
INTELLIGENT SEARCH TECHNIQUES FOR LARGE

SOFTWARE SYSTEMS

Huixiang Liu

Thesis

submitted to the Faculty of Graduate and Postdoctoral Studies

in partial fulfilment of the requirements

for the degree of Master of Computer Science

August 31, 2001

Ottawa-Carleton Institute for Computer Science

School of Information Technology and Engineering

University of Ottawa

Ottawa, Ontario, Canada

© Huixiang Liu, 2001

ii

ACKNOWLEDGEMENTS

I would like to acknowledge the help that I have received during my research.

Grateful thanks to:

• Dr. Timothy Lethbridge, my supervisor, for his support, guidance, patience and

intelligent comments.

• The KBRE group for their help, comments, and the valuable discussions with them.

• The software engineers who participated in this study.

• My friends for their concerns and encouragements.

• My family, for the endless support to me.

iii

ABSTRACT

There are many tools available today to help software engineers search in source code

systems. It is often the case, however, that there is a gap between what people really want

to find and the actual query strings they specify. This is because a concept in a software

system may be represented by many different terms, while the same term may have

different meanings in different places. Therefore, software engineers often have to guess as

they specify a search, and often have to repeatedly search before finding what they want.

To alleviate the search problem, this thesis describes a study of what we call intelligent

search techniques as implemented in a software exploration environment, whose purpose is

to facilitate software maintenance. We propose to utilize some information retrieval

techniques to automatically apply transformations to the query strings. The thesis first

introduces the intelligent search techniques used in our study, including abbreviation

concatenation and abbreviation expansion. Then it describes in detail the rating algorithms

used to evaluate the query results' similarity to the original query strings. Next, we describe

a series of experiments we conducted to assess the effectiveness of both the intelligent

search methods and our rating algorithms. Finally, we describe how we use the analysis of

the experimental results to recommend an effective combination of searching techniques

for software maintenance, as well as to guide our future research.

