maintenance programmers with their task.

 2.2.2.1 Code Generation (COGEN)

 COde GENeration (COGEN) [Liu 1995, Liu et al 1994] is a knowledge based system

which is designed to be used for adaptive maintenance, which is a special case of general

class of maintenance activities. More specifically, it is a CASE tool/Expert system which

assists software maintainers with technology upgrade of legacy systems.

 COGEN is used to convert one of the US Federal Aviation Administration systems from

an older technology to a newer one. Some of the applications had more than 2 million

23

lines of code. The system had over 1800 COBOL programs. The conversion involved

reimplementing applications’ user interface and database transaction aspects, along with

the conversion of the language and environment features. An initial experiment with plan

recognition and planning for program understanding had shown that these methods could

not scale up to the complexity of the conversion problem.

 COGEN employs a database of expert conversion rules and a set of tools used in

conversion tasks. The file to be processed is loaded into the system and a syntax tree is

generated for it. This syntax tree is also translated into Prolog clauses and stored in the

Prolog database. The knowledge base and the translator were implemented in Quintus

Prolog. The system allows queries regarding program structure and various data and

control flow features to be entered by software engineers (SEs). The transformations are

performed on the syntax tree and the target source code is generated from the altered tree.

 To acquire the conversion expertise, SEs who were knowledgeable in both the source and

target technology standards were consulted. When there was more than one conversion

scenario, a special rule was created for each case. A total of 264 conversion rules were

implemented in COGEN. The design and implementation of the knowledge base took 3

man years.

 The SEs using COGEN should be knowledgeable in both source and target platforms so

that they can verify the resulting translations. The translation rules can be disabled by

SEs. Conversion of online programs requires more involvement of SEs. They insert

specialized tokens into the program which indicate where possible maps begin and end.

The SEs usually must correct the generated code, because screen building heuristics are

incomplete. They can also guide various stages of translation by fine tuning, setting or

selecting parameters which determine specific conversion choices.

 2.2.2.2 MACS

 MACS is a research project of the European ESPRIT II project.. The basic premise of

MACS is maintenance through understanding. Maintenance here refers to all

24

maintenance activities. MACS offers multiple views of the same system along different

dimensions known as worlds. MACS offers assistance with:

• understanding the structure of the program (Change Management World, Abstraction

Recovery World, and Method Worlds)

• understanding the application design and development rationale (Reasoning World)

• helping the maintainer in carrying out the maintenance activities [Desclaux 1990 pp.

146-147]

 MACS provides the above services through the usage of specialized knowledge bases

which contain knowledge about application type, language, software development

method, and background knowledge about maintenance activity and the MACS tool-set

itself [Desclaux 1990 p. 146].

 The navigation between different worlds supported by MACS is facilitated by another

world called Interconnection World [Desclaux 1990 p. 147].

 The system also maintains the knowledge about maintenance activities in the form of an

Augmented Transition Network [Woods 1970]. Frame-based knowledge representation is

used to represent the knowledge about application, software development methods, and

programming language domains [Desclaux 1990 p. 147].

 The rationale for design and maintenance decisions is kept in the Reasoning World but

the system does not force the user to enter these decisions.

 2.2.2.3 Problem Manager (PM)

 PM is one of the expert managers of Carnegie Group’s knowledge-based software

development environment. In general, PM deals with the issue of problem management

during software maintenance. These problems include bugs, changes, and enhancements.

PM was built using the Knowledge Craft expert system development shell. The shell

language CRL employed by Knowledge Craft allows presentation of concepts in frame-

like objects called schemas [Alperin and Kedzierski 1987 p. 325]. The knowledge base

employed by PM contains representations of software concepts such as configurations,

25

activities, modules, people, and the relationships between them [Alperin and Kedzierski

1987 p. 324]. PM can use its knowledge along with the knowledge of other expert

managers in the system to report, trace, and process problems. [Alperin and Kedzierski

1987 p. 321]. It interacts with the environments of other expert managers such as

configuration and scheduling managers.

 When a problem is detected, the maintainer can use the problem reporter component of

PM to report it. For each developer, the system maintains a profile knowledge. For

example if the maintainer is an expert, then the system will ask him to point out the

module in which the problem occurred. The expert is then asked about the existence of a

version of the target system in which the problem did not occur. By doing so, the system

can find and display the modules which have changed in the correct version to generate

the version which includes the error. The maintainer can view the description of a

module, or view its sub-modules, or select it as the cause of the problem. He can read

other problem reports involving different modules of the system, and look for the

occurrence of the same problem in the past. It is also possible to view the relations

between different modules, or by using plan manager, to find out what person is in charge

of a module18. The user is then asked to judge the complexity and priority of the problem

and provide additional information if desired.

 The person in charge of fixing the problem is presented with all the problems related to a

module in the form of a hierarchy. A problem report can be reassigned to another person.

The problems can be scheduled to be fixed, and a PERT chart editor shows the scheduled

problems with the critical path(s), and allows the user to manipulate the chart.

 A great amount of effort has been put into determining a good representation of

information involved in the life cycle of the software [Alperin and Kedzierski 1987 p.

324]. The users of PM should first enter the project’s configuration information into the

system. [Alperin and Kedzierski 1987 p. 326]. Although it is recommended to use the

Configuration Manager, which is another assistant tool, at the start of a project to set up

the system environment; for large existing systems, which are the most important and

26

challenging ones in terms of maintenance, this will most probably be a prohibitive factor

in the usage of PM.

 2.2.2.4 Intelligent Program Editor (IPE)

 Intelligent Program Editor (IPE) applies artificial intelligence to the task of manipulating

and analyzing programs. [Shapiro, and McCune 1983]. The paper describes a proposal

for this system. IPE is a knowledge based tool to support program maintenance and

development. It represents a deep understanding of program structure and typical tasks

performed by programmers. It explicitly represents textual, syntactic, semantic, and

application related structures in programs [Shapiro, and McCune 1983 p.226]. The IPE

interacts with other intelligent tools such as Documentation Assistant, and uses the

knowledge provided by them. This system explicitly represents both the programming

process, in a knowledge base known as The Programming Context Model (PCM), and

uses a database called the Extended Program Model.(EPM). The EMP represents the

functional structure of the code and provides access to it, while PCM identifies typical

sequences of activities in the process of developing and maintaining programs. [Shapiro,

and McCune 1983 p.227]. The structure of the program is represented from different

points of view. They vary from low-level textual to explicit semantic structures that

documents programmer’s intent for writing a particular piece of code. Other forms of

knowledge used by the system include a vocabulary of program constructs, typical

programming patterns which are similar to the idea of clichés, to be discussed later,

intentional annotations, intentional aggregations and textual documentation. The

knowledge employed by the system is represented in the form of a complex tree or graph

structure of frames. The prototype was planned to be implemented on a Symbolics 3600

machine, and initially targeted the Ada and CMS-2 languages. It was expected that the

research would heavily be relying on methods for information elicitation from the users.

 18 In real world large software systems, it is highly unlikely to find one single person in charge of a single
module.

27

 2.2.2.5 Intelligent Semantic Lisp-program Analyzer (ISLA)

 Intelligent Semantic Lisp-program Analyzer (ISLA) automatically scans Lisp code for

code segments that may be causing a semantic error. It recommends changes to existing

Lisp code to make the code less error prone and more understandable. [Walczak 1992 p.

102]. Semantic errors in ISLA are divided into different classes. The system takes into

account the experience and programming style of the programmer in heuristics used in

locating potential semantic errors. Besides using syntactic clues to locate the possible

semantic errors, the system also uses knowledge gained by analyzing real word Lisp

code. Examples of these are program length or complexity . [Walczak 1992 p. 103].ISLA

uses heuristic production rules to evaluate Lisp code and to make suggestions for

improvements and correction to possible semantic or logical errors. Each Semantic Error

Class is stored as a collection of production rules in a rule-based knowledge base

[Walczak 1992 p. 104].

 2.2.2.6 Maintainers Assistant

 Maintainer’s Assistant, a project from the Center for Software Maintenance at the

University of Durham, is a code analysis tool intended to help programmers in

understanding and restructuring programs [Ward et al 1988 p. 1, 12]. This is a knowledge

based system which uses program plans, or clichés, as building blocks from which

algorithms are constructed. To comprehend a program, it is transformed into a

composition of recognized plans [Calliss et al 1988 pp. 3-4]. Other proposed sources of

knowledge are:

• the knowledge about how maintenance programmers do their work,

• program class plans which are a group of plans common to a particular type of

program,

• program specific knowledge which includes the internal representation of source code

together with knowledge gained from using other code analysis tools [Calliss et al

1988 pp. 4-5]

28

 The source program is viewed through a browser in Maintainer’s Assistant. The assistant

allows the source to be manipulated by:

• modifying the source using editing commands,

• applying a transformation from the predefined transformations library, and

• asking the system to search for a sequence of transformations which will produce a

desired effect [Ward et al 1988 p. 6]

 If transformations are too complicated to be derived automatically, a programmer can

explicitly select the suitable transformation. If the applicability conditions of a

transformation can not be automatically verified, the system asks the user to confirm it

and records this fact as part of generated documents [Ward et al 1988 p. 7].

 2.2.2.7 Program Understanding Using Plan Recognition Algorithms

 Program understanding is often described as the process of finding program plans in the

source code. Most program understanding algorithms use a library of programming plans,

and apply different heuristics to locate instances of these plans in the source code.

Because of the close relationship between program understanding and plan recognition,

researchers have applied plan recognition algorithms to program understanding. Program

understanding can be precise or imprecise. In the case of precise program understanding

every instance of a particular plan is recognized, without any false positives or false

negatives. In imprecise program understanding, the plan recognition mechanism is

allowed to guess about the existence of a plan or miss instances of a plan in the library.

Plan recognition algorithms determine the best unified context which causally explains a

set of perceived events as they are observed. A Context is a hierarchical set of goals and

plans which describe the observed actions.

 This process assumes that there exists a body of knowledge that describes and limits the

type and combination of plans which may occur. Most AI plan recognition algorithms are

based on the algorithm presented by Kautz and Allen [Kautz and Allen 1986]. Kautz and

Allen’s approach is based on deductive inference. It applies a specialized forward

chaining process to rules that are based on an exhaustive body of knowledge about

29

actions in a particular domain in the form of an action hierarchy [Quilici et al 1998 pp. 1-

4]. As discussed in [Quilici et al 1998 pp.8-13] the Kautz and Allen plan recognition

approach suffers from the following problems:

• It may find an incorrect explanation for the program, even when there is sufficient

knowledge to eliminate the wrong plan

• It may select a very misleading explanation graph

• It is not efficient

 Diagram-based Environment for Cooperative Object Oriented Plan Extraction

(DECODE) [Chin and Quilici 1996] is an interactive (cooperative) environment in which

programmer and the system work together to understand legacy software. It is used to

extract designs from legacy COBOL programs. DECODE has three components: an

automated programming plan recognizer, a knowledge base which is used to record

extracted design information, and a structured notebook for editing and querying the

extracted design . DECODE’s algorithm is code driven as opposed to library driven as is

the one used in Concept Recognizer [Kozacynski et al 1994]. The details of DECODE’s

concept recognition algorithm can be found in [Quilici 1994]. Library driven approaches

consider all plans in the library, while code driven approaches consider only the subset of

those plans that contain already recognized components. In Concept Recognizer, plans

are divided into two parts: a description of plan attributes, and a set of common

implementation patterns. The implementation patterns are represented as a set of

components of the plan and a set of constraints (relations which must hold between

components). DECODE extends the plan representation used in Concept Recognizer, by

adding support for indexing, and organization of the plan library to reduce the number of

constraints that must be evaluated and the amount of matching that must be performed

between the code and the plan library. DECODE also extends the plan representations to

support definition of plans which are conditionally implied by other plans.

 DECODE builds an initial knowledge base about a problem by forming a partial

understanding of it by examining it for standard programming patterns. This partial

understanding can be extended by a programmer using the structured notebook. The

30

structured notebook allows the programmer to create design primitives, examine selected

code fragments and link them to design primitives. It also enables the programmer to ask

conceptual queries about the code and its relationship with the extracted design. For

instance, the program can query the system about the purpose of a particular piece of

code, the location of the code corresponding to a particular design element, or

unrecognized design elements in the source code.

 An alternative approach to plan recognition is modeling the problem as a Constraint-

Satisfaction Problem (CSP) [Quilici et al 1998][Quilici and Woods 1997]. A CSP

consists of a set of variables, a finite domain value set for each variable, and a set of

constraints among variables that restrict domain value assignments. Each variable ranges

over a domain consisting of actual program Abstract Syntax Trees (AST) or recognized

subplans that satisfy a set of constraints on the type of the variable. The actual

occurrences of each of these components in the source code correspond to possible

domain values for the variable. The data flow and control flow relations which must be

held between different components are modeled as inter-variable constraints between

plan variables. This modeling is called MAP-CSP. A solution to the MAP-CSP is any

assignment of domain values to plan variables that satisfies the constraints between

variables, and corresponds to an instance of a plan that has been identified.

 The plan library is normally divided into layers, in which plans at each level are

constructed from lower level plans. The bottom layer corresponds to plans whose

components are only ASTs. The next layer includes the plans whose components are

either AST items or plans from lower level, and so on. Quilici has also proposed a CSP

framework for Evaluating program understanding algorithms [Quilici and Woods 1997].

 2.2.2.8 Model Oriented Reengineering Process for HCI19 (MORPH)

 The Model Oriented Reengineering Process for HCI (MORPH) [Moore and Rugaber

1997] [Rugaber 1999] is a process for reengineering text based legacy applications’ user

 19 Human-Computer Interaction

31

interfaces to a WIMP20 style graphical user interface, and a toolset that supports the

process. The steps in the process are:

• Analyzing the source code to detect interaction objects from the source code

• Building a model of the existing user interface based on the results obtained in the

first step

• Transforming the resulting model to a graphical environment

 MORPH maintains a set of user interface abstractions that can be recognized from the

legacy code. A hierarchy of concepts, composed of abstract interaction objects21 is stored

in MORPH’s knowledge base. To allow transformation from abstraction to a particular

Graphical User Interface (GUI) toolkit by inferencing, components of each toolkit are

also represented in the knowledge base. After a domain analysis of user interfaces,

MORPH knowledge base was built in CLASSIC [Borgida et al 1989]. The domain

analysis was performed in both top down and bottom up fashion. A taxonomy of possible

user interactions was built by analyzing 22 legacy systems, using static and dynamic

methods. After studying user interface community literature, the taxonomy was

augmented by interactions that were not found in the legacy system but could

conceivably be part of text based user interface.

 CLASSIC provides a variety of inferencing capabilities. In particular it provides

classification, which allows concepts to be identified as more general or specific cases of

a given concept. Classification was used in MORPH to infer the most specific toolkit

object for the description of a given abstract object.

 2.2.2.9 Programmer’s Apprentice

 The goal of the Programmer’s Apprentice project [Waters 1982][Rich and Waters

1988][Rich and Waters 1990] is to create a software system that will act as a junior

partner and critic for a software engineer.

 20 Windows, Icon, Menus and Pointers
 21 Interaction Objects are controls e.g.; buttons, that define how the user interacts with the system [Moore
and Rugaber 1997 p. 61].

32

 The Programmers Apprentice heavily relies on the shared knowledge between the

software engineer and the apprentice. Two kinds of knowledge have been envisioned

[Rich and Waters 1990 p.4]:

• knowledge about the system under consideration. For instance knowledge about

system requirements, design, implementation and dependencies among them.

• a large shared vocabulary of software engineering terms and concepts. These shared

concepts are called clichés. Clichés range from high level requirements and design

ideas, to low level implementation techniques.

 The major activity in the Programmer’s Apprentice project is identifying and codifying

useful clichés and relations between them. Each apprentice requires a large library of

clichés [Rich and Waters 1990 p.5].

 A cliché contains both fixed parts and parts that vary in the different occurrences of it. A

cliché can also have constraints that limit the implementation of parts, or compute some

parts from other parts.

 Plan calculus is used as a formal representation for programs and algorithmic clichés.

 2.2.2.10 Recognizer

 Recognizer is a prototype that demonstrates the feasibility of cliché recognition.

Recognizer can build a hierarchical representation of a program given a library of

algorithmic clichés [Rich and Waters 1990 p.171]. The demonstration system is applied

to programs written in Common Lisp. Given an appropriate plan library, Recognizer can

create a document which explains the nature of the program.. Recognizer’s main output is

a graph grammar derivation tree. A paraphraser generates the document from the

derivation tree.

 At the heart of the Recognizer is a flow-graph parser. A flow graph is a labeled, directed,

acyclic graph in which input and output ports of the nodes are connected by edges. Each

node type has a fixed number of input and output ports and fan-in and fan-out are

allowed. A flow graph is derived from a context-free flow-graph grammar. The grammar

33

is a set of rewrite rules, which specify how a node in the graph is replaced by a subgraph

[Rich and Waters 1990 p.175].

 The flow graph to be parsed by the Recognizer is computed from the source code. Also,

the cliché library is translated to an attributed flow graph grammar. Plans are encoded as

individual rules. The flow graph generated from the source code is parsed against the

grammar and a set of constraints is derived from the cliché library. The result is the

derivation tree [Rich and Waters 1990 pp.173-180]

 2.2.2.11 Program Analysis Tool (PAT)

 Program Analysis Tool (PAT) is a knowledge-based tool for analyzing programs

[Harandi and Ning 1990]. PAT tries to help maintainers answer the following questions:

• What does the program do

• How are the high level concepts encoded in terms of low level concepts

• Are the concepts which are recognized implemented incorrectly [Harandi and Ning

1990 p. 75]

 PAT first converts the source program to a set of language independent objects called

events, and stores them in an event base. Events represent Program Knowledge. They are

organized in an object oriented event classification hierarchy. At the lowest level, events

represent language constructs like statements and declarations. At the highest level,

events can represent algorithms for common problems such as sorting. An event can

inherit attributes from its ancestors in the event hierarchy, and it can also have its own

attributes. The Understander uses this event base and recognizes high level events

(function oriented concepts) and adds the newly recognized events to the event base. The

process is repeated until there is no more high level events that can be recognized. This

final set of events, provides the answer to the first question above.

 The Understander uses a deductive inference rule engine. It uses a library of program

plans as inference rules to derive new high level events. Plans represent the Analysis

Knowledge of PAT. Each plan contains information understanding, paraphrasing, and

debugging knowledge. When the Understander identifies a new event, a Justification

34

Based Truth Maintenance System (JTMS) records the result and its justification. The

Explanation Generator component uses the JTMS to show how high-level events are

derived from low level events, and answers the second question. After the events are

loaded into the event base, the Understander starts the recognition process by calling the

plans from the plan base and tests if their events match the input events.

 The program plans contain knowledge about the near miss implementations of the events

that are recognized by the plan. Using this knowledge, a debugger can recognize possible

mis-implementation, and answers the third question.

 The Editor component of the system allows the maintainer to interactively modify the

program. If necessary, the JTMS is updated appropriately. The Paraphraser component

can create program documentation by tracing the JTMS from the top, and from the

information in the text slot of each event.

 A PAT analysis does not prove anything rigorously. PAT was a prototype with 100

program event classes and a few dozen plan rules. The authors believe it would require at

least several hundred event classes and plans to be practically applied.

 2.2.2.12 LASSIE

 LaSSIE [Devanbu and Ballard 1991] is an experimental knowledge-based information

system. It has been built to assist maintainers of an AT&T telephone switch or private

branch exchange system (PBX) called Definity 75/85. This PBX system consists of

approximately 1 Million lines of C code. LaSSIE runs on Symbolics 3600 machines uner

ZetaLisp/Flavors and is partly ported to run on Sun workstations. It consists of a

knowledge base, a window interface, a graphical browsing tool and a customized version

of a natural language interface. It has been designed to be used in a formulate-retrieve-

reformulate setting. If the retrieved information is not satisfactory, the query can be

reformulated using a description of the retrieved items or by exploring the knowledge

base.

 The knowledge base is a crucial component of LaSSIE. It primarily captures the

conceptual viewpoint of the functioning of a software system, and some information

35

regarding its structure. The description of the actions performed by Definity 75/85 was

coded in the KANDOR knowledge representation system [Patel-Schneider 1984], which

classifies them into a concept hierarchy using a formally defined subsumption interface

operation. The LaSSIE knowledge base contains 200 frames and 3800 individuals

describing the functional, architectural and code level concepts and their interrelationship

in Definity 75/85. At the top level, the relationships between concepts are captured by

various slot-filler relationships. The most specific action types correspond to individual

functions or source files.

 In addition to the above information, LaSSIE also maintains a knowledge base about the

C language, C programming conventions, Unix file structure, and directories, C source

files, header files, object files, and other detailed information such as defined-in and

referenced-in relationship, along with Destiny 75/85 software methodology information

such as file naming conventions.

 The natural language interface of LaSSIE maintains data structures for each of several

types of knowledge about Destiny 75/85 including a taxonomy of the domain, a lexicon

and a list of compatibility tuples, which indicate plausible associations among objects.

 While being successful in handling many classes of queries about the Definity 75/85

system, the authors admit that constructing a knowledge base is a labor intensive work

 2.2.2.13 Knowledge-Based Assistant for Reverse Engineering (KARE)

Knowledge based Assistant for Reverse Engineering (KARE) is a prototype knowledge

based reverse engineering tool for C programs [Palthepu 1997]. It uses granularity

hierarchies for representing programming clichés. Granularity hierarchies are directed

graphs in which nodes represent strategies. Strategies are connected to each other by two

kinds of links:

36

• abstraction which provides generalization and approximation relations

• aggregation which provides the part-whole relation.

Aggregation links relating an object to its parts are grouped together in what are called

K-clusters. Abstraction links relating refined versions of a concept to more abstract

concepts are clustered in L-clusters. Intra-cluster links in K-clusters provide AND

semantics, while inter-cluster links provide OR semantics. Links in an L-cluster provide

an XOR semantic. The lowest level concepts can be directly detected by observers,

which encode recognizers that can match instances of them in the real world. Contexts

encode information regarding where in real word a particular object appears. They

provide a focusing mechanism to limit the search space for recognizing an object.

Constraints allow restrictions to be placed on recognition and Controls encode

information used by the recognition algorithm. In the context of reverse engineering,

granularity hierarchies are used to capture human strategic programming knowledge.

KARE has three large clichés containing approximately 200 objects.

Agenda is a data structure in KARE that contains a list of clichés that the recognition

algorithm should process. The recognition algorithm works bottom-up. The user can

specify part of the source code to which the recognition algorithm should be applied. A

strategy object can be recognized if any of its refinements are recognized, or if all of its

aggregation children in a K-cluster are recognized, and the associated constraints are

satisfied. The recognizers in KARE are functions that work on abstract syntax trees of C

programs.

 The reverse engineer using KARE is supposed to select the relevant files for cliché

recognition. The user can also select a specific cliché to be recognized by KARE. He or

she can also guide the recognition by intervening via the agenda. KARE was tested on

three subsets of NCSA Mosaic version 2.6 source files. These subsets contained 1320,

5300, and 10909 lines of code. The system only had three large clichés to recognize

linked lists, searching algorithms in composite data structures, and date and time

operations [Palthepu 1998 pp. 99-105].

37

 2.2.2.14 Summary of Knowledge-Based Maintenance Support Systems

Table 2.1 shows a summary of KBSE systems discussed in this chapter.

Table 2.1 Summary of KBSE Systems Discussed

Name Specialization Representation Type of Knowledge

COGEN Adaptive Program Syntax
tree,Prolog facts
and rules

Transformation rules

MACS Augmented
Transition Network,
Frame based
representation

language, software
development method,
maintenance activity, tool set

PM Frame-like
schemata

configuration, activities,
modules, people, and the
relationships between them

IPE A tree or graph of
frames

textual, syntactic, semantic,
and application related
structures in programs,
programming process,
programming patterns

ISLA Lisp programs semantic
errors

Production rules Programming style of the
programmer, syntactic clues,
domain analysis

Maintainer’s
Assistant

Program
understanding/restructuring

Program plans Program plans, maintenance
activity, program type plans,
source code

DECODE Program plans,
AST

A plan library

MORPH Adaptive CLASSIC (Slot and
filler)

User interface interaction
objects hierarchy

Programmer’s
Apprentice

Plan calculus,
cliché

Application knowledge, A
cliché library

Recognizer Program understanding Flow graph,
context-free flow
grammar

A cliché library

PAT Program understanding/
Miss-implementation
detection

Program Plans,
Event objects

A plan library, an event
hierarchy

LaSSIE Frame based
knowledge base
system

Functional, Architectural, and
source code level concepts and
their interrelations. C
programming language
concepts, and software
methodology

KARE Granularity
Hierarchy

A cliché library of
programming strategies

38

 2.2.3 Inductive Approaches Applied to Software Maintenance

Knowledge acquisition is at the heart of the process of building most knowledge based

software assistants. However, this process suffers from the following difficulties:

• it requires great effort to build and maintain a knowledge base,

• there is a shortage of trained knowledge engineers to interview experts and capture

their knowledge,

• it is very time consuming, leading to lengthy development, and

• it must be continued if the system is to be maintained in routine use at a high level of

performance.

The argument in favor of learning systems is that by examining the record of successfully

solved cases they have the potential:

• to exceed the performance of experts and

• to discover new relationships among concepts and hypotheses

Thus the process of learning automatically holds out the promise of incorporating

knowledge into the system without the need of a knowledge engineer.

Yet, there are strong practical reasons to expect that what can be learned directly from

sample experience alone is limited, if it ignores the context within which problem solving

is carried out. Thus there is a need to combine domain-specific expert knowledge with

learning approaches [Weiss and Kulikowski 1991 p. 3]

“Expert systems, based on explicit encoding of an expert’s knowledge, are viewed as

alternatives to learning systems. In some applications, where expertise is limited, these

learning methods may surpass an expert system in performance, as they can aggregate

knowledge that has yet to be formalized. In other instances, learning approaches may

provide a minimal threshold of performance that must be surpassed in order to justify the

investment of building an expert system.” [Weiss and Kulikowski 1991 p. 3]

While, perhaps for philosophical reasons such as eliminating the need to maintain the

source code by automatic generation of programs from their specification, there has not

39

been much work done in KBSE community to directly address source level maintenance

issues of legacy systems, the body of work in applying inductive techniques to assist

maintenance programmers is even smaller. In this section we present some applications

of inductive methods in software engineering that could aid maintenance programmers in

their work

 2.2.4 Application of Inductive Learning in Software Maintenance

In this section we briefly describe some of the projects that employ inductive learning

techniques which are designed to assist maintenance programmers with their task.

 2.2.4.1 Fault Density Prediction

Inductive logic programming approaches have been applied to predict fault density in

C++ classes [Cohen and Devanbu 1999,1997]. Each training example is a C++ class

definition, represented as a calling tree. There are two classes, positive and negative,

indicating whether there were faults in the class implementation. There were 122

examples, collected from the study of an entire software engineering class over one

semester. Fifty eight examples were classified as positive. The subjects were asked to

develop a medium sized information management system. The projects were tested by an

independent group of software professionals and the components with faults were

recorded. Relations describing class coupling and inheritance were extracted from the

source code. This amounted to 20,929 background facts. Two ILP systems, FOIL

[Quinlan 1990] and FLIPPER [Cohen 1995a], were used in this study. A 10-fold-cross

validation22 was used to estimate the error rates. While this study was more concerned

with machine learning issues, the best reported error rate was 19.7%, which was obtained

by FLIPPER The study also showed that the error rate of propositional learners such as

C4.5 and RIPPER, having appropriate features, was not statistically significantly worse

than the best of ILP results.

22 In k-fold cross validation, each dataset is divided into k parts. The classifier is trained using the data from
k - 1 parts, and it is tested on the data in the single remaining part which was not used during training. This
process is repeated k times, so that each example is used at least once in testing the classifier

40

 2.2.4.2 Design Recovery

Merlo [Merlo et al 1993] [Merlo and De Mori 1994] reports on the usage of neural nets in

design recovery. The system is intended to be used along with more traditional

approaches to design recovery. They have used a combination of top down domain

analysis and a bottom up informal information analysis using neural networks. The

informal information analyzed consists of comments and identifier names. The approach

incorporates a human expert as part of the process. The expert provides a taxonomy of

concepts recognizable from the comments in the source code, the abbreviations and other

system tables used for preprocessing the source code, and selects a network architecture

and topology.

Experiments were performed using simple Feed Forward and Recurrent networks with

local feedback [Gori et al 1989]. The results showed that neural network classifiers

performed better than a lexical matcher in terms of percentage of correctness (more than

60% better accuracy). The neural network performance was closer to the correct

classification than the lexical matcher.

 2.2.4.3 Locating High-Risk Software modules

 Porter has used classification tree analysis (CTA) to automatically isolate high risk

software modules [Porter 1994]. The term high-risk is used to denote software modules

that possess some specific type of fault such as interface, logic etc. High-risk properties

of interest, such as modules that have one or more interface faults, or take more than

certain number of hours to maintain, define a target class. A target class is a set of

modules that are likely to posses the property of interest. For each target class one

classification model is generated. CTA is derived from the classification algorithms of

ID3 [Quinlan 1986] and CART [Breiman et al 1984]. The data for this study was

gathered from six NASA projects ranging in size from 7000-34000 lines of code. Each

system had between 99 and 366 modules23. Over 1400 modules for these six systems

were examined. Each module was represented by 19 attributes. The attributes cover a

wide range of information from development efforts, faults, changes to size and static

41

analysis. Correctness, completeness and consistency were measured for the generated

trees24. Experiments showed that across all tree applications, for 72.0% of modules the

fault class was correctly identified. Across all applications 82% of modules that had a

fault were correctly identified. Among all applications, 17% of high risk predictions were

actually high risk. The performance of CTA was compared to two simple strategies of

randomly selecting n modules, and selecting the n largest modules. The results for

applying CTA to the data gathered from actual software projects, with the goal of

identifying four specific types of faults showed:

• CTA was an effective and feasible approach for identifying software modules with

specific types of faults.

• Even when the percentage of actual faulty modules in the system was low,

classification trees were effective in identifying them.

• Trees were successful in identifying most of high risk modules.

• Simpler classification strategies did not perform better than CTA.

 Briand and his colleagues have applied Logistic Regression and Optimized Set Reduction

(OSR) methods to build models to support identification and understanding of high risk

components in Ada designs [Briand et al 1993]. They have used measures of design

phase to identify the potential problems in the delivered product.

 The OSR method was developed at the University of Maryland, and is based on both

statistics and machine learning principles of induction of decision trees [Briand et al

1992]. Through usage of a search algorithm it generates a collection of logical

expressions, known as patterns, which characterize the observable trends in the data. The

models are built for two high risk classes, high isolation cost and high completion cost.

A component is considered to have high isolation cost if it requires more than one day to

isolate and understand. A component is placed in high completion cost class if correcting

a defect in it takes more than one day, after isolating the component. The data for the

experiment was for a number of Ada systems from NASA/Goddard Space Flight Center

 23 The term module here refers to functions, subroutines and the main program.

42

Flight Dynamics Division. A random selection of 150 components from three Ada

systems was used to build and evaluate the models. For both classes of interest, an equal

number of components were used to avoid building biased models. A 1-out cross

validation25 approach was used in building and validating the models. If multiple patterns

generate conflicting classifications for one component, first the patterns that do not show

significant reliability are eliminated, and then among the remaining the pattern with the

highest reliability is selected.

 The models were evaluated for correctness and completeness in identifying high risk

components, and interpretability. This study showed that:

• Logistic regression and OSR had similar results in terms of high class correctness, but

in terms of average completeness and correctness OSR performed much better than

logistic regression. The logistic regression method could not achieve a comparable

level of completeness without loss of correctness.

• For Ada systems, it was possible to build accurate risk models during the design

phase to help designers prevent difficulties in the later phases.

• Patterns were more stable and interpretable structures than regression equations when

the theoretical underlying assumptions were not met. On the other hand OSR can be

relatively less accurate if the assumptions underlying the logistic regression analysis

are met.

• Computation for OSR is more intensive than an analytical model.

2.2.4.4 Software Quality Prediction

Almeida and Matwin have applied machine learning to the task of software quality

prediction [Almeida and Matwin 1999]. They view software quality as a multi-

dimensional concept that contains properties such as modifiability, changeability, etc.

Each quality dimension is treated as an unknown. It is assumed that software units such

 24 Correctness is the percentage of modules which were correctly classified. Completeness is the percentage
of the high risk modules which were correctly identified. Consistency is the percentage of modules which
were predicted to be high risk, and actually were high-risk.

43

as files, modules, procedures etc. can be described by a number of attributes whose

values are available. The value of the particular quality measure for which the model is

built should also be known for each software unit. The training data is a collection of

attribute values for each unit and the corresponding value of the quality measure for that

unit. Consequently, predicting the quality measure class can be handled as a classification

task.

In their study Almeida and Matwin have modeled 19 metrics including size metrics

(KLOC, function points), comment lines, blank lines, Halstead metrics and others. They

have applied the method to a set of 355 COBOL programs from Bell Canada. For this

data they have built five different models using NewID [Feng and Mitchie 1994 pp.65-

67], CN2 [Clark P and Niblett 1989][Clark and Boswell 1991], C4.5, C4.5 rules [Quinlan

1993] and FOIL [Quinlan 1990]. Except for the FOIL results, the accuracy, completeness

and correctness evaluations for the models generated by other methods were very close.

While experiments using FOIL generated poorer models, this has been attributed to lack

of relational attributes in the representation used. The model generated by C4.5 rules was

judged to be the most comprehensible one. The results show that, on unseen data, using

high vs. low as values of the class label, the cost of alteration can be correctly predicted

three times out of four

2.2.4.5 Case-Base Reasoning and Inductive Logic Programming Applied to Software

Reuse

Fouqué and Matwin have applied machine learning to help and enhance the reuse process

[Fouqué and Matwin 1993]. CAESAR is a Case Based Reasoning system for

compositional reuse of C programs. A librarian is supposed to choose a library of

reusable programs to be used by CAESAR. The librarian should also be familiar with the

application domain to understand the structural decomposition of the program in

functional terms, and be able to define a rich enough vocabulary to describe the functions

and data types which are in the library [Fouqué and Matwin 1993 p. 167]. The

 25 In the (leave) one out method, the training and testing datasets for a set of n examples are built by leaving
one example for testing and using the remaining n – 1 examples for training. The process is repeated for all
n examples, and the error rate is calculated by finding the average of n individual error rates.

44

specification of the problem is given in form of Prolog-like high level goals representing

top-level functions of the specification. This specification is adapted to the content of the

case base. The user can select one or more adapted problem specifications and ask

CAESAR to construct the corresponding code. The refined version is matched against the

case base and the associated cases are retrieved and composition is performed. The user

will evaluate the behavior of the solution. Based on the analysis of the success of its

adaptation, CAESAR may suggest to the librarian the addition of some new knowledge to

the case base.

A very important property of any case based reasoning system is completeness.

Increasing completeness requires an ability to acquire new cases or knowledge. CAESAR

uses Inductive Logic Programming (ILP) [Muggleton and Buntine 1988] to find

regularities in the theory it has built over the course of several sessions and then proposes

new knowledge to be added to the case base [Fouqué and Matwin 1993 p. 186].

2.2.4.6 Estimating Software Development Effort

Srinivasan and Fisher [Srinivasan and Fisher 1995] have built models for estimating

software development efforts using Regression Trees26 [Breiman et al 1984] and neural-

network Backpropagation [Rumelhart et al 1986] methods. It was assumed that the effort

was measured in months. The results were compared to the ones obtained form

COnstructive COst MOdel (COCOMO) [Boehm 1981], Function Points [Albrecht and

Gaffney 1983], and SOftware LIfecycle Management (SLIM) [Putnam 1978] models.

In the case of the model built using backpropagation, inputs to the network correspond to

different project attributes, and the output of the network corresponds to the estimated

development effort. Each value of a nominal attribute was given its own input line, with

values 1.0 and 0.0 representing the presence or lack of presence of the value respectively.

The training set used was the data about 63 projects from which COCOMO model was

developed [Boehm 1981]. These projects include instances of business, scientific, and

system software projects, written in a variety of different languages including

26 The regression tree generator was a partial reimplementation of CART [Breiman et al 1984]

45

FORTRAN, COBOL, PLI etc.. The test data set was built from the data previously used

in a comparative study of COCOMO, Function Points, and SLIM [Kemerer 1987].

Kermerer’s database was about 15 projects, mainly of business applications written in

COBOL. The results obtained from the experiment shows that there exists a strong linear

relationship between the estimated effort and the actual development time. Both learning

approaches were competitive with traditional models examined by Kemerer. The learning

systems performed better than the COCOMO and Function Point models, and worse than

SLIM [Srinivasan and Fisher 1995 p. 131].

2.2.5 Summary

This chapter provides a review of some of the existing work in knowledge based software

engineering (KBSE) and machine learning which are considered to be the most relevant

to the topic of this thesis. In summary, most KBSE systems employ some sort of

knowledge repository. Whether this is a full-fledged knowledge base, a concept

hierarchy, an event hierarchy, a granularity hierarchy or a plan library, each one of these

systems explicitly encodes some form of knowledge. Many of the systems reviewed in

this chapter have not been applied to real world large legacy systems. This is mostly

because acquiring and coding such knowledge is very time consuming and most times

requires the knowledge of a particular application domain.

The application of machine learning methods to software engineering is still not very

widespread. They have been used in problems such as fault detection, concept

assignment, software quality estimation, and software development effort estimation as

reported in this chapter. This thesis will be an attempt in applying machine learning

techniques to an unexplored area, namely building models of relevance among

components of a software system, with the goal of, directly or indirectly, assisting

software engineers in low level software maintenance activities

47

Chapter 3

Methodology

3.1. Introduction

As we discussed in Chapter 1, the purpose of this research is to investigate the possibility

of learning the concept of Relevance among different software constructs such as files, or

routines in a large software system27. We are employing machine learning algorithms to

induce the definition of a Relevance Relation, herein referred to as Relevance, within the

context of software maintenance activity. As will be further discussed in the following

sections, the particular relation we will be investigating is Co-update relation i.e. whether

change in one file may require a change in the other file. In this chapter we discuss our

methodology in detail. The chapter also includes a discussion of limitations of the

approach as it stands.