iv

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ...1

1.1 CURRENT PROBLEMS OF SEARCHING IN LARGE SOFTWARE SYSTEMS .. 1

1.2 RELATED RESEARCH ... 3

1.2.1 Data retrieval ... 3

1.2.2 Information retrieval .. 4

1.3 LIMITATIONS OF PREVIOUS RESEARCH .. 5

1.4 DIFFICULTY OF SEARCHING SOFTWARE ENTITIES .. 6

1.5 MOTIVATION AND OBJECTIVES ... 7

1.6 CONTRIBUTIONS OF THE THESIS .. 7

1.7 THE ORGANIZATION .. 8

CHAPTER 2. ARCHITECTURE OF THE INTELLIGENT SEARCH TOOL9

2.1 GENERIC MODEL OF INFORMATION RETRIEVAL... 9

2.1.1 Pre-processing.. 9

2.1.2 Retrieval.. 10

2.2 THE DIFFERENCES OF INFORMATION RETRIEVAL BETWEEN SOURCE CODE AND REGULAR DOCUMENTS

... 11

2.2.1 The difference between source code and regular documents... 11

2.2.2 The inappropriateness of the normal information retrieval model in large software systems12

2.3 PROPOSED MODEL OF INFORMATION RETRIEVAL FOR SOFTWARE MAINTENANCE 13

2.3.1 Data retrieval ... 14

2.3.2 Information retrieval .. 15

2.4 THE INTELLIGENT SEARCH TOOL... 15

2.4.1 The environment ... 16

2.4.2 Intelligent search procedure... 16

2.5 SUMMARY ... 18

CHAPTER 3. SELECTION OF TEXT OPERATIONS ...19

3.1 REGULAR TEXT OPERATIONS... 19

3.2 INVESTIGATION IN A LARGE SOFTWARE SYSTEM ... 20

3.3 SELECTION OF INTELLIGENT SEARCH TECHNIQUES FOR LARGE SOFTWARE SYSTEMS.................... 23

3.3.1 Regular text operations that are adaptable to source code systems 23

3.3.2 Regular text operations that are not used .. 25

3.3.3 Additional text operation techniques for software systems .. 26

3.3.4 Other methods... 27

3.4 SUMMARY OF INTELLIGENT SEARCH TECHNIQUES USED IN OUR STUDY .. 28

v

CHAPTER 4. CANDIDATE GENERATION ALGORITHMS..29

4.1 DEFINITIONS.. 29

4.1.1 Basic definitions ... 29

4.1.2 Types of strings in source code... 30

4.1.3 Types of evaluation strings ... 30

4.2 GENERAL IDEA OF THE CANDIDATE GENERATION ALGORITHMS.. 32

4.3 CANDIDATE GENERATION ALGORITHMS.. 33

4.3.1 Preparations ... 33

4.3.2 Abbreviation concatenation algorithms (ABBR).. 34

4.3.3 Abbreviation expansion algorithms (EXPN) .. 36

4.3.4 Algorithms using knowledge bases (KB) .. 38

4.4 SAMPLE OUTPUT OF THE CANDIDATE GENERATION ALGORITHMS ... 38

4.5 SUMMARY OF THE CANDIDATE GENERATION ALGORITHMS... 40

CHAPTER 5. RATING ALGORITHMS ..41

5.1 REVIEW OF RELATED RESEARCH ... 41

5.1.1 Similarity between the query string and a retrieved document .. 41

5.1.2 Similarity between strings .. 42

5.2 EVALUATION STRATEGIES .. 44

5.2.1 Rationale of using evaluation strings ... 44

5.2.2 Types of evaluation strings ... 44

5.2.3 General idea ... 45

5.2.4 Criteria for the evaluation.. 46

5.3 THE RATING ALGORITHM .. 51

5.3.1 Denotations... 51

5.3.2 Evaluating a result in up to three steps .. 52

5.3.3 A general framework for rating against evaluation strings ... 53

5.3.4 Algorithm 1 (R1)... 55

5.3.5 Algorithm 2 (R2)... 57

5.3.6 Algorithm 3 (R3)... 60

5.4 EXAMPLES OF RATINGS OF RESULTS.. 61

5.5 SUMMARY ... 61

CHAPTER 6. EXPERIMENTS..63

6.1 REVIEW OF MEASUREMENTS OF RETRIEVAL EFFECTIVENESS .. 63

6.1.1 Precision and recall.. 63

6.1.2 Drawbacks of precision and recall... 64

6.1.3 User-oriented measures.. 64

vi

6.2 METHODOLOGIES .. 65

6.2.1 Automatic evaluations .. 65

6.2.2 Human evaluations ... 66

6.3 OVERALL PERFORMANCE.. 68

6.3.1 Response time ... 68

6.3.2 Coverage ratio and novelty ratio.. 69

6.3.3 Summary ... 72

6.4 PERFORMANCE OF CANDIDATE GENERATION ALGORITHMS... 72

6.4.1 Search Candidates generated... 73

6.4.2 Quantity of results found .. 75

6.4.3 Quality of the results... 76

6.4.4 Summary of the performance of the candidate generation algorithms 79

6.5 RATING ALGORITHMS ... 79

6.5.1 Evaluation of the accuracy from case studies .. 79

6.5.2 Average accuracy of the rating algorithms .. 80

6.5.3 Correlation coefficient analysis.. 84

6.6 IMPROVING THE TOOL ... 86

6.6.1 Methods .. 87

6.6.2 Improved performance ... 88

6.7 LIMITATION OF THE HUMAN EXPERIMENT ... 88

6.8 SUMMARY OF THE EXPERIMENT ANALYSIS ... 89

CHAPTER 7. CONCLUSION AND FUTURE WORK...90

7.1 REVIEW OF THE RESEARCH.. 90

7.2 CONCLUSIONS ... 90

7.3 LIMITATIONS AND FUTURE WORK .. 91

REFERENCES...93

APPENDICES ..96

APPENDIX A: SAMPLE QUESTIONAIRE OF THE HUMAN EXPERIMENT... 96

APPENDIX B: INSTRUCTIONS FOR THE HUMAN EXPERIMENT... 97

vii

LIST OF TABLES

TABLE 3.1 PERCENTAGE OF THE NAMES CONTAINING VARIOUS WORD FORMATS21

TABLE 3.2 PERCENTAGE OF ABBREVIATIONS WITH DIFFERENT LENGTHS...23

TABLE 4.1 SAMPLE OUTPUT OF CANDIDATE GENERATION STAGE FOR "CALLFORWARDWHILEBUSY". 39

TABLE 4.2 SAMPLE OUTPUT OF CANDIDATE GENERATION STAGE FOR "LISTDBG".39

TABLE 4.3 CANDIDATE GENERATION TECHNIQUES AND RESULTS..40

TABLE 5.1 MIN, MAX VALUE OF ITEMS IN ES1..57

TABLE 5.2 RATINGS OF RESULTS FOR "CALLFORWARDWHILEBUSY". ..61

TABLE 5.3 RATINGS OF RESULTS FOR "LISTDBG"...61

TABLE 5.4 SUMMARY OF THE RATING ALGORITHMS...62

TABLE 6.1 AVERAGE COVERAGE RATIO AND NOVELTY RATIO ...70

TABLE 6.2 FOR EACH CANDIDATE GENERATION ALGORITHM, THE NUMBER OF SEARCH CANDIDATES

DERIVED (CANDIDATES), THE NUMBER OF RESULTS FOUND (RESULTS), AND THE AVERAGE RATINGS

OF THE RESULTS PROVIDED BY OUR RATING ALGORITHMS (RATING). ...73

TABLE 6.3 FOR EACH CANDIDATE GENERATION ALGORITHM IN SINGLE-WORD TERM CASES, THE NUMBER

OF SEARCH CANDIDATES DERIVED (CANDIDATES), THE NUMBER OF RESULTS FOUND (RESULTS), AND

THE AVERAGE RATINGS OF THE RESULTS PROVIDED BY OUR RATING ALGORITHMS (RATING).74

TABLE 6.4 FOR EACH CANDIDATE GENERATION ALGORITHM IN MULTI-WORD TERM CASES, THE NUMBER

OF SEARCH CANDIDATES DERIVED (CANDIDATES), THE NUMBER OF RESULTS FOUND (RESULTS), AND

THE AVERAGE RATINGS OF THE RESULTS PROVIDED BY OUR RATING ALGORITHMS (RATING).75

TABLE 6.5 NUMBER OF RESULTS GENERATED BY EACH ALGORITHM IN THE 5 HUMAN RATING CATEGORIES

(C1 TO C5). ..78

TABLE 6.6 PERCENTAGE OF ALL RESULTS HANDLED BY THE RATING ALGORITHMS AND THEIR AVERAGE

RATINGS..81

viii

TABLE 6.7 PERCENTAGE OF RESULTS HANDLED BY THE RATING ALGORITHMS AND THEIR AVERAGE

RATINGS IN SINGLE-WORD CASES..81

TABLE 6.8 PERCENTAGE OF RESULTS HANDLED BY THE RATING ALGORITHMS AND THEIR AVERAGE

RATINGS IN MULTI-WORD CASES ...81

TABLE 6.9 AVERAGE ACCURACY OF THE RATING ALGORITHMS (AVERAGE RATINGS FROM THE

ALGORITHM/(THE AVERAGE HUMAN RATING * 20)) ..81

TABLE 6.10 SUMMARY STATISTICS: THE RATINGS BY OUR RATING ALGORITHMS IN THE 5 HUMAN RATING

CATEGORIES (C1 TO C5). ..82

TABLE 6.11 PERCENTAGE OF FALSE POSITIVES USING DIFFERENT THRESHOLDS......................................83

TABLE 6.12 CORRELATION COEFFICIENT BETWEEN DIFFERENT SETS OF RATINGS85

LIST OF FIGURES

FIGURE 2.1 A MODEL OF NORMAL INFORMATION RETRIEVAL SYSTEMS ...10

FIGURE 2.2 THE MODEL OF SOFTWARE INFORMATION RETRIEVAL SYSTEMS ...14

FIGURE 2.3 INTELLIGENT SEARCH PROCEDURE ..17

FIGURE 4.1 RELATIONSHIP AMONG THE TEXT OPERATION OBJECTS. ..31

FIGURE 5.1 USING EVALUATION STRINGS IN THE RATING ALGORITHM ...46

1

1.1 CURRENT PROBLEMS OF SEARCHING IN LARGE SOFTWARE SYSTEMS

Many researchers in the reverse engineering community have shown that search is a

major task of software maintenance [14]. In large software systems, searching in the source

code is even more time consuming, so the task of program comprehension is even more

difficult. Therefore, tools targeted to the search problems in source code should help

improve the effectiveness of program comprehension. Search tools, such as Unix ‘grep’ or

the facilities provided with code exploration systems such as Source Navigator [25], are

used every day by many software engineers to facilitate program comprehension.

Even with the regular search tools, however, Lethbridge et al. [14] have found that

when working with source code, search can account for as much as 28% of the individual

activities performed by software engineers. In particular, it takes them a long time to find

the files that include a certain string (e.g. using grep), and then to look for the string in the

files found (e.g. using an editor).

The time spent on search is partly due to the fact that software engineers have to search

for the same string over and over again because they can not remember or access the results

of previous queries. Some of the source code exploration tools such as Source Navigator

[25] and TkSee [13] partially solve this problem by remembering the recent query history

for the users. Consequently, software engineers can work on the same result list repeatedly

without performing the same query again.

Another factor that contributes to the massive amount of time and effort spent on search

is the synonym and polysemy phenomenon [16] in software systems. The synonym

phenomenon refers to the fact that the same concept can be represented in many different

ways. Polysemy means a word can have different meanings in different contexts. Therefore,

it takes a lot of time for people to figure out what words have been used by other

programmers to represent a certain entity1.