The most flexible relevance relation is a mapping of m objects into a real value between 0

and 1, indicating the degree of relevance between these objects. In the software

maintenance context, an object could be a file, routine, variable, document, etc. The

discrete version of such a relation is a function that will map Software Objects (SOs) of

interest into k discrete values, or categories of relevance. This discrete version can be

27 While this thesis is mainly dealing with the concept of relevance among a pair of files, the method
should be extendible to routines or perhaps variables or types, if the software change (update) information
is maintained at these finer levels of granularity.

48

readily translated into a classification task, where we would like to classify m given

objects, as one of k alternative classes of relevance.

The technique we use to learn the Co-update relation falls into the category of Supervised

Learning methods. In supervised learning, the goal is to learn the Concept of interest, e.g.

the Co-update relevance relation, from a set of labeled or pre-classified examples of that

concept. The words concept and Model are used interchangeably to indicate the same

thing. An example is also referred to as a Case. The output of this learning process is a

Classifier.

A very common representation for examples is called Feature Vector Representation.

First a set of features, or Attributes, of the concept of interest is chosen. Then, for each

pre-classified, or pre-categorized, example of the concept, a vector of values

corresponding to the selected features is created. The set of all such examples used to

learn the concept of interest is referred to as the Training Set.

As shown in Figures 3.1 and 3.2, the training set is input to a learning system, which

based on the given examples, outputs a classifier. The generated classifier can be used in

future to classify unseen, i.e. unclassified, examples or cases.

Classifier Training Set Learning System

Figure 3.1 Creating a Classifier from a Set of Examples

49

Unclassified Case X Classification of X Classifier

Figure 3.2 Classifying a New Case

The rest of this chapter is dedicated to the process of generating such classifiers,

particularly classifiers that are an instance of the Co-update relation. Some finer details

are discussed in Chapter 4, which presents the experiments performed and empirical

evaluation of the results.

3.2. General Approach

The process of learning a Relevance Relation in the context of software maintenance is

shown in Figure 3.3. The process itself is general enough to be used in other applications

of machine learning, and it is closely related to the ones suggested by other researchers

such as [Saitta & Neri 1998] and [Piatettsky-Shapiro et. al.1996]. However, as the picture

suggest, the data and knowledge sources are geared towards the ones available in a

software development and maintenance environment. To that end, the discussion that

follows will be mostly focused on the source code level software maintenance, and more

specifically, particulars of our research and lessons we have learned.

50

Identify Data &

Knowledge Sources

Acquire Data
&Knowledge

Preprocessing

Transformation &
Encoding for selected

Algorithm

Expert

Software Change
Records

Documentation SE Interactions

Source Code

Learn

Evaluate

Usage

 Learning

Post Learning

Acceptable

Tune
Parameters

Pre Learning

Figure 3.3 The Process of Learning a Maintenance Relevance Relation

51

The process can be dived into three stages of Pre-learning, Learning, and Post Learning.

However, as seen in Figure 3.1, there are backward arrows, indicating that at many of

steps in the process one may need to revisit an earlier step. The following sections

provide more details about each of theses stages.

3.2.1 Pre-Learning Stage

In the pre-learning stage, we start with determining what sources of knowledge and data

are available to be used in solving the problem of interest. This step is followed by the

actual acquisition of the knowledge and data, and processing the raw information to bring

it to a form that can be used in the learning phase. It is estimated that these steps

contribute to 50-80% of all the effort in the real life data mining projects [Dorian 1999].

Obviously, the assumption is that the maintenance problem we are trying to address is

already defined. In this research, the problem is studying of the feasibility of learning a

useful Maintenance Relevance Relation, and reporting on the difficulties and challenges

involved in the process. In practice, the particular problem of interest could be much

more specific.

3.2.1.1 Identifying Sources of Data and Knowledge

Some of the sources of knowledge and data available in software develop-

ment/maintenance environment are:

• Source code

• Bug tracking and software configuration systems

• Documentation

• Experts in the software system of interest

• Software Engineers’ interaction with the source code while maintaining software

In our research we have used the first three resources above fairly extensively. The

details are explained in the relevant sections in the rest of this chapter. Due to the lack of

SEs time, we had to minimize the burden on them by use of some available documents

and at the expense of our time. The usage of the fifth resource above is discussed in

Appendix A.

52

Although most medium to large size software development companies keep a record of

changes made to their software, almost universally the information is not stored with data

mining or machine learning in mind. Also, one may need to pull together data from

disparate sources and further process them to create information and data to be used in

the learning phase.

To be able to learn the Co-update relation, we need to find instances of files being

changed together during maintenance process. To do this, we need to acquire an

understanding of the process of applying changes to the source files in the system.

Figure 3.4 depicts the main steps of this process in our target company. Although the

terminology and some of the finer details may vary from one company to the other, the

figure is general enough, so that one would expect to see a similar process be followed in

many other companies.

First a problem report is posted in SMS which is a software management system

developed at Mitel Networks. SMS provides the functionality of source management and

bug tracking systems. By using SMS, developers can keep track of the problems reported

about a system, along with a history of responses to the problem.

Each problem report is assigned to an SE. After his or her investigation of the report, the

SE may conclude that the program source needs be changed. The changes to the system

are recorded in the form of an update.

"An update is the basic unit of identifying actual (as opposed to planned) updates to the

software." [Bryson and Kielstra 1992 p. 9]

The update and the corresponding changes to the source code are not considered final,

before they go through testing and verification of the changes. These steps may be

repeated until a decision is made that the changes are acceptable, at which time, the

update is assigned a “closed” status. Once an update is closed, it is considered frozen,

meaning it cannot be reopened or altered in any way. If at a future time, it was

determined that a closed update was inadequate, a new update needs be initiated to

address the problem.

53

Post a problem report

Assign the problem to a
software developer

Submit the changes to address the
problem report in the form of an

update

Test and verify the update

Is the update
acceptable ?

End

Start

yes

no

Figure 3.4 The Process of Submitting an Update to Address a Problem Report

3.2.1.2 Acquire Data and Knowledge

SMS provides queries that show files changed by an update. However, to be able to

create a relatively reliable list of files changed as a result of an update, results generated

by more than one query needed be programmatically combined and filtered.

54

3.2.1.2.1 Creating examples of Relevant and Not Relevant File Pairs

To classify the relevance between m software objects, e.g., files, one needs to define k

classes, or categories, of relevance.. This thesis presents a two-class maintenance

relevance relation between a pair of files, called the Co-update relation. In other words

both m and k are equal to two28. A three-class formulation, is also discussed briefly in

Appendix A.

The two classes of relevance used in this thesis are:

• Relevant

• Not Relevant

Ideally, an expert should provide the best examples of these two classes of relevance

between pairs of files. They could also dismiss some of the examples extracted by other

means as not important, or non-representative. However, due to the industrial setting of

our project, the size of the software system under study, and the shortage of SE time, we

cannot rely on SEs to classify each pair of software objects. In other words, we cannot

directly apply machine learning techniques based on supervised learning approach.

Therefore, we have opted to use a hybrid of heuristics and supervised learning which

solely relies on the stored maintenance data. One would only expect to generate better

results than what is reported here, should there be a well established expert support

structure in the target organization.

In the following sections, we will discuss the heuristics to find the examples of the

Relevant and Not Relevant file pairs. The attributes used in describing the examples are

defined in Section 3.2.1.2.5 and 4.10.

3.2.1.2.2 Finding Relevant and Not Relevant File Pairs

The first step in creating examples of the Relevant and Not Relevant classes is to find the

file pairs associated with the example. Once the file pairs are found, one can generate the

28 Although there are two categories of relevance, one can assign a real valued confidence factor to each
classification.

55

examples by calculating the value for the predefined features and assigning the example

the appropriate class label. This is shown in Figure 3.5.

(fi, fk) Not Relevant

(fi, fk) Relevant

F1 F2 F3 F4 Class

Vm1 Vm2 Vm3 Vm4 Relevant …

1 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4 4 3

Vn1 Vn2 Vn3 Vn4 Not Relevant …

Examples

1 4 4 4 4 4 4 2 4 4 4 4 4 4 4 3

Pairs

Features {

Figure 3.5 File pairs, Features, and Examples

A question that may be raised in the reader’s mind is, ‘’why should we learn if there are

already heuristics that can label examples”? Perhaps the most interesting feature of a

learning system is its ability to generalize beyond examples used to learn a concept. This

is in contrast to a system that memorizes examples of a concept and is not capable of

classifying unseen examples. As is discussed in the following section the heuristics that

suggest example labels are based on the information extracted for a certain period of time

and provide a snapshot of the system for that particular time window. They will generate

a set of file pairs with the corresponding class labels. We cannot find the class label for a

new file pair that is not in the set generated by these heuristics. However, models

generated by a learning system can make a prediction about examples that were not seen

during the training phase.

A second benefit of learning over simple use of heuristics is that if the learning method

generates an explainable model e.g. a decision tree, we may be able to document

nontrivial relations among files. As we mentioned in Chapter 1 such information can be

used as part of a reverse engineering effort.

56

3.2.1.2.3 Heuristics Based on File Update Information

 Our heuristic to classify a training example as Relevant relies on information stored in

SMS.

 Co-update Heuristic : Files which have been changed together in the same update are

Relevant to each other29.

 Motivation: Updates are capable of capturing design decisions at the level of

implementation. They can indirectly show parts of SRG that have been traversed in the

process of system maintenance over a certain period of time. In other words, they can

provide clues to the kind of relations that exist among software entities that have been

subject to the maintenance process.

 Not Relevant Heuristic: Two files that have never30 been changed together are Not

Relevant to each other.

 If T is the period of time to which the Co-update heuristic was applied, T’, the period of

time to which the Not Relevant heuristic is applied includes T, i.e., T<=T’.

 Motivation: If two files have not been changed together in response to problems

occurring in a software system over a period of certain number of years, this could be

considered as a good evidence of independence among these files, or perhaps the

existence of a relation that is not effected by typical maintenance activities applied to

these files.

 An update can change zero or more files. We are interested in updates that affect more

than one file. These are files that we consider to be Relevant to each other. If an update

changes n files, we generate ÷÷
ø

�
��
�

æ

2

n
 pairs of relevant files31. However, some updates change

 29 A stronger statement would be: Files which have always changed together due to updates applied to a
software system are Relevant to each other. To be more precise, always here means always within the
period of time in which updates were studied. We have chosen to use a more relaxed heuristic, in the hope
of finding a wider scope Relevance relation.
 30 Never here means, within a reasonably long period of time.
31 In other words, for each two potential permutations of two paired files, only one file pair is generated.

57

a large number of files. In this thesis the number of files changed by an update is referred

to as the group size. A group size of n is written as Gn, and if there is no group size limit

it is indicated as NGSL32. It seems logical to assume that the smaller the size of a group,

the closer the relation between its member files is. Other way of interpreting this is that

perhaps for small n the problem addressed by the update was very specific, effecting a

small number of files, which are closely related to each other. As it will be discussed in

the next chapter, in the system that we studied, one can limit the size of a group, and still

cover most of the updates. One clear alternative to limiting the group size, is not limiting

it at all.

 Corresponding to a set SR of relevant file pairs there is a set SNR of not relevant file pairs,

where SR I SNR = ∅. Effectively, each file f is paired with j files in the set fR of files

relevant to f, and with k files in set fNR of files not relevant to f, where | fR |=j, |fNR|=k, and

fR I fNR = ∅.

 We denote the training set of file pairs as TRS, and the testing set of file pairs as TSS.

Each of these sets has two subsets, corresponding to relevant and not relevant file pairs.

They are denoted as TRSR, TRSNR, TSSR, and TSSNR.

 In general, to create the set SNR of not relevant file pairs, we generate a set of potential

file pairs in the target software system, and then remove all the pairs that we know are

relevant to each other. In other words, we are making the assumption that the world is

closed.

 While labeling two files as relevant is based on facts, i.e., update records, labeling a pair

of files as not relevant is based on the lack of facts. Consequently, due to the lack of

knowledge, there is an inherent error in labeling file pairs as not relevant. The larger the

number of updates considered, the larger the set of relevant files, and consequently the

smaller and more accurately labeled the set of not relevant pairs will be. However, short

of experts feedback, or other sources of information, the only way that one can obtain

more updates, is to consider a longer period of time in the change history of the system.

32 No Group Size Limit

58

Assuming such a history exists, considering the fact that software systems evolve over

time, the larger the size of this history window, the higher the possibility that the

extracted information is no longer valid for the current version of the system. In other

words, there is a limit on the number of useful relevant file pairs. This issue is further

discussed in the future work chapter.

 Table 3.1 shows the distribution of files in a release of the system that we have used to

generate the set of negative files. The .pas, .typ, and .if files are Pascal source files used

to define the main program and procedures, and type and interface definitions. While

.asm and .inc files are assembler source files.

Table 3.1 Distribution of Files by Their Type

File Type File Count

pas 1464
typ 917
if 1134
asm 863
inc 308

Total 4686

 If we were to simply generate the set of potential file pairs by generating a set that

contains all possible combinations of these files, without pairing a file with itself, we will

have,

2

4685*4686
 = 10,976,955

 pairs of files. The larger the initial set of potential file pairs is the larger the number of

not relevant pairs will be. This in turn implies that there will be a higher possibility that

pairs will be mistakenly labeled as not relevant.

 Focusing only on Pascal related files, i.e., 3515 files with extensions .pas, .typ, and .if,

will generate,

2

3514*3515
 = 6,175,855

59

 pairs of files. This is still a very large number of pairs that, besides imposing severe

computational limitations, introduces extreme imbalance between the relevant and not

relevant pairs. This is due to the fact that the number of files changed together in a year,

i.e the relevant files, tends to be much smaller than all the possible combinations of file

pairs. We will discuss the issue of imbalance further in the next chapter.

 As we mentioned above, the number of mislabeled pairs grows with the size of SNR. One

way of reducing the size of SNR is instead of choosing all possible pairs, or even all

possible Pascal pairs, we focus on files in SR. In other words, we only pair files in SR with

other files in the system. Due to the smaller size of SR, the number of files used to

generate the pairs will be smaller, which means the number of generated pairs will be

smaller. The number of Not Relevant pairs can be further reduced if we only focus on

files fi that appear as the first file in some pair (fi, fj) in SR. Unless stated otherwise, this is

the way that the set of potential not relevant pairs are generated. To generate SN , we

always remove the elements of SR from which this potential set of Not Relevant pairs was

generated. As it will be discussed in the next chapter, we may also remove other pairs

from this set. For instance we may have access to additional sources of knowledge

indicating that some of the pairs in the potential Not Relevant set are indeed Relevant.

The general relation between Relevant and Not Relevant pairs is shown in Figure 3.6.

 In the remainder of this thesis we use the notation Sc,n,y to denote a set S of file pairs of

class c, a group size restriction of n, and for time period indicated by y, where,

 c Œ {R, NR}, R = Relevant NR = Not Relevant

 n is a positive integer or NGSL

 y is a valid year or year range y1-y2 where y1 < y2

60

Relevant
Pairs Not Relevant Pairs

Pairs for which there exists evidence against them being Not-Relevant

All Pairs

Figure 3.6 Relation Between Relevant and Not Relevant Pairs

 Definition: first_of_pairs(S) = {xi| (xi, yj) Œ S, S is a set of file pairs}

 Definition: dnrp33(SR, F2, FRem) = {(x, y)| (x, y) Œ first_of_pairs(SR)ƒF2 - FRem }

 where SR is a set of relevant file pairs, F2 is a set of files34 which can be the second

element of a file pair, and FRem is a set of file pairs that should not be included in the

resulting set.

 Definition: PAS = {f| f is a Pascal file i.e., .pas, .if, .typ}

 Please note that both first_of_pairs and dfnrp generate sets. This implies that there is no

duplication among elements

3.2.1.2.4 Features Used in Defining the Relevance Concept

As discussed in the previous section, the main knowledge and data source used in

labeling pairs of files is SMS. Features that are used to describe examples of the concept

33 Default Not Relevant Pairs
34 A set of file names, to be precise.

61

to be learned are also based on the available sources of knowledge and data. The main

source of data we have used in defining features and extracting their values is the source

code. There are also a number of features that one could extract from the information

stored in SMS. In the following sections we define all the candidate features used in

learning the Co-update relation.

3.2.1.2.5 Features Extracted From the Source Code

Source code is the most up to date and reliable documentation of the behavior of the

program and the intricate relations that exist among its constituent parts. In most large

software systems, the source code is stored in more than one source file. This is an

attempt to organize the code into smaller, ideally more cohesive and manageable pieces.

Therefore, we can view the source code at least in two different levels of granularity:

• As an organized collection of source files

• At the individual file level

The organization of source files is mostly influenced by the operating system under

which the software is developed and maintained. Where files are stored and how they are

named could provide useful information regarding the relations among them. Most

modern operating systems incorporate the concept of directories or folders as part of their

file system support. Directories can be used to group files in a software system into

smaller subsystems. Also, the conventions used in naming files, or the directories that

hold them, could provide additional clues that one can use in learning tasks that are

focused on the relations between files (e.g. Co-update MRR). In the system that we

studied, there was no breakdown of the system into subsystem directories; however. as

discussed below, we have used features that are based on file names.

At the individual file level, the content of a file is very much dependent on the

programming language and environment35 used to create the software. Therefore, some

of the source file level attributes or features used in the learning task, may be unique to a

35 For instance, the compiler used.

62

particular programming language, while others may be based on general concepts, such

as routine calls, that are shared among a wide spectrum of programming languages.

As is discussed in section 4.10.1, comments in source files are another source of

information that can be used as features in learning an MRR. Although constraints are

placed on comments by the syntax of the language, due to their textual nature they can be

used to convey virtually any type and form of information.

Below, we present a list of attributes that can be extracted from the source code. Most of

these attributes are based on programming language constructs such as files, routines,

types, and variables. They are extracted by most reverse engineering systems. As part of

our study, we are interested in knowing how much such attributes alone can help us in

creating a useful relevance relation such as the Co-update relation. This list also includes

file name based attributes.

While this list may not be complete, it covers many of the essential language capabilities

used by programmers in creating software systems. Although this list is compiled for the

programming language used in our target software system, it does represent a reasonable

subset of features found in many modern procedural languages and, by extension, some

of the object oriented languages currently in use.

It should also be noted that availability of such attributes is highly dependent on the

quality of tools such as parsers, which extract the information used in calculating the

attributes from the source code.

Before defining our suggested attributes, we provide the definition of the terms that are

used to describe the attribute set. Unless stated otherwise, in this thesis a routine means a

procedure or a function.

Definition: System-wide calculation cost is the cost of calculating the value of an

attribute for the whole system. This is the cost that must be endured should the attribute

turn out to be important in defining the relevance relation

63

Definition: A Software Object (SO) is any one of a file, a routine, or a variable. A

Software Unit (SU) is a file or a routine.

Definition: Interesting Software Unit (ISU) is a software unit for which we want to find

its relevant SUs. Other Software Unit (OSU) is a software unit that has been classified to

be Relevant, or Not Relevant to ISU. While for all the attributes given in this section ISU

and OSU are files, most of the attributes can be used for routines with relatively simple

changes to their definition.

In what follows we will present our initial set of suggested attributes and algorithms to

calculate their values. SU1 and SU2 stand for any two software units.

3.2.1.2.6 File Reference Attributes

 Attribute Name: Number of shared files included

 Meaning: Number of shared files included by both ISU and OSU.

 Type: Integer

 Motivation: The higher the number of the shared files included by ISU and OSU, the

higher is the chance of closeness of their functionality, and consequently their relevance.

 How to compute:

• Find the sets of file names included by ISU and OSU.

• Find the size of the intersection of these two sets

 System-wide calculation cost:

˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 = N(N-1)/2 times computation of the above algorithm for N files in the system

 Attribute Name: Directly include you

 Meaning: ISU includes OSU.

 Type: Boolean

 Motivation: File inclusion is a mechanism of sharing data and functionality. This in

effect implies the existence of certain degree of connection between two objects, perhaps

a component of a more comprehensive Relevance relation.

64

 How to compute:

• Directly from Data base36

 System-wide calculation cost:

N times computation of the above algorithm for N files in the system

 Attribute Name: Directly Include me

 Meaning: OSU includes ISU.

 Type: Boolean

 Motivation: Similar reasons to the one for Include you

 How to compute:

• Directly from Data base

 System-wide calculation cost:

N times computation of the above algorithm for N files in the system

 Attribute Name: Transitively include you

 Meaning: ISU includes an SU which directly or indirectly includes OSU.

 Type: Boolean

 Motivation: Similar reasons to the one for Include you.

 How to compute:

• While there is any unchecked SU included by ISU

• Return true if SU directly or transitively includes OSU

 System-wide calculation Cost:

N times computation of the above algorithm for N files in the system

 Attribute Name: Transitively include me

 Meaning: ISU includes an SU which directly or indirectly includes OSU.

 Type: Boolean

 Motivation: Similar reasons to the one for Include you.

36 Detabase here is a repository of information generated by parsing the source code of the target system.
More details are provided in [Lethbridge and Anquetil 1997].

65

 How to compute:

• While there is any unchecked SU included by OSU

• Return true if SU directly or transitively includes ISU

 System-wide calculation Cost:

N times computation of the above algorithm for N files in the system

Direct and Transitive inclusion can be collapsed to a single numeric attribute, indicating

the depth of inclusion. In this case, 0 will stand for SU1 not including SU2, 1 for directly

including, and any value greater than one indicates SU1 transitively including SU2. It is

not clear to us, whether the depth of the inclusion is more informative than its simpler

Boolean counterpart. Boolean attributes tend to provide simpler interpretations, while

numeric values provide more information at the expense of additional cost of decoding

the meaning behind the values. Perhaps it might be a worthwhile exercise to make a

comparative study of learned concepts using this alternative coding scheme.

 Attribute Name: Number of files including us

 Meaning: Number of files that include both ISU and OSU

 Type: Integer

 Motivation: The higher the number of files that include both ISU and OSU, the higher

the probability that ISU and OSU should, most of the time, appear together i.e. using one

would most probably will be followed by using the other.

 How to compute:

• Find sets of files including ISU and OSU

• Find the size of the intersection of these two sets

 System-wide calculation Cost:

˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 = N(N-1)/2 times computation of the above algorithm for n files in the system

3.2.1.2.7 Data Flow Attributes

 Attribute Name: Number of shared directly referred Types

 Meaning: Number of shared references to data types made directly by ISU and OSU

 Type: Integer

66

 Motivation: The higher the number of shared referred data types, the higher the

possibility of closeness of the functionality of SUs referring to them.

 How to compute:

• Find the sets of data types directly referenced by ISU and OSU

• Find the size of the intersection of these two sets

 System-wide calculation cost:

˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 = N(N-1)/2 times computation of the above algorithm for N files in the system

 Attribute Name: Number of shared directly referred non-type data items

 Meaning: Number of shared references directly made to all data items but types, by ISU

and OSU

 Type: Integer

 Motivation: The same as Number of shared directly referred Types

 How to compute:

• Find the sets of non type data items directly referenced by ISU and OSU

• Find the size of the intersection of these two sets

 System-wide calculation cost:

˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 = N(N-1)/2 times computation of the above algorithm for N files in the system

3.2.1.2.8 Control Flow Attributes

Definition: A Static Routine Reference Graph (SRRG) for a routine R, is a directed

graph with a node R, and edges leaving R and entering node Ri of SRRG for a routine Ri,

for all Ri statically referred to by R37. If routine R does not refer to any other routine the

SRRG for R will only contain node R.

Definition: A routine R is directly referred to by file F, if it has been referred in the

executed portion of F. A routine R is indirectly referred to by file F, if it is referred by a

routine Ri, which is defined in F.

 37 A static reference to a routine R in an SU, implies that R is referred to in the source code of SU. This is
as opposed to the actual calling of R that can only happen during the execution time.

67

Definition: A File Static Routine Reference Graph (FSRRG) for a file F is a directed

graph generated by SRRGs for all routines referenced in F i.e., routines directly or

indirectly referred to by F.

 Attribute Name: Number of directly Referred/Defined routines

 Meaning: Number of routines that are directly referred to by ISU and that are defined in

OSU

 Type: Integer

 Motivation: The higher the number, the higher is the coupling between ISU and OSU.

 How to compute:

• Create the sets of routines directly referred in ISU and routines defined in OSU

• Find the size of the intersection of these two sets

 System-wide calculation cost:

˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 = N(N-1)/2 times computation of the above algorithm for N files in the system

 Attribute Name: Number of FSRRG Referred/Defined routines

 Meaning: Number of nodes (routines) that are referred to in ISU’s FSRRG and defined

in OSU

 Type: Integer

 Motivation: The higher the number, the higher is the (indirect) coupling between ISU

and OSU.

 How to compute:

• Create the sets of (nodes) routines in FSRRG of ISU and routines defined in OSU

• Find the size of the intersection of these two sets

 System-wide calculation cost:

˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 = N(N-1)/2 times computation of the above algorithm for N files in the system

 Attribute Name: Number of Defined/Directly Referred routines

 Meaning: Number of routines that are directly referred to by OSU and defined in ISU

68

 Type: Integer

 Motivation: The higher the number, the higher is the coupling between ISU and OSU.

 How to compute:

• Create the sets of routines directly referred in OSU and routines defined in ISU

• Find the size of the intersection of these two sets

 System-wide calculation cost:

˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 = N(N-1)/2 times computation of the above algorithm for N files in the system

 Attribute Name: Number of Defined/FSRRG Referred routines

 Meaning: Number of nodes (routines) which are referred to in OSU’s FSRRG and

defined in ISU

 Type: Integer

 Motivation: The higher the number, the higher is the (indirect) coupling between ISU

and OSU.

 How to compute:

• Create the sets of (nodes) routines in FSRRG of OSU and routines defined in ISU

• Find the size of the intersection of these two sets

 System-wide calculation cost:

˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 = N(N-1)/2 times computation of the above algorithm for N files in the system

 Attribute Name: Number of Shared routines directly referred to

 Meaning: Number of routines directly referred to by both ISU and OSU

 Type: Integer

 Motivation: The higher the number of shared routines referred to in ISU and OSU, the

higher the chance of them performing closely related functions.

69

 How to compute:

• Create the sets of routines directly referred to in ISU and OSU

• Find the size of the intersection of these two sets

 System-wide calculation cost:

˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 = N(N-1)/2 times computation of the above algorithm for N files in the system

 Attribute Name: Number of Shared routines among all routines referred

 Meaning: Number of shared routines among routines directly and indirectly referred by

ISU and OSU.

 Type: Integer

 Motivation: The higher the number of shared routines referred to in ISU and OSU,

directly and indirectly, the higher the chance of them performing closely related

functions.

 How to compute:

• Create the sets of routines directly or indirectly referred to in ISU and OSU

• Find the size of the intersection of these two sets

 System-wide calculation cost:

˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 = N(N-1)/2 times computation of the above algorithm for N routines in the system

 Attribute Name: Number of nodes shared by FSRRGs38

 Meaning: Number of routines shared by FSRRGs of ISU and OSU

 Type: Integer

 Motivation: The higher the number of shared routine referred in FSRRGs of ISU and

OSU, the higher the chance of them performing closely related functions.

38 This is an extended version of “Number of Shared routines among all routines referred ” attribute that
only concerns itself with routines that are directly or indirectly referred to in one file i.e. ISU.

70

 How to compute:

• Create the sets of nodes in FSRRGs of ISU and OSU, by finding the union of the

nodes in simple paths of FSRRGs

• Find the size of the intersection of these two sets

 System-wide calculation cost:

˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 = N(N-1)/2 times computation of the above algorithm for N routines in the system

3.2.1.2.9 File Name Related Attributes

 Attribute Name: Common prefix length39

 Meaning: The number of characters in the shared common prefix of the names of ISU

and OSU.

 Type: Integer

 Motivation: A shared common-prefix is usually indicative of some sort of grouping in

terms of function, or subsystem divisions etc.

 System-wide calculation cost:

˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 = N(N-1)/2 times computation of the above algorithm for N files in the system

 Attribute Name: Same File Name

 Meaning: ISU and OSU have the same file name (with the extension ignored).

 Type: Boolean

 Motivation: Usually different components of a program are distributed among files with

the same name, but with different extensions.

 System-wide calculation cost:

˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 = N(N-1)/2 times computation of the above algorithm for N files in the system

 39 Note that this is more general than the Boolean version of this attribute, which checks to see if a common
prefix exists. In this case any number greater than 0 is the indicative of the existence of a common prefix.

71

 Attribute Name: ISU File Extension

 Meaning: The file extension of ISU

 Type: Text

 Motivation: File extensions most of the time are indicative of the type of data that they

contain e.g., a pas extension indicates a Pascal source file while an asm extension

indicates an assembler source file. Only certain combinations of file extensions in

practice are used together.

 System-wide calculation Cost:

N times retrieval of the value of extension for N files in the system

 Attribute Name: OSU File Extension40

 Meaning: The file extension of OSU

 Type: Text

 Motivation: The same as ISU File Extension .

 System-wide calculation Cost:

N times computation of the above algorithm for N files in the system

 Attribute Name: Same extension

 Meaning: ISU and OSU have the same file extension

 Type: Boolean

 Motivation: Providing a Boolean relation between two attribute values.

 System-wide calculation Cost:

˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 = N(N-1)/2 times computation of the above algorithm for N files in the system

This is true, unless one employs more knowledge-intensive rules of finding common prefixes between two
names e.g., selection from a previously defined set of prefixes in the system under study
 40 Attributes such as ISU and OSU file extension reduce the generality of the induced relevance concept,
because they are system specific. An alternative approach could be introducing more general attributes such
as OSU or ISU file content type that will accept values such as document, program file, interface file etc.

72

Table 3.2 Summary of Syntactic Attributes

Attribute Name Attribute Type

Number of shared files included * Integer
Directly include you * Boolean
Directly Include me * Boolean
Transitively include you Boolean
Transitively include me Boolean
Number of files including us Integer
Number of shared directly referred Types * Integer
Number of shared directly referred non type data
items *

Integer

Number of Directly Referred/Defined routines * Integer
Number of FSRRG Referred/Defined routines * Integer
Number of Defined/Directly Referred routines * Integer
Number of Defined/FSRRG Referred routines * Integer
Number of Shared routines directly referred * Integer
Number of Shared routines among All routine *s
referred

Integer

Number of nodes shared by FSRRGs * Integer
Common prefix length * Integer
Same File Name* Boolean
ISU File Extension * Text
OSU File Extension * Text
Same extension * Boolean

Table 3.2 is a summary of attributes introduced in this Chapter. Attributes indicated by a

* are used in experiments reported in the next chapter.

3.2.1.2.10 Text Based Attributes

The attributes defined in the previous section were mostly based on syntactic constructs

present in the system source files. Undoubtedly the source code holds a great wealth of

information about a software system. However, SMS by its nature as a bug tracking

system could also provide additional features or attributes that may be useful in a task

such as learning the Co-update MRR. One such source for extracting attributes is a

problem report.

Problem reports stored in SMS can be seen as text documents. Text classification is one

of the application areas for machine learning. The attributes used in text classification are

words appearing in documents. In section 4.10 we will present a method to adapt and

apply text classification techniques to the task of learning the Co-update MRR. We will

73

also present experiments that use problem reports stored in SMS and source file

comments as sources for text based attributes.

3.2.1.3 Preprocessing

 The preprocessing stage deals with cleaning the data, removing noise and making

decisions, such as what to do with features with unknown values. The experiments in the

next chapter will show the effects of such operations and decisions on generated results.

3.2.2 Learning Stage

The input to the learning system is one or more data sets that can be used by the learning

system. However, in many applications there is a need for transformation of this data to a

data set that is directly input by the learning system. In the next step the learning system

will take this data set and create a classifier. The classifier should be empirically

evaluated to make sure it provides the desired level of performance according to

appropriate measure or measures. If this evaluation succeeds then the process moves to

the post learning stage. However, if the desired level of performance is not achieved, then

one can either move to a previous step in the process, or change the value of a parameter

of the learning algorithm and generate a new classifier.

3.2.2.1 Transformation and Encoding

Depending on the nature of the application and the data generated in the Pre learning

stage, there may be a need to use a subset of the data, or a subset of features available.

The selection of a subset of data is an issue particularly when there is imbalance among

the distribution of the classes. Many learning algorithms tend to be influenced by extreme

skew in the distribution of data among the classes. This is the case in our datasets, and we

will discuss how we address this when we present the experiment setups in the next

chapter. The output of the transformation step is the training data set to be used by the

learning system.

74

3.2.2.2 Learning

In the learning step (also referred to as the modeling step), the learning system reads the

training examples in the training set and generates a classifier. This was depicted in

Figure 3.1. The learning system used in our experiments is C5.0 [RuleQuest Research

1999], an advanced version of the C4.5 decision tree learner [Quinlan 1993].

Figure 3.7 shows a decision tree. In a typical decision tree, each non–leaf node is a test of

the value of a feature. A leaf node stores the classification for the cases that reach it. A

case is classified by starting at the top of the tree, and following the branches of the tree

based on the outcome of each test, until the case reaches a leaf.

We have used this method for the following reasons,

• Decision tree learning algorithms have been widely studied by machine learning

researchers and learners such as C4.5 have been successfully used in other projects

• The decision tree is an explainable model. An expert can study a tree to verify the

correctness or reasonableness of the learned model. The study of the tree could also

result in finding relations that were not known before. This is in contrast to methods

such as neural networks or support vector machines (see section 4.4.2), where the

classifier is treated as a black box. In these methods, the reason for the class assigned

to a case cannot be explained.

• During the course of our research we have tried alternative methods, but none were

able to generate a significantly better results than decision trees41. Many times

decision trees generated better results.

41 The learners we used included Ripper (a rule learner), Timbl (a memory based learner) and svm-light a
popular implementation of Support Vector Machines. We have not reported these experiments mostly
because the particular experimental setups under which these experiments were performed were different
from what we have presented in this thesis. Also, the above statement should not be interpreted as
universal. We believe that with proper parameter tuning, some of these learners can generate classifiers that
outperform C5.0. On the other hand, one can argue that better results may also be obtained with better
parameter tuning of C5.0. Our limited experiments with these alternative methods did not provide us with
enough reason to consider using them as the main learning method instead of C5.0, especially in light of
other benefits that C5.0 provides and were pointed out above.

75

 T1

T2 T3

T4

T2 C2 C1 C1 C2

C1

C2 C1

Figure 3.7 A Decision Tree

3.2.2.3. Evaluating the Usefulness of the Learned Concept

We have used the term usefulness above in a very broad sense. For the purpose of

empirical evaluation of the learned Relevance concept there is a need to present a more

tangible measure. The evaluation process requires the learned classifier to be tested on a

test set that is independent from the training set used to generate the classifier. This

section introduces the performance measures we have employed in the thesis. The details

of the test sets used in evaluating the classifiers are presented in the next chapter.

Figure 3.8 shows a confusion matrix. The entries in the matrix are the classification made

by a classifier versus actual class in a two-class setting. Most established performance

measures in machine learning are defined based on such a table

Classified As

 Not Relevant Relevant

Not Relevant a b
True Class

Relevant c d
Figure 3.8 A Confusion Matrix

76

Accuracy is the proportion of correctly classified examples among all classified

examples. Although accuracy has been widely used in machine learning research, recent

studies have questioned the appropriateness of accuracy as the sole measure of evaluating

the performance of an induced concept [Provost and Fawcett 1997][Provost et. al. 1998].

In the experiments chapter, we will make the case that indeed accuracy alone cannot be

considered the proper measure for our particular problem, and will report results of

calculating alternative measures discussed below. Accuracy for class Relevant above is

defined as:

Accuracy =
dcba

da

+++

+

 Precision is a standard measure from information retrieval, and is used in machine

learning. Conceptually, precision tells one the proportion of returned results that are in

fact valid (i.e. assigned the correct class). Precision for class Relevant above is defined

as:

 PrecisionR =
db

d

+

 Recall is a complementary metric that tells one what proportion of the cases really

belonging to a class were identified as such by the classifier. Recall for class Relevant

above is defined as:

 RecallR =
dc

d

+

Another well known measure, called F-measure, combines Precision and Recall, by

allowing a parameter b which reflects the importance of recall versus precision. F-

measure is defined as42:

42 This definition can be found in [Lewis 1995]. It is based on original definition of E measure given

[Van Rijsbergen 1979] which is E =
RP

PR

+

+
-

2

2)1(
1

b
b

. E decreases when F increases

77

 F–measureb =
RP

PR

+

+
2

2)1(

b
b

,

 where P and R are precision and recall values, respectively. The following observations

can be made for the F-measure:

• F0 is equivalent to Precision. This is when recall has no importance compared to

precision.

• Fµ is equivalent to Recall. This is when precision has no importance compared to

recall.

 For all the above measures, the goal is to achieve as high a value as possible. However, as

will be discussed, there is no guarantee to improve the results for all measures at the same

time. As a matter of fact, oftentimes an improvement in one measure is accompanied by a

degradation of another measure. Therefore, a plot that captures most of the interesting

measures and visually assists in evaluating improvement, or lack thereof, will be

desirable.

 ROC graphs, such as the one shown for two classifiers A and B in Figure 3.9, plot the

False Positive (x-axis), versus True Positive rate (y–axis)43.