1 By entity, we are referring to software units that represent concrete objects or abstract concepts in

software systems. In source code, entities could be files, routines, variables, constants and other identifiers.

CHAPTER 1. INTRODUCTION

2

Moreover, even if people know exactly which words represent a concept in a software

system, they might not know in which format the words appear. For instance, some

programmers use “msg” to refer to “message”, while some others might use “mssg” or

“mes” instead. Consequently, when a user searches for something with the name indicating

that it is a message, he has to try all the possible forms of “message” before he can get a

comprehensive list of results.

The existence of synonyms, polysemy, and multi-morphology of words makes

searching in source code systems much harder because it is difficult to find out exactly

what names are used to represent certain concepts or objects in the system, as well as in

which format the names appear. As a consequence, the software engineer has to figure out a

possible query string, perform the search, and investigate the results. If none of the results

is the expected target, the software engineer must come up with the next query, and start the

search process again. This repetitive procedure is necessary for not only novices of the

systems, who have to acquire knowledge of the applications that are new to them, but also

for experts, who, however long they have been working with the systems, can not

remember all the details.

Unfortunately, normal search only retrieves results by exact string matching.

Sometimes such exact matching can not find anything. For example, if a user is interested

in information related to the query, "call forward while busy", normal search facilities

might find a few comments in source code that happen to contain exactly the same

character string, but can not return an entity whose name is "callForwardBusy", or "cfb".

Some other times, although exact matching does find several results, the users expect more.

For example, if a user is working with "listdbg" and hopes to learn more about it by

searching for relevant entities, normal search will only help retrieving "*listdbg*"-like

names (the * symbol in this thesis represents zero or more substitutions of any character),

but will miss "list_debug", if it exists.

Clearly, the gap between the users’ information need and the actual query strings they

specify is a very important issue to address. We need advanced techniques to address this

problem, and to retrieve the entities in large software systems that satisfy users' information

needs.

3

In the remainder of this chapter we will compare related searching techniques. In the

subsequent chapters, we will present our solution to the searching problem of large

software systems.

1.2 RELATED RESEARCH

In the past few decades, many search tools and software information systems [2] have

been developed to assist software engineers in working with the large collection of

knowledge in source code. We can classify the search techniques of the tools into two

categories, data retrieval and information retrieval.

1.2.1 Data retrieval

Baeza-Yates defined Data Retrieval as:

the retrieval of items (tuples, objects, Web pages, documents) whose

contents satisfy the condition specified in a (regular expression like) user

query. [5]

Data retrieval processes the query strictly according to the user’s specification. In other

words, these tools assume that users know precisely what they want, and their information

need is accurately expressed by the query string. Regular expression search is a member of

this category because it does nothing to interpret users’ information requirements.

Therefore, a document is judged as either a hundred percent conforming to the requirement,

or not conforming at all. Every retrieved result is considered “relevant” to the query, and no

evaluation of the result’s pertinence is necessary. Hence, any single item in the result list

that is not consistent with the search condition can only be attributed to a defect in the data

retrieval mechanism.

Unix ‘grep’ and most of the commercial tools [15] that support search functions such as

Source Navigator [25] and Microsoft Visual C++ [19] belong to this family. There are also

some software visualization tools [15], such as ShriMP [23] and TkSee [13], in academia

that allow searching for the entities in source code. All these tools provide exact string

matching and pattern matching facilities such as regular expression search.

4

To improve search efficiency, some of these tools [12] employ DBMS-like mechanisms

to support data retrieval in large software systems; this is because such mechanisms are

very efficient for fully structured or semi-structured documents like source code. These

tools first extract and store in a database the entities defined or used in the system. Then,

during the search processes, the DBMS query mechanism can quickly retrieve from the

database the entities that match the search conditions, and bring the searcher to the location

of the entities in the system.

1.2.2 Information retrieval

Unlike data retrieval, information retrieval focuses on the information need represented

by the query. Information Retrieval, as Baeza-Yates defines it, is:

part of computer science which studies the retrieval of information (not

data) from a collection of written documents. The retrieved documents aim

at satisfying a user information need usually expressed in natural language.

[5]

Information retrieval assumes that users might not have provided accurate descriptions

of their information need; hence the techniques automatically expand the queries by

looking for relevant or useful information represented by partial matching, as well as exact

matching. Unlike in data retrieval, a certain fraction of inaccurate items among the result

set is tolerable in information retrieval because of the ambiguity of natural language.

There have been some applications of information retrieval technology in software

information systems [2]. These applications include the CATALOG system of AT&T Bell

Labs [10], the IBM Share System [7], the British ECLIPSE [27] project, the European

PRACTITIONER project [6], and recently IBM’s jCentral [30, 31], to name a few. No

matter what techniques these studies have used, they have provided us many valuable

experiences of software information retrieval systems.

5

1.3 LIMITATIONS OF PREVIOUS RESEARCH

Unfortunately, previous practices of data retrieval and information retrieval in software

systems have not solved the problem we described in section 1.1. Data retrieval techniques

are, of course, not enough because users' information needs are not their utmost concern.

However, few of the previous information retrieval studies has addressed our problem,

either.

It is notable that most of the previous software information systems using information

retrieval techniques were designed for software reuse. What these systems had in common

was that they had a collection of reusable software components represented with some

predicates to describe their functionality. The software components were then classified and

indexed according to the predicates. During the retrieval, the systems would match user

queries with the predicates, the representations of reusable software, and hence locate the

software for the user.

For example, CATALOG consisted of a small collection of reusable program modules.

In order to help retrieve these modules, it first prepared and stored the textual descriptions

of them, and then it constructed the index using every single word of the descriptions.

During the retrieval, CATALOG compared the queries with the indexed terms, and

returned some relevant descriptions. These descriptions would further point to the

corresponding reusable modules.

Hence, most of these software information systems either did not deal with source code

directly, or focused mainly on bigger software components, such as functions, procedures,

packages and programs. Moreover, if they were automatic classification and indexing

systems, their index terms were mainly extracted from the development documents and/or

comments in source code that were more similar to normal unstructured text documents

written in natural language than source code.

IBM’s jCentral [31] is a tool that is aimed at more than software reuse and deals with

source code directly. It searches and locates in the Web space Java resources, including

source code, news group articles, FAQs, and so on. It generates and indices a summary

describing the features of each resource from descriptive text, e.g. the text on the HTML

page that contains the source code, as well as extracts the Java-specific features, such as

class, method names and signature, properties and etc., if the resource is Java code.

6

Unfortunately, the documents we have found about jCentral do not indicate whether it

further analyzes the information embedded in names of classes and methods, which as

discussed below are one of the most important pools of information for software

maintenance.

1.4 DIFFICULTY OF SEARCHING SOFTWARE ENTITIES

In the area of software maintenance, the search problem requires much finer

granularity, i.e. the names of files, routines and other identifiers and even the sub-

components of the names, because software maintenance mostly has to involve source

code, and hence involves searching entity names in source code. As in one of our previous

examples, a software engineer might want to learn more about how "call forward while

busy" is handled in the system he is maintaining. Thus the results of the retrieval should be

some entities related to the query subject, rather than several reusable modules that process

the "call forward while busy" feature.

In addition, entity names usually encode lots of information about the entity. Sometimes

software engineers might use multiple words to convey such information. For instance, a

variable named "dpn_nsi_call_forward_busy" implies that it has a strong relationship with

the above query. Nevertheless, in order to learn such a relationship, we have to extract the

information from the names first. Yet as we will discuss in detail later, most of the names

of files, routines, identifiers etc. contain ad hoc abbreviations and other transformations of

names of the concepts they represent, and hence are very complex to deal with.

Few studies have analyzed the composition of entity names in software systems.

Although Anquetil et al. [3] have introduced methods of splitting file names for file

clustering, those methods have not been used for information retrieval in software systems.

Moreover, current information retrieval techniques employed in normal systems are

mainly based on words. Not all of these techniques are efficient or suitable for software

systems with many abbreviations. Therefore, we need to investigate the techniques that are

aimed at the information retrieval problems of software systems.

7

1.5 MOTIVATION AND OBJECTIVES

According to the search problems in software maintenance, as well as the limitations of

previous studies in information technology, we need to investigate how information

retrieval techniques can be specifically adapted to the requirements of program

comprehension.

Also we want to build a new search tool that employs advanced algorithms. The tool

will accept free-style natural language user queries as the input, perform query expansion

using the information retrieval techniques, and return the retrieved entities to the user.

Therefore, when normal search tools fail to find enough results, the new tool will give both

novices and experts of large software systems additional search power. For novices, the

tool will facilitate their learning process of a new system. For experts who have been

working with the systems for a long time, the tool will reveal many aspects that they might

not be familiar with.

1.6 CONTRIBUTIONS OF THE THESIS

Our solution to the search problem in large software system is to automatically expand

the query in order to find more relevant entities. Query expansion is achieved by

transforming the query string using the text operation methods in information retrieval. We

select a set of information retrieval techniques to perform the transformation, and

incorporate the techniques into current search facilities. We have developed an intelligent

search tool to implement our ideas and to assess the effectiveness of the selected

information retrieval methods. We also show through a series of experiments that these

techniques will increase the search power for both novices and experts of software

maintenance. Therefore, the major contributions of this study are as follows:

1. We have proposed a general model of applying information retrieval techniques to

software maintenance. We have implemented and integrated an intelligent search tool

into the existing source code browsing tool “TkSee” [12, 13] such that the new search

facility benefits from both the efficiency of data retrieval techniques and the flexibility

of information retrieval techniques.

8

2. In the model, we have adapted some information retrieval techniques to software

systems, i.e. most of the text operation methods such as truncation, stopword removal,

techniques based on dictionary or knowledge-base lookup, and so on. We have also

developed abbreviation concatenation and abbreviation expansion methods specifically

for software maintenance to handle the large number of abbreviations in software

systems.

3. Similar to other information retrieval systems, the ranking algorithm is the kernel of our

model. We have designed the rating algorithms specifically for software systems, and

have used the statistical output of the algorithms to analyse the performance of the

search techniques and to recommend better combinations of search strategies.

4. We also have evaluated the accuracy of our rating algorithms through human

experiments. Their relative high accuracy, as well as their ease of implementation,

verifies their value in large software systems.

In general, this thesis will be of interest to researchers of information retrieval and

program comprehension. In addition, it will be of interest to researchers and software

engineers who would like to study the decomposition of the abbreviations in source code.

1.7 THE ORGANIZATION

Chapter 2 proposes the general architecture of information retrieval for large software

systems, and highlights its differences as compared to normal information retrieval models.

Chapter 3 explains the selection of information retrieval techniques based on the results

of our pilot experiments.

Chapter 4 describes in detail how the selected information retrieval techniques are used

in our intelligent search tool.

Chapter 5 focuses on our rating algorithms.

Chapter 6 presents a series of experiment results to assess the effectiveness of the

search techniques and the rating algorithms.

Chapter 7 sums up our research and points out future study directions.

9

This chapter first introduces the generic model of information retrieval systems. Then,

according to the requirements of software maintenance, we propose a model for using

information retrieval technology in source code systems. We also discuss the difference

between this model, on which our intelligent search tool is based, and the generic model.

Finally, we present how our intelligent search tool will work under the new structure.

2.1 GENERIC MODEL OF INFORMATION RETRIEVAL

Information retrieval techniques were originally designed to solve the problems of

searching in a large collection of unstructured text documents written in natural language

such as books and articles in a library. Now, these techniques are also extensively used in

the search engines of the Web.

As Baeza-Yates [5] has said, information retrieval allows imprecise interpretation of

query requirements because of the ambiguity of natural language. Therefore, information

retrieval usually needs processes to "interpret" the query, to retrieve the expanded query

condition according to the interpretation, and to evaluate the closeness of the result to the

original query. Figure 2.1 shows the generic model of information retrieval. The left side of

the model shows the above three steps of the retrieval process, while the right side is the

pre-processing phase, which is necessary before any retrieval process can be initiated. One

advantage of information retrieval techniques for large document systems is that the cost is

relatively low because both the pre-processing phase, including the index construction step,

and the query phase can be fully automated and efficiently.

2.1.1 Pre-processing

At the right-hand side of the information retrieval model in Figure 2.1, a collection of

text documents are pre-processed by some automatic text operation methods, such as

stopwords removing, stemming, and etc. The result is a collection of words, which is

CHAPTER 2. ARCHITECTURE OF THE INTELLIGENT SEARCH

TOOL

10

considered as the logical view [5] of the document. Sometimes the logical view can also be

some keywords manually assigned by the authors or the librarians.

Next, the indexing phase uses the words describing the logical views of the documents

to construct a word-oriented index. One of the most popular indexes of this type is called

inverted file [5]. In an inverted file, each word points to a list of all the documents in which

it occurs. An index like inverted files is a very important structure in information retrieval

because it, "allows fast searching over large volumes of data" [5].

 Query

Text operation

Search

Evaluation

Text operation

Documents

Indexing

Index

Ranked
documents

Retrieved
documents

Logical view

Figure 2.1 A model of normal information retrieval systems

2.1.2 Retrieval

During the query process, which is shown at the left-hand side of the model, the

information retrieval tool first performs similar text operations on the user query as on the

original documents during pre-processing. The text operations are the major methods in this

11

model used to interpret users' information needs, and are one of the major differences

between information retrieval and data retrieval, where there is no logical operation on the

original query before the search. The output of the text operation is a list of words, which is

the internal representation of the user’s information need.