 ROC curves are generated by varying the value of a parameter, and creating a point for

each of the values that the parameter takes. If a classifier or the learning algorithm does

not accept a parameter, then a single ROC point represents the classifier. For instance by

changing the value of the threshold of the confidence in classification one can obtain a set

of (FP, TP) pairs corresponding to different threshold values. The ROC curve can then be

created using these points. In Figure 3.9, where the plot for classifier B is to the North

West of the plot for classifier A, one can visually identify the superior classifier by

plotting the curve.

 The true positive rate is the proportion of positive examples that were correctly identified.

As can be seen, the true positive rate is the same as recall.

78

 TPR =
dc

d

+

 The false positive rate is the proportion of negative examples e.g., Not Relevant

examples, that were incorrectly classified as positive e.g., Relevant examples above.

 FPR =
ba

b

+

 Some of the benefits of ROC curves include:

• They can convey information contained in a confusion matrix

• They are independent of the class distribution in the data, or classification error

costs.[Provost et al. 1998]. The issue of imbalance among class distributions appears

in most real world, complex classification problems. This is also the case in our

research

 In an ROC curve the following holds:

• Point (0,1) corresponds to perfect classification, where every positive case is

classified correctly, and no negative case is classified as positive. Better classifiers

have (FP, TP) values closer to this point; i.e. more ‘north west’ of inferior classifiers.

• Point (1,0) is a classifier which misclassifies every case

• Point (1,1) is a classifier that classifies every case as positive

• Point (0,0) is a classifier which classifies every case as negative

43 Here we are assuming Relevant to be the positive class

79

A

B

FP

TP

1

1 0

Figure 3.9 An ROC Curve

3.2.2.4. Parameter Tuning

Most algorithms employed by learning systems employ a variety of parameters that can

be assigned by the user. One approach that may improve the results generated by the

classifier is to change the value of one or more parameters, and learn the concept of

interest, under the new parameter assignment. Note that in this case the training set is not

altered, therefore the changes in the result are a consequence of the changes in parameter

values.

3.2.3 Post Learning Stage

The post learning phase mostly deals with putting the learned classifier into use. This is a

compulsory step in deployed research [Saitta and Neri 1998]. As a result of feedback

received from the user, one may revise some of the decisions made in the pre learning

and the learning stages such as data representation, sampling techniques, learning

algorithms etc. Such changes will require repetition of some of earlier steps of the

process, and this is the reason for the backward arrow from this stage to the previous ones

shown in Figure 3.1.

80

However such an endeavor demands a different set of resources and research priorities

than those available in an academic setting such as ours. We will discuss this topic further

in the future work chapter (Chapter 5).

3.3. Limitations of Our Research

We can see at least two limitations for the methodology and the research presented in this

thesis.

• To be able to learn from past software maintenance experience, the changes applied

to the system must be recorded properly. The information must be detailed enough to

allow creation of appropriate attribute or class labels to describe the concept or the

model we are interested in learning. For instance if the changes applied to source files

could not have been traced back to updates we would not have been able to

automatically create the sets of Relevant and Not Relevant file pairs and the

corresponding examples. Similarly if problem reports were not recorded or we could

not link a file to the problem reports affecting it we could not use problem report

features in learning the Co-update relation. Of course, theoretically, examples of the

concept of interest can be provided by other sources such as human experts. However

practically for most interesting models in the software engineering domain in general

and software maintenance in particular this will not be feasible.

• There must be enough examples of the class of interest to be able to learn a model

that shows high predictive qualities for this class. For instance as will be discussed in

Chapter 4 there is a large imbalance between the examples of Relevant and Not

relevant class. We estimate that there is a need for at least a few thousand examples

of the Relevant class to make creation of useful models possible.

81

 Chapter 4

 Experiments

 This chapter presents and discusses the results obtained in learning the Co-update

relevance relation among files. We first provide a brief overview of the actual software

system used in the study. Then we proceed with the discussion of the creation of the

example data sets used in the learning and evaluation process. This will be followed by

presentation and analysis of the results of experiments performed. The first group of

experiments presented is referred to as the base experiment. The subsequent experiments

will alter one or more aspects of the base experiments and reports on the results obtained.

 4.1 Background on the System Under Study

 SX 2000 is a large legacy telephone switching system.44. It was originally created in 1983

by Mitel Networks Corporation. The software is written in the Mitel Pascal programming

language, and Motorola 68000 assembly language. The system source code is distributed

among five major types of files45. Table 4.1 shows the distribution of these files based on

their type in a release of the software used in this research.

 44 Also know as PBX
45 There are a few other file types that do not concern our research.

82

Table 4.1 Distribution of SX 2000 Source Code Among Different Files

File Type Usage Number of Files Commented Lines of Code

 asm Assember code 867 330,907

 if Pascal interface file 1,150 86,237

 inc Assembler include file 309 43,974

 pas Pascal Source 1,491 1,316,043

 typ Pascal Type Declaration 937 99,745

 Total 4,754 1,876,906

 4.2 Creating Training and Testing Data sets

 As discussed in Chapter 3, to create the training and testing data sets used in learning and

evaluation of the Co-update relevance relation, first we need to find file pairs that are

labeled as either Relevant or Not Relevant.

 After finding candidate file pairs, any classification conflict between two file pair tuples

e.g.; (fi, fj, Relevant) and (fi, fj, NotRelevant), must be resolved at this stage. However,

according to the definition of class assignment heuristics introduced in Chapter 3, such a

conflict will not occur in the two class setting presented here.

 In the next step, for each one of these (fi, fj, class) tuples we create an example tuple

(a1, a2, …, an, class) by calculating the value of the attributes (or features) a1, a2, …, an

used in defining the Co-update relation.

 In the remainder of this thesis whenever there is a reference to a Relevant or Not

Relevant (file) pair, it is understood that we are referring to a file pair tuple with a class

value of Relevant or Not Relevant respectively. By the same token, a Relevant or Not

Relevant example is an example tuple corresponding to a Relevant or Not Relevant file

pair tuple. The relation between the file pair tuples and the corresponding examples was

shown in Figure 3.5.

4.3 Removing Class Noise

When two examples have the same values for attributes but different class labels the

examples are said to contain class noise. Although our example labeling heuristics create

83

file pair sets that are disjoint i.e.; Relevant and Not Relevant file pairs, the attribute value

corresponding to two distinct file pairs can have the same values, thus introducing class

noise in the datasets. Noise is known to be harmful to learning, and therefore, whenever

possible, it ought to be removed from the data.

To remove this class noise from our training sets we use the following heuristic method::

1. Find count(p, c) the number of examples for each attribute value pattern p and class c

in the data set

2. For each unique attribute value pattern p in the dataset

Find c’ =
{

),(maxarg
}Re,Re

cpcount
levantNotlevantcŒ

 46

Create N examples with attribute value pattern p and class label c’

If N above is set to 1, then we refer to this method as single copy class noise removal. If

N is set to count(p, c’) we refer to the method multi-copy class noise removal.

4.4 Background on Experimental Setup

As is the case for any research that deals with real world problems and environment, our

research has gone through many obstacles and revisions. While in section 4.5 we discuss

the experiments that are referred to as the Base Experiments, in reality they have been

among the more recent set of experiments performed through our research. Indeed the

main focus of Chapter 4 is to provide a few select results that are deemed to be both

interesting and adhere to what is perceived as an acceptable evaluation method by many

machine learning researchers at the time of this writing47. However, the fact remains that

experiments presented in this chapter largely built on lessons learned and ideas explored

in many earlier experiments we performed

Although the lack of uniformity of experimental setup and evaluation methods among

those past experiments prohibit us from presenting them as our main results, since they

46 If count(p, Relevant) = count(p, Not Relevant) the Relevant class is the class returned
47 There does not seem to be a standard or uniformly agreed way of empirically evaluating the performance
of a classifier, although some methods such as the hold out method used in this thesis seem to have a more
wide spread support than some others.

84

have played an important role in defining the setup for the reported experiments and

results, we believe discussing some of them can serve as a road map to what have

become our Base experiments in section 4.5. Therefore, this section is intended to present

some of more influential past experiments, however the reader can skip this section and

directly go to section 4.5 without any loss in continuity.

4.4.1 Experiments Using C5.0

While perhaps in many machine learning applications the examples of classes of interest

are already labeled or classified, this is not the case in our research. As discussed in

Chapter 3, examples of Relevant and Not Relevant classes are generated by the

Co-update and Not Relevance heuristics respectively. Essentially, the Co-update heuristic

is based on recorded facts about updates applied to the system under study, and the Not

Relevant heuristic is based on the lack of such evidence. Therefore between the two

heuristics, the Not Relevant heuristic is the one that has much higher potential in

introducing example label errors. The complementary nature of these heuristics dictates

that the larger the set of Relevant examples is, the smaller the set of Not Relevant

examples will be.

The updates applied to the software system that is the subject of our research have been

recorded since early 1980’s. Not surprisingly the system has gone through many changes

during its relatively long life. Even though one may think there is an abundance of update

records, their applicability in terms of reflecting the current state of the system is

questionable. Consequently, the very first factor that one needs to consider is the time

period during which the updates were applied to the system. The time period also plays

an essential role if chronological splitting is used to evaluate the learned classifiers. The

evaluation method used in this chapter is based on what is known as the hold out

(splitting) method. In Appendix B we present an alternative chronological splitting

method. Our general goal here is to achieve one or more of the following objectives:

85

• Improve measures such as precision and recall of each class, specially the rare

Relevant class

• Reduce the computational overhead by reducing the number of examples to process

• Reduce the number of mislabeled training examples

Clearly these objectives can not always be achieved together.

The very first experiment we will discuss is the case where we simply learn from skewed

training sets. We generated all the training examples for years 1997-1998, and testing

examples for year 1999. This is an example of chronological splitting. In both cases the

group size of updates used to create the Relevant examples was limited to at most 20

files48. Training Not Relevant file pairs were created by pairing all file names in the

system and then removing all Relevant file pairs for 1995-1998 from this large file pair

set49. As usual the examples were generated for each of these file pairs.

The set of testing Not Relevant pairs was generated by first pairing the first files in the set

of Relevant pairs with other files in the system. The set of Relevant pairs was removed

from this intermediate set to create the final Not Relevant pairs set. This is in essence the

same method discussed in Chapter 3 and used in the rest of Chapter 4. We refer to this

approach of creating Not Relevant pairs as “Relevant Based” method, to acknowledge

the fact that they were created from the Relevant pairs and not from pairing all files in the

system. The number of examples for each class and their ratio in training and testing

repositories are shown in Table 4.2

Table 4.2 Training and Testing Class Ratios for Skewed Experiments

Relevant Not Relevant Relevant/Not Relevant Ratio

Training 2630 6755620 0.0004

Testing 2868 1444813 0.002

To perform the experiment we split the Relevant and Not Relevant examples in training

and testing repositories into 10 parts and created training and testing files that were

48 As discussed in Chapter 3 the group size for an update is the number of files changed by the update.

86

one-tenth the size of training and testing repository. The results for these 10 training and

testing runs were then macro averaged50. These experiments confirmed our suspicion that

in the face of very high skewness such as the one shown in Table 4.2 C5.0 will create a

classifier that always selects the majority class. Obviously such a classifier is of no

practical use.

As we discussed earlier, short of additional sources of information, the Not Relevant

heuristic labels a pair of files as Not Relevant if it is not known that these files are

relevant to each other, or in other words if they are not labeled Relevant. This is a major

source of class noise in our training data sets51.

We applied the single copy noise removal method discussed in section 4.3 to the training

sets in the skewed experiments, and each time tested the learned classifiers on the whole

testing repository and generated the macro averaged results. The results are shown in

Table 4.3

Table 4.3 Result of Removing Class Noise from Skewed Training Sets

Relevant Not Relevant Tree Size

Precision Recall Precision Recall

Noisy 0 0 99.7 100,00 1
Noise Free 9.3 6.1 99.8 99.9 19.2±9.6

Looking back at Table 3.2 we see that there are 11 attributes that take integer values.

Studies by researchers such as [Dougherty et. al. 1995] show that discretizing numeric

attributes before induction sometimes significantly improves accuracy. When discretizing

numeric attributes, a range of values is mapped to a single value. Consequently,

discretization can introduce class noise into a data set, so to avoid this unwanted noise

one should remove the noise conflict after discretization. The discretization method we

use was entropy-based discretization [Fayyad and Irani 1993]. We applied the following

49 Checks were performed to make sure that the files belong to the same release and there is information
about them in the source code information data base.
50 A macro averaged measure is calculated from the cumulative partial results. For instance a macro
averaged precision for n training/testing runs is calculated from a cumulative confusion matrix where each
entry eij in the matrix is the sum of corresponding k_eij (k=1 ,…, n) entries in n partial confusion matrix.

87

sequence of operations to the skewed training sets reported earlier 1) class noise removal,

2) discretization, 3) class noise removal. The testing sets were the one-tenth size test sets

used for the skewed experiments, Results showed that the macro-averaged precision and

recall increased from 0 to 1.9% and 18.9% respectively. Compared to the simple class

noise removal, this method improves the recall of the Relevant class at the expense of

misclassifying many more Not Relevant examples as Relevant, and therefore reducing

the precision of the Relevant class. Thus if recall of the Relevant class is deemed to be

more important then its precision, one could use this combination of discretization and

class noise removal.

To further investigate the effect of skewness in the training sets on the results we decided

to run experiments that learn from less skewed data sets but test on the skewed data sets.

To that end we created 10 training sets that used all the Relevant examples in the skewed

training repository discussed above with 1, 5 and 10 times as many Not Relevant

examples from the same repository. We also split the testing repository into 10 testing

sets and used them to test the classifiers generated from these training sets. The partial

results for these 10 experiments then were macro averaged. These macro averaged results

are shown in Table 4.4. It seems that as the skewness in training data sets increases, the

precision of the Relevant Class, and the recall of the Not Relevant class increases while

the recall of the Relevant class decreases. Unfortunately the averaged size of generated

decision trees also increases with the increase in the skewness of training data sets. Of

course at very high degrees of skewness the generated trees reduce in size as they

eventually become single node majority class classifiers.

51 A class noise or conflict exists between n examples if they have the same attribute pattern values but
different class labels.

88

Table 4.4 Learning from Less Skewed Training Sets

Skew Relevant Not Relevant Tree Size

Precision Recall Precision Recall

1 1.0 68.5 99.9 87.0 147.7±14.0
5 2.8 47.9 99.9 96.8 216.3±23.7
10 4.4 40.2 99.9 98.3 240.8±25.0sy

The interesting question would be what is the effect if we choose other skewness ratios in

the training sets. We have partially addressed this in our more recent experiments as

reported in the rest of Chapter 4, by repeating the experiments for 18 different skewness

values.

We then proceeded to see the effect of class noise removal on the training sets. The new

training sets were tested with the same testing sets as the noisy training sets and the

results of 10 experiments were once again macro averaged. As shown in Table 4.5, these

experiments seem to indicate that one could reduce the average size of decision trees at

the expense of some reduction in the recall of the Relevant class. Training sets with

skewness ratio 1 show an exception where the recall of the Relevant class improves but

other measures, except for the average size of the decision tree, either degrade or stay

unchanged.

Table 4.5 The Effect of Removing Class Noise from Training Sets

Skew Relevant Not Relevant Tree Size

Precision Recall Precision Recall

1 0.8 72.1 99.9 82.1 81.6±12.2
5 3.1 45.5 99.9 97.2 121.1±14.9
10 5.0 37.1 99.9 98.6 126.4±17.0

The other venue that we pursued to improve our results was by further correcting the

labeling errors in the testing set. As discussed before, most of our labeling errors belong

to the Not Relevant class. When using chronological splitting, the Not Relevant examples

in training and testing repositories are generated independently. This means that we may

label an example as Relevant in the training sets, but label it as Not Relevant in the

89

testing set, In other words there is discrepancy between training and testing examples.

One way to correct the Not Relevant labeling noise in the testing repository is to remove

the known Relevant examples in the training set from testing sets. We ran experiments to

verify the effect of this strategy using balanced learning sets (skewness of 1) discussed

above. In other words we removed the Relevant examples in the training sets from the 10

testing sets, and then retested the classifiers on these new 10 test sets and macro averaged

the results. We found that for balanced training sets the effect of removing the training

Relevant examples from the testing Not Relevant examples were very negligible (0.2%

increase in the recall of the Not Relevant class). This idea was more generally tested by

first removing the Relevant examples in the training repository from the Not Relevant

examples in the testing repository and then randomly creating 10 balanced training sets

and 10 one-tenth size testing sets from testing repository and calculating the macro

averaged results. As shown in Table 4.6, when experimenting with noisy training sets,

this correction improves the results, however not necessarily the same measures each

time52. The bold numbers show the difference between the entries in Table 4.6 and the

corresponding entries in Table 4.4.

Table 4.6 Removing Training Relevant Examples from Testing Not Relevant Examples (Noisy Data)

Skew Relevant Not Relevant Tree Size

Precision Recall Precision Recall

1 1.0 68.5 99.9 87.1+0.1 147.7±14.0
5 3.0+0.2 48.8+0.9 99.9 96.8 216.3
10 4.7+0.3 41.0+0.8 99.9 98.4+0.1 240.8

Table 4.7 shows that the improvements are also achieved when using noise free training

sets. Although limited in their nature, these experiments indicated the potential for

correcting testing Not Relevant examples by removing the training Relevant examples.

Minimally this has the effect of reducing the testing set, and it could also result in some

improvement in accuracy, albeit minor.

52 We should remember that due to the larger size of Not Relevant class, a small change may correspond to
a relatively large number of examples In this case 0.1% improvement corresponds to 1321 fewer
misclassifications out of a total of 1550 examples removed

90

Table 4.7 Removing Training Relevant Examples from Testing Not Relevant Examples (Noise Free
Data)

Skew Relevant Not Relevant Tree Size

Precision Recall Precision Recall

1 0.8 72.4+0.3 99.9 82.1 81.6±12.2
5 3.2+0.1 46.2+0.7 99.9 97.2 121.1±14.9
10 5.3+0.3 37.3+0.2 99.9 98.7+0.1 126.4±17.0

We also tried an alternative method where instead of removing the examples

corresponding to training Relevant file pairs from testing Not Relevant examples, we

removed all testing Not Relevant examples where their attribute value pattern matched

the attribute value of a Training Relevant example. Once again we calculated the macro

averaged result for 10 runs. Interestingly while there were fewer misclassifications of Not

Relevant examples as Relevant, since after removing the Relevant example patterns there

were overall many fewer Not Relevant examples in the testing set, the end result was a

mere 0.4% improvement in the precision of the Relevant class, at the expense of a 11.9%

loss in the recall of Not Relevant class.

To further reduce the size of training and testing repositories we opted for a method

referred to as single combination where for each two permutations of files f1 and f2 only

one example will be generated. Table 4.8 shows the result of using this strategy on

training and testing repositories. The numbers in the parentheses show the percentage of

reduction in the number of examples compared to the original skewed repositories.

Table 4.8 Training and Testing Class Ratios for Single Combination Experiments

Relevant Not Relevant Relevant/Not Relevant Ratio

Training 1814 (-31.0%) 5711680 (-15.5%) 0.0003

Testing 1991 (-31.0%) 1398409 (-3.2%) 0.0014

We experimented with training sets created from this smaller training repository by

creating 10 non skewed training sets (the same number of Relevant and Not Relevant

examples). We tested the generated classifiers using the larger testing repository shown

in Table 4.2 and the new smaller testing repository shown in Table 4.8. For each

91

repository, 10 random samples of 1/10th size was drawn to perform the testing. The

results are presented in Table 4.9 where the Combination row corresponds to the smaller

testing repository. The numbers in parentheses show the difference between the entry in

the table and the corresponding entry in Table 4.4 for ratio 1 of skewness. The results

show that for this ratio of skewness, the recall of the Not Relevant class and the precision

of the Relevant class decreases, while the recall of the Relevant class increases. But

perhaps the most important difference is the average size of the decision tree that has

been reduced from 147.7 to 69.3. This is a 53% reduction in size.

Table 4.9 Single Combination Versus All Permutation

Testing Relevant Not Relevant Tree Size

Precision Recall Precision Recall

Combination 0.6(-0.4) 71.7(+3.2) 99.9 84.1(-2.9) 69.3±7.8
Permutation5 0.8(-0.2) 73.3(+4.8) 99.9 83.0(-4.0)

To further reduce the size of training repository we applied the Relevant Based approach

to create the Not Relevant training examples. Once again the training Relevant pairs were

created from updates limited to a group size of 20 for years 1997-1998 and all the

Relevant examples for years 1995-1998 were removed from the Not Relevant examples

created. Table 4.10 shows the effect of this method on the number of examples, where the

first two rows show the training repository when all valid file pairings are used to create

the Not Relevant examples and when the Relevant Based method is used. The third row

shows the testing repository that was already created using the Relevant Based method

Table 4.10 Using Relevant Based Approach to Create the Training Not Relevant Examples

Relevant Not Relevant Relevant/Not Relevant Ratio

Al Pairsl 2630 6755620 0.0004

Relevant Based 2630 1042524 0.0025

Testing 2868 1444813 0.0020

In Table 4.11, results of using Relevant Based training sets for skewness ratios of 1, 5

and 10 are shown. For each ratio we generated 10 less skewed training sets that included

all the training Relevant pairs We macro averaged the results for the same 10 testing sets

92

used in experiments shown in Table 4.4. For each level of skewness the first line shows

the result for the noisy training sets, and the second line shows the results for noise free

training sets. The better entry between the two pairs is shown in bold. Comparing the

entries in this table with corresponding entries in Tables 4.4 and 4.5 shows that while

applying the Relevant Based method to create training repository decreases the size of the

training repository considerably, it does not degrade other measures dramatically, at least

for the ratios shown here.

Table 4.11 The Effect of Using Relevant Based Training Files

Skew Relevant Not Relevant Tree Size

Precision Recall Precision Recall

1 1.0 67.3 99.9 87.4 154.8±14.0
0.7 72.3 99.9 80.7 92.1±18.3

5 3.0 47.5 99.9 96.9 198.0±19.3
3.1 45.7 99.9 97.2 113.9±11.9

10 4.4 40.0 99.9 98.3 245.3±13.5
5.1 36.1 99.9 98.7 129.6±9.7

The next step towards reducing the size of training and testing sets was removing

Assembly language files from the examples. Due to its unstructured format, the

Assembly source codes imposed certain difficulties in extracting information such as

routine definitions and calls. Our Assembler parsers were never as accurate as the Pascal

parser and consequently prone to introduce noise in the data sets. Therefore we decided

to remove examples that were based on Assembly language files from our training and

testing repositories. Distribution of examples in the new non-assembly repositories is

shown in Table 4.12. The result of learning from non skewed training sets (skewness

ratio 1) based on the new training repository compared to the corresponding entry from

Table 4.4 is shown in Table 4.13.

93

Table 4.12 Pascal Only Repositories

Relevant Not Relevant Relevant/Not Relevant Ratio

Training 1642 (-37.6%) 752915 (-88.9%) 0.0022

Testing 1861 (-35.1%) 1036692 (-28.2%) 0.0018

As can be seen here while for non skewed data sets precision and recall values were

worsened, the average size of decision trees generated was reduced by 42%.

Table 4.13 Results of Experimenting With Pascal Only File Pairs

File Types Relevant Not Relevant Tree Size

Precision Recall Precision Recall

With Assembler 1.0 68.5 99.9 87.0 147.7±14.0
No Assembler 0.8 65.7 99.9 84.9 85.9±13.2

In all the experiments presented here, the training Not Relevant examples were randomly

selected from the training repository. By doing so we would theoretically preserve the

proportion of attribute values patterns among training Not Relevant examples. However

in practice this is not guaranteed, most notably when the random numbers generated are

not uniformly distributed. To avoid such potential problems we implemented a stratified

sampling procedure where each Not Relevant example attribute value pattern p that

appears in the training repository with a proportion of P, will appear with a similar

proportion in the training sets. We then proceeded with three sets of experiments each

with the following 18 different skewness ratios:

1, 2,…,10, 15, 20, 25, 30, 35, 40, 45 , 50

In experiment set 1 we used a training and testing repository very similar to the one

described in Table 4.12, and we made sure all file pairs used to generate the repository

appeared in the same release of the software.

In experiment 2 we removed all the known Relevant pairs for the 1995-1998 time period

from testing Not Relevants that were generate from 1999 updates. We remind the reader

that this Relevant file pairs set was already removed from the training Not Relevant sets.

94

The motivation behind doing so is to reduce Not Relevant labeling heuristic error, by not

labeling known Relevant file pairs as Not Relevant.

Finally, we repeated the same procedure for a testing repository generated from 1999

updates with no group size limit. The size of the three training and testing repositories

used is shown in Table 4.14, while Figure 4.1 shows the ROC plots for the three sets of

experiments, a total of 54 training/testing tasks. The results are based on testing the

generated classifiers on the whole testing repository as a single test set.

Table 4.14 Training and Testing Repositories Used for Stratified Training Experiments

Exp. # Training/Testing Relevant Not Relevant Relevant/Not Relevant
Ratio

1 Training 1642 752915 0.0022
Testing 1853 1036692 0.0018

2 Testing 1853 992716 0.0019

3 Testing 14819 1007535 0.015

Figure 4.1 ROC Comparison of Stratified Training Experiments

As it can be seen, removing all the known Relevant examples in 1995-1998 from testing

repository Not Relevant examples improves the result. However using all the Relevant

file pairs in 1999 without imposing a group size degrades the results.

95

Lessons learned from experiments discussed above suggests to us the following:

1. Train with less skewed data sets

2. Focus on the Pascal (non assembler) file pairs only

3. Remove the known Relevant examples from the testing Not Relevant examples

4. Use only one combination of file pairs instead of their permutation

5. Use the Relevant Based approach to create training Not Relevant examples

6. Use stratified samples from the training Not Relevant repository to generate less

skewed training sets

4.4.2 Experiments With Set Covering Machines

Set covering machine (SCM) [Marchand and Shawe-Taylor 2001][Marchand and Shawe-

Taylor2002] is a new learning method that generalizes classical ([Valiant 1984] and

[Haussler 1988]) algorithms to learn from Boolean attributes. Results reported in

[Marchand and Shawe-Taylor 2001][Marchand and Shawe-Taylor 2002] show SCM as

being a competitive induction algorithm compared to other classifier inducers such as

SVMs that also produce non-explainable models. We also had the benefit of local access

to Dr. Mario Marchand who was the designer and the developer of the first SCM learning

software. He provided the software and further invaluable insight to inner workings of the

algorithm and its implementation. Thus we decided to perform some experiments using

this algorithm and compare the results to C5.0 results.

The SCM induction algorithm can generate classifiers which are conjunctions or

disjunctions of Boolean attributes, however the attributes describing an example do not

have to be Boolean themselves. Similar to Support Vector Machines, SCMs can map the

original input space into a new high-dimensional feature space. In the case of SCM these

new features are Boolean. The induced classifiers are either conjunctions or disjunctions

of these features.

While the original Valiant algorithm only selects features that are consistent with all the

positive training examples i.e.; correctly classify the example, the SCM algorithm allows

a feature to make some mistakes on classifying positive training examples to obtain better

generalization, and consequently better results on the unseen examples. The SCM

96

algorithm employs a greedy method to choose the best feature at each stage until the

termination criteria is met. This ranking function provides what is known as the

Usefulness of a feature h and is defined as [Marchand and Shawe-Taylor JOURNAL],

Uh = |Qh| - p,|Rh|

where |Qh| is the number of negative examples covered by feature h, and |Rh| is the

number of positive examples misclassified by feature h. The goal here is to select a

feature that is consistent with as many negative examples as possible while making as

small a number of misclassifications as possible when it comes to positive examples. The

p parameter here is known as the penalty value and indicates the factor by which we

penalize misclassification of positive examples by a feature. The SCM implementation

that we experimented with introduces two other variants of this function that are

controlled by a parameter named Feature Score Function.(FSF). The above definition

corresponds to an FSF value of 0, while the two other alternatives are selected by FSF

values of 1 and 2.

As is shown in Table 3.2 most of our attributes are non Boolean. Therefore to be able use

the SCM algorithm, this input space must be transformed to a Boolean feature space. One

such transformation is achieved by creating feature hi,r as a data-dependent ball centered

on each training example. xi. as defined below:

hi,r = hr(x, xi) =
Á
Á
Á

Ë

Ê £

otherwisey

dify

i

i
r),(ixx

yi Œ{0,1} is the class of example xi,
i
y is the Boolean complement of yi and d(x, xi) is the

distance between x, and xi. The real valued r is the radius of the ball. While this value

can theoretically approach infinity, in practice the largest useful r value is the distance

between two extreme examples in the training set. Thus for m training examples, this

approach will generate at most an O(m2) Boolean features that the SCM induction

algorithm has to consider. The above discussion is valid for a disjunctive SCM with

minor adjustments as discussed in [Marchand and Shawe-Taylor JOURNAL].

97

In our experiments we have used two distance functions or metrics. The L1 metric or

norm is the Manhattan or city block distance. for two vectors x1 and x2 with cardinality n

is calculated as:

Â =
-

n

i ii
xx

1
21

The L2 metric is the well known Euclidean distance calculated as:

()Â =
-

n

i ii
xx

1

221

The SCM induction algorithm also accepts two parameters for positive and negative loss

ratios. In essence these parameter are used to internally weigh the importance of a

misclassification of a positive example versus the misclassification of a negative

example. For instance, if the positive to negative loss ratio is set to 10 then a mistake on

classifying a positive example is 10 times more costly than misclassifying a negative

example.

In the experiments reported in this section we have created conjunctive and disjunctive

classifiers using L1 and L2 distance metrics, for positive to negative loss ratios 1 and 10.

We have also experimented with following 16 penalty values:

0.1,0.2,0.3,0.4,0.5,1.0,1.5,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0

In Table 4.15 we show results obtained for a conjunctive SCM with positive to negative

loss ratio53 of 1, and for L1 and L2 distance metrics. The second row for the L1 metric,

shown in bold font, shows the results obtained using C5.0 for the same data set. This

latter result is our reference for comparison. The training set used for all the experiments

reported in this section was based on 1997-1998 updates, while the testing set was based

on 1999 updates. The group size was limited to 20, and in the case of training set all the

Relevant pairs for 1995-1998 time period were removed from the Not Relevant

examples. The skewness ratio was set to 1, meaning the training set was balanced.

53 We assumed the Relevant class to be positive and the Not Relevant class negative.

98

Table 4.15 Conjunction of Balls for Loss Ratio 1 and Distance Metrics L1 and L2

Type Conjunction
Metric L1
FSF 1
Pos/Neg Loss 1
PenaltyValues 0.1,0.2,0.3,0.4,0.5,1.0,1.5,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0

Skew

Relevant Not Relevant

Precision Recall Precision Recall

Number of Nodes Best Penalty Value

1 4.0 11.3 99.8 99.5 5 0.1
0.8 67.9 99.9 85.5 63

Metric L2

3.5 7.1 99.8 99.6 5 0.1

This setup was used with the above mentioned 16 penalty values foe each metric, thus

Table 4.15 provides the best result obtained on the testing set i.e.; minimum classification

error, among 16 different experiments. The tables report the size of SCM created along

with the penalty value that gives the best result. As can be seen in this table, the L1

metric generated better results than L2 metric, however comparing these results with the

corresponding C5.0 result shows that the improvement in the precision of the Relevant

class, which is the class of interest for us, has come at the expense of a major degradation

of the recall of this class. Table 4.16 shows the same setup for a disjunctive SCM, with

very similar observations. The clear difference here shows up in the size of SCM and the

penalty value that provides the machine with the least classification error. The disjunctive

SCM generated has a smaller size and the best result is obtained for the largest penalty

value experimented as oppose to the smallest.

99

Table 4.16 Disjunction of Balls for Loss Ratio 1 and Distance Metrics L1 and L2

Type Disjunction
Metric L1
FSF 1
Pos/Neg Loss 1
PenaltyValues 0.1,0.2,0.3,0.4,0.5,1.0,1.5,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0

Skew

Relevant Not Relevant

Precision Recall Precision Recall

Number of Nodes Best Penalty Value

1 3.3 11.9 99.8 99.4 1 10.0

Metric L2

3.2 7.9 99.8 99.6 1 10.0

Tables 4.17 and 4.18 each show the best results obtained from 32 experiments, by

creating conjunctive SCMs for a positive to negative loss ratio of 10, and FSF values of 1

and 2. Experiments in Table 4.17 use the L1 distance metric while the experiments in

Figure 4.18 use the L2 metric. The corresponding results shown in these two tables are

very close, with the L1 metric showing slight advantage by creating smaller SCMs and

slightly higher recall for the Relevant class.

Table 4.17 Conjunction of Balls for Loss Ratio 10, Distance Metrics L1, and FSF 1 and 2

Type Conjunction
Metric L1
FSF 1
Pos/Neg Loss 10
PenaltyValues 0.1,0.2,0.3,0.4,0.5,1.0,1.5,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0

Skew

Relevant Not Relevant

Precision Recall Precision Recall

Number of Nodes Best Penalty Value

1 1.3 54.6 99.9 92.8 217 0.1

FSF 2

1 3.0 22.3 99.9 98.7 17 0.1

100

Table 4.18 Conjunction of Balls for Loss Ratio 10, Distance Metrics L2, and FSF 1 and 2

Type Conjunction
Metric L2
FSF 1
Pos/Neg Loss 10
PenaltyValues 0.1,0.2,0.3,0.4,0.5,1.0,1.5,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0

Skew

Relevant Not Relevant

Precision Recall Precision Recall

Number of Nodes Best Penalty Value

1 1.3 54.7 99.9 92.3 228 0.1

FSF 2

1 3.0 20.2 99.9 98.8 24 0.1

Finally, Tables 4.19 and 4.20 repeat experiments reported in Tables 4.17 and 4.18,

however this time we create disjunctive SCMs. As was the case for Table 4.16

disjunctive SCMs are much smaller than their corresponding conjunctive versions. Also

while the results in two tables are virtually identical, the L1 metric once again produce

slightly better results, in this case the recall of Not Relevant class.

Table 4.19 Disjunction of Balls for Loss ratio 10, Distance Metrics L2, and FSF 1 and 2

Type Disjunction
Metric L1
FSF 1
Pos/Neg Loss 10
PenaltyValues 0.1,0.2,0.3,0.4, 0.5, 1.0,1.5,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0

Skew

Relevant Not Relevant

Precision Recall Precision Recall

Number of Nodes Best Penalty Value

1 0.3 80.4 99.9 54.6 1 10

FSF 2

1 0.3 80.4 99.9 54.6 1 10

101

Table 4.20 Disjunction of Balls for Loss Ratio 10, Distance Metrics L2, and FSF 1 and 2

Type Disjunction
Metric L2
FSF 1
Pos/Neg Loss 10
PenaltyValues 0.1,0.2,0.3,0.4, 0.5, 1.0,1.5,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0

Skew

Relevant Not Relevant

Precision Recall Precision Recall

Number of Nodes Best Penalty Value

1 0.3 80.0 99.9 54.4 1 10

FSF 2

1 0.3 80.0 99.9 54.4 1 10

Although limited to skewness ratio 1, the above best results out of 192 experiments

performed show that compared to the decision tree results, each time an improvement in

the precision of the Relevant class is achieved, it has been accompanied by a reduction of

recall of this class. In other words, we were not able to observe an improvement in all

measures by using the SCM induction algorithm. We consider these results as another

indication of the appropriateness of the C5.0 decision tree inducer as the induction

algorithm choice for our research.

 Section 4.5 provides more details regarding the creation of file pair tuples, and training

and testing datasets used in our Base Experiments. The rest of this chapter will be

dedicated to a more comprehensive implementation and analysis of the ideas, including

the ones discussed in section 4.4, that aim to learn a useful instance of the Co-update

relation.

4.5 The Base Experiments54

In this section we will describe experiments that form a basis for comparison for the rest

of this chapter. Examples in these datasets are described in terms of features presented in

Chapter 3. The experiments in the rest of this chapter will discuss variations to these

datasets or transformations applied to them. This section will also explain the format of

tables and plots used throughout the chapter to present an experiment’s setup and results.

54 These are actually groups of experiments. To generate an ROC plot we perform 18 individual training
and testing experiments. However since all of the experiments in the same group are done to investigate the
same idea, we refer to the whole group of experiments as an experiment.

102

This uniform method of presenting results will make it easier to compare and evaluate the

effects of these variations or transformations. A summary of the experiments reported

through sections 4.5 to 4.11 is provided at the end of this chapter.

4.5.1 Creating File Pair Data Sets for the Base Experiments

 The file pair labeling heuristics discussed in Chapter 3 are applied to SMS records over

predetermined time periods. Table 4.21 provides the information about the subsets of

problem reports and updates in SMS that are used in conducting our research. In the Total

column, a file is counted multiple times if it has been changed by more than one update.

In the Unique column each file was counted only once regardless of the number of times

it was updated. Please note that as discussed in Chapter 3, the time period used for the

two heuristics is not necessarily always the same.

Table 4.21 Data to which File Pair Labeling Heuristics were Applied

Co-Update and Not-Relevant Heuristics

Time Period 1995/01/01-1999/12/16
Number of updates55 1401
Number of problem reports addressed by the updates 1213

Files Changed56 Total Unique
Asm 839 399
If 528 302
Inc 164 97
Pas 2725 713
Typ 1000 337

Total 5256 1848

 The Relevant file pair tuples are created by applying the Co-update heuristic to the update

records in SMS. According to this heuristic files that are changed in the same update are

relevant to each other. The files changed by an update form a group. As discussed in

Chapter 3, we refer to the number of files in each group as the group size. Table 4.22

shows the distribution of groups of relevant files based on their size, after applying the

Co-update heuristic to the data described in Table 4.21.

55 These are updates that have been tested and assigned a closed status.
 56 These are counts for sections changed. A file is known as a section in SMS terminology. It may have
different versions, and each version may have multiple issues as it is changed over time. For example, a
Pascal file called PROG.PAS may have multiple versions such as A, B, C, while in version B it may have
multiple section issues such as PROG.PAS.B01 and PROG.PAS.B02.