During the search phase, each of the words obtained from text operation is used to

locate, through the index, a list of all the documents in which it occurs. When multiple

words are present in the query, search returns the union of the documents retrieved by all

the words. In short, searching is a process of matching the words in the documents with

those in the query.

Lastly, every retrieved document is evaluated by its relevance to the query. Usually this

evaluation is dependent on a ranking algorithm that computes a real number for each

document. A document with a larger number is considered more likely to be relevant. Next,

the retrieved documents are returned in descending order according to the results of the

ranking algorithm; therefore, users have a better chance to inspect the most relevant

documents, which are at the top of the ordering, than the irrelevant ones. As a result, the

ranking algorithm is regarded as an essential part of an information retrieval system.

2.2 THE DIFFERENCES OF INFORMATION RETRIEVAL BETWEEN SOURCE CODE AND

REGULAR DOCUMENTS

2.2.1 The difference between source code and regular documents

The following are two key features of source code that distinguish it from ordinary

documents. Understanding these features will help us decide what methods to apply in

software information retrieval systems.

• Source code files are not ordinary English-language documents, even though their

programming languages are English-based. The grammar is that of programming

languages, not English. After removing the reserved words from the source code,

the remaining words are names, values, or comments.

• Names in software systems are different from the names we use in other types of

literature. Even though most software systems involve some naming conventions,

12

the names can be anything from a single letter, or a single word, to a combination of

words; and the words are frequently abbreviated.

Therefore, it depends highly on the programmer which words to choose to represent an

object in a software system, and in which format the words appear in the object’s name. In

some cases, a name can be just a concatenation of letters so that nobody other than the

original programmer can possibly judge its meaning.

2.2.2 The inappropriateness of the normal information retrieval model in large

software systems

The differences between source code and conventional text documents determine the

difficulty of applying the regular information retrieval model in large software systems.

The major difficulties lie in the following aspects of the model:

• Target of retrieval: Although "documents" in regular information retrieval refer to

various types of text units [5], they typically contain a set of individual words. The

purpose of the queries, therefore, is to locate the documents containing certain

words. However, in software systems, programmers usually look for the names of

the entities, e.g. "listdbg", that are pertinent to what is specified in the query, rather

than the bigger units such as a chunk of code. The direct target of the search,

therefore, is the names, which can then bring the users to the position where the

entities are defined or used in the system. Consequently, names are a special type of

mini-documents, in which component units might not be clearly separated as are

words in regular documents.

• Text operations: The lack of word delimiters, as well as the use of abbreviations in

the names, lead to the situation that the text operations used in normal document

systems might not be appropriate or adequate in source code systems. Especially, as

discussed in detail in the next chapter, there are no methods proposed in information

retrieval to identify and separate the concatenated abbreviations in the names of

13

entities. Hence, we need to select and design an efficient and suitable set of text

operations for source code systems.

• Indexing: The biggest problem lies in the construction and maintenance of the

index. In normal systems, it is possible to automatically build a word-oriented index

in a relatively short time, and this index is critical for information retrieval in these

word-oriented systems. In software systems, as previously mentioned, we are

looking for entity names, which might not be word-oriented, but contain

components of various abbreviated formats. Thus, in order to efficiently retrieve

entity names based on a few pieces of information from the query string, we need to

identify all components of the names, and store and index all the unique component

formats that have ever appeared in the systems. However, this index is different

from the index of entity names, which can be automatically constructed by parsing

the source code as we have done in TkSee. The difficulty of decomposing names

containing contracted abbreviations determines that it is very hard to automatically

identify the components and index all the unique ones. Sometimes it is even hard for

experts of a system to split the names correctly. Therefore, the cost of index

construction and maintenance is very high. It is impractical to automatically or

manually build a complete index for the components of the names in a large

software system.

• Evaluation: Similar to text operations, most of the evaluation methods in

conventional systems are word-oriented, which is inadequate to solve the problems

in software systems. The existence of abbreviations correspondingly call for

variants of existing rating algorithms.

2.3 PROPOSED MODEL OF INFORMATION RETRIEVAL FOR SOFTWARE MAINTENANCE

However different they are, source code and regular documents are similar in that terms

appearing in them are vague. Therefore, information retrieval systems aimed at software

engineers' information needs also require the three basic steps of normal information

retrieval systems, i.e. interpretation of the query, retrieval, and evaluation of the results.

Based on this similarity, as well as the differences reviewed above, we propose a model of

14

applying information retrieval in software maintenance, shown in Figure 2.2. This is a

model that combines both data retrieval and information retrieval techniques.

Query

Search

Retrieved
documents

DBMS

Source code

Extracted objects
in source code

Parsing

Text operation

Evaluation

Presented source
code objects

Figure 2.2 The model of software information retrieval systems

2.3.1 Data retrieval

If we remove the two highlighted procedures (“Text operation” and “Evaluation”) in

Figure 2.2, we obtain a typical data retrieval model, which has been implemented in many

source code browsing tools such as TkSee [12]. The search facility fetches from the

database the objects that match the query, and returns them to the user. Powered by some

very efficient mechanisms such as DBMS, this process is capable of handling a large

volume of data (millions or even billions of records) in a short time.

Comparing our model with the model in Figure 2.1, the major difference resides in the

right side, i.e. the pre-processing phase. There is no indexing procedure during the pre-

15

processing phase in our model, and no index for information retrieval is constructed.

Although the database might contain a table that serves as an index of entities in the

system, the index is not the one we need for information retrieval purpose. The reason, as

have been previously discussed, is related to the impracticality and the high cost of

constructing and maintaining the index of the components in entity names. Without the

index, the information retrieval facilities may lose the high efficiency of normal systems.

However, our experiments will show later that, powered by the data retrieval mechanisms,

our model conveys the advantages of information retrieval with acceptable performance.

2.3.2 Information retrieval

Built on top of an existing data retrieval infrastructure, our information retrieval model

includes the same three procedures during retrieval as those in conventional systems.

However, these procedures function in a different fashion from those in Figure 2.1 due to

the difficulties mentioned in section 2.2.

Primarily, text operations and result evaluation methods have to be designed

specifically for software systems characterized by the prevalent usage of abbreviations;

these methods are the focus of this thesis.

The search process is also different from the conventional ones because it is built upon

an existing DBMS structure, rather than upon an index of terms. It sends, one by one, every

expanded version of the queries to the DBMS, and joins the results of all the retrievals for

the next step, the evaluation stage. The expanded queries are in general regular expressions,

which can be handled by the DBMS mechanism.

2.4 THE INTELLIGENT SEARCH TOOL

Based on our model, we have built an intelligent search tool that employs what we call

intelligent search techniques as well as some pre-existing facilities. The tool utilizes the

query module of TkSee [12], a source code browsing tool, as the underlying data retrieval

mechanism. Moreover, it makes use of some knowledge bases and dictionaries to support

information retrieval. In this section, we first describe the existing facilities in the

16

“environment” part, and then introduce the overall intelligent search procedure, which will

be the focus of the following chapters.