103

 Each group of size N generates ˜̃
¯

ˆ
ÁÁ
Ë

Ê

2

N
 =N(N-1)/2 pairs of files. As can be seen in Table

4.22, the majority of updates in the selected time period changed only one file. The

remaining groups, which amount to 42.68% of the groups, range from groups of size 2,

meaning two files were changed in the same update, up to a group of size 284. This is the

subset of groups that interests us. It seems reasonable to assume that the larger the

number of files changed by one single update is, the lower the degree of relevance among

the files in the group is. In our experiments, we have limited the size of a group of related

files to a maximum of 20 files. This covers 39.54% of groups or 92.64% of groups with

size larger than 1. Furthermore we have limited the type of the first file in the pair to be

pas, in effect trying to learn the concept of relevance to Pascal files.

 In Chapter 3 we defined the relation that generates the default Not Relevant file pair

tuples for an experiment as:

 dnrp57(SR, F2, FRem) = {(x, y)| (x, y) Œ first_of_pairs(SR)ƒF2 - SR - FRem }

 where SR
58 is a set of Relevant file pairs, F 2 is a set of files 59 which can be the second

element of a file pair tuple, and FRem is a set of file pair tuples that should not be included

in the resulting set.

 Table 4.23 describes the way Relevant and Not Relevant pairs for the base experiments

were created. Each pair corresponds to either a training or a testing example.

57 Default Not Relevant Pairs
58 Based on our experiments with Assembly language files (. asm and .inc files) we reached the conclusion
that extending the learning task to include these files introduces undesirable effects. The assembly language
source files do not include structured programming constructs that a language such as Pascal offers.
Therefore parsers that were used to analyze these programs had to incorporate heuristics to identify some of
the higher level constructs such as a subroutine call. We speculate the noise introduced by the parser is a
major source in making the Assembly programs not a good candidate in learning the Co-update relation.
Therefore all file pairs used in our study are Pascal files (.pas, .if, and .typ).
59 A set of file names, to be precise.

104

Table 4.22 Distribution of Group Sizes Created by Co-Update Heuristic

Size Count % Among
Groups

% Among Groups
up to Size

Size Count % Among
Groups

% Among Groups
up to Size

1 803 57.32 57.32 29 1 0.07 97.72
2 196 13.99 71.31 30 3 0.21 97.93
3 108 7.71 79.01 33 1 0.07 98.00
4 65 4.64 83.65 34 3 0.21 98.22
5 38 2.71 86.37 36 1 0.07 98.29
6 31 2.21 88.58 37 1 0.07 98.36
7 21 1.50 90.08 39 2 0.14 98.50
8 18 1.28 91.36 40 1 0.07 98.57
9 18 1.28 92.65 48 1 0.07 98.64
10 8 0.57 93.22 52 1 0.07 98.72
11 12 0.86 94.08 60 1 0.07 98.79
12 9 0.64 94.72 61 2 0.14 98.93
13 6 0.43 95.15 63 1 0.07 99.00
14 3 0.21 95.36 65 1 0.07 99.07
15 3 0.21 95.57 66 1 0.07 99.14
16 8 0.57 96.15 68 2 0.14 99.29
17 5 0.36 96.50 72 1 0.07 99.36
18 2 0.14 96.65 73 1 0.07 99.43
19 2 0.14 96.79 74 1 0.07 99.50
20 1 0.07 96.86 97 1 0.07 99.57
21 2 0.14 97.00 99 1 0.07 99.64
23 1 0.07 97.07 133 1 0.07 99.71
24 2 0.14 97.22 157 1 0.07 99.79
25 3 0.21 97.43 175 1 0.07 99.86
26 1 0.07 97.50 273 1 0.07 99.93
28 2 0.14 97.64 284 1 0.07 100.00

Total 1401

 The first half of Table 4.23 describes the case where the group size of updates was

limited to at most 20 files. The second half shows the case where there was no restriction

on the group size. The last argument of dnrp in this case is the empty set, because

SR,NGSL,1995-1999 has already been removed from the set of Not Relevant pairs, due to the

way dnrp is defined. As discussed earlier the time period chosen was 1995-1999, and

PAS is a set that contains the names of all Pascal files (.pas, .if, .typ).Each of these cases

is further described in three rows. The first row shows how the Relevant and Not

Relevant pairs were created. The second and the third rows explain how the pairs in the

first row were divided for the purpose of training and a testing. The last column shows

the ratio of Relevant to Not Relevant pairs among file pair tuples (or the corresponding

examples).

105

Table 4.23 Training and Testing Repositories Used in Base Experiments 1 and 2

Relevant Not Relevant #Relevant/#Not Relevant

All SR,20,1995-1999 dnrp(SR,20,1995-1999, PAS, SR,NGSL,1995-1999) 3377/1226827 (0.00275)
Training 2/3 split 2251/817884 (0.00275)
Testing 1/3 split 1126/408943 (0.00275)

Description Base Experiment 1 using 17 syntactic attributes in Table 4.24 for a group size of 20

All SR,NGSL,1995-1999 dnrp(SR,NGSL,1995-1999, PAS, Ø) 76255/2059697 (0.03702)
Training 2/3 split 50836/1373131 (0.03702)
Testing 1/3 split 25419/686566 (0.03702)

Description Base Experiment 2 using 17 syntactic attributes in Table 4.24 and no group size limit

We have chosen a training and testing split method that is commonly known in machine

learning research as the hold out approach. In this method we randomly split the set of all

Relevant and Not Relevant examples into three equal parts60. Two parts form a Training

Repository, and one part forms the Testing Set. The ratio of Relevant pairs to Not

Relevant pairs is the same in the original dataset, the training repository, and the testing

set.

 In the classic hold out method, the training repository is typically referred to as the

Training Set. The reason for this is that all the examples in the training repository are

used for the purpose of training. However, as can be seen in Table 4.23 and other

experiments that will follow, there is a large imbalance between the number of Relevant

examples versus Not Relevant examples. Such skewed data sets create difficulties for

most learning algorithms, as they typically tend to create models which are biased

towards selecting the majority class as the outcome of the classification. While such a

model will have high accuracy e.g; 99.725% accuracy for a majority classifier in the first

setup in Table 4.23, it will misclassify most if not all examples of the rare class, which is

typically the interesting class. This is clearly the case for us, as we are interested in

knowing what makes two files be relevant to each other. Unbalanced data sets appear

frequently in real world machine learning problems, and impose difficulties that are

documented by other researchers [Ezawa et. al. 1996][Fawcett and F. Provost

1996][Kubat et. al. 1997][Japkowicz.2002].

60 Since each example tuple is associated with a file pair tuple, we can see this as a three way split among
file pair tuples.

106

 Therefore to partly address the issue of imbalance, and also to study its effect we learn

from datasets that are subsets of the training repository and in most cases are less skewed.

4.5.2 Creating Training and Testing Data Sets for the Base Experiments

The 17 attributes used in the base experiments are shown in Table 4.24. For a detailed

description of these attributes please refer to Chapter 3.

For each file pair tuple (ISU, OSU, class) an example tuple (a1, a2, …, a17, class) is

created by computing the value of these 17 attributes. The values of some of these

attributes are generated from the information stored in a database that contains the result

of parsing the source code of the system under study. A database reflects the static state

of the relations among source units in the system at the time of its creation61. The

heuristics used to label examples are applied to the information reflecting the status of the

system over long periods of time. Therefore it is possible that some of the files in pairs

suggested by these heuristics did not exist at the time of creation of the database. i.e. files

are renamed, or deleted, or created after creation of the database. To make sure that the

database contains the information regarding all the files in the learning pairs, the sets of

file pair tuples generated by the labeling heuristics are compared to the set of files in the

database used, and the pairs that refer to files that do not exist in the database are

discarded.

61 This is of course limited to the kind of information stored in the database.

107

Table 4.24 Attributes Used in the Base Experiments

Attribute Name Attribute Type

Same File Name Boolean
ISU File Extension Text
OSU File Extension Text
Same Extension Boolean
Common Prefix Length Integer
Number of Shared Directly Referred Types Integer
Number of Shared Directly Referred non Type Data Items Integer
Number of Directly Referred/Defined Routines Integer
Number of FSRRG Referred/Defined Routines Integer
Number of Defined/Directly Referred Routines Integer
Number of Defined/FSRRG Referred Routines Integer
Number of Shared Routines Directly Referred Integer
Number of Shared Routines Among All Routines Referred Integer
Number of Nodes Shared by FSRRGs Integer
Number of Shared Files Included Integer
Directly Include You Boolean
Directly Include Me Boolean

 After creating the example tuples corresponding to the file pair tuples, training sets with

different Relevant to Not Relevant ratios are created. The following 18 ratios are chosen:

 1 to 10 and then 15 to 50 at increments of 5 i.e.; 15, 20 , …, 50

 These ratios provide a range of skewness from none to moderately high. However due to

time and hardware limitations we could only provide fine grained increase in skewnewss

in the 1 to 10 range.

 To create the desired class ratios in each training set, all the Relevant examples in the

training repository, along with an appropriately sized stratified sample of Not Relevant

examples in the training repository, is used.

 As shown in Figure 4.2 by using stratified sampling to create the Not Relevant examples

in each training set, we try to duplicate attribute value pattern proportions that appear

among Not Relevant examples in the training repository.

However to maintain the accuracy of our evaluation, we will not alter the skewness in the

independent test set. To this end we use the complete testing repository to evaluate

models generated from different training sets.

108

Training Repository

Example 1
Example 2

…
Example K

Attribute Pattern 1 2%
Attribute Pattern 2 5%

…
…
…
…
…
…
…

Attribute Pattern N 3%

103 Relevant
Examples

106
Not Relevant

Examples

Attribute Pattern 1 2%
Attribute Pattern 2 5%

…
Attribute Pattern N 3%

103 Relevant
Examples

103 Not Relevant
Examples

Example 1
Example 2

…
Example K

Attribute Pattern 1 2%
Attribute Pattern 2 5%

…
…

Attribute Pattern N 3%

Example 1
Example 2

…
Example K

Ratio 1 Training Set

Ratio 2 Training Set

103 Relevant
Examples

2*103 Not Relevant
Examples

Figure 4.2 Creating Training Sets with Different Class Ratios

Experiment Base 1 and 2

Idea Experiments corresponding the training and testing repositories in Table

4.23

Experiment 1) Limit the group size to 20

Experiment 2) No group size limit.

 Figure 4.3 shows an ROC plot of base experiments 1 and 2. As we discussed in Chapter 3

in an ROC plot, x and y coordinates are the False Positive and True Positive ratios of

classifiers represent as points on the plot respectively. In general we want the points on

the plot to be as close as possible to the (0,100) point. In our domain this means that the

classifier never classifies two files as relevant when they are not relevant to each other.

Also every time the classifier classifies two files as relevant to each other this is actually

the case. In the case of a deployed classifier, the further away a classifier is from this

point, the less a user can rely on the classification result.

109

 In Figure 4.3 False Positive Ratio (FP) of 18 classifiers are plotted against their True

Positive ratios (TP). These numbers are based on independent test datasets described in

Table 4.23. The 18 classifiers are generated from 18 training datasets that were created

for different Not Relevant/Relevant (NR/R) ratios. Hidden in each plot are the ratios

corresponding to each plot point. To avoid overcrowding the plots, we will not show

these ratios on the plot unless there is a need to do so. However we provide more detailed

data for each plot in the form of tables in Appendix C. The straight line at the lower part

of Figure 4.3 corresponds to y=x line, which represents random classification. We would

like our plots to be above this line and towards North-West corner.

 A closer look at the data corresponding to the plots in Figure 4.3 (Tables C.1 and C.2),

shows that increasing the NR/R ratio moves the corresponding plot points towards South

West i.e.; a decrease in FP is accompanied by a decrease in TP. In particular the point at

the lower left corner of both plots corresponds to a NR/R ratio of 50, and the point at the

far right hand end of the plots correspond to ratio 1. These two ratios are shown on group

size 20 plot.

Figure 4.3 ROC Plots of Base Experiments 1 and 2

110

Figure 4.3 shows that limiting the group size to 20 generate classifiers that dominate

classifiers with no group size restriction.

Experiment Base 1 and 2

Summary Limiting the group size to 20 files generates the more dominant classifiers.

These are classifiers corresponding to the Base Experiment 1.

4.5.3 Repeating Relevant Examples

Experiment Base 3 and 4

Idea Repeat Relevant pairs/examples if they are changed in more than one

update. (Training and Testing repositories in Table 4.25)

Experiment 3) Limit the group size to 20

Experiment 4) No group size limit.

In all the above experiments, if two files were changed together in N updates, only one

example with class Relevant is generated. This method gives the Relevant and Not

Relevant labeling the same weight. Conceptually, for each file pair (f1, f2), we generate

one example of the Relevant class if there is an evidence that these files were changed

together. We generate one example of the Not Relevant class, if there is no such

evidence.

However, as we discussed in Chapter 3, the Not Relevant heuristic is much weaker than

the Relevant (Co-update) heuristic. But due to the small size of SR (the set of Relevant

file pair tuples, or corresponding Relevant examples), the complement set SNR becomes

very large. In effect, this creates a disadvantage for Relevant examples, because due to

the overwhelming number of Not Relevant examples, they influence the classifier

generation algorithm. One way to address this issue is by giving higher weights to the

Relevant examples. While proper weight assignment can be a research topic on its own,

one straightforward remedy is to generate as many copies of a Relevant example for a file

pair (f1, f2) as there are updates that change f1 and f2 together. In effect the more two files

change together, the stronger is the evidence of them being Relevant to each other.

111

Note that, the number of Not Relevant examples is not influenced by the repetition of

Relevant examples. We still generate one example of the Not Relevant class for a file pair

(f1, f2), when within the time period that the data covers there is no evidence of them

being relevant to each other62.

Table 4.25 describes the experiment setup with repeated Relevant examples. A bag of

Relevant pairs which allows repetition of its members is shown as SR*.

Table 4.25 Training and Testing Repositories Used in Base Experiments 3 and 4

Relevant Not Relevant #Relevant/#Not Relevant

All SR*,20,1995-1999 dnrp(SR*,20,1995-1999, PAS, SR,NGSL,1995-1998) 4547/1226827 (0.00371)

Training 2/3 split 3031/817884 (0.00371)
Testing 1/3 split 1516/408943 (0.00371)

Description Base Experiment 3 using 17 syntactic attributes in Table 4.24 with repeated Relevant
examples and a group size of 20

All SR*,NGSL,1995-1999 dnrp(SR*,NGSL,1995-1999, PAS, Ø) 96673/2059697 (0.04694)
Training 2/3 split 64448/1373131 (0.04694)
Testing 1/3 split 32225/686566 (0.04694)

Description Base Experiment 4 using 17 syntactic attributes in Table 4.24 with repeated Relevant
examples and no group size limit

Figure 4.4 shows an ROC plot of base experiments 3 and 4.

Once again this figure shows that limiting the group size to 20 will generate classifiers

that dominate the classifiers generated with no group size limit. Also, as NR/R ratio

increases FP and TP both decrease. Comparing the best plots in Figure 4.3 and 4.4 shows

that repeating Relevant examples for those file pairs that are changed together more than

once generates more dominating classifiers. This is shown in Figure 4.5.

62 In the case of Co-update relation no evidence of being changed together.

112

Figure 4.4 ROC Plots of Base Experiments 3 and 4

Figure 4.5 Comparing the Best ROC Plots when Relevant Pairs are and are not Repeated

113

Experiment Base 3 and 4

Summary Limiting the group size to 20 files and creating a separate Relevant file

pair/example each time two files are updated together generates the more

dominant classifiers. These are classifiers corresponding to the Base

Experiment 3.

4.6 Analysis of the Decision Trees

We have studied the decision trees that are generated by Base Experiment 3 to find out

which attributes used in describing an example are deemed more important or influential

by the induction algorithm in the classification task. The closer an attribute is to the root

node i.e.; a node at level 0, the more important that attribute is deemed by the learning

algorithm. Table 4.26 summarizes the result of this analysis applied to the nodes at the

top 9 levels of all the trees generated in Base Experiment 3.

Table 4.26 presents the number of times an attribute appears at a particular node level.

However, for each attribute among all the generated decision trees and among all the

different levels that an attribute has appeared in, we only show the highest level. In effect

for each attribute we have shown its most important contribution in the classification

process. For instance, in this particular set of experiments all the attributes that appear at

levels 5 and 6 of the decision trees appeared in a higher level in the same or some other

decision tree, therefore they were not shown in the table. Similarly, all the attributes

appearing below level 7 have already appeared in levels 0 to 4 or 7 of some decision tree.

As can be seen, the highest level (level 0 or the root level) is shared only by two

attributes,

• Number of Shared Files Included

• Same File Name

where file inclusion stands slightly higher than file name conventions, and in the next

highest level, file inclusion is one of the more important features used in the classification

114

process, and once again Common Prefix Length, which is a naming convention based

attribute, appears high in the list of important attributes.

Table 4.26 Top Nodes in the Decision Trees of Base Experiment 3

Level Frequency Attribute

0 10
8

Number of Shared Files Included
Same File Name

1 6
5
1
1
1

Directly Include You
Number of Shared Routines Among All Routines Referred
Number of Nodes Shared by FSRRGs
Number of Shared Directly Referred Types
Common Prefix Length

2 2
1

OSU File Extension
Number of Shared Routines Directly Referred

3 14
5

Number of Shared Directly Referred non Type Data Items
Number of FSRRG Referred/Defined Routines

4 1
1

Number of Directly Referred/Defined Routines
Same Extension

7 1 Number of Defined/Directly Referred Routines

 The routine call (or control flow) and data flow based attributes are among the next group

of influential attributes. Therefore this table alerts us to the importance of naming

convention and file inclusion, which is a mechanism for sharing common functionality in

the system we have studied. They are closely followed by routine call based features.

4.7 Using the 1R Algorithm to Create Classifiers

Experiment 5

Idea Verify the complexity of the learning task by using less sophisticated 1R

algorithm

 To verify effectiveness of using C5.0 we repeated Base Experiment 3, using an induction

algorithm called 1R [Holte 1993]. The 1R algorithm creates classification rules that are

based on a single feature. In essence the classifier can be seen as a one-level decision tree

although the criterion used for the best feature is different from C5.0. Holte has shown

that for some training datasets despite the simplicity of classifiers generated by this

algorithm, they can be as good or even better than classifiers generated by more

115

sophisticated algorithms. Therefore we would like to know if more complex classifiers

generated by C5.0 actually provide better results compared to 1R classifiers.

 We have applied 1R to the data used in Base Experiment 3, as is described in the first

half of Table 4.25. This is our best setup among the base experiments, and we will use it

as reference through the rest of this chapter. Figure 4.6 compares the ROC plots for these

two methods.

Figure 4.6 ROC Plots of C5.0 and 1R for Base Experiment 3

 Figure 4.6 shows that although C5.0 creates more complicated classifiers, these

classifiers tend to dominate the corresponding classifiers generated by 1R. In particular

there is considerable improvement in TP values. An alternative way of interpreting these

plots is that perhaps the data sets and the learning problem are non trivial, therefore they

cannot be properly represented by simple models generated by 1R.

Experiment 5

Summary Learning the Co-update relation is not trivial and using a simple

algorithms such as 1R does not generate satisfactory results

116

4.8 Removing Class Noise

Experiment 6

Idea Remove class noise conflict from the training data sets

Figure 4.7 ROC Plots of Class Noise Removal Experiments

In section 4.3 we discussed the Single and Multi-copy class noise removal algorithm. We

applied these methods to the training data sets used in Base Experiment 3, and tested the

classifiers using the test repository of Base Experiment 3. Figure 4.7 shows the resulting

ROC plots. They are identified as resolved and multi-copy resolved in this figure. In

Table 4.27 we have shown the normalized distance63 of each ROC point from the perfect

classifier i.e.; point (0,100). The best result is shaded in gray, while the second best result

is shown in bold. We will use such distance tables when ROC points are very close to

each other and it is difficult to determine which classifiers are more dominant. In Table

117

4.27, the smaller the distance is, the closer the classifier is to the perfect classifier. As can

be seen for most ratios of Not Relevant to Relevant examples, applying multi-copy class

noise removal generates better ROC points, although the differences may not always be

very significant. It is worth noticing that the overall closest ROC point to the perfect

classifier is for an equally proportioned training dataset without removing the noise64.

Table 4.27 The Normalized Distance of ROC Points from the Perfect Classifier for Class Noise
Removal Experiments

Ratio Unresolved Resolved Multi-copy Resolved

1 0.189 0.197 0.190
2 0.222 0.214 0.210
3 0.264 0.247 0.240
4 0.281 0.279 0.271
5 0.298 0.296 0.277
6 0.315 0.293 0.288
7 0.328 0.337 0.296
8 0.338 0.330 0.319
9 0.335 0.329 0.327
10 0.349 0.363 0.338
15 0.359 0.386 0.363
20 0.380 0.403 0.385
25 0.409 0.425 0.399
30 0.405 0.432 0.411
35 0.428 0.444 0.417
40 0.444 0.450 0.431
45 0.437 0.465 0.427
50 0.448 0.469 0.435

 In Figure 4.8 we have plotted the size of decision trees generated after applying the above

two strategies of class noise removal, and Table 4.28 shows the actual tree size. As can

be seen in both Figure 4.8 and Table 4.27, single copy class noise removal generates the

smallest tree in most cases. The noisy data set generated smaller trees for 3 ratios.

However, at least for two of these ratios the difference in size with the trees generated for

the same ratios using single copy noise removal very small. The ratio 40 is the exception

where the difference in size is 12.

63 This is a value between 0 and 1, obtained by dividing the Euclidean distance of the ROC point from point

(0,1) divided by 2 which is the distance between points (0,1) and (1,0).
64 Although as can be seen in the figure this classifier also has a higher false positive rate value which
translates to a lower precision value for the Relevant class.

118

Figure 4.8 Decision Tree Size Plots of Class Noise Removal Experiments

Table 4.28 Decision Tree Size of Class Noise Removal Experiments

Ratio Unresolved Resolved Multi-copy Resolved

1 127 71 165
2 139 116 213
3 138 94 193
4 152 147 197
5 183 140 195
6 140 147 234
7 167 168 254
8 174 146 244
9 188 159 253
10 195 122 240
15 218 163 257
20 224 170 265
25 233 158 259
30 219 162 243
35 211 187 245
40 180 192 256
45 196 156 245
50 218 163 270

Looking back at ROC point distances shown in Table 4.27 one can see that the difference

between the multi-copy and single copy noise removal values for most cases are not very

large, therefore it seems that one can choose single copy class noise removal as a method

to reduce the size of the decision trees generated

119

Experiment 6

Summary Overall best combination of classifier performance versus complexity is

achieved by removing class noise from training data sets using the Single

Copy method

4.9 Discretizing Numeric Attributes

Experiment 7

Idea Discretize numeric attributes to reduce the model complexity. Investigate

the interaction with class noise removal

The majority of attributes used in our experiments are numeric, some of them ranging

between 0 and 2000. These attributes tend to generate large decision trees (or large rules

We would like to have a high measure of success in predicting relevance between files,

while reducing the size of the tree. A smaller tree has the benefit of being easier to

understand and results in a faster classifier.

To address the above issues we have used a discretization method known as Entropy-

based grouping [Fayyad and Irani 1993] to group numeric attributes.

Grouping or discretization of numeric attributes may introduce class noise into the data.

This is because discretization maps a range of values to a single value. Consequently,

there is a possibility that two examples which had distinct attribute values end up with the

same values after the discretization step. Therefore a class noise removal operation

should be performed on any discretized data set. We have used the following two

combinations of class noise removal and discretization:

1. GroupÆRemove Noise

2. Remove NoiseÆGroupÆ Remove Noise

These two methods are referred to as Method 1 and Method 2 in the remainder of this

section.

120

Experiment 8,9

Idea Evaluate the effects of steps in Method 1

Experiment 8) Discretize

Experiment 9) Remove class noise from training sets of Experiment 8

Figure 4.9 ROC Plots for Method 1

In Figure 4.9 we show the ROC plots for Method 1. This figure shows the plots for the

original noisy data set (marked as unresolved), the plot after applying grouping, and the

plot after applying the noise removal procedure (marked as resolved-all-entropy-binned-

unresolved). Table 4.29 shows the normalized distance for each point on the ROC plots

from the perfect classifier. The last row shows the average change in distance and the

standard deviation of the changes for each step in the method compared to the basic noisy

(unresolved) training sets. In Figure 4.10 we have provided the plots showing the size of

the decision trees generated at each stage of Method 1.

121

Table 4.29 The Normalized Distance of ROC Points from the Perfect Classifier for Method 1

Ratio Unresolved EB-Unresolved Resolved-EB-Unresolved

1 0.189 0.189 0.199
2 0.222 0.232 0.214
3 0.264 0.260 0.264
4 0.281 0.286 0.292
5 0.298 0.299 0.286
6 0.315 0.314 0.315
7 0.328 0.333 0.324
8 0.338 0.343 0.329
9 0.335 0.353 0.356
10 0.349 0.357 0.364
15 0.359 0.373 0.378
20 0.380 0.400 0.429
25 0.409 0.427 0.440
30 0.405 0.417 0.438
35 0.428 0.428 0.444
40 0.444 0.437 0.465
45 0.437 0.449 0.468
50 0.448 0.456 0.478

Avg. Change 0.010±0.011 0.020±0.024

Figure 4.10 Decision Tree Size Plots of Method 1

 As can be seen in Table 4.29, the final noise removal step in method 1 actually reduces

the quality of classifier generated. In most cases the original noisy or the discretized

noisy versions provide better results. In particular, the noisy data set generates better

results for higher ratios of skewness, although high ratio training sets correspond to more

122

inferior classifiers on the ROC plot. However a closer look at the actual distance values

show that the degradation of the ROC point in most cases is small. This observation is

more important in light of tree size plots shown in Figure 4.10 where the final step in

Method 1 actually reduces the size of the trees even further. This figure also shows that

the entropy based discretization method on its own can reduce the size of the generated

decision trees considerably. Overall, one can consider Method 1 as a good strategy in

reducing the complexity of the classifiers at the expense of mostly minor degradation in

their quality.

Experiment 8,9

Summary Experiment 8) The discretization step can reduce the size of the generated

trees considerably at the expense of minor reduction in predictive quality

of the classifiers.

Experiment 9) The size of decision trees can be further reduced if a noise

removal step follows the discretization step. However, once again the

reduction in size is accompanied by further reduction in the predictive

quality of the classifiers, especially for ratio 9 and above

Experiment 10,11,12

Idea Evaluate the effects of steps in Method 2

Experiment 10) Remove class noise

Experiment 11) Discretize training sets of Experiment 10

Experiment 12) Remove class noise from training sets of Experiment 11

 In Figure 4.11 we have shown the ROC curves for Method 2. Table 4.30 shows the

normalized distance of each ROC point from the perfect classifier, while Figure 4.12

shows the decision tree size plots at each stage of Method 2. The last row in Table 4.30

shows the average change in distance and the standard deviation of the changes for each

step in the method compared to the basic noisy (unresolved) training sets. As can be seen

in Table 4.30, the last step of Method 2 generates classifiers that, up to ratio 25, produce

most of the best ROC points or the second best results. However the actual benefit of the

123

method can be better seen in Figure 4.12. For most ratios the smallest decision trees were

generated at the last step of Method 2. Therefore once again to find the least complex

method we will have to accept some degradation in terms of classification quality.

Figure 4.11 ROC Plots for Method 2

124

Table 4.30 The Normalized Distance of ROC Points from the Perfect Classifier for Method 2

Ratio Unresolved Resolved EB-Resolved Resolved-EB-Resolved

1 0.189 0.197 0.270 0.279
2 0.222 0.214 0.229 0.211
3 0.264 0.247 0.266 0.247
4 0.281 0.279 0.299 0.276
5 0.298 0.296 0.308 0.296
6 0.315 0.293 0.325 0.316
7 0.328 0.337 0.351 0.316
8 0.338 0.330 0.341 0.325
9 0.335 0.329 0.363 0.333
10 0.349 0.363 0.375 0.361
15 0.359 0.386 0.403 0.386
20 0.380 0.403 0.429 0.404
25 0.409 0.425 0.431 0.414
30 0.405 0.432 0.426 0.433
35 0.428 0.444 0.457 0.445
40 0.444 0.450 0.459 0.459
45 0.437 0.465 0.473 0.473
50 0.448 0.469 0.474 0.479

Avg. Change 0.010±0.022 0.036±0.027 0.018±0.036

Figure 4.12 Decision Tree Size Plots of Method 2

125

Experiment 10,11,12

Summary Experiment 10) (Remove class noise) The size of decision trees are

reduced at the expense of minor reduction in predictive quality of the

classifiers

Experiment 11) (Discretize training sets) Compared to Experiment 10,

there is further reduction in the size of decision trees and further loss of

predictive quality of the classifiers

Experiment 12) (Remove class noise again) Compared to experiment 11 a

slight reduction in the size of the decision trees is achieved, however at the

same time we have improved the predictive quality of the model

Overall method 2 the same as method 1 can cause major reduction in the

size of the decision trees with slight degradation in the quality of the

classifier for ratios 25 and above

Finally, we compare the last two stages of Method 1 and Method 2. In Figure 4.13 we

show the ROC plots for these two methods. The normalized distances of the classifiers

from the perfect classifier are shown in Table 4.31, while the size of generated decision

trees are compared in plots of Figure 4.14 and Table 4.32. As is evident in these plots and

tables, the results generated by these two methods do not show a clear superiority of one

method over the other, although Method 2 tends to generate better ROC points and

smaller trees slightly more frequently than does Method 1. However, this means an

additional class noise removal step is needed to prepare the data for training. It is also

worth noticing that the standard deviation of the difference from basic noisy data sets is

higher for method 2. Unless the difference in ROC results is extremely critical for the

application, it seems that one could skip this additional noise removal step at no

discernable cost, and apply method 1 instead.

126

Figure 4.13 ROC Comparison of the Last Stages of Methods 1 and 2

Figure 4.14 Decision Tree Size Plots of Methods 1 and 2

127

Table 4.31 The Normalized Distance of ROC Points from the Perfect Classifier for Methods 1 and 2

Ratio Unresolved Resolved- EB-Unresolved

(Method 1)

Resolved- EB-Resolved

(Method 2)

1 0.189 0.199 0.279
2 0.222 0.214 0.211
3 0.264 0.264 0.247
4 0.281 0.292 0.276
5 0.298 0.286 0.296
6 0.315 0.315 0.316
7 0.328 0.324 0.316
8 0.338 0.329 0.325
9 0.335 0.356 0.333
10 0.349 0.364 0.361
15 0.359 0.378 0.386
20 0.380 0.429 0.404
25 0.409 0.440 0.414
30 0.405 0.438 0.433
35 0.428 0.444 0.445
40 0.444 0.465 0.459
45 0.437 0.468 0.473
50 0.448 0.478 0.479

Avg. Change 0.020±0.024 0.018±0.036

Table 4.32 Decision Tree Size Comparison of Methods 1 and 2

Ratio Unresolved Resolved- EB-Unresolved

(Method 1)

Resolved- EB-Resolved

(Method 2)

1 127 68 66
2 139 89 98
3 138 89 75
4 152 73 82
5 183 104 95
6 140 82 75
7 167 77 92
8 174 110 97
9 188 78 109
10 195 131 135
15 218 120 118
20 224 110 106
25 233 121 123
30 219 112 109
35 211 133 128
40 180 128 135
45 196 119 106
50 218 104 118

Avg. Change -80.8±23.6 -79.7±22.2

128

Experiment 7

Summary The results for both methods are competitive, with a slight edge for

method 2 (Remove NoiseÆ GroupÆRemove Noise). However method 1

(GroupÆ Remove Noise) is less computationally intensive, thus could be

attractive in some circumstances.

4.10 Using Text Based Features

In the previous section the attributes used in defining examples were mostly based on

syntactic constructs such as function calls or variable definitions. As we discussed in

Chapter 3, the process of fixing an error in the software starts with submitting a problem

report. A problem report can be seen as a text file that includes the description of the

problem with some additional fields maintained by SMS.

The text portion of problem reports in essence is free format. They all include an English

description of the problem. They may also include additional information such as

memory dumps, status of different hardware registers, maintenance logs or any other data

that the person reporting the problem deems related to the problem. Despite the

unstructured nature of these reports, they are potentially a great source of knowledge that

one could learn from.

Another information source for learning is the comments in the source files. Both

problem reports and comment words provide us with a text based sources of information,

as opposed to syntactic and programming language dependent features we have worked

with up to this point.

One of the areas in which machine learning has been successfully applied is text

classification, where a document is classified as belonging to a certain class. The most

frequently used representation of documents in text classification and information

retrieval is the bag of words or vector representation [Mladenic 1999]. The name bag of

words reflects that the words in the document are taken without any additional order or

structural information. Each document in a set of documents is represented by a bag of

words that includes words from all the documents in the set. Consider Figure 4.15.

129

 Wf1

f1 w1 w4 w6
w4

f2
w2 w4 w3
wN

f3

w1 w2 w3 w4 w5 w6 … … … … … … … … wN G

t f f t f t … … … … … … … … … … … … f V f1

f f t t f f … … … … … … … … … … … … t V f2

? ? ? ? ? ? … … … … … … … … … … … ? V f3

 Wf2

 Wf3

Figure 4.15 Creation of Bag of Words Vectors

In this figure there are three documents or files f1, f2 and f3. File f1 has three words

Wf1={w1,w4, w6}, while file f2 has four words Wf1={w2,w4,w3,wN}. No words are

associated with file f3 i.e., Wf3=∅.

To create a bag of words representation of these files first we create a global set of words

that is the union of word bags Wf associated to each file f. This global set of words can be

seen as a feature vector template G, where each element corresponds to a word in the set.

Using this vector template we can assign to each file f a feature vector Vf, where an

element j is set to t if the word corresponding to G[j] is in Wf , or f if the word is not in

Wf. Furthermore if Wf = ∅ then all the elements of Vf are set to “?” which represents an

unknown value65. This is a Boolean bag of words representation of the documents

65 While an unknown value for a document may be meaningless it may be useful in other contexts. For
instance if a file has no comment we could say that a word does not exist in the file (an f value), or we
could say we don’t know if the word would have been in the comments should the file be commented (a
“?” value).

130

because each feature in a feature vector can only take one of two (known) values.

Another alternative is assigning the frequency of a word in a document as feature value.

To be able to tap into these new knowledge sources we need to somehow associate a file

with a bag of words. Once this is done we can associate each file with a feature vector.

However, since we are exploring a relation between two files, we are interested in

features that are based on both files i.e., are a function of properties of both files. In the

case of bag of words feature vectors the intersection of these vectors has the property that

it explores the commonality between the vectors.

Once each file is associated with a bag of words feature vector we can create a file pair

feature vector If1,f2 by finding the intersection between Vf1 and Vf2, where If1,f2 [j] is set to

f if either one of Vf1[j] or V f2[j] are f, and it is set to t if both V f1[j] and Vf2[j] are t.

Conceptually this file pair feature vector has a value t for a feature if that particular

feature is present in feature vectors of both files. If any of feature values is unknown then

we have at least two choices for the result of intersecting these values. We can generate

an unknown value if the learning algorithm allows features to take unknown values, or an

f value, which means that the feature is not shared in both vectors.

One of the major issues in using a bag of word approach in text classification is the

selection of the words or features. Having too many features poses computational

limitations. Also using unrelated words or features could degrade results in any learning

task. Therefore we cannot simply use all the existing words in problem reports or source

code comments as features. Instead we have to limit the set of words used in our

experiments to what we refer to as the set of acceptable words.

We created a set of accepted words by first using an acronym definition file which

existed at Mitel Networks. Since the acronyms belonged to the application domain we

were assured that our acceptable word list would include some of the most important and

commonly used words. From this initial set we removed an extended version of stop

words proposed in [Lewis 1992]. These are some of the common English language words

such as “a”, “the”, “also” etc. Then through a few semi-automatic iterations we filtered a

set of problem reports against these acceptable words. We updated the set of acceptable

131

words by analyzing the words that were rejected through filtering. We used word

frequency information and intuitive usefulness of a word in the context of the application

domain to add words to or remove words from the set of acceptable words. Although this

word list was created by a non-expert and as a proof of concept, an earlier promising

work in creating a lightweight knowledge base about the same application domain that

used a similar manual selection technique for initial concepts was a motivation for us

[Sayyad Shirabad et. al. 1997]. The word extractor program also performed a limited text

style analysis to detect words in uppercase in an otherwise mostly lowercase text. Such

words tend to be good candidates for technical abbreviations or domain terms that in turn

make them a potential candidate to become an acceptable word. To avoid generating

words by mistake and due to the nonrestrictive nature of the problem reports, the word

extractor program must also incorporate domain specific capabilities such as detecting

debugging information such as memory dumps, or distinguishing between a word at the

end of a sentence, as opposed to a file name or assembly language instruction which

contains a period. We believe the results presented in this section could improve if we

could benefit from the domain experts knowledge in creating these word lists.

As part of the process of creating the set of acceptable words we also created two other

lists that we called transformation list and collocation list. The transformation list allows

our word extractor program to perform actions such as lemmatization or conversion of

plurals to singulars that result in the transformation of some words to acceptable words.

The collocation list allows us to preserve interesting words that appear together, even

though not all the individual words in the collocation may be acceptable words

themselves.

Once these three lists are created we can filter a problem report or comments in a file to

associate each problem report or file with a subset of acceptable words or a bag of words.

132

4.10.1 Source File Comment Words as Features

Experiment 13,14

Idea Use file comment words as features

Experiment 13) With unknown feature values

Experiment 14) Without unknown feature values

We can view a source file as a document and its comments as words in the document.

Using the three words lists discussed above we can associate each file with a bag of

comment words, and consequently comment word feature vectors. The file pair feature

vector will have a value t for a feature if the word corresponding to the feature appears in

the comments of both source files. Since C5.0 supports examples with unknown attribute

values, we have two choices when we find the intersection of the two file comment

feature vectors when an elements is set to ?. We could either generate an unknown value,

or an f value indicating that the feature is not present in the feature vectors of both files.

To evaluate the effects of using file comments as attributes, we generated file pair bag of

words features for exactly the same file pairs used in the best base syntactic attributes

experiment referred earlier as the Base Experiment 3, The size of the feature vectors

generated was 1038. We ran two sets of experiments, one allowing unknown attribute

values in examples, and the other with no unknown values.

As can be seen in plots of Figure 4.16 and Table 4.33, the file comments based classifiers

for skewness ratios above 2 dominate the syntactic attribute based classifiers.

Unfortunately due to an apparent bug in the version of C5.0 that we were experimenting

with, the inducer was not able to generate a classifier for skewness ratio 30, and seem to

stay in a constant loop. We also found that using unknown values when dealing with

skewed data sets slows down C5.0 considerably. However, the plots seem to point

towards not using the unknown values.

133

Figure 4.16 ROC Comparison of the File Comment and Syntactic Attribute Based Classifiers

In Table 4.34 we have shown the size of the decision trees corresponding to the

classifiers in the plots of Figure 4.16. As can be seen, the size of the decision trees

generated from comment word attributes is larger than the corresponding syntactic

attribute based decision trees. This is not very surprising as there are many more

attributes when comment words are used as attributes. Allowing attributes to take

unknown values has the effect that the generated decision trees are smaller than the case

where they are not allowed, however unless the additional size introduces other

unacceptable drawbacks, the ROC results suggests that not using unknown values for

attributes is a better strategy.

134

Table 4.33 The Normalized Distance of ROC Points from the Perfect Classifier for Plots in Figure
4.16

Ratio Syntactic Comments words

(with Unknown value)s

Comments words

(without Unknown value)s

1 0.189 0.206 0.205
2 0.222 0.226 0.213
3 0.264 0.251 0.229
4 0.281 0.266 0.243
5 0.298 0.266 0.242
6 0.315 0.284 0.251
7 0.328 0.288 0.267
8 0.338 0.294 0.266
9 0.335 0.296 0.272
10 0.349 0.294 0.264
15 0.359 0.315 0.294
20 0.380 0.330 0.299
25 0.409 0.344 0.314
30 0.405 0.318
35 0.428 0.336
40 0.444 0.341
45 0.437 0.351
50 0.448 0.363

Table 4.34 Decision Tree Size Comparison for Plots in Figure 4.16

Ratio Syntactic Comments words

(with Unknown value)s

Comments words

(without Unknown value)s

1 127 169 182
2 139 199 189
3 138 198 184
4 152 196 221
5 183 215 221
6 140 188 256
7 167 218 257
8 174 208 255
9 188 225 275
10 195 221 302
15 218 239 292
20 224 263 307
25 233 238 299
30 219 328
35 211 318
40 180 323
45 196 310
50 218 297

Avg. Change 38.4±15.4 84.1±28.0

135

Experiment 13,14

Summary Using file comment words as attributes improves the predictive quality of

the classifiers compared to classifiers generated from syntactic features

only. However the generated classifiers tend to be larger in size. The

strategy of not allowing unknown values for attributes generates classifiers

with better prediction results.

4.10.2 Problem Report Words as Features

Experiment 15,16

Idea Use problem report words as features

Experiment 15) With unknown feature values

Experiment 16) Without unknown feature values

f3

P1

P3

f5

P1

P5

P10

wf wu …

wz we wd wt

…

wi wj, …

wj wd wz …

.

.

. .
.
.

WP1

WP3

WP5

WP10
 Combine

Combine
wz we wd wt
wf wu …

wi wj wf wu
wd wz …

Wf3

Wf5

Figure 4.17 Creating Source File-Bag of Words Using Problem Reports

136

We also performed experiments with problem report words as attributes. As we discussed

above first we need to associate each file with a feature vector. Since each update is in

response to some problem or activity report, we can associate each file changed by an

update to one or more problem or activity reports. For each problem report we can find a

bag of acceptable words using the three word filtering lists discussed earlier. By

combining the bags of words for problem reports affecting a file we can create a bag of

words for each file. This process has been shown in Figure 4.17.

Combining the problem report bags of words can be done at least in two ways. We can

either find the union of acceptable words in problem and activity reports associated with

a file, or we can find their intersection. Conceptually this means associating a file with

words found in any problem report affecting it, or words shared by all problem reports

affecting it.

The usage of problem reports as the source of information to extract attributes may seem

problematic to some. The argument being that the heuristics that suggest the class or the

label of the examples were also based on the updates applied to the system in response to

the problem reports. Therefore this may bias the results. However, we would like to point

out that:

• The attributes here are not the problem reports but a subset of words appearing in

them. The description of a problem is more or less a free format text document.

Completely unrelated problem reports can also have some words in common. There is

a 1 to N relation between a word and the files that it is associated with. This means

that there may be common words in the bag of words feature vectors associated with

completely unrelated files. In other words, in principle, our process does not generate

any single attribute that can identify or predict the class of an example. One such

inappropriate attribute would have been a Boolean feature that is set to true if two

files share at least one problem report and set to false otherwise. We emphasize that

of course we do not have such an attribute among attributes that we generate from

problem reports.

137

• Following the above argument, it is also not the case that only Relevant examples

share common words. It is not true that the Relevant examples can be identified by

simply checking whether there is any feature that has been set to a t value.

• It is also not correct that Relevant examples always share many words i.e. most of the

attributes in the example are set to value t. For instance we examined the training

examples for imbalance ratio 50. As will be discussed below, this imbalance ratio

provides one of our best results in terms of predictive quality. We found that the

highest percentage of word sharing was 44%, however this only happened in the case

of 14 examples which constitute 0.46% of the Relevant examples. Slightly more than

56% of Relevant examples share at most 12% of the words, while about 80% of

Relevant examples share at most 20% of the words.

For our experiments we used problem reports associated with all updates changing files

between January of 1995 and March of 2000. We generated the combined bag of words

for each file by creating the union of bags of words. Once file bags of words are

generated, one can create file feature vectors and consequently file pair feature vectors

following the method discussed above. The size of file pair feature vectors generated for

our experiments was 905.

Figure 4.18 and Table 4.35 show the results for experiments using problem report based

features, with and without unknown values in the examples. As can be seen, using

problem report based features drastically improves the quality of classifiers generated.

However this quality very rapidly drops when we allow unknown values in the examples.

The classifier generated for imbalance ratio 4 in this case is the majority class, which

means it classifies every test case as Not Relevant. This generates true and false positive

values of 0 i.e., point (0,0) on the plot. Clearly this is not an interesting model. In Figure

4.18 the ROC plot corresponding to training sets with unknown values only shows the

points for imbalance ratios of 1,2 and 3.

138

Figure 4.18 ROC Comparison of the Problem Report and Syntactic Attribute Based Classifiers

Table 4.35 The Normalized Distance of ROC Points from the Perfect Classifier for Plots in Figure
4.18

Ratio Syntactic Problem reports with Unknown values Problem reports without Unknown values

1 0.189 0.063 0.055
2 0.222 0.118 0.047
3 0.264 0.434 0.045
4 0.281 0.707 0.045
5 0.298 0.042
6 0.315 0.041
7 0.328 0.045
8 0.338 0.045
9 0.335 0.051
10 0.349 0.049
15 0.359 0.047
20 0.380 0.052
25 0.409 0.082
30 0.405 0.087
35 0.428 0.088
40 0.444 0.093
45 0.437 0.094
50 0.448 0.098

139

In all of our experiments, the increase in imbalance ratio causes both false positive and

true positive ratios to drop. Reduction in the false positive rate is desirable because it

means we misclassify smaller number of Not Relevant examples as Relevant. The drop in

the True positive ratio is not desirable because this means we find fewer Relevant

examples out of all present Relevant examples. One attractive property of problem report

based classifiers is the slow decline in the drop in the true positive rate. As can be seen in

Figure 4.18, in the case of syntactic attributes based classifiers the true positive rate drops

from 70’s to 30’s as we increase the imbalance in the training examples. In the case of

problem report based classifiers the drop is from 90’s to 80’s. A closer look into the

precision and recall values of the Relevant class for imbalance ratio of 50 shows that we

can achieve a 62% precision and 86% recall. Put in other words, if our classifier suggest

100 file pairs are relevant to each other i.e. a change in one may result a change in the

other, it will be accurate 62 times out of 100. This also means that if there were 100

relevant file pairs in the system, the classifier can find 86 of them. Considering the fact

that in a large legacy system there are thousands of source files where any number of

them may be effected by a change in a source file, these precision and recall values

suggest that in theory such a classifier can potentially relieve some of the burden on a

software engineer who has to maintain the system.

Table 4.36 shows the size of decision trees generated for the classifiers corresponding to

the plots in Figure 4.18. In the case of classifiers trained from examples that allow

unknown values, we have provided the values for the first four imbalance ratios. Since

the only meaningful models belong to the less important ratios of 1 and 2 we did not

provide the average change in the size of the decision tree for these classifiers.

The numbers in Table 4.36 show another attractive property of problem report based

classifiers. For all ratios under 35 the decision trees created from these features are

simpler than the corresponding syntactic attribute based classifiers. This is reflected in

the reduction of the average decision tree size.

140

Table 4.36 Decision Tree Size Comparison for Plots in Figure 4.18

Experiment 15,16

Summary Using problem report words as attributes greatly improves the predictive

quality of the classifiers compared to the classifiers generated from

syntactic features only. This is also accompanied with a reduction in

average decision tree size. Allowing training examples with unknown

values for features does not generate useful classifiers.

4.11 Combination of Features

In previous sections we created and examined classifiers created from the following

feature sets:

Ratio Syntactic Problem report words

(with Unknown values)

Problem reports word

(without Unknown values)

1 127 88 93
2 139 80 99
3 138 3 105
4 152 1 108
5 183 120
6 140 128
7 167 140
8 174 135
9 188 165
10 195 153
15 218 181
20 224 208
25 233 197
30 219 214
35 211 213
40 180 214
45 196 231
50 218 236

Avg. Change -20.1±27.5

141

• Syntactic features

• Source file comment words as features (text based)

• Problem report words as features (text based)

In this section we will experiment with classifiers created from the combinations of these

features. We will combine Syntactic features with text based features, and the two

different sources of text based features together. We would like to know whether

classifiers created from combined feature sets could improve the results of classifiers

generated from individual feature sets.

Combining syntactic features with text based features is straight forward. These feature

sets conceptually belong to two different categories of features. One is made of attributes

that are based on syntactic structure of the source files. The other is based on the bag of

words view of the source files. The syntactic attributes each have a different definition

and method of extraction, while text based attributes are elements of a bag of words

associated with the source files. Many of the syntactic attributes take numeric values,

while all the text based attributes in our representation take one of the two values

indicating their presence or absence. Therefore combining the syntactic and text based

feature vectors for a file pair means creating a new vector by simple juxtaposition of the

two individual file pair feature vectors.

However, two text based file pair feature vectors can be combined at least in two ways:

1. We can juxtapose two file pair feature vectors. Juxtaposition has the benefit that if a

word appears in both feature vectors it will be treated as two separate features and

therefore the two instances can be distinguished in the generated model. For instance

if the word “dialup” appears in both problem report word features and source file

comment word features and it is used in the generated model, we can find out if the

model is referring to the occurrence of the word “dialup” in comments or in problem

reports or even possibly both.

142

2. For each file we can generate a new bag of words by creating the union of source file

comment words and words in problem reports effecting the file. Following the

method discussed in section 4.10 we can generate new file feature vectors from these

new bags of words, and then create the file pair feature vectors by creating the

intersection of file feature vectors. The union operation has the property that the

origin of the words is lost. Therefore the generated model may refer to the word

“dialup” but we can not say whether this means that this word should appear in the

problem reports or source file comments. However the union operation also creates

smaller feature vectors.

Since problem report features generate clearly dominant classifiers compared to the

classifiers created from source file comments, the interesting result would be the case

where we improve upon the performance of the problem report based classifiers.

The following sections will discuss experiments that will explore the effects of using

above methods in combining feature sets.

4.11.1 Combination of Syntactic and Source File Comment Word Features

Experiment 17

Idea Combine Syntactic attributes with source file comment word attributes by

juxtaposition

We combined the syntactic and source file comments features by creating new training

and testing sets using the corresponding data sets from syntactic only and source file

comment words only experiments i.e., Experiments 3 and 14 respectively, We used the

juxtaposition method discussed above, however instead of using all the features in source

file comment word feature vectors, we only used the features that were actually used at

least in one of the classifiers generated in Experiment 14. This can be seen as a feature

selection operation where we only used features that were found useful by the C5.0

induction algorithm. Conceptually the features used are either syntactic or words

appearing in the comments of both files in a file pair. Each example had 475 such

features.

143

Figure 4.19 shows the comparison of the ROC plots for syntactic, source file comment

word, and juxtaposed feature sets. As can be seen in this figure this combination strategy

generates classifiers that are clearly dominating the classifiers generated from individual

feature sets. The true positive rate for the combined feature classifier is on average

19.3±4.1 higher than the syntactic feature classifiers, and 10.1±1.3 higher than the source

file comment feature classifier. Table 4.38 shows the size of the decision trees

corresponding to classifiers in ROC plots of Figure 4.19. These numbers show that the

average size of the combined feature set decision trees compared to syntactic feature

decision trees increases by 94.7±38.6. The average size increase compared to source file

comment feature decision trees increases by 10.6±21.5. The increase in the size of the

decision trees compared to the syntactic feature decision trees is expected because there

are much larger number of good features66 available to choose.

Figure 4.19 ROC Comparison of the File Comment Classifiers with and without Syntactic Attributes

66 As is evident by their use in file comment feature classifiers.

144

Table 4.37 The Normalized Distance of ROC Points from the Perfect Classifier for Plots in Figure
4.19

Ratio Jux Syn. & Used Comment Words Comment Words Syntactic

1 0.128 0.205 0.189
2 0.140 0.213 0.222
3 0.153 0.229 0.264
4 0.161 0.243 0.281
5 0.167 0.242 0.298
6 0.181 0.251 0.315
7 0.184 0.267 0.328
8 0.180 0.266 0.338
9 0.195 0.272 0.335
10 0.194 0.264 0.349
15 0.231 0.294 0.359
20 0.228 0.299 0.380
25 0.253 0.314 0.409
30 0.259 0.318 0.405
35 0.268 0.336 0.428
40 0.279 0.341 0.444
45 0.284 0.351 0.437
50 0.294 0.363 0.448

Table 4.38 Decision Tree Size Comparison for Plots in Figure 4.19

Ratio Jux Syn. & Used Comment Words Comment Words Syntactic

1 184 182 127
2 167 189 139
3 189 184 138
4 215 221 152
5 216 221 183
6 239 256 140
7 277 257 167
8 270 255 \174
9 262 275 188
10 304 302 195
15 289 292 218
20 358 307 224
25 346 299 233
30 329 328 219
35 354 318 211
40 345 323 180
45 331 310 196
50 331 297 218

145

Experiment 17

Summary Combining syntactic attributes with file comment attributes creates models

that dominate the models created from individual feature sets. This

improvement in predictive quality is accompanied by increase in the size

of the decision trees, however this seems to be acceptable considering the

improvements in the average value of true positive rate.

4.11.2 Combination of Syntactic and Problem Report Word Features

Experiment 18

Idea Combine Syntactic attributes with problem report attributes by

juxtaposition

Following a method similar to Experiment 17, we combined the syntactic and problem

report features by creating new training and testing sets using the corresponding data sets

from syntactic features only and problem report features only experiments i.e.,

Experiments 3 and 16 respectively, Again we used the features that were actually used at

least in one of the classifiers generated in Experiment 16. Conceptually the features used

are either syntactic or common words that appear in problem reports affecting each of the

files in the file pair represented by the example. There were a total of 520 features such

features.

In Figure 4.20 we have only shown the combined feature and problem report feature

ROC plots. Both of these plots clearly dominate syntactic feature only classifiers plot as

is evident by high true positive rates. However, the important question is whether the

combined feature set can improve already very good results achieved by using problem

report features. In Table 4.39 we have shown the normalized distance of the points on the

ROC plots from the perfect classifier. Although the numbers in this table indicate the

combined feature classifiers in most cases are the dominant ones, the true positive rates

for the classifiers are not very far. The true positive rate for the combined feature

classifier is on average 0.4±1.1 higher than the problem report feature classifier. Table

4.40 shows the size of the decision trees corresponding to classifiers in ROC plots of

146

Figure 4.20. These numbers show that the average size of the combined feature decision

trees compared to problem report feature decision trees increases by 12.8±8.7. Therefore

overall one could say that the combination of the syntactic and problem report features

does not improve the results in a significant way.

Figure 4.20 ROC Comparison of the Problem Report Classifiers with and without Syntactic
Attributes

147

Table 4.39 The Normalized Distance of ROC Points from the Perfect Classifier for Plots in Figure
4.20

Ratio Problem Report Words Jux Syn. & Used Problem Report Words

1 0.055 0.055
2 0.047 0.042
3 0.045 0.043
4 0.045 0.045
5 0.042 0.045
6 0.041 0.035
7 0.045 0.039
8 0.045 0.042
9 0.051 0.044
10 0.049 0.049
15 0.047 0.053
20 0.052 0.064
25 0.082 0.060
30 0.087 0.084
35 0.088 0.079
40 0.093 0.082
45 0.094 0.083
50 0.098 0.085

Table 4.40 Decision Tree Size Comparison for Plots in Figure 4.20 and Syntactic Attribute Based
Decision Trees

Ratio Problem Report Words Jux Syn. & Used Problem Report Words Syntactic

1 93 100 127
2 99 118 139
3 105 112 138
4 108 114 152
5 120 125 183
6 128 146 140

7 140 133 167
8 135 147 174
9 165 173 188
10 153 171 195
15 181 212 218
20 208 219 224
25 197 212 233
30 214 225 219
35 213 230 211
40 214 232 180
45 231 243 196
50 236 248 218

148

4.11.3 Combination of Source File Comment and Problem Report Features

As we discussed above the text based features can be combined by juxtaposition of the

feature vectors or their union. The following sections are dedicated to experiments that

study the effect of these methods.

4.11.3.1 Juxtaposition of Source File Comment and Problem Report Features

Experiment 19

Idea Combine used source file comment and problem report attributes by

juxtaposition

To combine source file comment features with problem report features we found

attributes used in source file comment features experiments i.e. Experiment 14 and

problem report features experiments i.e. Experiment 16. We juxtaposed these used

feature vectors to create new file pair feature vectors. Each example had 961 features.

Figure 4.21 shows the ROC plots for the juxtaposed feature set and problem report

feature set classifiers. The ROC plot for comment words feature set is not shown in this

plot as previous experiments (Experiments 14 and 16) showed that problem report based

features create more dominant classifiers. As can be seen in this figure the juxtaposed

feature set classifiers are very close to problem report features classifiers, thus they also

clearly dominate comment word classifiers.

Experiment 18

Summary Combining syntactic attributes with problem report attributes create

models that dominate the models created from individual feature sets.

However the improvements to the problem report feature models are not

very important. The combined feature decision trees in majority of the

cases tend to be larger than at least one of the corresponding individual

feature set classifier.

149

Figure 4.21 ROC Comparison of the Problem Report Feature Classifiers with Juxtaposed
Combination of Used Problem Report and Source File Comment Features Classifiers

In Table 4.41 we have shown the normalized distance of each classifier on the ROC plot

from the perfect classifier. From this table one can observe that problem report features

create more dominant classifiers for skewness ratios above 35. These higher ratios

happen to create more interesting precision and recall value for the Relevant class which

is the more interesting of the two classes. A closer look to the true positive ratios shows

that the average true positive ratio of the classifiers generated from the juxtaposed (used)

feature set on average drops by -0.1±1.2. Table 4.42 shows the size of the decision trees

for the classifiers on the ROC plots of Figure 4.21. As it can be seen in this table

classifiers generated from problem report features are smaller than the juxtaposed used

feature set for all imbalance ratios. The size of the decision trees on average increase by

16.3±10.1.

150

Table 4.41 The Normalized Distance of ROC Points from the Perfect Classifier for Plots in Figure
4.21

Ratio Problem Report Words Jux Used Problem Report and Comment Words

1 0.055 0.057
2 0.047 0.043
3 0.045 0.041
4 0.045 0.038
5 0.042 0.037
6 0.041 0.038
7 0.045 0.040
8 0.045 0.041
9 0.051 0.043
10 0.049 0.047
15 0.047 0.048
20 0.052 0.069
25 0.082 0.078
30 0.087 0.082
35 0.088 0.097
40 0.093 0.094
45 0.094 0.103
50 0.098 0.107

Table 4.42 Decision Tree Size Comparison for Plots in Figure 4.21

Ratio Problem Report Words Jux Used Problem Report and Comment Words

1 93 102
2 99 113
3 105 119
4 108 126
5 120 128
6 128 142
7 140 143
8 135 159
9 165 176
10 153 171
15 181 216
20 208 241
25 197 232
30 214 225
35 213 222
40 214 238
45 231 234
50 236 246

151

4.11.3.2 Union of Source File Comment and Problem Report Features

Experiment 20,21

Idea Combine source file comment and problem report attributes by creating

their union

Experiment 20) Use all the features in Experiments 14 and 16

Experiment 21) Use only features that appeared in the decision trees

generated in Experiments 14 and 16

We experimented with the combination of file comment and problem report features

using the union method described in Section 4.11. Figure 4.22 shows the ROC plots

where we used all the file comment and problem report features. Each example in this

case had 1165 features. Table 4.43 shows the normalized distance of the points on the

ROC plots from the perfect classifier. As it can be seen in this figure and the table,

classifiers created from the union of features do not perform as well as the classifiers

built from the problem report features only. The average true positive rate of the

combined feature classifier decreases by 1.2±1.1. As is evident from Table 4.44 the

combined feature classifier also creates larger decision trees. They are on average

42.4±11.9 larger than the decision trees generate from the problem report features only.

Experiment 19

Summary Juxtaposing used source file comment features with problem report

features create classifiers that always dominate the file comment features

models. In the case of problem report features models the degradation in

higher imbalance ratios offsets the improvements in lower ratios. The size

of a juxtaposed feature set classifier is larger than corresponding problem

report features classifier.

152

Figure 4.22 ROC Comparison of the Problem Report Feature Classifiers with the Union of Used
Problem Report and Source File Comment Feature Classifiers

Table 4.43 The Normalized Distance of ROC Points from the Perfect Classifier for Plots in Figure
4.22

Ratio Problem Report Words Union of Problem Report and Comment Words

1 0.055 0.058
2 0.047 0.053
3 0.045 0.050
4 0.045 0.052
5 0.042 0.053
6 0.041 0.051
7 0.045 0.052
8 0.045 0.056
9 0.051 0.054
10 0.049 0.061
15 0.047 0.066
20 0.052 0.076
25 0.082 0.078
30 0.087 0.087
35 0.088 0.092
40 0.093 0.101
45 0.094 0.109
50 0.098 0.099

153

Table 4.44 Decision Tree Size Comparison for Plots in Figure 4.22

Ratio Problem Report Words Union of Problem Report and Comment Words

1 93 126
2 99 135
3 105 146
4 108 169
5 120 158
6 128 173
7 140 178
8 135 160
9 165 189
10 153 188
15 181 246
20 208 238
25 197 247
30 214 255
35 213 274
40 214 260
45 231 273
50 236 289

We also experimented with the case where instead of using all the features we only used

features that appear in generated decision trees of Experiments 14 and 16. These were

source file comment feature and problem report feature experiments respectively. There

were 643 features in this new combined feature set.

Once again as is evident in Figure 4.23 that compares the ROC plots of combined feature

set classifiers with problem report features classifiers, the combined feature classifiers in

most cases did worse than the corresponding problem report features classifiers. This can

also be seen in Table 4.45 that shows the normalized distance from the perfect classifier.

The true positive ratio of the combined feature classifiers on average is 0.8±1.3 less than

the problem report features classifiers.

As it can be seen in Table 4.46, the combined feature set also created larger decision trees

compared to the ones generated from problem report features only. The increase in the

average size of the decision trees was 31.2±16.3.

154

Figure 4.23 ROC Comparison of the Problem Report Feature Classifiers with the Union of Used
Problem Report and Source File Comment Feature Classifiers

Table 4.45 The Normalized Distance of ROC Points from the Perfect Classifier for Plots in Figure
4.23

Ratio Problem Report Words Union of Used Problem Report and Comment Words

1 0.055 0.056
2 0.047 0.055
3 0.045 0.049
4 0.045 0.049
5 0.042 0.046
6 0.041 0.049
7 0.045 0.051
8 0.045 0.051
9 0.051 0.047
10 0.049 0.055
15 0.047 0.064
20 0.052 0.075
25 0.082 0.074
30 0.087 0.094
35 0.088 0.094
40 0.093 0.099
45 0.094 0.104
50 0.098 0.097

155

Table 4.46 Decision Tree Size Comparison for Plots in Figure 4.23

Ratio Problem Report Words Union of Used Problem Report and Comment Words

1 93 113
2 99 134
3 105 126
4 108 153
5 120 148
6 128 169
7 140 167
8 135 166
9 165 166
10 153 197
15 181 228
20 208 241
25 197 238
30 214 215
35 213 277
40 214 256
45 231 241
50 236 266

4.12 Summary

In this chapter we presented the results of a wide range of experiments with a variety of

feature sets all designed to learn an instance of Co-update maintenance relation. that

could be of practical use in assisting software maintainers. We first discussed some of

more important experiments performed in the past that influenced our way of

approaching the problem of learning and evaluating such a relation. Then we discussed

the way to create a set of initial or base classifiers from the syntactic attributes. We called

these experiments Base experiments because they were designed to establish the

Experiment 20,21

Summary The union of source file comment features and problem report features

create classifiers that always dominate the file comment features models

but performs worse than problem report features models. This is true both

in the case of the union of all features and the union of used features. The

size of a union feature set classifier is always larger than corresponding

problem report features classifier.

156

training/testing repositories to form the basis for a universal comparison and evaluation

strategy.

We then proceeded with a variety of experiments with the syntactic attributes that applied

different techniques to improve upon the results obtained from the base experiments. We

also introduced two sources of text based features or attributes. We experimented with

source file comment features and problem report features and showed that the generated

models have much higher predictive quality compared to syntactic attribute based

models.

We also reported on the experiments performed to evaluate the effects of combining

syntactic features with text based features, and text based features together. We

experimented with two different combination methods, namely juxtaposition and the

union. Table 4.47 summarizes experiments discussed through sections 4.5 to 4.11.

157

Table 4.47 Experiments Summary

Experiment Question Lesson Learned

1-2 What is the effect of limiting
group size to 20 on predictive
quality of generated classifiers?

Limiting group size to 20 (Experiment 1) generates more
dominant classifiers

3-4 What are the effects of repeating
the relevant examples in conjunc-
tion with limiting group size on
predictive quality of generated
classifiers?

Limiting group size to 20 (Experiment 3) generates more
classifiers. Repeating Relevant examples generates more
dominant classifiers

5 Is the concept we are trying to
learn trivial?

No, a less sophisticated method such as 1-R does not
generate acceptable classifiers

6 What are the effects of applying
single and multi-copy class noise
removal to training examples?

Best combination of classifier performance vs. complexity
is achieved by using the single copy method

7-12 What is the effect of discretizing
(grouping) numeric attributes and
its interaction with class noise re-
moval?

Discretizaing numeric attributes reduces the size of the
generated decision trees considerably. The results for both
methods are very competitive. Method 2 (Experiments 10-
12: Remove-NoiseÆ GroupÆRemove-Noise) produces
slightly better results than Method 1 (Experiments 8-9:
GroupÆ Remove Noise), at the expense of higher computa-
tional cost.

13-14 Can we obtain better results by
using source file comments as
attributes instead of syntactic
attributes? What is the effect of
creating attributes with unknown
values?

Using comment words as attributes results in more
dominant classifiers. Better results are obtained if unknown
values are not allowed for attributes. Decision trees
generated are larger than the ones generated from syntactic
attributes.

15-16 Can we obtain better results by
using problem report words as
attributes instead of syntactic
attributes? What is the effect of
creating attributes with unknown
values?

Using problem report words as attributes results in very
dominant classifiers. Better results are obtained if unknown
values are not allowed for attributes. Decision trees
generated are in most cases smaller than the ones generated
from syntactic attributes.

17 What is the result of combining
source file comment words attrib-
utes with syntactic attributes?

The combined feature set creates classifiers that dominate
classifiers generated from individual feature sets. The
improvement in predictive quality is accompanied by
increase in the size of the decision trees.

18 What is the result of combining
problem report words attributes
with syntactic attributes?

Minor improvements in the predictive quality of classifiers
can be achieved. The combined feature set classifiers are in
most cases larger than problem report feature set classifiers.

19 Can we improve results by com-
bining the source file comment and
problem report based features
using the juxtaposition method?

The resulting classifiers are more dominant than source file
comment features classifiers, but for more interesting
skewness ratios they are less dominant than problem report
features classifiers. Decision trees generated are also larger
than the ones generated from problem report feature set.

158

Table 4.47 Experiments Summary (Continued …)

Based on the results obtained from the experiments reported here we believe that problem

report features can be used to create Co-update relations that have high predictive quality.

We were able to achieve precision values in excess of 60% and recall values above 80%

for the Relevant class. These numbers suggest that such classifiers can be deployed in a

real world setting and used by software engineers maintaining the system that we studied.

Furthermore, our experiments provide preliminary indications that compared to syntactic

attributes, properly chosen text based attributes are more likely to generate models with

higher predictive quality. However, there is need for further research to reach a more

conclusive and general statement.

Experiment Question Lesson Learned

20-21 Can we improve results by com-
bining the source file comment and
problem report based features
using the Union method?

The resulting classifiers are more dominant than source file
comment features classifiers, but for most skewness ratios
are less dominant than problem report features classifiers.
This is the case whether we combine all the features in the
sets or only the ones that were used in problem report or
source file comment based classifiers. Decision trees
generated are also larger than the ones generated from
problem report feature set.

159

 Chapter 5

 Conclusion and Future Work

5.1 Summary and Concluding Remarks

 The aim of this research was to investigate the potential use of applying machine learning

techniques to software maintenance and, more specifically, to daily source code

maintenance. This is a research area that has been for the most part ignored by

researchers in both communities. Therefore, the question of whether one can learn a

useful model for maintenance purposes was an open one.

 This research was performed as part of a larger research project one of whose goals was

to produce tools and techniques to improve the productivity of software developers at

Mitel networks. During this work, we came across issues that we believe also occur in

other large legacy software systems. We observed that:

• The legacy system that was the subject of our research consists of thousands of files

• Due to factors such as size, complexity, age, staff turnover and other themes

commonly occurring in most legacy systems there is no single person who knows the

whole system well.

• There is no common and agreed-upon view of the systems, its components, and

relations between them. This is true both in an abstract level or low level such as files

or routines

160

• It takes a considerable amount of time for a new developer to create his or her mental

model of the relations among entities in the system; and such a model most of the

times is incomplete and is based upon localized and limited exposure to certain

portion of the source code

• The official documentation is out of date and the source code is viewed as the most

reliable document of all.

 In such a setting, finding nontrivial and useful relations among different entities in the

software system is highly desirable.

 As we became more familiar with the software maintenance procedures at Mitel

Networks we came to know about their bug tracking and source code management tool

called SMS. Again, although SMS is used at Mitel, it is at the same time an example of a

typical tool found in many organizations that deal with legacy systems on a daily basis.

Software engineers use this system to record problem reports and updates that are applied

to the source code to address the reported problem. Upon further investigation we found

that a fairly large percentage of updates (about 43% in the particular subset we used in

our research), cause more than one file to change as a result of an update. This

observation was a motivation for us to formulate a learning task which attempts to learn

models or classifiers that given any two source files in the system predict whether a

change in one file may also impact the other file, thus requiring a change in it. This in

effect is learning from past maintenance experience by mining the records of

maintenance activity. Our assumption regarding the usefulness of such a classifier was

further strengthened by our discussions with software engineers at Mitel Networks who

showed strong interest in having such a capability.

 We refer to this model, which is learned from past maintenance experience and maps two

files to a true value if they may be updated together, as the Co-update relation. We

further observed that such a classifier or model is an instance of more general classes of

relations among entities in a software system that map them into a value which we call a

relevance value. The general concept of a Relevance Relation and its subclass

161

Maintenance Relevance Releation, along with the definition of the Co-update relation are

presented in Chapter 1.

 The general idea of this thesis was therefore to use the data stored in SMS to learn a

Maintenance Relevance Relation in some form. At the outset of this work two decisions

have set the scope and context of the thesis. Firstly, the focus was to be on the Co-update

relation as a simple from of the Maintenance Relevance Relation. Secondly, it has been

decided to cast the relevance prediction problem as a classification problem. The latter

decision was due to the fact that classifier induction is without any doubt the best

investigated branch of machine learning, providing the most robust tools and in many

cases producing comprehensible67 resulting models.

 As is the case in any supervised learning task, we first need to find instances of the

concept that we would like to learn. In the case of the Co-update relation we needed to

label pairs of files as relevant or not relevant i.e.; whether or not a change in one file may

require a change in the other file. Due to software engineers’ time constraints it was not

possible to ask them to label the examples for us. Therefore we had to find a way to

automatically label the examples. This was done by introducing the Relevant and Not

Relevant labeling heuristics, as was discussed in Chapter 3. The implementation of these

heuristics required extracting raw information from SMS by using a variety of queries

and further processing of the query results.

 While the labeling heuristics freed us from the time constraints of software engineers,

they magnified an inherent difficulty in this particular learning task. That is, there are few

orders of magnitude fewer examples of the interesting class i.e., when two file are

changed together, as there are examples of the less interesting class. This class skewness

phenomenon is one of the major problems in machine learning, and as yet there are no

definite solutions to address it. Skewness also poses practical difficulties such as

hardware limitations. For instance an example with 17 syntactic attributes on average

67 Comprehensibility of a model is understood as the ability of comprehending the model using the terms
and concepts of a given domain [Nedellec 1995]. It is clear that if the model is to be used by professionals
in any given field to assist their decision making, comprehensibility is a very important requirement. We
can observe that models produced by statistical methods, e.g. regression, do not satisfy the
comprehensibility requirement.

162

needs more than 90 bytes to store. An unconstrained labeling heuristic could generate in

excess of 10 million file pairs, which would require close to one gigabytes of storage

space. If we were to use file comment words as attributes, this space requirement would

soar to more than 21 Gigabytes. Until recent advances in storage technology have made

large size hard disks more affordable, storing files of this size was not practical.

Furthermore, even if we can afford to store these datasets, creating them and learning

from them still pose extreme constraints on other resources such as CPU time.

 Therefore we had to take further steps to reduce this imbalance among examples. We

approached this in two ways:

1. By reducing the number of examples, (especially of the less interesting class) by

means such as applying restrictions on the type of the acceptable source files, or using

combinations of file pairs as opposed to permutations. These have been further

discussed in Section 4.4.

2. By learning from less balanced training sets. After performing a variety of

experiments we decided to use an 18 point skewness setup which can provide us with

a reasonably good understanding of the effects of learning from less balanced training

sets, while still making the experiments computationally viable.

 The real world nature of our research imposed yet another restriction on field testing and

the evaluation method. That is, we could not simply give software engineers any model

and ask them to provide their feedback regarding its usefulness. Indeed practically there

are a limited number of times that one can do these field tests and the lack of success

typically creates negative impressions that make further evaluations even more difficult.

Therefore we had to verify empirically i.e., by way of properly created testing datasets,

the goodness of our classifiers. For this we used a widely accepted method known as the

hold out method68.

 We also investigated the use of precision, recall and F–measure graphs to compare

classifiers, but we found that in many cases a better plot of one measure did not translate

68 An alternative chronological splitting method in which we learn from data related to time period t1-t2 and
test on data related to time period t3-t4, where t3> t2 is presented in Appendix B.

163

to a better plot in other measures too. We decided to use the ROC plots as our main

visual comparison tool for the goodness of the classifiers for the following reasons:

• They are intuitive and easy to understand

• They depict two important measures, the true positive rate (which is the same as the

recall of the positive class) and the false positive rate in the same plot.

• It is possible to create new classifiers with predefined true and false positive rates by

combining the classifiers in an ROC plot.

 We want to emphasize that, as is invariably the case in the use of data mining on massive,

real-life datasets, the data preparation activities (including storing, cleaning, analyzing,

selecting, and pre-processing the data) took very considerable time while producing

limited results. These activities are, however, a necessary requirement before building

models, which in turn produce interesting results worthy of research analysis and

discussion.

 In Chapter 4, we presented the results obtained from our experiments. Unless stated

otherwise, each ROC plot in this chapter corresponds to 18 individual training and testing

experiments. We created classifiers using mostly syntactic attributes shown in Table 4.5.

Using the hold out splitting method69 we investigated:

• The effect of limiting group size of updates used in our experiments.

• The effect of creating multiple copies of the examples of the Relevant class versus a

single copy when two files were changed together as a result of more than one update.

• The effect of using 1R which is a less sophisticated algorithm compared to the C5.0

decision tree inducer, to verify the complexity of the learning task and further justify

the use of C5.0.

• The effect of removing class noise from the training examples. We compared the

results obtained for the single and multi-copy approaches.

69 As discussed in Appendix B, other experiments were performed to investigate the chronological splitting
method. We also experimented with the Set Covering Machine algorithm as was discussed in section 4.4.2.

164

• The effect of discretizing numeric attributes and the interaction with the class noise

removal procedure. We compared the results of two different sequences of

discretization and noise removal.