2.4.1 The environment

We have a long-term relationship with a large telecommunication company, and have

conducted reverse engineering studies on one of their legacy systems that is over 17 years

old. The system, which consists of about 1.5 million lines of code, is a mixture of

programming languages, including C, Pascal and Assembly Language.

In order to help the software engineers to understand the system, our previous studies

have developed a source code browsing tool called TkSee [12]. Behind TkSee are a

database that serves as an index of all source code elements in a system, and a query

mechanism that offers fast grep-like searches of code using the database. Our intelligent

search tool generates expanded queries in the form of regular expressions that will be

passed to this existing query mechanism.

Our team’s previous studies have also constructed a knowledge base system to

represent some of the domain concepts used in the legacy system [22]. The knowledge base

organizes the concepts in an inheritance hierarchy. When performing intelligent search, we

look in this knowledge base for the synonyms, superconcepts, and subconcepts of the

original query term.

Another knowledge base we use is a dictionary of abbreviations gathered from the

legacy system. The dictionary, which was generated several years ago by the software

engineers working in that system, is by no means comprehensive or up-to-date. However, it

still provides lots of valuable information when we try to decompose the concatenated

abbreviations.

Finally, we obtained from the Web [1] a library of stopwords so that common words

can be handled differently.

2.4.2 Intelligent search procedure

For each search request, there are three stages before the presentation of the query

results. As shown in Figure 2.3, they are: 1) generating search candidates using several

17

different algorithms, 2) performing the queries, and 3) evaluating the results in order to

choose which ones to present to the user, and in what order.

In the candidate generation stage, we use the text operations in our candidate generation

algorithms to compute for the original query a group of additional search candidates. Each

of the search candidates is a regular expression that is processed by the backend query

mechanism. In addition, this stage also generates a set of evaluation strings from the query

for later use in the evaluation stage. As we will present in detail, the use of evaluation

strings is at the center of the evaluation.

Original
query

Search
candidates

Search
results

Results
Presented
to user

Evaluation
strings

Candidate
generation

Search Evaluation

Figure 2.3 Intelligent search procedure

In the search stage, the new search candidates are passed to the query mechanism of

TkSee one by one, and each of these candidates will help retrieve a set of search results

(entities in software systems) from the database. As soon as all candidates have been

queried, their results are merged to remove duplicate findings.

18

In the evaluation stage, our rating algorithms assess each result by comparing the entity

name with the evaluation strings. Then, the assessment will assign a real number, called

rating, to each result. According to their ratings, the results are either discarded as non-

relevant results, or presented to the user in the descending order of ratings.

Therefore in this procedure, each original query can generate a group of additional

search candidates; each candidate may find a group of results later. Conversely, a given

result may be found by several different search candidates; each candidate may be

generated by different algorithms.

2.5 SUMMARY

In this chapter we have discussed the conventional information retrieval model and

disadvantages of using it in source code systems; we have proposed a revised model that

benefits software maintenance by employing both data retrieval and information retrieval

technologies. We have also introduced the background and the major procedures of our

intelligent search tool based on this new model. In the following chapters, we will describe

in depth the procedures of the tool: Chapter 3 describes our selection of the text operations

for software maintenance; Chapter 4 explains how we incorporate these selected methods

into our candidate generation algorithms; Chapter 5 emphasizes our rating algorithms using

evaluation strings.

19

In this chapter, we analyze conventional text operations in information retrieval for

query expansion. In order to learn the usefulness of these methods in software systems, we

conducted a small experiment in the large software system we are working with. According

to the experiment data, we select a suitable set of methods for software systems. This set of

methods, which is called intelligent search techniques by us, includes some of the

conventional text operations, plus the supplementary methods we developed particularly for

source code systems.

3.1 REGULAR TEXT OPERATIONS

In addition to exact string matching and regular expression matching, many methods

have been developed to expand queries in order to generate more search candidates and

retrieve more relevant results. Typically, these query expansion techniques generate

additional search candidates in the following ways [4]:

• Transforming upper case to lower case.

• Removing numbers and special symbols.

• Removing common words using a list of stopwords.

• Generating acronyms: Taking all the initials from the original string.

• Truncating: Reducing the word's length by removing its final characters.

• Stemming: Removing suffixes and/or prefixes.

• Transforming to spelling variants by using soundex-like methods [24].

The above methods tend to find words that are morphologically or phonetically similar

to those in the original query string. Other techniques are aimed at obtaining semantically

relevant candidates to search for. These include finding:

• Synonyms: Terms obtained by looking the original word up in a thesaurus and

taking the corresponding synonyms.

CHAPTER 3. SELECTION OF TEXT OPERATIONS

20

• Antonyms: Terms with opposite meanings.

• Superconcepts: Terms with more general meaning.

• Subconcepts: Terms representing special cases of the more general term.

Generating these semantically similar candidates requires dictionaries or knowledge

bases. Important types of dictionaries include lexicons, thesauri, and domain-dependent

knowledge bases.

When the above techniques fail to find a satisfactory number of relevant documents,

some people have experimented with expanding the queries further using term re-weighting

techniques such as relevance feedback [21].

3.2 INVESTIGATION IN A LARGE SOFTWARE SYSTEM

Before we apply normal query expansion techniques in large software systems, we

should analyze the appropriateness of each of them, and determine if any other techniques

are necessary to solve the special problems of searching in source code systems. In this

section, we describe our investigation of some samples in a large software system. Then we

derive our search strategies based on the analysis of the results of the investigation.

We selected 300 non-consecutive names from a database that contained hundreds of

thousands of names used in a large telecommunication system. Then, we examined how

each of the names was composed, and added it to one or more of the following categories

according to what it contained. Finally we computed the percentage of each category in the

300 names as shown in Table 3.1.

This table is an indication of the most frequently used naming styles in source code

systems. We put a name into a category of the styles in the table if it contained:

• English words only: This category is composed of names in which there were no

abbreviations. Also, all of the words, which might or might not be stopwords, were

clearly separated by word delimiters such as underscores, and were words in a

typical English dictionary.

21

In our sample, 43% of the names contained only pure English words. That is,

57% of the names contained at least one abbreviation. This is probably one of the

biggest differences between source code and ordinary documents.

Formats Contained in Names Percentage
English Words only 43.00%
Stopwords 10.00%
Acronyms 46.67%
Truncated Words 48.33%
Words with Vowels Removed 10.33%
Affixes 18.00%
Phonetic Variations 10.00%
Other Abbreviations 22.25%
Contracted Abbreviations 30.67%

Table 3.1 Percentage of the names containing various word formats

• Stopwords: In this category, there were some common English words in the name,

such as “out” in "check_out". Sometimes these stopwords played an important role

in the names. Removing the stopwords, or replacing them with other stopwords

might produce something very different. For example, in the "check_out" case, a

name with only "check" might mean something far from "check_out", while

"check_in" might show an opposite operation.