 We also performed experiments that used text based attributes using the bag of words

representation. We investigated:

• The effect of using file comment words.

• The effect of using problem report words.

 For both groups of experiments above we experimented with and without allowing

unknown values for attributes.

 Furthermore we experimented with mixed attribute models by creating models based on

• Juxtaposition of words used by comment word classifiers and syntactic attributes

• Juxtaposition of words used by problem report word classifiers and syntactic

attributes

• Juxtaposition of words used by problem report and comment word classifiers

• The union of problem report and comment words.

• The union of words used by problem report and comment word classifiers

 For all of the above experiments we provided a comparison of model complexity in terms

of the size of decision trees generated. For more interesting and promising results we

further analyzed and reported the makeup of the decision trees in terms of attributes used.

 In general one can draw the following conclusions from the above experiments.

• Syntactically based models, despite providing interesting precision and recall values,

and capturing non trivial relations between source files, are far from being viable for

daily practical use in software maintenance. The main problem with these models is

that to obtain better precision measures one has to accept a very large reduction in

recall measures.

165

• The text based models for all interesting skewness ratios and precision and recall

values outperform the corresponding syntactically based models. The problem report

based classifiers are far superior to the corresponding syntactic and comment based

classifiers.

• The comment word based models tend to be more complex than their corresponding

syntactic classifiers. However, interestingly, the problem report based classifiers are

less complex than the classifiers built with syntactic attributes. Although, as was

shown in Chapter 4, one can reduce the complexity of syntactically based models by

discretizing numeric attributes.

• By combining syntactic and used comment word attributes we can learn models that

outperform both comment word based and syntactic attributes, but combining

syntactic attributes with problem report based attributes only improves the results for

lower skewness ratios that correspond to less interesting precision and recall values.

• Combining problem report and comment word attributes as was done in this thesis

does not improve the results obtained for problem report based models.

• The precision and recall values obtained for higher skewness ratios using problem

report based attributes shows that one can create models that are highly desirable.

 Thus we have been able to show that by mining past software maintenance records one

can learn interesting Maintenance Relevance Relations. The empirical evaluation of these

models indicate that such classifiers are very good candidates for practical use in a real

world setting.

5.2 Future Work

 Although this thesis has shown the potential value of applying machine learning

techniques to source code level software maintenance, it also opens the door for other

exciting research topics. As far as we are aware, this thesis is one of the first applications

of machine learning techniques to a large scale legacy system that focuses on source code

level maintenance activities. We realize that we have only managed to scratch the surface

of a very rich research domain. One we believe is worthy of dedicating more research

effort by us and others in the software maintenance and machine learning communities.

166

We foresee the following research directions that are immediate follow up steps to what

is presented in this thesis.

• Field testing the learned models. While learning and analysis of a maintenance

relevance relation may result in findings that are academically valuable, we would

also like to see the effects of its use in a real world setting. We plan to integrate the

generated classifier with TkSee and deploy it in our industrial partner’s site. In an

ideal setting, one could follow an experiment setup and evaluation process which

would:

ß Choose two groups of software engineers at the same level of familiarity

with the target software system. One group would use the deployed

classifier in performing the given tasks and the other group would not use

this classifier.

ß Choose a statistically significant number of maintenance tasks, and give

them to individual software engineers in each group.

ß Gather appropriate statistics such as time spent on the given task, number of

misses and hits among the files browsed by individuals of each group, etc.

ß Analyze the gathered statistics and draw a conclusion

In practice however, such evaluation process is not feasible at our industrial partner’s

environment70. A more practical course of actions would be to allow software

engineers to use this facility over a reasonable period of time, and then gather their

opinion about the feature in the form of a questionnaire. Questionnaires can also be

used alternatively by selecting a set of files of interest {f1,…, fn} and sets of other files

{ S1,…, Sn } and asking software engineers to rank each file in Si in terms of its

relevance and usefulness with respect to fi . Then proceed with classifying the

relevance of each fi to the members of Si using the learned maintenance relevance

relation, and analyze these results. A sample questionnaire is provided in Appendix

D.

70 We seriously doubt that it will be feasible in any real world corporations, as it is very demanding on
valuable resources such as software engineers, time, budget etc.

167

• Experimenting with other attributes such as substrings in file names, or other

variations of syntactic or SMS based attributes

• Investigating alternative methods to reduce the size of the majority class and other

techniques to learn from imbalanced data sets [AAAI 2000].

• Using alternative learning methodologies such as Co-Training [Blum and Mitchell

1998] as alternatives to example labeling heuristics. For instance, in the case of

Co-training, we could start with a set of Relevant examples labeled by the Co-update

heuristic, and a smaller set of Not Relevant examples provided by software engineers.

We then would proceed to generate unlabeled examples by pairing randomly selected

files in the system. Using classifiers based on problem report words, file comment

words, or syntactic features we could classify a desired number of unlabeled

examples and add them to the pool of labeled examples, and retrain the classifiers

using the new set of labeled examples. This process is repeated as long as better

results are achieved.

• Experimenting with methods that learn from only one class e.g. training an

autoassociator [Japkowicz 2001]. In our case the single class to learn from is the

Relevant class.

• Experimenting with methods that generate a probability estimation of the relevance

e.g. probability estimation trees [Provost F and Domingos 2000]. Such methods can

provide a ranking among files classified as being Relevant.

• Experimenting with cohesion/coupling measures [Briand et al 1999][Allen et al 2001]

to predict the relevance as an alternative to learning and comparing the results.

• Performing further empirical analysis of the generated classifiers in terms of their

usefulness. One way to do this is to define a cost-benefit model [Briand et al 2002].

For this we need to associate different costs to misclassifications made by the

classifier or the number of files suggested by the classifier as being relevant to a file.

The thinking here is that a classifier that makes many errors or suggests too many

files as relevant may not be tolerated by the user. We should also express the gains

associated with using the classifier when it makes correct predictions. Once such a

cost-benefit model is defined one can calculate the benefits, if any, of using the

classifier under different parameter settings (or assumptions) of the cost-benefit

168

model. The results may be used to decide whether a classifier should be deployed in

the field, or whether further work is needed to generate a classifier whose behavior is

deemed acceptable according to the chosen setting of the cost-benefit model.

Many inductive learning algorithms including C5.0 have tunable parameters that

allow the user to specify the misclassification costs for each class. One could use such

a parameter to generate a classifier that is better suited for the chosen cost-benefit

model.

• Experiment with other noise removal techniques.

• Further improving the attribute creation process for text based attributes by refining

the word filtering lists and employing more sophisticated natural language processing

and information retrieval techniques.

• Experimenting with feature selection methods to create classifiers with better

predictive quality.

• Experimenting with techniques that simplify the generated models e.g. decision tree

pruning.

• Mining the software maintenance records to extract other interesting relations and

models. For instance models that can classify a new problem report as belonging to

one or more of a set of predefined problem types

• Using open source software as an alternative to proprietary legacy software. There are

many relatively large open source programs that have gone through many years of

maintenance. Developers of such software tend to keep a record of changes applied to

the source code in response to different maintenance requests. By using such freely

available products, we could expand our research and apply the ideas presented in this

thesis to other software systems.

• Using the learned co–update relation in other applications such as clustering to find

the subsystems in the legacy system.

169

Appendix A

 A Three-Class Learning Problem

In this appendix we discuss a three class formulation of learning a maintenance relevance

relation. The new class is Potentially Relevant. As the name suggests this is a category

between Relevant and Not Relevant classes. In the following sections we discuss

additions and changes to the two class learning task discussed in the thesis to incorporates

this new class.

A.1 Heuristics Based on User Interactions

Objects classified as Potentially Relevant, in training or testing examples, are extracted

from the information logged during software engineers work sessions with TKSee. The

motivation behind introducing this new class is to:

• In a non-intrusive manner, incorporate some of SE’s knowledge and experience into

the task of labeling examples

• To act as a mean, to reduce the number of examples mislabeled by the Not Relevant

heuristic that is the consequence of lack of information regarding Relevant examples.

In section A.7 we describe the format and the nature of information logged by TKSee.

The steps in the process of creating Potentially Relevant examples are

170

• Collecting the result of software engineers interaction saved in multiple log files

• Cleaning the log file

• Dividing the cleaned log into individual user sessions

• Semi-Automatically extracting pairs of Potentially Relevant files by applying the

heuristics to user sessions.

In the following sections each of the above steps are discussed in more details.

A.2 Collecting the Result of Software Engineers Interactions

Definition: Checking a Software Unit (SU) e.g. a source file, means studying its source

code. This activity will not initiate further investigation of other SUs.

Definition: Exploring an SU means studying its source code and investigating other SUs

as the result of this study. This is equivalent of checking an SU followed by initiating

more queries regarding that SU.

Definition: Any SU which is returned as a result of a query but is not checked is ignored.

Definition: SE stands for Software Engineer. SE Interaction means the way that a

software engineer works with TKSee . In our research context this means checking,

ignoring, or exploring SUs.

The TKSee program has been instrumented to log SE interactions during their work. It

uses the logging mechanism interface already in place at Mitel Networks. This covers all

the functionality available to the SE through the program user interface. The log files

from different users are collected into a single log file. While it is possible to log

everything that is presented to the TKSee user, i.e. the SE, doing so has two drawbacks:

• It degrades TKSee's response time

• It uses considerable amount of disk space

For these reasons, only a minimal amount of information is logged. The logged

information is enough to allow us recreate what user actually has seen while working

with TKSee. The detailed format of the log file is presented in Table A.1.

171

A.3 Cleaning the Log

Usually the log file obtained in the previous step contains unwanted entries. Examples of

such entries are those that belong to TKSee developers. During continuous process of

maintaining TKSee, the log files contain entries that are generated when the TKSee

maintainers test the system. Also some sessions are purely demonstrative, and do not

represent software engineer's real pattern of work. Such entries are not informative for

our research, and most probably will introduce noise to the training sets. Before breaking

the log files into sessions these entries should be removed.

A.4 Dividing the Logs into Sessions

The log file is a collection of log lines that belong to multiple sessions and multiple users.

It must be divided into separate user sessions. A session starts when a user launches

TKSee. It ends when the user exits TKSee. All logged user interactions between session

start and end constitute what is known as a user session.

The program that breaks a log file to its sessions must be able to handle at least the

following scenarios:

• Multiple SEs may be working with TKSee at the same time

• An SE may be running more than one TKSee session at the same time

Our session extractor program does this automatically except when it can not locate the

start or end line of a potential session. This seems to be due to a possible error in the log

file creation process, which is a factor out of our control. While it was possible to attempt

to automatically insert these missing lines in the log file, the approach chosen here was to

stop the session creation process and provide the person in charge of creating the sessions

with a list of missing start or end lines and allowing him or her to insert these missing

lines. The reason for this is to reduce the possibility of introducing noise in the training

data due to improper handling of errors in the log file. This has also allowed us to

incrementally incorporate our findings about the structure of the log file into session

creation program.

172

A.5 Extracting Pairs of Potentially Relevant Software Units

Not every session is useful for our research. We are interested in sessions that are

considered informative. While whether a session is informative or not directly depends

on the heuristic applied to the session, in general, an informative session has the

following characteristics:

• Involves more than one SU

• Includes exploring at least one SU

The process of selecting informative sessions can be speeded up by automatically

filtering out the sessions which do not include informative log commands; i.e., command

used in checking an SU or commands used when exploring an SU. Also, as one studies

different sessions some less useful usage patterns emerge. This knowledge can also be

used to automatically discard non-informative sessions. At this time we are considering

the usage of a simple heuristic, called Co-presence Heuristic defined below, in

identifying Potentially Relevant SUs. The sessions that Co-presence Heuristic is applied

to them can be automatically identified, however in general there could be a need for a

human to read the potentially informative sessions and make the decision whether they

are informative or not. A session in its raw form is not very easy to read for humans. For

this reason, we have developed a script that converts a session in its raw form to an

annotated session that is more readable for humans.

Co-presence Heuristic: Two SUs are Potentially Relevant, if they have been both

checked in the same session.

Motivation: Since logged information are generated while programmers are traversing

SSRG, this heuristic is capable of capturing static relations among software entities in the

system. Furthermore, it can capture non-static relations e.g., semantic relations or design

decisions, as the programmer traverses sub-graphs in SSRG that are not connected. This

in effect allows capturing part of developer’s background knowledge, which does not

directly map to static relations in the source code.

173

A.6 Example Label Conflict Resolution71

 An example label conflict occurs in the following cases72:

• the same pair of files is assigned different labels

• attribute values for two distinct pairs of files, which are assigned different label, are

exactly the same.

 We will discuss the first case here. The treatment of the second case for a two class

learning problem is covered in Chapter 4, and the same method is applicable for the three

class learning problem.

 As was presented in the previous section and Chapter 3, the labels assigned to examples

are suggested by heuristics. Since different heuristics may assign different relevance class

to the same pair of SUs, one should provide a scheme to resolve the possible conflicts.

Based on the definitions of our heuristics given above we propose the following conflict

resolution strategy.

 Relevant/Potentially Relevant Æ Relevant

 Not Relevant/Potentially Relevant Æ Potentially Relevant

 In other words the Co-update heuristic suggesting the Relevant class has precedence over

the Co-presence heuristic suggesting the Potentially Relevant class, and in turn the

Co-presence heuristic has precedence over the Not Relevant heuristic.

A.7 Format of log files

A log file consists of a set of log lines, each of the following format:

Month Day Time Host Tag PID User-name Program-name Architecture Extra-info

The description of each field is presented in Table A.1

 71 Unless stated otherwise, example refers to both training and testing examples.
 72 This is also known as class noise.

174

The Program-name and Extra-info fields above show the action performed by the TKSee

user and other information relevant to a particular action. Table A.2 below, shows the

codes used to represent these actions, their meaning and the additional information

logged with each action.

Table A.1 Format of the Log Lines

Field Description

Month Month in which the log line was recorded
Day Day in which the log line was recorded
Time Time in which the log line was recorded (HH:MM:SS) format
Host Name of the host on which TKSee was running
Tag Tool-start: except the last line of a session, in which case it is Tool-stop:
PID Process ID of running TKSee program or its parent process ID
User-name The name of the user who was using TKSee
Program-name This is a command name to indicate different user actions (see table B for a complete

list of possible commands)
Architecture Hardware architecture
Extra-info Variable depending on program-name

Table A.2 Log Commands and their Meaning

Log command Description Argument(s)

Database related

tkseeLoadDB Load database Database path
tkseeDefaultDB Default database Loaded Database path
Global pattern matching searches
tkseeGlFile List files matching pattern Pattern
tkseeGlRtn Routines matching pattern Pattern
tkseeGlIdent List identifiers matching pattern Pattern
tkseeGlGrep Global grep Pattern

Search Expansion for Files
tkseeExFileInced Included files File path
tkseeExFileIncing Files that include me File path
tkseeExFileRtn Routine in me File path

Search Expansion for Routines
tkseeExRtnCalled Routines I call Routine path
tkseeExRtnCalling Routines that call me Routine path
tkseeExRtnCalledTree Routines I call Tree Routine path
tkseeExRtnCallingTree Routines that call me Tree Routine path

Search Expansion for Identifiers
tkseeExIdFile Files using me-identifier Identifier name
TkseeExIdRtn Routines using me-identifier Identifier name

175

Table A.2 Log Commands and their Meaning (Continued …)

Log command Description Argument(s)

Default
TkseeExDefVariable Defined variables A file or routine path
TkseeExDefProblem Reported problems A file or routine path
TkseeExDefActivity Referred activities A file or routine path
tkseeExDefTechnical Referred technical terms A file or routine path
TkseeExDefGrep Grep within selected item Regular expression
tkseeExDefAutoGrep Grep selected item within the

immediate container in the search
tree

Regular expression

History file management
TkseeHistFileNew New history file
TkseeHistFileSave Save the current exploration a file path
TkseeHistFileOpen Open a history file a file path

History state management
TkseeHistStateAdd Add new state a string describing

the state
TkseeHistStateDel Delete state a history entry
TkseeHistStateName Change state name a string
tkseeHistStateBrowse Browse history entry a history entry

Source File commands
TkseeSrcInfo Information about selected item a string
TkseeSrcSearch search for text type of the source

search pattern
start location
searched entity name

TkseeSrcLine Go to line window
 line number

Hierarchy window management
tkseeDelSublist Del subhierarchy entry
TkseeDelSelected Del selected item in the hierarchy list entry
TkseeHierBrowse Select an item in hierarchy list type

path to the entry

The following is an example of a log line generated when a user asked to see all routine

names which start with DNIC_ . Please note that the user ID is in encrypted form.

Jun 5 15:50:06 sten14 tool_start: 17953 IusPz72B3Rg tkseeGlRtn sun4 DNIC_*

177

Appendix B

 An Alternative to the Hold Out

Method

Experiments presented through section 4.5 to 4.11 all employ a training/testing splitting

approach called the hold out method. The hold out method is one of the well known

hypothesis evaluation methods in machine learning. In Chapter 4 we created a global set

of all Relevant and Not Relevant pairs for 1995-1999 time period and randomly split

them to two parts with 2/3 and 1/3 ratios for training and testing. In other words in both

training and testing repositories an example could be based on an update in any of the

years in the above time period.

In this Appendix we present results obtained from an alternative splitting method that we

refer to as the chronological splitting method. In chronological splitting we learn from

examples generated from the data collected for a certain number of years, and then test on

the examples generated for a time period that chronologically follows the training time

period. One potential benefit of such a method is that it can better simulate the

application of a classifier after deployment in the field.

In sections B.1 and B.2 we present eight different setups for training and testing

repositories using chronological splitting. In section B.3 we compare the results obtained

178

from experiments that employ these setups using precision, recall and F1 measure plots.

In section B.4 we compare results obtained from chronological splitting to the ones

obtained from the hold out splitting method. Finally in Section B.5 we provide a

summary of the observations made from these experiments.

The definitions of precision, recall and F-measure can be found in section 3.2.2.3 titled

“Evaluating the Usefulness of the Learned Concept”. For the definition of the

abbreviations used in this appendix please consult section 3.2.1.2.3 titled “Heuristics

Based on File Update Information”

B.1 Basic Training and Testing File Pairs

Similarly to experiments in Chapter 4 the pairs of files used in the experiments reported

in this Appendix is limited to Pascal source files (.pas, .typ, and .if extensions). There is

also a chronological order between the set of training and testing pairs, in which the set of

testing relevant pairs (TSSR) is generated from updates that were closed after the updates

from which the set of training relevant pairs (TRSR) was generated. This in effect allows

us to generate a testing repository that consists of Relevant examples that chronologically

follow the Relevant examples in the training repositories The set of Not Relevant

examples for each repository is generated from the Relevant examples in the repository

following the Relevant Based method discussed in section 4.4.1.

We generated a basic set of training Relevant file pairs by processing the update records

in SMS. The group size was limited to 20 (G20), and the updates were limited to the

1997-1998 period. This will generate a TRSR,20,1997-1998 of size 1642. Following the

Relevant based method to create the set of training Not-Relevant pairs, we pair each

Pascal (.pas) file which appears as the first element of a Relevant file pair in TRSR,20,1997-

1998, with all other Pascal files (.pas, .typ, .if) in the system, and then remove elements of

set SR,NGSL,1995-1998 i.e., the set of all Relevant file pairs within the 1995-1998 time period

with no imposed group size limit. This provides a larger window of time to extract

relevant pairs and, of course, includes TRSR,20,1997-1998. This is the set generated by

dnrp(SR,20,1997-1998, PAS, SR,NGSL,1995-1998). The number of pairs in the generated TRSNR is

749,400. In effect, we have tried to generate the Relevant pairs subset from the data that

179

is chronologically very close to the testing set. By doing so, this subset reflects a state of

the software system that is close to the state of the software system from which the

testing set was generated.

The basic set of testing Relevant file pairs, TSSR, is generated by processing the update

records in SMS for 1999. The group size is limited to 20. There are 1853 pairs of files in

TSSR,20,1999. To create TSSNR, we apply dnrp(SR,20,1999, PAS,Ø). The motivation behind

this setup is to asses the accuracy of the learned classifier in suggesting relevant files, in

comparison with the actual files changed in the time period covered by the testing pairs.

B.2 Alternatives to Basic Training and Testing File Pairs

B.2.1 Alternative to the Training Set

One obvious alternative to the basic training data set, TRS, is to not limit TRSR to a

specific group size such as 20 i.e., generate TRSR,NGSL,1997-1998 instead. The motivation

here is to increase the number of known Relevant pairs in the training set. This perhaps

could allow us to learn from larger instances of files being Relevant to each other.

Similarly, one can argue that by limiting the set of relevant pairs in the testing data set to

a group size of 20, one is ignoring a subset of all Relevant pairs in 1999 and furthermore,

mis-labeling them as Not Relevant. Therefore another alternative is to use TSSR,NGSL,1999.

Also, when it comes to removing known Relevant pairs from Not Relevant pairs in the

testing set, one can argue that not removing the Relevant pairs in SR,NGSL,1995-1998 adds to

the number of mis-labeled pairs, because we already know that pairs in this set have been

Relevant to each other in the past. However, by doing so we are evaluating our classifiers

with a less rigid criterion compared to the basic testing set, because the testing set is

incorporating knowledge from past data.

Table B.1 shows the alternatives in creating the training and testing sets that we have

experimented with. Each entry representing an experiment consists of two lines. The first

line represents the training repository pairs, while the second line represents the testing

repository pairs. The first and second columns in the table describe the Relevant, and Not

Relevant pairs in each data set, and the third column shows the count and the ratio of

180

Relevant pairs over Not Relevant pairs, which indicates the degree of imbalance between

classes in the repository. The first entry in Table B.1 describes the basic training and

testing pairs, as discussed in section B.1 above. If an entry is left blank, it means that the

entry is the same as the one above. For instance, both rows in the second entry of the

table under the Relevant column are empty, which means that they are the same as the

first entry of the table under the same column i.e. the training and testing Relevant pairs

in experiment 2 are the same as the training and testing Relevant pairs in Experiment 1

(the basic setup). Similarly, the set TRSNR for the second experiment is the same as

TRSNR in the first experiment, but TSSNR in the second experiment is generated by

dnrp(SR,20,1999, PAS, SR,NGSL,1995-1998) as opposed to dnrp(SR,20,1999, PAS, Ø) in the first

experiment.

Table B.1 Alternatives to Basic Training and Testing Pairs

Relevant Not Relevant #Relevant/#NotRelevant

SR,20,1997-1998 dnrp(SR,20,1997-1998, PAS, SR,NGSL,1995-1998) 1642/749400 (0.002191086)

SR,20,1999 dnrp(SR,20,1999, PAS, Ø) 1853/1033181(0.00179349)

dnrp(SR,20,1999, PAS, SR,NGSL,1995-1998) 1853/989205(0.001873221)

SR,NGSL,1999 dnrp(SR,NGSL,1999, PAS, Ø) 14819/1367513(0.01083646)

dnrp(SR,NGSL,1999, PAS, SR,NGSL,1995-1998) 14819/1318619(0.011238273)

SR,NGSL,1997-1998 dnrp(SR,NGSL,1997-1998, PAS, SR,NGSL,1995-1998) 47834/1362003(0.035120334)
SR,20,1999 dnrp(SR,20,1999, PAS, Ø) 1853/1033181(0.00179349

dnrp(SR,20,1999, PAS, SR,NGSL,1995-1998) 1853/989205(0.001873221)

SR,NGSL,1999 dnrp(SR,NGSL,1999, PAS, Ø) 14819/1367513(0.01083646)

dnrp(SR,NGSL,1999, PAS, SR,NGSL,1995-1998) 14819/1318619(0.011238273)

181

B.3 Precision, Recall and F-Measure Comparisons

In this section we present plots that show the resulting precision, recall and F-measures of

Relevant pairs for each one of the above training and testing repositories. For each file

pair, we calculated the values corresponding to 17 syntactic attributes shown in Table

4.24.

Following our general approach of learning from training sets with different Not Relevant

to Relevant ratios, we have created training sets which use all the Relevant examples in

the training repository, and sample in a stratified manner from the Not Relevant examples

in the training repository, to create the desired class ratios. We use the same 18 ratios

used in experiments in Chapter 4. Classifiers generated from these training data sets are

tested using all the examples in the testing repositories discussed above.

 Figure B.1 Effect of Different Test Repositories on the Precision of the Relevant Class Using
1997-1998 G20 Training Sets

Figures B.1, B.2 and B.3 show the plots generated for SR,20,1997-1998 » dnrp(SR,20,1997-1998,

PAS, SR,NGSL,1995-1998) file pairs used for TRS. In other words we fixed the training data

set to the one created by limiting the updates to a group size of at most 20 files, and

182

experimented with four different ways of creating the testing repository as is shown in the

first four entries in Table B.1.

Figure B.2 Effect of Different Test Repositories on the Recall of the Relevant Class Using 1997-1998
G20 Training Sets

Figure B.3 Effect of Different Test Repositories on the F1 Measure of the Relevant Class Using
1997-1998 G20 Training Sets

183

Figure B.1 shows that correcting the 1999 testing sets by removing known Relevant pairs

in period 1995-1998 from the testing Not Relevant pairs improves the precision of

generated classifiers. This is the case independent of the group size of updates used for

the 1999 period. We observe that the precision of the Relevant class tends to increase

with the increase of imbalance in the training sets

As one would expect, correcting the testing Not Relevant examples will not effect the

recall of the Relevant class. This can be seen in recall plots of Figure B.2. However we

also observe that the recall values are much better when the testing set is built from

updates with a group size limited to 20 files. The recall of the Relevant class tends to

decrease as the imbalance in the training sets increases.

The overall improvements can also be observed in F1 measure plots shown in Figure B.3.

Improving precision values has resulted in better F1 measure plots for corrected test sets.

We also observe that the F1 measure in general tends to increase with the increase in the

imbalance in the training sets. However, when the group size of the updates used to

create the testing examples is unlimited, the peak is reached at about ratio 20.

The next three figures are generated for SR,NGSL,1997-1998 » dnrp(SR,NGSL,1997-1998, PAS,

SR,NGSL,1995-1998) file pairs used for TRS. In other words training from examples created

from updates with no size restriction. Once again we experimented with four different

testing repositories. These plots cover experiments 5 to 8 in Table B.1. From Figures B.4,

B.5 and B.6 we can make similar observations to what we made from Figures B.1, B.2,

and B.3.

184

Figure B.4 Effect of Different Repositories on the Precision of the Relevant Class Using 1997-1998
NGSL Training Sets

Figure B.5 Effect of Different Test Repositories on the Recall of the Relevant Class Using 1997-1998
NGSL Training Sets

185

Figure B.6 Effect of Different Test Repositories on the F1 Measure the Relevant Class Using
1997-1998 NGSL Training Sets

We also compared the best results obtained from Figures B.1, B.2 and B.3 to the

corresponding best results obtained from Figures B.4, B.5, and B.6. These comparisons

are shown in Figures B.7, B.8, and B9 respectively.

Figure B.7 shows that one can obtain better precision results by not limiting the size of

updates used to create the training repository.

Figure B.8 suggests that one can obtain better Recall values by limiting the size of

updates used to create the training repository to 20.

Similar to Figures B.3 and B.6 in Figures B.9 the F1 measures follows a behavior similar

to precision. In this case we obtain better results if we do not restrict the group size of the

updates used in creating the training repository.

186

Figure B.7 Comparison of the Best Precision Results in Figures B.1 and B.4

Figure B.8 Comparison of the best Recall Results in Figures B.2 and B.5

187

Figure B.9 Comparison of the Best F1 Measure Results in Figures B.3 and B.6

B.4 A Hold Out Evaluation Approach

Chronological splitting assumes a reliable date stamp for each update. According to SMS

documents once an update is assigned a closed state it cannot be further manipulated.

This means that the date associated with the last state of the update is also frozen. We

used this property of the updates to create a chronological splitting of the training and

testing data sets. We performed all the experiments reported above based on the

assumption that the SMS date stamps were reliable. However, at a later point during our

research we came across discrepancies in some of the closed updates’ date stamps. We

reported these discrepancies to support personnel at Mitel Networks. Upon further

follow-ups we were advised that indeed our suspicion regarding the inaccuracy of some

of date stamps were correct. What this meant was that we could not reliably split the data

based on these date stamps and there would always be some randomness in the training

and testing repositories in terms of dates. In other words we could not guarantee the

chronological independence. Therefore we decided to use the better known hold out

method that randomly splits the data into training and testing sets.

188

The experiments that we will discuss in this section correspond to the Base Experiments

1 to 4 discussed in section 4.5. However in this section we will compare the precision,

recall and F1 measure plots generated from the hold out splitting to the ones generated

from chronological splitting.

For ease of comparison, in Table B.2, we have duplicated entries in Table A.1, and added

two new entries at the end, describing the hold out training and testing repositories used.

The entries corresponding to the hold out method are shaded in gray. These setups

correspond to Base Experiments 1 and 2 shown in Table 4.23.

Table B.2 Alternatives to Basic Training and Testing Pairs (Extended Version)

Relevant Not Relevant #Relevant/#NotRelevant

SR,20,1997-1998 dnrp(SR,20,1997-1998, PAS, SR,NGSL,1995-1998) 1642/749400 (0.002191086)

SR,20,1999 dnrp(SR,20,1999, PAS, Ø) 1853/1033181(0.00179349)

dnrp(SR,20,1999, PAS, SR,NGSL,1995-1998) 1853/989205(0.001873221)

SR,NGSL,1999 dnrp(SR,NGSL,1999, PAS, Ø) 14819/1367513(0.01083646)

dnrp(SR,NGSL,1999, PAS, SR,NGSL,1995-1998) 14819/1318619(0.011238273)

SR,NGSL,1997-1998 dnrp(SR,NGSL,1997-1998, PAS, SR,NGSL,1995-1998) 47834/1362003(0.035120334)
SR,20,1999 dnrp(SR,20,1999, PAS, Ø) 1853/1033181(0.00179349

dnrp(SR,20,1999, PAS, SR,NGSL,1995-1998) 1853/989205(0.001873221)

SR,NGSL,1999 dnrp(SR,NGSL,1999, PAS, Ø) 14819/1367513(0.01083646)

dnrp(SR,NGSL,1999, PAS, SR,NGSL,1995-1998) 14819/1318619(0.011238273)

SR,20,1995-1999 dnrp(SR,20,1995-1999, PAS, SR,NGSL,1995-1999) 2251/817884(0.002752224)
1126/408943(0.00275344)

SR,NGSL,1995-1999 dnrp(SR,NGSL,1995-1999, PAS, Ø) 50836/1373131(0.037021959)
25419/686566(0.037023389)

In figures B.10, B.11, and B.12 we have compared the results of hold out method for

group size of 20, and NGSL with the best results shown in Figures B.7, B.8, and B.9

respectively.

189

Figure B.10 Comparison of the Best Precision Results in Figure B.7 and 2/3 - 1/3 Split

Figure B.11 Comparison of the Best Recall Results in Figure B.8 and 2/3 - 1/3 Split

In figure B.10 we have compared the precision of classifiers generated by the hold out

splitting to the best of the ones generated by chronological splitting. As can be seen in

this figure the best precision was obtained when we apply chronological splitting and

learn from updates without restricting the group size.

190

Figure B.11 shows that the best recall between chronological and hold out splitting

methods was obtained when we use the hold out splitting method and restrict the group

size of updates we learn from to 20 files per update.

Figure B.12 Comparison of the Best F1 Measure Results in Figure B.9 and 2/3 - 1/3 Split

The F1 plots in Figure B.12 show that for imbalance ratios above 20 the best results are

obtained when we use the hold out splitting method and restrict the group size of updates

we learn from to 20.

In all the above experiments, if two files were changed together as a result of N updates,

only one example with the class Relevant was generated. This method gives the Relevant

and Not Relevant classes the same weight. As was discussed in section 4.5.3 an

alternative method would be to generate as many copies of the Relevant examples for a

file pair (f1, f2) as there are updates which change f1 and f2 together.

Table B.3 describes the data sets that are generated by this alternative method. A bag of

Relevant pairs which allows repetition is shown as SR*. This table corresponds to Table

4.25 and the experiments using these alternative training and testing sets corresponds to

Base Experiment 3 and 4.

191

Table B.3 Training and Testing Sets Using the Hold Out Method with Repeated Relevant Examples

Relevant Not Relevant #Relevant/#NotRelevant

SR*,20,1995-1999 dnrp(SR*,20,1995-1999, PAS, SR,NGSL,1995-1998) 3031/817884(0.003705905
1516/408943(0.003707118

SR*,NGSL,1995-1999 dnrp(SR*,NGSL,1995-1999, PAS, Ø) 64448/1373131(0.04693507)

32225/686566(0.046936493)

Figures B.13, B.14, and B.15 compare precision, recall and F1 measures of classifiers

generated using datasets described in Table B.3 with the best results obtained using

chronological splitting.

Figure B.13 Comparison of the Best Precision Results in Figure B.7 and 2/3 - 1/3 Repeated Relevant
Split

192

Figure B.14 Comparison of the Best Recall Results in Figure B.8 and 2/3 - 1/3 Repeated Relevant
Split

Figure B.15 Comparison of the Best F1 Measure Results in Figure B.9 and 2/3 - 1/3 Repeated
Relevant split

Once again we observe that the hold out splitting method generated better results

compared to chronological splitting. Similar to results obtained in Figures B.10, B11. and

B.12 better recall and F1 measure values are obtained when we limit the group size of the

193

updates to 20, and better precision is obtained when the group size of the updates are not

limited.

B.5 Summary

From the above experiments we draw the following conclusions

• Removing known Relevant examples from the set of Not Relevant examples in the

testing data set always improves precision and recall of the Relevant class.

• Precision of the Relevant class increases as the ratio of the Not Relevant/Relevant in

the training sets increases. The improvement is due to decrease in the false positive

rate. In other words the number of mistakes made in classifying the Not Relevant

examples decreases.

• Recall of the Relevant class decreases as the ratio of the Not Relevant/Relevant in

training sets increase. In other words the number of correctly classified Relevant

examples decreases. This corresponds to the true positive rate of the relevant class.

• Overall best precision for the Relevant class is obtained when 2/3-1/3 split is

employed using SR*,NGSL,1995-1999 » dnrp(SR*,NGSL,1995-1999, PAS,∅)

• Overall best recall for the Relevant class is obtained when 2/3-1/3 split is employed

using SR*,20,1995-1999 » dnrp(SR*,20,1995-1999, PAS, SR,NGSL,1995-1998)

• For Not Relevant/Relevant ratios above 15, the best F1 measure is obtained when 2/3-

1/3 split is employed using SR*,20,1995-1999 » dnrp(SR*,20,1995-1999, PAS, SR,NGSL,1995-1998)

• As was shown in Table B.1 the chronological splitting creates a large number of

alternatives for training and testing data sets. This is due to the fact that the training

and testing repositories each can be created in four different ways. The hold out

splitting methods reduces the complexity because the training and testing repositories

are essentially drawn from the same population of examples.

• Using precision, recall and F measures as a visual tool to compare the performance of

classifiers is not always trivial. This is due to the fact that in most cases these

measures do not act in concert. In other words having better precision does not

always translate to having better recall. As was discussed above not limiting the

group size may generate a better precision but limiting the group size may generate

194

better recall. We would like to use a visualization tool that can show interesting

measures in one plot and also allow the comparison of different classifiers. ROC plots

as was discussed in Chapter 3 have these properties. Thus we chose to use them

instead of separate precision and recall plots. However, once a certain setup or ROC

plot is chosen as desirable one can use precision, recall and perhaps F measure plots

to further analyze the predictive quality of the classifiers.

195

Appendix C

Detailed Experiment Results

This appendix presents detailed data about experiments presented in Chapter 4. Each

table has a row for each Not Relevant to Relevant examples ratio used in the experiment.

Precision and recall values are shown for each class, while for the Relevant class, which

is the more interesting one, the true positive (TP) and false positive (FP) values are

presented. The last two columns show the error rate and the size of decision tree classifier

generated.