• Acronyms: Here, there were some abbreviations in the name that were the

acronyms of some phrases. In this experiment, about 47% of the names contained

acronyms, which meant that programmers of the system used a large number of

acronyms in their source code.

• Truncated words: In this category, there were abbreviations in the name that were

computed by taking the first few letters of a word and removing the rest. For

example, people frequently used "init" instead of the whole words of "initial" or

"initialize". Surprisingly, these truncated form of words occurred in about 48% of

the names. Therefore, this is another important way to obtain abbreviations.

22

• Words with vowels removed: Some names obviously contained a word, from

which all the vowels except the first letter were removed. Sometimes this all-

consonant form of a word was also truncated so that only the first few letters of it

appeared in the name. For example, "debug" could be abbreviated as "dbg", and

"utility" could be abbreviated as "utl".

• Affixes: The English words in the names had prefixes and/or suffixes. For example,

"ing" and "ed" were the most popular suffixes in the system. Prefixes, which only

appeared in 1% of the names, were in fact a part of a few commonly seen words,

such as "in" of "invalid".

• Phonetic variations: An abbreviation could be formed by picking a few consonants

of a word in such a way that the abbreviation was still pronounced like the original

word. For example, "message" was usually abbreviated as "msg" in our sample

names.

• Other Abbreviations: Some abbreviations were also formed in other ways. For

example, "tty" stood for "teletype", and "ksh" stood for "korn shell". It is very hard

to describe a general model for how such names are derived. In fact, they are also

among the abbreviations from which there is no way people can judge their

meanings, if they do not already know them. Fortunately, these abbreviations,

although occurring in more than 20% of the names, were usually the widely used

terms of the domain.

• Contracted Abbreviations: About 30% of the names contained several

abbreviations and/or words, between which there were no word delimiters. For

example, "listdbg" was a combination of "list" and "dbg", in which case, it was very

easy for human to infer that it must represent "list-debug". However, in many cases,

it was very hard for both human and the computer to break the name correctly.

23

Besides the naming style, we also discovered that people tended to use the shorter

version of words. Table 3.2 shows among the abbreviations we examined above, the

percentage of abbreviations with different lengths. From this table, we can see that the vast

majority of abbreviations were three or four letters long. Some abbreviations were two or

five letters long. There were no abbreviations longer than six letters in our samples, but we

did find several such abbreviations in the dictionary of the abbreviations of the system, as

well as in the source code. Therefore, abbreviations were mostly two to five letters long,

and those with six letters or more existed in the system, but were rarely seen.

Length of the abbreviation
(number of letters)

Percentage

2 13.25%
3 56.3%
4 30%
5 5%
>=6 0%

Table 3.2 Percentage of abbreviations with different lengths

3.3 SELECTION OF INTELLIGENT SEARCH TECHNIQUES FOR LARGE SOFTWARE SYSTEMS

We can see from the above analysis that most of the methods of computing

morphologically similar words in normal systems have been used in software systems.

However, because of the presence of abbreviations all over the systems, we need to adapt

some of the techniques to this problem. We might also need other approaches to compute

or decompose abbreviations.

3.3.1 Regular text operations that are adaptable to source code systems

First of all, we can use word delimiters to split a word into multiple words. However, in

source code systems, changes in the case (lower to upper) of letters, numbers and other

special symbols can serve as word delimiters as well as the spaces and hyphens found in

normal documents. For example, "CallForwardBusy" is a typical name in many source

24

code systems; we can separate it to "Call", "Forward" and "Busy" according to the change

in case.

Secondly, similar to ordinary systems, software systems allow stopwords. Sometimes

stopwords appear in the names as distinctive units, and some other times their initials are

taken to compute the acronyms. Therefore we can not always ignore stopwords. For

instance, if we ignore the stopwords in a query, we should consider them a factor to

evaluate the results. And besides, when we do not know what is the acronym of a phrase,

which is usually the case in automated systems, we should compute the acronyms in at least

two ways, with or without stopwords. Sometimes only one of the acronyms will occur in

source code, sometimes both.

As we have seen in the above study, acronyms and truncated words are the most

popular abbreviations in source code systems. Furthermore, removing vowels and then

truncating the results to shorter versions are also commonly used to derive abbreviations.

Consequently, if we derive the acronyms of the phrases, and truncate the words and their

all-consonant formats, we should be able to compute most of the abbreviations used in the

system.

Of course, the length of the abbreviations is an issue. According to our experiment,

abbreviations often contain two to five letters, and thus our solutions should cover

abbreviations with such a length. For instance, when we truncate a word or its all-

consonant format, we should at least take the first two to five letters to generate different

abbreviations of the word. Longer abbreviations can be obtained by taking the first six

letters or more. Considering that we will be looking for names with the computed

abbreviations of the query as the names' substrings, shorter abbreviations generated by

truncation in fact can retrieve all the names found by the longer ones. For example, "db"

can certainly retrieve all the names having "dbg" as one of their substrings. Therefore, a

six-letter long truncation has covered the abbreviations beyond six letters, and furthermore,

an abbreviation with only the first two letters of a word can do all the job assigned to longer

versions. It seems that truncated abbreviations that are two letters long have solved all the

problems that can be solved by truncation, and consequently, we do not need other

abbreviations to find additional results. However, an abbreviation with only two letters

might retrieve a huge number of results, too, and thus lead to very poor precision. In order

25

for us to evaluate the effectiveness of the abbreviation generation methods and to select the

most efficient ones to use, as will be discussed in later sections, we will use all the

computed abbreviations in our query expansion before the experimentation and evaluation

stage. As a result, we will generate the abbreviations with a length from two to six.

3.3.2 Regular text operations that are not used

Other than the above methods, we also realize that stemming and soundex are not

necessary or not appropriate for source code systems.

Stemming is the method to remove affixes in normal query expansion systems.

Although affixes are used less frequently than in normal documents, they are not rare in

source code systems, either. We discover, however, that if we use the truncation methods

discussed above, and the truncated words are short enough, they can already retrieve all the

possible variation of a word with affixes. For example, given "terminate", its first six letters

are sufficient for searching "terminator", "termination" or "terminating".

We have mentioned above that we will reduce the words to as short as two letters long

by truncation, therefore, stemming will not be able to find many additional results after

searching for truncated words. In fact, stemming will only make a difference on some

irregular verbs. For example, "lying" is the present participle of the verb "lie". Stemming

can correctly compute "lie" from "lying", while truncation can only get "ly" and "lyi".

These cases may sparsely exist in source code systems, but we have not seen one in our

experiment. Thus we expect the cost-effectiveness of this technique will be too low for

source code systems, and do not use it as one of our query expansion methods. We will

leave stemming in source code systems to future studies.