196

Table C.1 Detailed Data for Base Experiment 1 (Table 4.24 First Half)

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err Size

1 1.496 67.673 67.673 12.267 99.899 87.733 12.30 106
2 2.586 58.881 58.881 6.107 99.880 93.893 6.20 96
3 3.808 54.352 54.352 3.780 99.870 96.220 3.90 74
4 4.344 52.398 52.398 3.177 99.865 96.823 3.30 102
5 5.041 48.757 48.757 2.529 99.855 97.471 2.70 107
6 6.594 45.737 45.737 1.784 99.848 98.216 1.90 144
7 6.112 46.092 46.092 1.949 99.849 98.051 2.10 132
8 7.070 44.316 44.316 1.604 99.844 98.396 1.80 120
9 9.095 41.297 41.297 1.137 99.837 98.863 1.30 98
10 9.565 40.586 40.586 1.057 99.835 98.943 1.20 78
15 11.792 36.057 36.057 0.743 99.823 99.257 0.90 137
20 17.864 32.682 32.682 0.414 99.814 99.586 0.60 119
25 18.073 32.327 32.327 0.403 99.813 99.596 0.60 108
30 19.342 30.284 30.284 0.348 99.808 99.652 0.50 142
35 19.565 29.574 29.574 0.335 99.806 99.665 0.50 163
40 22.056 28.774 28.774 0.280 99.804 99.720 0.50 154
45 23.581 28.419 28.419 0.254 99.803 99.746 0.40 144
50 28.877 23.979 23.979 0.163 99.791 99.837 0.40 125

Table C.2 Detailed Data for Base Experiment 2 (Table 4.24 Second Half)

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 8.013 56.009 56.009 23.806 97.907 76.194 24.50 728
2 15.558 32.279 32.279 6.486 97.389 93.514 8.70 1148
3 20.819 24.859 24.859 3.500 97.198 96.500 6.10 1176
4 24.005 21.472 21.472 2.517 97.104 97.483 5.20 1063
5 27.437 18.655 18.655 1.827 97.024 98.173 4.70 1059
6 30.062 16.307 16.307 1.405 96.953 98.596 4.30 1118
7 34.881 13.533 13.533 0.935 96.870 99.065 4.00 1093
8 35.713 13.207 13.207 0.880 96.860 99.120 3.90 1045
9 37.649 11.704 11.704 0.718 96.812 99.282 3.80 1117
10 41.105 10.244 10.244 0.543 96.767 99.457 3.70 809
15 60.069 4.788 4.788 0.118 96.591 99.882 3.50 473
20 59.761 4.335 4.335 0.108 96.576 99.892 3.50 505
25 59.635 4.115 4.115 0.103 96.568 99.897 3.50 584
30 62.433 4.583 4.583 0.102 96.584 99.898 3.50 575
35 61.632 4.575 4.575 0.105 96.584 99.894 3.50 665
40 61.465 4.524 4.524 0.105 96.582 99.895 3.50 669
45 67.188 3.383 3.383 0.061 96.544 99.939 3.50 815
50 61.426 2.982 2.982 0.069 96.530 99.931 3.50 935

197

Table C.3 Detailed Data for Base Experiment 3 (Table 4.26 First Half)

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 2.217 76.451 76.451 12.499 99.900 87.501 12.50 127
2 4.061 69.261 69.261 6.066 99.879 93.934 6.20 139
3 5.788 62.929 62.929 3.797 99.857 96.203 3.90 138
4 7.093 60.422 60.422 2.934 99.849 97.066 3.10 152
5 8.576 57.916 57.916 2.289 99.841 97.711 2.40 183
6 10.037 55.475 55.475 1.843 99.832 98.157 2.00 140
7 12.057 53.628 53.628 1.450 99.826 98.550 1.60 167
8 12.882 52.243 52.243 1.310 99.821 98.690 1.50 174
9 12.220 52.639 52.639 1.402 99.822 98.598 1.60 188
10 14.518 50.726 50.726 1.107 99.816 98.893 1.30 195
15 19.065 49.208 49.208 0.774 99.811 99.226 1.00 218
20 23.384 46.306 46.306 0.562 99.800 99.438 0.80 224
25 26.644 42.216 42.216 0.431 99.785 99.569 0.60 233
30 29.995 42.678 42.678 0.369 99.787 99.631 0.60 219
35 34.507 39.446 39.446 0.278 99.775 99.722 0.50 211
40 38.124 37.269 37.269 0.224 99.767 99.776 0.50 180
45 39.095 38.193 38.193 0.221 99.771 99.779 0.40 196
50 38.838 36.609 36.609 0.214 99.765 99.786 0.40 218

Table C.4 Detailed Data for Base Experiment 4 (Table 4.26 Second Half)

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 12.192 56.881 56.881 19.229 97.556 80.771 20.30 1026
2 22.956 38.268 38.268 6.028 97.009 93.972 8.50 1576
3 29.242 32.770 32.770 3.722 96.827 96.278 6.60 1697
4 35.077 28.298 28.298 2.458 96.665 97.542 5.60 2039
5 39.403 25.719 25.719 1.856 96.569 98.143 5.10 1977
6 43.551 23.597 23.597 1.436 96.489 98.564 4.80 1861
7 46.568 21.958 21.958 1.183 96.426 98.817 4.60 2068
8 50.705 19.966 19.966 0.911 96.347 99.089 4.50 2015
9 52.855 19.047 19.047 0.797 96.311 99.203 4.40 1821
10 56.338 17.958 17.958 0.653 96.269 99.347 4.30 1903
15 69.463 13.412 13.412 0.277 96.084 99.723 4.10 1720
20 72.229 12.599 12.599 0.227 96.051 99.773 4.10 1664
25 73.188 12.223 12.223 0.210 96.035 99.790 4.10 1610
30 73.894 12.025 12.025 0.199 96.027 99.801 4.10 1507
35 77.156 10.355 10.355 0.144 95.957 99.856 4.20 2338
40 77.077 10.393 10.393 0.145 95.958 99.855 4.20 2346
45 77.820 10.725 10.725 0.143 95.973 99.856 4.10 2407
50 78.566 10.374 10.374 0.133 95.958 99.867 4.10 2287

198

Table C.5 Detailed Data for Experiment 5

Relevant Not Relevant Rule
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 1.163 49.142 49.142 15.484 99.777 84.516 15.60 10
2 3.061 37.203 37.203 4.368 99.757 95.632 4.60 4
3 5.563 31.926 31.926 2.009 99.743 97.991 2.30 2
4 6.776 30.013 30.013 1.531 99.737 98.469 1.80 2
5 6.776 30.013 30.013 1.531 99.737 98.469 1.80 2
6 8.153 28.166 28.166 1.176 99.731 98.824 1.40 2
7 8.153 28.166 28.166 1.176 99.731 98.824 1.40 2
8 8.153 28.166 28.166 1.176 99.731 98.824 1.40 2
9 8.153 28.166 28.166 1.176 99.731 98.824 1.40 2
10 12.756 21.768 21.768 0.552 99.709 99.448 0.80 2
15 15.357 19.459 19.459 0.398 99.701 99.602 0.70 4
20 19.773 18.404 18.404 0.277 99.698 99.723 0.60 4
25 29.878 16.161 16.161 0.141 99.690 99.859 0.40 2
30 30.715 14.446 14.446 0.121 99.684 99.879 0.40 2
35 30.715 14.446 14.446 0.121 99.684 99.879 0.40 2
40 35.094 13.588 13.588 0.093 99.680 99.907 0.40 2
45 35.094 13.588 13.588 0.093 99.680 99.907 0.40 2
50 38.020 12.665 12.665 0.077 99.677 99.924 0.40 2

Table C.6 Detailed Data for Experiment 6 (Single Copy Noise Removal)

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 1.520 79.749 79.749 19.156 99.907 80.844 19.20 71
2 2.176 72.230 72.230 12.036 99.883 87.964 12.10 116
3 4.876 65.435 65.435 4.732 99.866 95.268 4.80 94
4 5.422 60.686 60.686 3.924 99.849 96.076 4.10 147
5 8.587 58.179 58.179 2.296 99.842 97.704 2.40 140
6 8.688 58.575 58.575 2.282 99.843 97.718 2.40 147
7 11.003 52.375 52.375 1.570 99.821 98.430 1.70 168
8 10.904 53.298 53.298 1.614 99.824 98.386 1.80 146
9 12.095 53.496 53.496 1.441 99.825 98.559 1.60 159
10 15.111 48.681 48.681 1.014 99.808 98.986 1.20 122
15 19.770 45.383 45.383 0.683 99.796 99.317 0.90 163
20 22.832 43.074 43.074 0.540 99.788 99.460 0.70 170
25 25.889 39.842 39.842 0.423 99.776 99.577 0.60 158
30 30.729 38.918 38.918 0.325 99.773 99.675 0.50 162
35 32.678 37.269 37.269 0.285 99.767 99.715 0.50 187
40 35.919 36.346 36.346 0.240 99.764 99.760 0.50 192
45 40.819 34.169 34.169 0.184 99.756 99.816 0.40 156
50 44.982 33.707 33.707 0.153 99.755 99.847 0.40 163

199

Table C.7 Detailed Data for Experiment 6 (Multi-Copy Noise Removal)

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 2.217 76.121 76.121 12.445 99.899 87.555 12.50 165
2 3.345 71.306 71.306 7.638 99.885 92.362 7.70 213
3 4.683 66.491 66.491 5.017 99.869 94.983 5.10 193
4 6.433 61.807 61.807 3.333 99.854 96.667 3.50 197
5 7.621 60.884 60.884 2.736 99.851 97.264 2.90 195
6 8.153 59.301 59.301 2.476 99.846 97.524 2.60 234
7 9.239 58.245 58.245 2.121 99.842 97.879 2.30 254
8 10.256 54.947 54.947 1.782 99.830 98.218 1.90 244
9 10.638 53.760 53.760 1.674 99.826 98.326 1.80 253
10 11.767 52.243 52.243 1.452 99.821 98.548 1.60 240
15 16.234 48.681 48.681 0.931 99.808 99.069 1.10 257
20 20.444 45.515 45.515 0.657 99.797 99.343 0.90 265
25 24.337 43.602 43.602 0.503 99.790 99.498 0.70 259
30 28.392 41.821 41.821 0.391 99.784 99.609 0.60 243
35 30.561 40.963 40.963 0.345 99.781 99.655 0.60 245
40 33.963 39.116 39.116 0.282 99.774 99.718 0.50 256
45 36.742 39.578 39.578 0.253 99.776 99.747 0.50 245
50 35.938 38.522 38.522 0.255 99.772 99.745 0.50 270

Table C.8 Detailed Data for Experiment 8

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 2.046 77.111 77.111 13.684 99.902 86.316 13.70 101
2 3.918 67.744 67.744 6.158 99.873 93.842 6.30 108
3 5.622 63.457 63.457 3.949 99.859 96.051 4.10 103
4 7.043 59.697 59.697 2.921 99.846 97.079 3.10 118
5 8.550 57.784 57.784 2.291 99.840 97.709 2.40 160
6 9.396 55.673 55.673 1.990 99.833 98.010 2.10 142
7 12.145 52.968 52.968 1.420 99.823 98.579 1.60 129
8 12.184 51.451 51.451 1.375 99.818 98.625 1.50 118
9 13.365 50.066 50.066 1.203 99.813 98.797 1.40 145
10 15.244 49.472 49.472 1.020 99.811 98.980 1.20 127
15 20.226 47.230 47.230 0.691 99.803 99.309 0.90 134
20 25.028 43.470 43.470 0.483 99.790 99.517 0.70 160
25 28.110 39.644 39.644 0.376 99.776 99.624 0.60 160
30 30.735 41.095 41.095 0.343 99.781 99.657 0.60 152
35 33.296 39.512 39.512 0.293 99.776 99.707 0.50 180
40 35.500 38.193 38.193 0.257 99.771 99.743 0.50 162
45 38.807 36.478 36.478 0.213 99.765 99.787 0.40 176
50 39.808 35.554 35.554 0.199 99.761 99.801 0.40 170

200

Table C.9 Detailed Data for Experiment 9

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 1.839 76.187 76.187 15.076 99.896 84.924 15.10 68
2 2.424 71.636 71.636 10.689 99.882 89.311 10.80 89
3 5.163 62.929 62.929 4.285 99.857 95.715 4.40 89
4 6.858 58.839 58.839 2.963 99.843 97.037 3.10 73
5 7.403 59.631 59.631 2.765 99.846 97.235 2.90 104
6 9.485 55.475 55.475 1.963 99.832 98.037 2.10 82
7 9.466 54.288 54.288 1.925 99.828 98.075 2.10 77
8 9.827 53.496 53.496 1.820 99.825 98.180 2.00 110
9 13.683 49.670 49.670 1.162 99.812 98.838 1.30 78
10 14.300 48.483 48.483 1.077 99.807 98.923 1.30 131
15 17.270 46.570 46.570 0.827 99.801 99.173 1.00 120
20 23.541 39.380 39.380 0.474 99.775 99.526 0.70 110
25 29.288 37.731 37.731 0.338 99.769 99.662 0.60 121
30 33.161 37.995 37.995 0.284 99.770 99.716 0.50 112
35 35.850 37.269 37.269 0.247 99.767 99.753 0.50 133
40 39.724 34.169 34.169 0.192 99.756 99.808 0.40 128
45 39.492 33.839 33.839 0.192 99.755 99.808 0.40 119
50 45.346 32.454 32.454 0.145 99.750 99.855 0.40 104

Table C.10 Detailed Data for Experiment 11

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 0.892 83.905 83.905 34.554 99.909 65.446 34.50 61
2 3.465 68.404 68.404 7.065 99.874 92.935 7.20 102
3 5.064 62.599 62.599 4.351 99.855 95.649 4.50 78
4 8.216 57.784 57.784 2.393 99.840 97.607 2.50 87
5 8.402 56.530 56.530 2.285 99.835 97.715 2.40 99
6 8.960 54.090 54.090 2.037 99.827 97.963 2.20 116
7 13.344 50.330 50.330 1.212 99.814 98.788 1.40 105
8 11.559 51.781 51.781 1.469 99.819 98.531 1.60 93
9 14.127 48.615 48.615 1.096 99.808 98.904 1.30 115
10 15.770 46.966 46.966 0.930 99.802 99.070 1.10 122
15 21.393 42.942 42.942 0.585 99.788 99.415 0.80 106
20 26.209 39.314 39.314 0.410 99.775 99.590 0.60 105
25 28.057 39.050 39.050 0.371 99.774 99.629 0.60 121
30 31.034 39.776 39.776 0.328 99.776 99.672 0.50 120
35 34.715 35.356 35.356 0.246 99.760 99.753 0.50 131
40 37.099 35.092 35.092 0.221 99.759 99.779 0.50 139
45 42.894 33.047 33.047 0.163 99.752 99.837 0.40 125
50 43.166 32.916 32.916 0.161 99.752 99.839 0.40 125

201

Table C.11 Detailed Data for Experiment 12

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 0.856 86.412 86.412 37.111 99.920 62.889 37.00 66
2 2.220 72.559 72.559 11.848 99.885 88.152 11.90 98
3 3.908 65.567 65.567 5.977 99.864 94.023 6.10 75
4 6.014 61.148 61.148 3.543 99.851 96.457 3.70 82
5 8.070 58.179 58.179 2.457 99.841 97.543 2.60 95
6 9.106 55.409 55.409 2.050 99.831 97.950 2.20 75
7 9.694 55.409 55.409 1.913 99.832 98.087 2.10 92
8 10.139 54.024 54.024 1.775 99.827 98.225 1.90 97
9 11.319 52.968 52.968 1.538 99.823 98.462 1.70 109
10 13.864 49.011 49.011 1.129 99.809 98.871 1.30 135
15 18.932 45.383 45.383 0.720 99.796 99.280 0.90 118
20 22.203 42.810 42.810 0.556 99.787 99.444 0.80 106
25 21.750 41.491 41.491 0.553 99.782 99.447 0.80 123
30 29.676 38.720 38.720 0.340 99.773 99.660 0.60 109
35 33.196 37.137 37.137 0.277 99.767 99.723 0.50 128
40 33.250 35.026 35.026 0.261 99.759 99.739 0.50 135
45 41.013 33.114 33.114 0.177 99.752 99.823 0.40 106
50 44.144 32.322 32.322 0.152 99.749 99.848 0.40 118

Table C.12 Detailed Data for Experiment 13

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 3.170 72.098 72.098 8.163 99.887 91.837 8.20 169
2 5.161 68.404 68.404 4.660 99.877 95.340 4.80 199
3 6.662 64.710 64.710 3.361 99.865 96.639 3.50 198
4 10.099 62.401 62.401 2.059 99.858 97.941 2.20 196
5 11.570 62.467 62.467 1.770 99.859 98.230 1.90 215
6 11.973 59.894 59.894 1.633 99.849 98.367 1.80 188
7 14.711 59.301 59.301 1.275 99.847 98.725 1.40 218
8 15.826 58.377 58.377 1.151 99.844 98.849 1.30 208
9 16.784 58.113 58.113 1.068 99.843 98.932 1.20 225
10 16.886 58.377 58.377 1.065 99.844 98.935 1.20 221
15 25.649 55.409 55.409 0.595 99.834 99.405 0.80 239
20 32.399 53.364 53.364 0.413 99.827 99.587 0.60 263
25 37.840 51.319 51.319 0.313 99.819 99.688 0.50 238

202

Table C.13 Detailed Data for Experiment 14

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 2.394 73.153 73.153 11.057 99.888 88.943 11.10 182
2 4.373 70.383 70.383 5.706 99.884 94.294 5.80 189
3 7.397 67.744 67.744 3.144 99.877 96.856 3.30 184
4 8.198 65.699 65.699 2.727 99.869 97.273 2.80 221
5 9.636 65.897 65.897 2.291 99.871 97.709 2.40 221
6 11.109 64.512 64.512 1.914 99.866 98.086 2.00 256
7 11.409 62.269 62.269 1.792 99.858 98.208 1.90 257
8 12.858 62.467 62.467 1.569 99.859 98.431 1.70 255
9 13.719 61.609 61.609 1.436 99.856 98.564 1.60 275
10 15.314 62.731 62.731 1.286 99.860 98.714 1.40 302
15 23.695 58.377 58.377 0.697 99.845 99.303 0.80 292
20 26.254 57.652 57.652 0.600 99.842 99.400 0.80 307
25 32.298 55.541 55.541 0.432 99.835 99.568 0.60 299
30 30.960 55.079 55.079 0.455 99.833 99.545 0.60 328
35 36.891 52.441 52.441 0.333 99.823 99.667 0.50 318
40 39.122 51.715 51.715 0.298 99.821 99.702 0.50 323
45 41.590 50.396 50.396 0.262 99.816 99.738 0.40 310
50 45.077 48.615 48.615 0.220 99.809 99.780 0.40 297

Table C.14 Detailed Data for Experiment 15

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 5.343 93.602 93.602 6.147 99.975 93.853 6.10 88
2 10.796 83.509 83.509 2.558 99.937 97.442 2.60 80
3 23.819 38.588 38.588 0.458 99.772 99.543 0.70 3
4 0.000 0.000 0.000 0.000 99.631 100.000 0.40 1

203

Table C.15 Detailed Data for Experiment 16

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 5.080 96.042 96.042 6.653 99.984 93.347 6.60 93
2 8.723 94.525 94.525 3.667 99.979 96.334 3.70 99
3 9.535 94.591 94.591 3.327 99.979 96.673 3.30 105
4 11.622 94.195 94.195 2.655 99.978 97.345 2.70 108
5 16.649 94.393 94.393 1.752 99.979 98.248 1.80 120
6 15.233 94.525 94.525 1.950 99.979 98.050 2.00 128
7 17.120 93.800 93.800 1.683 99.977 98.317 1.70 140
8 19.841 93.865 93.865 1.406 99.977 98.594 1.40 135
9 20.160 92.876 92.876 1.364 99.973 98.636 1.40 165
10 22.441 93.140 93.140 1.193 99.974 98.807 1.20 153
15 27.399 93.404 93.404 0.917 99.975 99.082 0.90 181
20 31.882 92.744 92.744 0.735 99.973 99.265 0.80 208
25 44.214 88.457 88.457 0.414 99.957 99.586 0.50 197
30 52.097 87.665 87.665 0.299 99.954 99.701 0.30 214
35 51.038 87.533 87.533 0.311 99.954 99.689 0.40 213
40 54.335 86.807 86.807 0.270 99.951 99.730 0.30 214
45 60.000 86.675 86.675 0.214 99.950 99.786 0.30 231
50 62.084 86.082 86.082 0.195 99.948 99.805 0.20 236

Table C.16 Detailed Data for Experiment 17

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 3.240 84.433 84.433 9.349 99.936 90.651 9.40 184
2 5.222 81.003 81.003 5.450 99.926 94.550 5.50 167
3 7.467 78.694 78.694 3.615 99.918 96.385 3.70 189
4 9.198 77.441 77.441 2.834 99.914 97.166 2.90 215
5 10.177 76.583 76.583 2.506 99.911 97.494 2.60 216
6 12.219 74.472 74.472 1.983 99.903 98.017 2.10 239
7 11.997 74.011 74.011 2.013 99.902 97.988 2.10 277
8 13.754 74.604 74.604 1.734 99.904 98.266 1.80 270
9 14.190 72.427 72.427 1.624 99.896 98.376 1.70 262
10 16.386 72.559 72.559 1.373 99.897 98.627 1.50 304
15 23.777 67.348 67.348 0.800 99.878 99.200 0.90 289
20 26.388 67.744 67.744 0.701 99.880 99.299 0.80 358
25 30.230 64.248 64.248 0.550 99.867 99.450 0.70 346
30 31.171 63.391 63.391 0.519 99.864 99.481 0.70 329
35 36.137 62.071 62.071 0.407 99.859 99.593 0.50 354
40 38.491 60.554 60.554 0.359 99.853 99.641 0.50 345
45 43.279 59.894 59.894 0.291 99.851 99.709 0.40 331
50 43.834 58.377 58.377 0.277 99.846 99.723 0.40 331

204

Table C.17 Detailed Data for Experiment 18

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 5.201 95.712 95.712 6.468 99.983 93.532 6.50 100
2 7.789 95.778 95.778 4.203 99.984 95.797 4.20 118
3 11.112 94.591 94.591 2.805 99.979 97.195 2.80 112
4 11.590 94.195 94.195 2.664 99.978 97.336 2.70 114
5 16.497 93.931 93.931 1.763 99.977 98.237 1.80 125
6 15.726 95.383 95.383 1.895 99.983 98.105 1.90 146
7 17.924 94.657 94.657 1.607 99.980 98.393 1.60 133
8 21.105 94.261 94.261 1.306 99.978 98.694 1.30 147
9 20.840 93.931 93.931 1.323 99.977 98.677 1.30 173
10 23.549 93.140 93.140 1.121 99.974 98.879 1.10 171
15 30.840 92.480 92.480 0.769 99.972 99.231 0.80 212
20 34.965 90.963 90.963 0.627 99.966 99.373 0.70 219
25 40.449 91.491 91.491 0.499 99.968 99.501 0.50 212
30 48.230 88.061 88.061 0.350 99.956 99.650 0.40 225
35 48.505 88.786 88.786 0.349 99.958 99.651 0.40 230
40 52.923 88.391 88.391 0.291 99.957 99.709 0.30 242
45 54.210 88.325 88.325 0.277 99.957 99.723 0.30 243
50 60.208 87.929 87.929 0.215 99.955 99.785 0.30 248

Table C.18 Detailed Data for Experiment 19

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 4.715 96.504 96.504 7.231 99.986 92.769 7.20 102
2 8.247 95.383 95.383 3.934 99.982 96.066 3.90 113
3 9.813 95.251 95.251 3.245 99.982 96.755 3.30 119
4 11.463 95.383 95.383 2.731 99.982 97.269 2.70 126
5 14.696 95.251 95.251 2.050 99.982 97.950 2.10 128
6 15.799 94.921 94.921 1.875 99.981 98.125 1.90 142
7 18.377 94.525 94.525 1.556 99.979 98.444 1.60 143
8 20.181 94.327 94.327 1.383 99.979 98.617 1.40 159
9 21.306 94.063 94.063 1.288 99.978 98.712 1.30 176
10 21.369 93.470 93.470 1.275 99.975 98.725 1.30 171
15 28.162 93.272 93.272 0.882 99.975 99.118 0.90 216
20 38.787 90.237 90.237 0.528 99.964 99.472 0.60 241
25 37.897 88.918 88.918 0.540 99.959 99.460 0.60 232
30 52.019 88.391 88.391 0.302 99.957 99.698 0.30 225
35 47.859 86.280 86.280 0.348 99.949 99.651 0.40 222
40 52.286 86.741 86.741 0.293 99.951 99.707 0.30 238
45 57.754 85.488 85.488 0.232 99.946 99.768 0.30 234
50 59.749 84.894 84.894 0.212 99.944 99.788 0.30 246

205

Table C.19 Detailed Data for Experiment 20

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 5.120 94.921 94.921 6.521 99.980 93.479 6.50 126
2 7.665 93.865 93.865 4.192 99.976 95.808 4.20 135
3 8.815 93.997 93.997 3.604 99.977 96.396 3.60 146
4 11.052 93.206 93.206 2.781 99.974 97.219 2.80 169
5 14.251 92.810 92.810 2.070 99.973 97.930 2.10 158
6 14.335 93.140 93.140 2.063 99.974 97.937 2.10 173
7 17.375 92.810 92.810 1.636 99.973 98.364 1.70 178
8 18.031 92.282 92.282 1.555 99.971 98.445 1.60 160
9 18.829 92.480 92.480 1.478 99.972 98.522 1.50 189
10 23.252 91.491 91.491 1.119 99.968 98.880 1.10 188
15 28.182 90.699 90.699 0.857 99.965 99.143 0.90 246
20 32.392 89.314 89.314 0.691 99.960 99.309 0.70 238
25 35.639 89.050 89.050 0.596 99.959 99.404 0.60 247
30 43.182 87.731 87.731 0.428 99.954 99.572 0.50 255
35 45.780 86.939 86.939 0.382 99.951 99.618 0.40 274
40 52.002 85.686 85.686 0.293 99.947 99.707 0.30 260
45 57.251 84.631 84.631 0.234 99.943 99.766 0.30 273
50 57.168 86.016 86.016 0.239 99.948 99.761 0.30 289

Table C.20 Detailed Data for Experiment 21

Relevant Not Relevant Tree
Ratio

Prec. Rec. TP FP Prec. Rec. Err. Size

1 5.041 95.712 95.712 6.683 99.983 93.317 6.70 113
2 6.696 93.931 93.931 4.852 99.976 95.148 4.90 134
3 10.789 93.668 93.668 2.871 99.976 97.129 2.90 126
4 10.447 93.800 93.800 2.981 99.976 97.019 3.00 153
5 14.917 93.800 93.800 1.983 99.977 98.017 2.00 148
6 13.391 93.404 93.404 2.239 99.975 97.761 2.30 169
7 15.184 93.074 93.074 1.927 99.974 98.073 1.90 167
8 18.530 92.942 92.942 1.515 99.973 98.485 1.50 166
9 19.238 93.536 93.536 1.456 99.976 98.544 1.50 166
10 18.603 92.414 92.414 1.499 99.972 98.501 1.50 197
15 31.421 91.029 91.029 0.737 99.966 99.264 0.80 228
20 34.425 89.446 89.446 0.632 99.961 99.368 0.70 241
25 37.393 89.512 89.512 0.556 99.961 99.444 0.60 238
30 47.048 86.741 86.741 0.362 99.951 99.638 0.40 215
35 43.727 86.675 86.675 0.414 99.950 99.587 0.50 277
40 52.583 85.950 85.950 0.287 99.948 99.713 0.30 256
45 58.269 85.290 85.290 0.226 99.945 99.774 0.30 241
50 59.844 86.214 86.214 0.214 99.949 99.785 0.30 266

207

Appendix D

 A Classifier Evaluation Questionnaire

In this appendix we provide a sample questionnaire that can be used to evaluate the

classifiers or models that were generated by experiments discussed in Chapter 4. Each

questionnaire has two parts.

• In part 1 a software engineer is given certain number of query strings which are

source file names and a table that contains a subset of other file names in the system

which were presumably suggested by the classifier as relevant to the query string. The

software engineer is asked to rank the relevance and usefulness of the files given in

each table to the query string73.

• In part 2 the software engineers is asked a series of question with the aim of

collecting their opinion regarding the desired behavior of a classifier and potential

applications of it.

By proper statistical analysis of the answers given in part 1 of such a questionnaire one

can estimate the predictive quality of a classifier should it be deployed in the real world.

The answers given in part two can be used to design suitable front end interfaces for the

classifier, or investigate further usage scenarios.

73 In the context of software maintenance.

208

D.1 A Sample Questionnaire

Experiment (sample)74:

Evaluating File Relevance Classifier Results - Part 1

Please read the accompanying instructions before answering the following:

1. Query string: “ss7cpdial.pas”

How familiar are you with the query string? _____

1 = no idea at all about it
2 = know a little
3 = know it moderately
4 = know it well
5 = extremely familiar with it

Results:

Results: How
Relevant is
the Result?

How
useful is

the result?

How
interesting is
the result?

How familiar
are you with
the result?

ss7cpbusy.pas
ss6smdutl.pas
dbvss7.pas
ss7cp.typ
ss7cpdata.if
dbvtrkass.typ
ss7ldctrl.pas
atvndsp.if
dbtrnknt.if

Please list any other relevant files that you know, not found by the query:

74 The exact questions may slightly be modified

209

Experiment:

Evaluating File Classification Results – Part 2

Please answer the following questions:

1. If there are hundreds of results returned for a query, the system has to choose a method
to pick the ones to display. Which method do you prefer?

a) Method 1: Display the n most important results, where n is a fixed number.
b) Method 2: Display the results that exceed a certain importance threshold, even if

this means displaying a very large number or very small number of results.

2. If Method 1 were used, how many results would you like to see displayed:
a) 10
b) 20
c) 30
d) 50
e) other number of your choice: ___

3. If Method 2 were used, would you like the threshold to be set:
a) Very high, so that usually only a few results are displayed, but often interesting

results are missed.
b) Moderately high.
c) At an intermediate level.
d) Moderately low.
e) Very low, so that all plausible results are displayed, but that often there will be

many useless results

4. Please provide any other suggestions for how results can be selected:

5. How useful do you think the File Relevance classifier will be in general?
a) Not useful at all
b) A little useful
c) Moderately useful
d) Very useful
e) Exactly what I want

6. What usage do you think a File Relevance classifier can have in your working
environment?

210

7. How many years have you worked on SX-2000 software? _____

8. Do you need to analyze the effects of adding a new telephony feature or altering an
existing feature ?

9. How useful do you think the File Relevance classifier will be in the context of
adding/altering a telephony feature?

a) Not useful at all
b) A little useful
c) Moderately useful
d) Very useful
e) Exactly what I want

10. How many years have you worked as a software developer or maintainer? _____

11 Do you change SX-2000 source code in response to posted problem reports?

12. How useful do you think the File Relevance classifier will be in the context of
changing SX-2000 source code in response to posted problem reports?

a) Not useful at all
b) A little useful
c) Moderately useful
d) Very useful
e) Exactly what I want

13. Please provide any other comments you may have below:

211

D.2 Instructions Accompanying the Questionnaire

Experiment:

Evaluating File Relevance Classifiers Results –
Instructions

Purpose:

To evaluate the classifiers of File Relevance function that will be added to the
software system entitled “TkSee”. File Relevance classifiers provide a measure of
relevance between two given files e.g. they are relevant or not relevant to each other.

The File Relevance Classifier function in “TkSee” aims at helping software
developers work more efficiently with a legacy system. For novices of the legacy system,
File Relevance classifiers may help them figure out what other files they may need to
know about when they are studying or changing a file. For developers who have lots of
knowledge of the system, this tool may help them find out existing relations between files
in the system, which in turn may assist them with analysis of the impact of introducing
new features into the legacy system.

The purpose of this experiment, therefore, is to examine how well these classifiers
operate and how much the future users will benefit from them. The result of this
experiment will be used to fine-tune the classifiers and to gather general scientific
information that will be of use to creators of similar classifiers and designers of tools
based on these classifiers.

Tasks:

You will be asked to evaluate the results of 15 File Relevance queries. For each
query, you will be given a file name (also referred to as query string), and about 10 to 20
result items to evaluate. The results are not those you will see in the final tool, since in
the final tool you will only see the best results. In the sample below, we will explain each
question you will be asked to answer.

Imagine you were looking for files relevant to ‘ss7cpdial.pas '. You are, first of all,
asked about your knowledge of this string:

• How familiar are you with the query string? (ss7cpdial.pas in this example – A
query string is familiar to you if you have heard of it, or have worked on it, or you are
confident you can guess its meaning)

212

You will be asked to choose from one of the following options.

1 = no idea at all about it
2 = know a little
3 = know it moderately
4 = know it well
5 = extremely familiar with it

You will then be given some of the results generated by the classifier. You will be
asked to answer some questions about each result, on a scale of 1 to 5. The questions will
appear in a table that looks like the following:

Results: How Relevant is
the Result?

How useful is
the result?

How
interesting is
the result?

How familiar
are you with
the result?

Result1

Result2

You fill in blank cells in the above table, as follows:

• How Relevant is the Result? (A result is relevant if a software engineer needs to
understand query string, he or she will probably also need to understand the result too).

0 = no idea at all about it
1 = not relevant at all
2 = a little relevant
3 = moderately relevant
4 = very relevant
5 = extremely relevant

• How useful is the result? (A result is useful if you believe it is what you would
be looking for)

1 = not useful at all
2 = a little useful
3 = moderately useful
4 = very useful
5 = exactly what I want

213

• How interesting is the result? (A result is interesting if it reveals something new
to you even it is not useful right now, or if you think there is a meaningful relationship
between the query and the result, but you would not have easily known about or found
this result yourself)

1 = uninteresting
2 = a little interesting
3 = moderately interesting
4 = very interesting
5 = extremely interesting

• How familiar are you with the result? (A result is familiar to you if you have
heard of it, or have worked on it, or you are confident you can guess its meaning)

1 = no idea at all about it
2 = know a little
3 = know it moderately
4 = know it well
5 = extremely familiar with it

• There are other relevant files that I know, but are not found by the query (please
list):(In this example, suppose you believe that “***” is relevant to the query string, then
you may write it down in the space provided)

After you finish all the queries, you will then be asked to answer some general questions.

215

Appendix E

A Sample Decision Tree

In this Appendix we will present a decision tree created from problem report feature set.

The intension is to provide the reader with an understanding of the structure and the

content of a typical classifier induced in our experiments. The decision tree shown here is

directly copied from the output of C5.0 with minor editing.

E.1 A Decision Tree Learned Form Problem Report Feature Set

The following decision tree was created by Experiment 16. The training set had an

imbalance ratio of 50. This classifier generated precision and recall values of 62.1% and

86.1% for the Relevant class respectively. These values make such a classifier very

attractive for deployment in a real world setting.

Figure E.1 Decision Tree Generated by Experiment 16 for Imbalance Ratio 50

'hogger' = t:
:...'ce..ss' = t: relevant (935)
: 'ce..ss' = f:
: :...'username' = t: relevant (4)
: 'username' = f:
: :...'vtosx' = t: relevant (3)
: 'vtosx' = f: notRelevant (133/2)
'hogger' = f:
:...'alt' = t:
 :...'corrupt' = t: relevant (104/2)
 : 'corrupt' = f: notRelevant (4/1)
 'alt' = f:
 :...'msx' = t:

216

 :...'debug' = t: relevant (82/1)
 : 'debug' = f: notRelevant (3/1)
 'msx' = f:
 :...'loudspeaker' = t:
 :...'busy' = t: relevant (81/2)
 : 'busy' = f: notRelevant (3)
 'loudspeaker' = f:
 :...'smart' = t:
 :...'attendant' = t: relevant (80/3)
 : 'attendant' = f:
 : :...'follow' = t: relevant (2)
 : 'follow' = f: notRelevant (6)
 'smart' = f:
 :...'headset' = t:
 :...'group' = t: relevant (64/2)
 : 'group' = f: notRelevant (6)
 'headset' = f:
 :...'2000' = t:
 :...'music' = f: notRelevant (7)
 : 'music' = t:
 : :...'server' = t: notRelevant (2)
 : 'server' = f:
 : :...'set' = t: relevant (79/3)
 : 'set' = f:
 : :...'clear' = f: notRelevant (3/1)
 : 'clear' = t:
 : :...'down' = t: relevant (6)
 : 'down' = f: notRelevant (2)
 '2000' = f:
 :...'diversion' = t:
 :...'timeout' = t: notRelevant (2)
 : 'timeout' = f: relevant (49)
 'diversion' = f:
 :...'sam' = t:
 :...'2k' = t: relevant (47)
 : '2k' = f:
 : :...'2knt' = t: relevant (2)
 : '2knt' = f: notRelevant (11)
 'sam' = f:
 :...'personal' = t:
 :...'ss430' = t: relevant (44)
 : 'ss430' = f:
 : :...'ars' = t: relevant (20)
 : 'ars' = f: notRelevant (19)
 'personal' = f:
 :...'ss4015' = t: [S1]
 'ss4015' = f:
 :...'distribution' = t: [S2]
 'distribution' = f:
 :...'tsapi' = t: [S3]
 'tsapi' = f:
 :...'minet' = t: [S4]
 'minet' = f:
 :...'tam' = t: [S5]
 'tam' = f: [S6]

SubTree [S1]

217

'advisory' = t: relevant (17)
'advisory' = f:
:...'acd2' = t: relevant (16)
 'acd2' = f:
 :...'path' = t: notRelevant (6)
 'path' = f:
 :...'transient' = t: notRelevant (5)
 'transient' = f:
 :...'ms2010' = t: notRelevant (5)
 'ms2010' = f:
 :...'s' = f: relevant (42/6)
 's' = t:
 :...'cfa' = t: relevant (2)
 'cfa' = f: notRelevant (2)

SubTree [S2]

'username' = t: relevant (41)
'username' = f:
:...'sync' = t: relevant (5)
 'sync' = f:
 :...'dcopy' = t: relevant (2)
 'dcopy' = f: notRelevant (15)

SubTree [S3]

'acd' = f: notRelevant (12/1)
'acd' = t:
:...'overflow' = t: relevant (30)
 'overflow' = f:
 :...'broadcast' = t: relevant (15)
 'broadcast' = f:
 :...'data' = t: notRelevant (7)
 'data' = f:
 :...'destination' = t: relevant (11)
 'destination' = f:
 :...'digit' = t: notRelevant (2)
 'digit' = f:
 :...'selection' = t: relevant (4)
 'selection' = f:
 :...'processing' = t: notRelevant (2)
 'processing' = f:
 :...'tapi' = t: relevant (8)
 'tapi' = f:
 :...'opsman' = t:
 :...'2knt' = t: relevant (3/1)
 : '2knt' = f: notRelevant (3)
 'opsman' = f:
 :...'busy' = t: relevant (7)
 'busy' = f: [S7]

SubTree [S4]

'ivr' = t: notRelevant (2)
'ivr' = f: relevant (34/1)

218

SubTree [S5]

'telephone' = t: relevant (21)
'telephone' = f:
:...'drop' = t: relevant (11/1)
 'drop' = f: notRelevant (5)

SubTree [S6]

'formprint' = t:
:...'agent' = t: relevant (24)
: 'agent' = f:
: :...'directed' = t: relevant (7)
: 'directed' = f: notRelevant (9)
'formprint' = f:
:...'ss6dn' = t:
 :...'class' = t: relevant (31)
 : 'class' = f:
 : :...'cpn' = t: relevant (19)
 : 'cpn' = f:
 : :...'disturb' = t: relevant (2)
 : 'disturb' = f: notRelevant (28/3)
 'ss6dn' = f:
 :...'client' = t:
 :...'acd2' = t: relevant (18)
 : 'acd2' = f:
 : :...'device' = t: notRelevant (5)
 : 'device' = f: relevant (9/1)
 'client' = f:
 :...'ss4dn' = t:
 :...'mitai' = t: relevant (26)
 : 'mitai' = f:
 : :...'continuous' = t:
 : :...'pause' = f:
 : : :...'dial' = t: relevant (2)
 : : : 'dial' = f: notRelevant (7)
 : : 'pause' = t:
 : : :...'recall' = f: relevant (36)
 : : 'recall' = t:
 : : :...'ass' = t: relevant (3)
 : : 'ass' = f: notRelevant (2)
 : 'continuous' = f:
 : :...'blf' = t: relevant (6)
 : 'blf' = f:
 : :...'analog' = t: relevant (4)
 : 'analog' = f:
 : :...'backup' = t: relevant (2)
 : 'backup' = f:
 : :...'campon' = t: relevant (2)
 : 'campon' = f:
 : :...'button' = f: notRelevant
(80/1)
 : 'button' = t: [S8]
 'ss4dn' = f:
 :...'eia' = t: relevant (19)
 'eia' = f:
 :...'hdm' = t:

219

 :...'disk' = t: relevant (17)
 : 'disk' = f:
 : :...'assignment' = t: relevant (2)
 : 'assignment' = f: notRelevant (2)
 'hdm' = f:
 :...'mos' = t:
 :...'auto' = t: relevant (24)
 : 'auto' = f: notRelevant (8/1)
 'mos' = f:
 :...'cmpr' = t:
 :...'dataset' = f: notRelevant (12/1)
 : 'dataset' = t:
 : :...'busy' = t: relevant (16)
 : 'busy' = f:
 : :...'activity' = t: relevant (5)
 : 'activity' = f: notRelevant (4)
 'cmpr' = f:
 :...'block' = t: relevant (15)
 'block' = f:
 :...'at' = t:
 :...'dial' = t: relevant (19/1)
 : 'dial' = f: notRelevant (7)
 'at' = f:
 :...'become' = t: relevant (16/1)
 'become' = f:
 :...'multicall' = t: [S9]
 'multicall' = f:
 :...'selection' = t: [S10]
 'selection' = f:
 :...'ss4025' = t: [S11]
 'ss4025' = f: [S12]

SubTree [S7]

'group' = t: notRelevant (7)
'group' = f: relevant (8/3)

SubTree [S8]

'speedcall' = t: relevant (5)
'speedcall' = f: notRelevant (5/1)

SubTree [S9]

'bgrpmgr' = t: relevant (19)
'bgrpmgr' = f: notRelevant (15/1)

SubTree [S10]

'free' = t: notRelevant (4/1)
'free' = f:
:...'acd' = t: relevant (14)
 'acd' = f:
 :...'dim' = t: relevant (4)
 'dim' = f: notRelevant (11)

SubTree [S11]

220

'ss430' = t: relevant (16/1)
'ss430' = f:
:...'arrow' = t: relevant (3)
 'arrow' = f: notRelevant (17/1)

SubTree [S12]

'dbnetsx' = t: relevant (13/1)
'dbnetsx' = f:
:...'b-channel' = t:
 :...'agent' = t: relevant (13)
 : 'agent' = f: notRelevant (5)
 'b-channel' = f:
 :...'scsi' = t:
 :...'data' = f: notRelevant (3)
 : 'data' = t:
 : :...'log' = t: notRelevant (3)
 : 'log' = f: relevant (13)
 'scsi' = f:
 :...'lldcli' = t:
 :...'redial' = t: relevant (20)
 : 'redial' = f: notRelevant (19)
 'lldcli' = f:
 :...'vxworks' = t:
 :...'sub' = t: relevant (12)
 : 'sub' = f:
 : :...'cluster' = t: relevant (3/1)
 : 'cluster' = f: notRelevant (11)
 'vxworks' = f:
 :...'pcb' = t:
 :...'corp' = t: relevant (16)
 : 'corp' = f:
 : :...'automatic' = t: relevant (5)
 : 'automatic' = f:
 : :...'2knt' = t: relevant (2)
 : '2knt' = f: notRelevant (31/2)
 'pcb' = f:
 :...'illegal' = t:
 :...'acd' = t: relevant (15/1)
 : 'acd' = f: notRelevant (16/1)
 'illegal' = f:
 :...'task' = t:
 :...'ops' = f: notRelevant (31/1)
 : 'ops' = t:
 : :...'force' = t: relevant (23)
 : 'force' = f: notRelevant (2)
 'task' = f:
 :...'pms' = t:
 :...'appear_show' = t: relevant (27/3)
 : 'appear_show' = f:
 : :...'dataset' = t: relevant (8)
 : 'dataset' = f:
 : :...'across' = t: relevant (3)
 : 'across' = f: [S13]
 'pms' = f:
 :...'monitorable' = t: relevant (8)

221

 'monitorable' = f:
 :...'actfrz' = t: relevant (10/1)
 'actfrz' = f:
 :...'vx' = t: relevant (10/1)
 'vx' = f:
 :...'dba' = t: [S14]
 'dba' = f:
 :...'isdx' = t: [S15]
 'isdx' = f: [S16]

SubTree [S13]

'book' = t: relevant (2)
'book' = f:
:...'wakeup' = t: relevant (2)
 'wakeup' = f: notRelevant (74/3)

SubTree [S14]

'dbasrv' = t: notRelevant (2)
'dbasrv' = f: relevant (9)

SubTree [S15]

'data' = t: relevant (7)
'data' = f: notRelevant (5/1)

SubTree [S16]

'disturb' = t: relevant (6)
'disturb' = f:
:...'vtosx' = t: relevant (6)
 'vtosx' = f:
 :...'background' = t:
 :...'circuit' = t: relevant (9)
 : 'circuit' = f: notRelevant (8/1)
 'background' = f:
 :...'image' = t:
 :...'data' = t: notRelevant (3)
 : 'data' = f:
 : :...'call' = t: relevant (4)
 : 'call' = f:
 : :...'dcopy' = t: relevant (3)
 : 'dcopy' = f: notRelevant (2)
 'image' = f:
 :...'auto-logout' = t: relevant (7/1)
 'auto-logout' = f:
 :...'zone' = t:
 :...'override' = f: notRelevant (3)
 : 'override' = t:
 : :...'broadcast' = t: relevant (6)
 : 'broadcast' = f:
 : :...'pa' = t: relevant (2)
 : 'pa' = f: notRelevant (3)
 'zone' = f:
 :...'disa' = t:
 :...'save' = t: relevant (3)

222

 : 'save' = f:
 : :...'ars' = f: notRelevant (5)
 : 'ars' = t:
 : :...'timeout' = t: relevant (2)
 : 'timeout' = f: [S17]
 'disa' = f:
 :...'ss7k' = t: relevant (5)
 'ss7k' = f:
 :...'p41' = t:
 :...'base' = t: relevant (4)
 : 'base' = f:
 : :...'clear' = t: relevant (3)
 : 'clear' = f: notRelevant (7)
 'p41' = f:
 :...'fibre' = t:
 :...'alarm' = t: relevant (6)
 : 'alarm' = f: [S18]
 'fibre' = f:
 :...'mr3' = t: relevant (4)
 'mr3' = f:
 :...'dis' = t: [S19]
 'dis' = f:
 :...'sis' = t: [S20]
 'sis' = f:
 :...'username' = t:
[S21]
 'username' = f:
[S22]

SubTree [S17]

'conference' = t: relevant (6/1)
'conference' = f: notRelevant (3)

SubTree [S18]

'directory' = t: relevant (6)
'directory' = f:
:...'supervisor' = t: relevant (3)
 'supervisor' = f:
 :...'sms' = f: notRelevant (28/1)
 'sms' = t:
 :...'dim' = t: relevant (2)
 'dim' = f: notRelevant (5/1)

SubTree [S19]

'fac' = t: relevant (5)
'fac' = f: notRelevant (4)

SubTree [S20]

'partition' = t: relevant (3)
'partition' = f: notRelevant (12/3)

SubTree [S21]

223

'alarm' = f: notRelevant (16)
'alarm' = t:
:...'debug' = t: notRelevant (5)
 'debug' = f: relevant (15/2)

SubTree [S22]

'move_swap' = t: relevant (5/1)
'move_swap' = f:
:...'alert' = t:
 :...'cluster' = t: relevant (6)
 : 'cluster' = f: notRelevant (13/1)
 'alert' = f:
 :...'eem' = t:
 :...'rlt' = t: relevant (3)
 : 'rlt' = f:
 : :...'plid' = t: relevant (3/1)
 : 'plid' = f: notRelevant (12)
 'eem' = f:
 :...'schedule' = t: relevant (3)
 'schedule' = f:
 :...'mtce' = t:
 :...'codec' = t: relevant (4)
 : 'codec' = f: notRelevant (14/1)
 'mtce' = f:
 :...'mcs' = t:
 :...'active' = t: relevant (4)
 : 'active' = f: notRelevant (8)
 'mcs' = f:
 :...'authorization' = t:
 :...'dsu' = t: relevant (3)
 : 'dsu' = f: notRelevant (2)
 'authorization' = f:
 :...'intrude' = t:
 :...'acd2' = t: notRelevant (2)
 : 'acd2' = f: relevant (3)
 'intrude' = f:
 :...'cpconfmgr' = t:
 :...'ars' = t: relevant (3)
 : 'ars' = f: notRelevant (4)
 'cpconfmgr' = f:
 :...'xnet' = t:
 :...'down' = t: relevant (3)
 : 'down' = f:
 : :...'pc' = f: notRelevant (11)
 : 'pc' = t: [S23]
 'xnet' = f:
 :...'advisory' = t: relevant (2)
 'advisory' = f: [S24]

SubTree [S23]

'pid' = t: notRelevant (2)
'pid' = f: relevant (2)

SubTree [S24]

224

'synchronization' = t: relevant (2)
'synchronization' = f:
:...'wrt' = t: relevant (2)
 'wrt' = f:
 :...'dir' = t:
 :...'acd2' = t: relevant (7)
 : 'acd2' = f:
 : :...'check' = t: relevant (2)
 : 'check' = f: notRelevant (34/1)
 'dir' = f:
 :...'cpss4pdsp' = t:
 :...'active' = t: notRelevant (3)
 : 'active' = f: relevant (2)
 'cpss4pdsp' = f:
 :...'query' = t:
 :...'acd1' = t: relevant (4)
 : 'acd1' = f: notRelevant (12)
 'query' = f:
 :...'esc' = t:
 :...'commit' = t: relevant (2)
 : 'commit' = f: notRelevant (6)
 'esc' = f:
 :...'afe' = t:
 :...'dump' = t: relevant (8)
 : 'dump' = f: notRelevant (39/2)
 'afe' = f:
 :...'tie' = t:
 :...'emergency' = t: relevant (9)
 : 'emergency' = f: notRelevant (34/2)
 'tie' = f:
 :...'rte' = t:
 :...'centre' = t: relevant (4)
 : 'centre' = f: notRelevant (20/1)
 'rte' = f:
 :...'cont' = t:
 :...'across' = t: relevant (6)
 : 'across' = f: notRelevant (24)
 'cont' = f:
 :...'floppy' = t:
 :...'cde' = f: notRelevant (51)
 : 'cde' = t: [S25]
 'floppy' = f:
 :...'seizing' = t: [S26]
 'seizing' = f:
 :...'superkey' = t: [S27]
 'superkey' = f:
 :...'realtime' = t:
[S28]
 'realtime' = f:
 :...'hard' = t:
[S29]
 'hard' = f:
[S30]

SubTree [S25]

'processor' = t: relevant (20/1)

225

'processor' = f: notRelevant (2)

SubTree [S26]

'audit' = t: relevant (5)
'audit' = f: notRelevant (34)

SubTree [S27]

'line' = f: notRelevant (38/2)
'line' = t:
:...'screen' = t: notRelevant (8/1)
 'screen' = f: relevant (15/1)

SubTree [S28]

'split' = f: notRelevant (74)
'split' = t:
:...'taske' = t: relevant (11/3)
 'taske' = f: notRelevant (2)

SubTree [S29]

'co' = f: notRelevant (72/3)
'co' = t:
:...'acd' = t: notRelevant (2)
 'acd' = f: relevant (7/1)

SubTree [S30]

'mnms' = t:
:...'mac' = f: notRelevant (113/2)
: 'mac' = t:
: :...'program' = t: notRelevant (18/3)
: 'program' = f: relevant (7)
'mnms' = f:
:...'connectivity' = f: notRelevant (152047/275)
 'connectivity' = t:
 :...'sx2000nt' = t: relevant (5/1)
 'sx2000nt' = f: notRelevant (65)

227

References

1. AAAI 2000. Workshop on Learning from Imbalanced Data Sets. July 31 2000
Austin, Texas. (Chapter 5)

2. Albrecht A.J. and Gaffney J.E. Jr 1983. Software function, source lines of code, and
development effort prediction: A software science validation. IEEE Transactions on
Software Engineering, Vol. 9 No. 6, November 1983, pp. 639-648. (Chapter 2)

3. Allen E. B., Khoshgoftaar T. M. and Chen Y. 2001. Measuring coupling and cohesion
of software modules: An information-theory approach. Proceedings of 7th

International Software Metrics Symposium, London, England, April 4-6 2001, IEEE
Computer Society, pp. 124-134. (Chapter 5)

4. Almeida M.A. and Matwin S. 1999. Machine Learning Method for Software Quality
Model Building. Proceedings of 11th International Symposium on Methodologies for
Intelligent Systems (ISMIS), Warsaw, Poland, pp. 565-573. (Chapter 2)

5. Alperin L.B. and Kedzierski 1987. AI-Based Software Maintenance. Proceedings of
the Third Conference on Artificial Intelligence Applications pp. 321-326. (Chapter 2)

6. Bellay B. and Gall H. 1996. An Evaluation of Reverse Engineering Tools. Technical
Report TUV-1841-96-01, Distributed Systems Group, Technical University of
Vienna. (Chapter 1)

7. Bellay B. and Gall H. 1998. An Evaluation of Reverse Engineering Tool Capabilities.
Journal of Software Maintenance: Research and Practice, Vol. 10 No. 5, September /
October 1998, pp. 305-331. (Chapter 1)

8. Biggerstaff T.J. 1989. Design recovery for Maintenance and Reuse. IEEE Computer,
Vol. 22 No. 7, July 1989, pp. 36-49. (Chapter 1)

9. Blum .A and Mitchell T. 1998. Combining Labeled and Unlabeled Data with
Co-Training. Proceedings of the 11th Conference on Computational Learning Theory,
Madisson, WI, July 24-26, Morgan Kaufmann Publishers, pp. 92-100 (Chapter 5)

10. Boehm B.W. 1975. The high cost of software. Practical Strategies for Developing
Large Software Systems. Edited by Horowitz E., Addison-Wesley Pub. Co.
(Chapter 2)

228

11. Boehm B.W. 1981. Software Engineering Economics. Prentice Hall, Englewood
Cliffs, N.J. (Chapter 2)

12. Borgida A., Brachman R.J., McGuinness D.L., and Alperin Resnick L. 1989.
CLASSIC: A Structural Data Model for Objects. Proceedings of the 1989 ACM
SIGMOD International Conference on Management of Data , June 1989, pp. 59-67.
(Chapter 2)

13. Breiman L., Freidman J., Olshen R., and Stone C. 1984. Classification and
Regression Trees. Wadsworth, Belmont, CA. (Chapter 2)

14. Briand L.C., Basili V. and Thomas W.M. 1992. A Pattern Recognition Approach for
Software Engineering Data Analysis. IEEE Transactions on Software Engineering,
Vol. 18 No. 11, November 1992, pp. 931-942. (Chapter 2)

15. Briand L.C., Thomas W.M. and Hetmanski C.J. 1993. Modeling and Managing Risk
Early in Software Developments. In Proceedings of 15th International Conference on
Software Engineering, Baltimore, MD, pp. 55-65. (Chapter 2)

16. Briand L.C., Morasca S. and Basili V. 1999. Defining and Validating Measures for
Object-Based High-Level Designs, IEEE Transactions on Software Engineering, Vol.
25 No. 5, September/October 1999, pp. 722-743. (Chapter 5).

17. Briand L.C., Melo W.L. and Wüst J. 2002. Assessing the Applicability of Fault-
Proneness Models Across Object-Oriented Software Projects. IEEE Transactions on
Software Engineering, Vol. 28 No. 7, pp. 706-720. (Chapter 5)

18. Bryson C. and Kielstra J. 1992. SMS - Library System User's Reference Manual.
DT.49, Version A18, June 17 1992, Mitel Corporation. (Chapter 3)

19. Bryson C. and Hamilton H. 1999. Library Expressions: A User Guide with Examples.
DT.87, Version A02, February 26, 1999, Mitel Corporation. (Chapter 3)

20. Calliss F.W, Khalil M., Munro M, and Ward M.1988. A Knowledge-Based System for
Software Maintenance. Technical Report 4/88, Centre for Software Maintenance,
School of Engineering and Applied Science, University of Durham. (Chapter 2)

21. Chikofski E.J. and Cross J.H. 1990. Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, Vol. 7 No. 1 pp. 13-17, January 1990. (Chapter 1)

22. Chin D. and Quilici A. 1996. DECODE: A Cooperative Program Understanding
Environment. Journal of Software Maintenance, Vol. 8 No.1 pp. 3-34. (Chapter 2)

23. Choi S. and Scacchi W. 1990. Extracting and Restructuring the Design of Large
Systems. IEEE Software, Vol. 7 No. 1, January 1990, pp. 66-71. (Chapter 1)

229

24. Clayton R., Rugaber S. and Wills L. 1998. On the Knowledge Required to
Understand a Program. Proceedings of the Forth Working Conference on Reverse
Engineering. Honolulu, Howaii, October 1998, pp. 69-78. (Chapter 1)

25. Clark P and Niblett T. 1989. The CN2 Induction Algorithm. Machine Learning, Vol.
3 No. 4, pp. 261-283. (Chapter 2)

26. Clark P. and Boswell R. 1991. Rule induction with CN2: Some recent improvements.
Machine Learning - EWSL-91, Edited by Kodratoff Y., Springer-Verlag, Berlin,
pp. 151-163. (Chapter 2)

27. Cohen W. 1995a. Learning to classify English Text with ILP Methods. .Advances in
ILP, Edited by Luc De Raedt, IOS Press (Chapter 5)

28. Cohen W. 1995b. Fast Effective Rule Induction. . Proceedings of the Twelfth
International Conference on Machine Learning, Tahoe City, CA, USA, July 9_12
1995, pp. 115-123 (Chapter 5)

29. Cohen W., Devanbu P., 1997. A Comparative Study of Inductive Logic Programming
Methods for Software Fault Prediction. Proceedings of Fourteenth International
Conference on Machine Learning. July 8-12 1997, Vanderbilt University, Nashville,
TN, USA (Chapter 2)

30. Cohen W., and Devanbu P. 1999. Automatically Exploring Hypotheses about Fault
Prediction: a Comparative Study of Inductive Logic Programming Methods.
International Journal of Software Engineering and Knowledge Engineering (to
appear). (Chapter 2)

31. Conger S. 1994. The New Software Engineering. International Thomson Publishing.
(Chapter 2)

32. Desclaux C. 1990. Capturing design and maintenance decisions with MACS.
Proceedings of the 2nd International IEEE Conference on Tools for Artificial
Intelligence, pp. 146-153. (Chapter 2)

33. Devanbu P. and Ballard B.W. 1991. LaSSIE: A Knowledge-Based Software
Information System. Automated Software Design. Edited by Lowry M. R. and
McCartney R. D. .AAAI Press, pp. 25-38. (Chapter 2)

34. Dougherty J., Kohavi R., Sahami M. 1995. Supervised and Unsupervised
Discretization of Continuous Features. Proceedings of the 12th International
Conference on Machine Learning, Tahoe City, CA, USA, July 9_12 1995,
pp. 194-202 (Chapter 4)

35. Ezawa, K.J. and Singh, M., and Norton S.W. 1996. Learning Goal Oriented Basian
Networks for Telecommunications Management. Prococidings of the International
Conference on Machine Learning, pp. 139-147 (Chapter 4)

230

36. Fayyad U.M., and Irani B.K. 1993. Multi-Interval Discretization of Continuous-
Valued Attributes for Classification Learning. Prococidings of 13th International
Joint Conference on Artificial Intelligence, Chambery, France. Morgan Kaufmann
Publishers Inc.,San Francisco, CA, pp. 1022-1027 (Chapter 4)

37. Feng C. and Mitchie D. 1994. Machine Learning of Rules and Trees. Machine
Learning, Neural and Statistical Classification. Edited by Mitchie D, Spiegelhalter
D.J, and Taylor C.C. Prentice Hall, Englewood Cliffs, N.J. (Chapter 2)

38. Frost R. A. 1986. Introduction to Knowledge Based Systems. William Collins Sons &
CO. Ltd. (Chapter 2)

39. Fawcett, T. and Provost, F. 1996. Combining Data Mining and Machine Learning for
Effective User Profile. Prococidings of the 2nd International Conference on
Knowledge Discovery and Data Mining, Portland, OR USA. AAAI press, pp. 8-13.
(Chapter 4)

40. Gori M., Bengio Y., and De Mori R. 1989. BPS: A Learning Algorithm for Capturing
the Dynamic Nature of Speech. Proceedings of International Joint Conference on
Neural Networks, Washington DC, USA, June 1989, Vol. 2 pp. 417-424. (Chapter 2)

41. Green C, Luckham D., Balzer R., Cheatham T., and Rich C. 1983. Report on a
Knowledge-Based Software Assistant. Readings in Artificial Intelligence and
Software Engineering 1986 pp. 377-428. Edited by Rich C. and Waters R. C. .
Morgan Kaufmann Publishers. Los Altos, CA. Also in Technical Report KES.U.83.2,
Kestrel Institute, Palo Alto, CA. (Chapter 2)

42. Green C. 1991. Foreword. Automated Software Design. Edited by Lowry M. R. and
McCartney R. D., AAAI Press. (Chapter 2)

43. Harandi M.T. and Ning J.Q. 1990. Knowledge-Based Program Analysis. IEEE
Software, Vol. 7 No. 1 , January 1990, pp. 74-81. (Chapter 2)

44. Holte R.C. 1993. Very Simple Classification Rules Perform Well on Most Commonly
Used Datasets. Machine Learning, Vol. 3 pp. 63-91. (Chapter 4)

45. Japkowicz, N. 2001. Supervised versus Unsupervised Binary-Learning by
Feedforward Neural Networks. Machine Learning Vol. 42 No. 1/2, January 2001,
pp. 97-122. (Chapter 5)

46. Japkowicz N. and Stephen, S. 2002. The Class Imbalance Problem: A Systematic
Study. Intelligent Data Analysis, Vol. 6 No. 5, November 2002, pp. 429-449.
(Chapter 4)

47. Kautz H. and Allen J. 1986. Generalized Plan Recognition. Proceedings of the fifth
National Conference on Artificial Intelligence. Philadelphia, PA, pp. 32-37.
(Chapter 2)

231

48. Kemerer C. F. 1987. An empirical validation of software cost estimation models.
Communications of the ACM, Vol. 30 No. 5 pp. 416-429, May 1987. (Chapter 2)

49. Kohavi R, Sahami M. 1996. Error-Based and Entropy-Based Discretization of
Continuous Features. Prococidings of the 2nd International Conference on
Knowledge Discovery and Data Mining, Portland, OR USA. AAAI press,
pp. 114-119. (Chapter 4)

50. Kontogiannis K.A. and Selfridge P.G. 1995. Workshop Report: The Two-day
Workshop on Research Issues in the Intersection between Software Engineering and
Artificial Intelligence (held in conjunction with ICSE-16). Automated Software
Engineering Vol. 2, pp. 87-97. (Chapter 2)

51. Kozacynski W., Ning J., and Sarver T. 1992. Program Concept Recognition.
Proceedings of the Seventh Knowledge-Based Software Engineering Conference. Los
Alamitos, CA., pp. 216-225. (Chapter 2)

52. Kubat M., Holte R., and Matwin S. 1997. Learning When Negative Examples
Abound. Prococidings of the 9th European Conference on Machine Learning,
Prague. (Chapter 4)

53. Kwon O.C., Boldyreff C. and Munro M. 1998. Survey on a Software Maintenance
Support Environment. Technical Report 2/98, Centre for Software Maintenance,
School of Engineering and Applied Science, University of Durham. (Chapter 2)

54. Lethbridge T.C. 1994. Practical Techniques for Organizing and Measuring
Knowledge Ph.D. Thesis, Department of Computer Science, University of Ottawa.
(Chapter 2)

55. Lethbridge T.C. and Anquetil N. 1997. Architecture of a Source Code Exploration
Tool: A Software Engineering Case Study. Technical Report TR-97-07, Department
of Computer Science, University of Ottawa. (Chapter 1, 3)

56. Lethbridge T.C. 2000. Integrated Personal Work Management in the TkSee Software
Exploration Tool. Second International Symposium on Constructing Software
Engineering Tools CoSET, Limerick, Ireland, June 2000, pp. 31-38. (Chapter 1)

57. Lewis D.D 1992. Representation and Learning in Information Retrieval, Ph.D.
dissertation, University of Massachusetts. (Chapter 4)

58. Lewis D.D 1995. Evaluating and Optimizing Autonomous Text Classification
Systems. Proceedings of the 18th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, Seattle, Washington, USA, July
9-13 1995, pp. 246-254. (Chapter 3)

59. Lientz B. P., Swanson E. B., and Tompkins G. E., 1978. Characteristics of
Application Software Maintenance. Communications of the ACM Vol. 2 1 no 6
pp. 466-471, June 1978. (Chapter 1)

232

60. Liu, Z.Y., Ballantyne M., and Seward L. 1994. An Assistant for Re-Engineering
Legacy Systems. Proceedings of the Sixth Innovative Applications of Artificial
Intelligence Conference. AAAI, Seattle, WA pp. 95-102. (Chapter 2)

61. Liu, Z.Y. 1995. Automating Software Evolution, International Journal of Software
Engineering and Knowledge Engineering, Vol. 5 No 1, March 1995. (Chapter 2)

62. Lowry M and Duran R. 1989. Knowledge-based Software Engineering. The
Handbook of Artificial Intelligence Vol. 4. Edited by Barr A., Cohen P. and
Feigenbaum E.A. . Addison-Wesley Publishing Company, Inc. (Chapter 2)

63. Marchand M. and Shawe-Taylor J. 2001. Learning with the Set Covering Machine,
Proceedings of the Eighteenth International Conference on Machine Learning,
pp. 345-352. (Chapter 4)

64. Marchand M. and Shawe-Taylor J. 2002, The Set Covering Machine, Journal of
Machine Learning Research, Vol. 3 December, pp. 723-745. (Chapter 4)

65. Mladenic, D. 1999. Text-Learning and Related Intelligent Agents: A Survey. IEEE
Intelligent Systems, Vol. 14 No. 4, pp. 44-54. (Chapter 4)

66. McCartney R. 1991. Knowledge-Based Software Engineering: Where We Are and
Where We Are Going. Automated Software Design. Edited by Lowry M. R. and
McCartney R. D., AAAI Press. (Chapter 2)

67. McNee B. Keller E., Stewart B. Morello D., and Andren E. 1997. The Year 2000
Challenge: Opportunity or Liability? R-Y2K-115 Gartner Group, July 29, 1997
(Chapter 1)

68. Merlo E., McAdam I. and De Mori R. 1993. Source code informal information
analysis using connectionist models. Proceedings of the 13th International Joint
Conference on Artificial Intelligence (IJCAI), Chambery, France, August 1993,
pp. 1339-1345. (Chapter 2)

69. Merlo E and De Mori R. 1994. Artificial Neural Networks for Source Code
Information Analysis. Proceedings of International Conference on Artificial Neural
Networks, Vol.2 part 3, Sorrento, Italy, May 1994, pp. 895-900. (Chapter 2)

70. Mitchell T.M. 1997. Machine Learning. McGraw-Hill Companies, Inc. (Chapter 1)

71. Moore M. and Rugaber S. 1997. Using Knowledge representation to Understand
Interactive Systems. Proceedings of the 5th International Workshop on Program
Comprehension, Dearborne, MI, May 1997, pp. 60-67. (Chapter 2)

72. Muggleton S, and Buntine W. 1988. Machine invention of First-Order Predicates by
Inverting Resolution. Proceedings of 5th International Conference on Machine
Learning, Ann Arbor, MI, pp. 339-352. (Chapter 2)

233

73. Nedellec C. 1995. Proceedings of the 11th International Joint Conference on Artificial
intelligence, Workshop on Machine Learning and Comprehensibility, August 20-25,
Montreal, Canada. (Chapter 1, 2)

74. Palthepu S., Greer J.E. and McCalla G.I. 1997. Cliché Recognition in Legacy
Software: A scalable, Knowledge-Based Approach. Proceedings of the Forth
Working Conference on Reverse Engineering. Amesterdam, The Netherlands,
October 1997, pp. 94-103. (Chapter 1, 2)

75. Palthepu S. 1998. Scalable Program Recognition for Knowledge-based Reverse
Engineering. Ph.D. Thesis, Department of Computer Science, University of
Saskatchewan. (Chapter 2).

76. Patel-Schneider P.F. 1984. Small Can be Beautiful in Knowledge Representation.
Proceedings of the IEEE Workshop on Principles of Knowledge-Based Systems.
Washington, D.C., pp. 11-16. (Chapter 2)

77. Pfleeger S. L. 2001. Software Engineering: Theory and Practice. Second Edition,
Prentice-Hall Inc. (Chapter 1)

78. Piatetsky-Shapiro, G., Brachman, R., Khabaza, T., Kloesgen, W., Simoudis, E. 1996
An Overview of Issues in Developing Industrial Data Mining and Knowledge
Discovery. Proceedings of the Second International conference on Knowledge
Discovery and Data Mining. E Simoudis, J Han and U Fayyad, Editors, August 2-4,
Portland, Oregon USA, AAAI Press pp. 89-95 (Chapter 3)

79. Porter A.1994. Using Measurement-Driven Modeling to Provide Empirical Feedback
to Software Developers. Journal of Systems and Software Vol. 20 No. 3 pp. 237-254.
(Chapter 2)

80. Pressman R.S. 1997. Software Engineering: A Practitioner’s Approach. Forth
Edition, The McGraw-Hill Companies, Inc. (Chapter 1)

81. Provost F., Fawcett T. 1997. Analysis and Visualization of Classifier Performance:
Comparison Under Imprecise Class and Cost Distribution. Proceedings of the Third
International Conference on Knowledge Discovery and Data Mining, August 14-17,
Huntington Beach, CA, AAAI Press, pp. 43-48. (Chapter 5)

82. Provost F., Fawcett T., and Kohavi R. 1998. The Case Against Accuracy Estimation
for Comparing Induction Algorithms. Proceedings of the Fifteenth International
Conference on Machine Learning, July 24-27, Madison, Wisconsin USA,
pp. 445-453. (Chapter 3)

83. Provost F and Domingos P. 2000. Well-Trained PETs: Improving Probability
Estimation Trees. CeDER Working Paper #IS-00-04, Stern School of Business, New
York University, NY. (Chapter 5)

234

84. Putnam L.H. 1978. A General Empirical Solution to the Macro Software Sizing and
Estimating Problem. IEEE Transactions on Software Engineering, Vol. 4 No. 4
pp. 345-361, July 1978. (Chapter 2)

85. Pyle D. 1999. Data preparation for data mining. Morgan Kaufmann Publishers, San
Francisco, CA. (Chapter 3)

86. Quilici A. 1994. A Memory-Based Approach to Recognizing Programming Plans.
Communications of the ACM, Vol. 37 No. 5, pp. 84-93 (Chapter 2)

87. Quilici A. and Woods S. 1997. Toward a Constraint-Satisfaction Framework for
Evaluating Program-Understanding Algorithms. Journal of Automated Software
Engineering, Vol. 4 No. 3, pp. 271-290. (Chapter 2)

88. Quilici A., Yang Q., Woods S. 1998. Applying plan recognition algorithms to
program understanding. Journal of Automated Software Engineering , Vol. 5 No. 3,
pp. 347-372, Kluwer Academic Publishing. (Chapter 2)

89. Quinlan J.R. 1986. Induction of Decision Trees. Machine Learning, Vol. 1 No.1,
pp. 81-106. (Chapter 2)

90. Quinlan, J.R. 1990. Learning Logical Definitions from Relations, Machine Learning,
Vol. 5, pp. 239-266. (Chapter 2)

91. Quinlan J.R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, Pat Langley, Series Editor. (Chapter 2, 4)

92. Rich C., Waters R. C. 1988. The Programmer’s Apprentice: A research overview.
IEEE Computer, Vol. 21 No. 11 pp. 10-25 (Chapter 2)

93. Rich C., Waters R. C. 1990. The Programmer’s Apprentice. ACM Press. (Chapter 2)

94. Rugaber S., Ornburn S.B., and LeBlanc R.J. Jr. 1990. Recognizing Design Decisions
in Programs. IEEE Software, Vol. 7 No. 1 pp. 46-54, January 1990. (Chapter 1)

95. Rugaber S. 1999. A Tool Suit for Evolving Legacy Software. Submitted to
International Conference on Software Maintenance. (Chapter 2)

96. RuleQuest Research 1999. Data Mining Tools See5 and C5.0.
http://www.rulequest.com/see5-info.html . (Chapter 4)

97. Rumelhart D.E., Hinton G.E., and Williams R.J. 1986. Learning Internal
Representations by Error Propagation. In Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Vol. 1 Foundations. Edited by.
McClelland J. L, Rumelhart D.E. and the P.D.P. Research Group Editors. MIT press
Cambridge, MA. (Chapter 2).

235

98. Russell S. and Norvig P. 1995. Artificial Intelligence: A Modern Approach. Prentice-
Hall, Englewood Cliffs, NJ. (Chapter 2)

99. Sayyad-Shirabad, J. Lethbridge T.C. Lyon S. 1997. A Little Knowledge Can Go a
Long Way Towards Program Understanding. Proceedings of the 5th International
Workshop on Program Comprehension, May 28-30, Dearborn, MI, pp. 111-117.
(Chapter 4)

100. Sayyad Shirabad, J, Lethbridge, T.C. and Matwin S. 2000, Supporting Maintenance
of Legacy Software with Data Mining Techniques, CASCON, November 2000,
Toronto, Ont., pp. 137-151. (Chapter 1)

101. Sayyad Shirabad, J, Lethbridge, T.C. and Matwin, S. 2001. Supporting Software
Maintenance by Mining Software Update Records. Proceedings of the 17th IEEE
International Conference on Software Maintenance, November 2001 Florence, Italy,
pp. 22-31. (Chapter 1)

102. Saitta L., Neri F. 1998. Learning in the “Real World”. Machine Learning Vol. 30
No.2-3, pp. 133-163. (Chapter 3)

103. Schach S. R. 2002. Object-Oriented and Classical Software Engineering. Fifth
Edition, McGraw-Hill Companies, Inc. (Chapter 1)

104. Scherlis W. L. and Scott D. S. 1983. First steps towards inferential programming.
Information Processing Vol. 83 pp. 199-213. Also in Tech Report CMU-CS-83-142,
Pittsburgh, Carnegie Mellon University. (Chapter 2)

105. Shapiro D.G., and McCune B.P. 1983. The Intelligent Program Editor: a knowledge
based system for supporting program and documentation maintenance. Proceedings
of Trends & Applications 1983. Automating Intelligent Behavior. Applications and
Frontiers, pp. 226-232. (Chapter 2)

106. Sommerville I. 2001. Software Engineering. Sixt Edition, Addison-Wesley
(Chapter 1)

107. Srinivasan K. and Fisher D. 1995. Machine Learning Approaches to Estimating
Software Development Effort. IEEE Transactions on Software Engineering. Vol. 21
No. 2 pp. 126-137, February 1995 (Chapter 2)

108. Tracz W. 1988. Tutorial on Software Reuse: Emerging Technologies. IEEE
Computer Society Press, New York. (Chapter 2)

109. Ulrich W.M. 1990. The evolutionary growth of software reengineering and the
decade ahead. American Programmer, Vol. 3 No 10 pp. 14-20. (Chapter 2)

110. Van Rijsbergen C.J. 1979. Information Retrieval, Second edition, London,
Butterworths. (Chapter 5)

236

111. Walczak S. 1992. ISLA: an intelligent assistant for diagnosing semantic errors in
Lisp code. Proceedings of the 5th Florida Artificial Intelligence Research
Symposium, pp. 102-105. (Chapter 2)

112. Ward M., Calliss F.W., and Munro M. 1988. The Use of Transformations in “The
Maintainers’s Assistant”. Technical Report 9/88, Centre for Software Maintenance,
School of Engineering and Applied Science, University of Durham. (Chapter 2)

113. Waters R.C. 1982, Programmer’s Apprentice. The Handbook of Artificial
Intelligence Vol. 2. Edited by Barr A., and Feigenbaum E.A. . HeurisTech Press
pp. 343-349 (Chapter 2)

114. Weiss S. M. and Kulikowski C. A., 1991. Computer Systems that Learn:
Classification and Prediction Methods from Statistics, Neural Nets, Machine
Learning, and Expert Systems, Morgan Kaufmann Publishers Inc., San Mateo, CA
(Chapter 2)

115. Witten I.H., and Frank E. 2000. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann Publishers Inc.,San
Francisco, CA. (Chapter 4)

116. Woods W.A. 1970. Transition network grammars for natural language analysis.
Communications of the ACM Vol. 13 No. 10 pp. 591-606 (Chapter 2)