Soundex [24] was originally developed to deal with the difficulty of searching peoples'

names, where users might not know the exact spelling. The Soundex algorithm computes a

code for every word, and words with the same code are supposed to be spelled differently,

but pronounced similarly. Therefore, Soundex can help us find spelling variants of a given

name.

However, soundex is not very useful in source code systems because first of all, people

usually know how to spell the words they are looking for, unless in some rare cases when

26

they have to guess and search for names that they have only heard from other people.

Secondly, the soundex rules were not designed specifically for source code systems, and

some of the rules have shown to be inappropriate for our purpose. As a result, although

programmers have used some phonetic variation of the words in source code systems, the

soundex rules may not help us compute the right variation. Therefore a soundex tool

designed specifically for source code systems will be more useful for us, and we will leave

it for future study. Finally, similar to the affixes, many phonetic variations of words in

source code systems can be computed by truncation, or they are so commonly used that

most programmers already know the particular variations, such as "msg" stands for

"message", and "svr" stands for "server". So we do not adopt the soundex method, either.

3.3.3 Additional text operation techniques for software systems

It should be noted that although most of the normal query expansion techniques can be

adapted to the special requirements of software systems, the 30% of names containing

contracted abbreviations still remain unresolved. When people query these strings, and

expect to find some related names, our intelligent search tool should correctly identify

every word in the string before further computation and query.

However, the task of splitting contracted abbreviations is intrinsically hard. Lethbridge

and Anquetil [3] have introduced a series of methods for generating all the potential

abbreviations in a software system, and have used the generated abbreviations to

decompose file names. This idea is useful for us, too. If we have a list of abbreviations used

in a system, we will be able to correctly decompose most of the contracted abbreviations.

For example, given a contracted abbreviation "listdbg", and we find that "dbg" is an

abbreviation used in the system, we know that it probably should be split as "list-dbg". Of

course, we might also find some other suitable abbreviations, such as "std", which breaks

"listdbg" as "li-std-bg". We accept all these decompositions because altogether there are

only a few possible alternatives, and we do not want to choose one of them arbitrarily.

The abbreviation generation methods shown in Table 2.1 also give us a hint of the

decomposition. Many abbreviations are computed by removing the vowels except the first

letter. Hence, the only chance that a vowel appears in the abbreviations formed this way is

27

when the vowel is the first letter of the word. For instance, "actual utility" can be

abbreviated and contracted as "actutl". Thus given "actutl", and if we break it in front of the

vowel "u", which will be "act-utl", we might get the correct decomposition.

Of course this vowel-heuristic does not work when no vowel is present, in which case,

we believe simply breaking after every consonant should be able to find most of the

possibly related names, along with a large amount of noise. For example, if "dbmgr" is

broken as "d-b-m-g-r", we can find "database_manager", as well as "db_msg_handler".

Therefore, if the first method fails to suggest the correct decomposition, the vowel-

heuristics and this consonant-heuristics should be regarded as complements.

When all of these methods do not help at all, knowledge bases are probably the best

choice, as described in the following section.

3.3.4 Other methods

Besides all the above methods that compute the morphological variations of the query,

we have also mentioned the usage of the semantically related concepts in normal systems.

Conceivably, synonyms, superconcepts and subconcepts are all suitable for source code

systems as well. Looking up in the dictionaries that contain these semantically related terms

is often fast with only a few but high quality returns, and is especially useful when the

above methods can not offer us good solutions.

The concern is which dictionaries to use. We believe that domain-dependent knowledge

bases are more effective than normal dictionaries or thesauri, whose vocabularies cover too

many items that are not used in source code systems, yet lack of the domain knowledge and

the special representations in a specific system. It is typically difficult, though, to find or

build such a knowledge base. Fortunately, as we have mentioned in section 2.4.1, some of

our previous studies [22] have built a knowledge base, from which we can derive the

relationship between the concepts used in the system we are working with. It is small,

specific, and easy to maintain, and therefore, we choose this knowledge base, rather than

ordinary dictionaries, for our intelligent search tool.

28

It should be noted that we are not going to look for antonyms of a query in our

intelligent search because we doubt their appropriateness in general for search purposes.

We leave this to future studies.

3.4 SUMMARY OF INTELLIGENT SEARCH TECHNIQUES USED IN OUR STUDY

We have discussed our selection of intelligent search methods for large software

systems, each of which might be used independently, or together with other methods to

compute query variations. These methods can be put into the following three categories:

Computing abbreviations:

• Separating words according to capital letters.

• Removing numbers and special symbols.

• Removing common words.

• Generating acronyms.

• Truncation.

• Removing vowels.

Decomposing contracted abbreviations:

• Decomposing using a dictionary of abbreviations.

• Decomposing before vowels.

• Decomposing after every consonants.

Finding related concepts:

• Synonyms.

• Superconcepts.

• Subconcepts.

29

This chapter explains the candidate generation stage of the intelligent search tool as

shown in Figure 2.3. At this stage, we use the text operation methods selected in Chapter 3

to compute the variants of the original query string, and generate additional search

candidates based on the variants. Meanwhile, we also produce and collect a set of

evaluation strings for later use. The explanation starts from the definition of some concepts,

and then illustrates the candidate generation procedure step by step.

4.1 DEFINITIONS

From now on, the following concepts are frequently used in our description of the

algorithms and experiments. Some of them refer to the same meanings as they do in normal

documents, while some others are special denotations in our system.

Although all of the concepts below (except the ones for “entity name” and “query”) are

mainly defined for describing the text operations performed on a query string, the same

concepts, and hence the same text operations, apply to entity names as well. For example,

we could extract keywords and stopwords from both a query and an entity name. We could

also say that “the query is a multi-word term”, and “the entity name (or result) is a single-

word term”.

4.1.1 Basic definitions

• Entity name: The name of an entity in a software system. Normally, there is no space

in the name, but it could contain other word delimiters.

• Query or query string: The user input of a search. The query can be a phrase of natural

language, such as “call forward while busy”, or a sequence of characters that are similar

to an entity name, such as “CallForwardWhileBusy”. The tool treats the two formats in

the same way, i.e. it retrieves the same results for both queries.

• Word: Any English word that can be found in an English dictionary. A word is the

smallest meaningful unit of the entity names in source code, no matter in which format

 CHAPTER 4. CANDIDATE GENERATION ALGORITHMS

30

it appears in the names, or whether there are word delimiters to separate it from other

words. For instance, "CallForwardBusy" contains three words, and "listdbg" contains

two (in the case where it is split as ‘list’ and ‘dbg’).

• Abbreviation: Any short format of a word or a phrase used in source code.

• All-consonant format of a word: One abbreviation of a word. It is computed by

removing all vowels of a word except the first letter.

• Stopword: Common words as defined in normal information retrieval systems. Usually

stopwords occur in source code as a whole. We do not consider the abbreviations of

stopwords, unless they are parts of acronyms.

• Keyword: Any words other than stopwords. They can be abbreviated in source code.

4.1.2 Types of strings in source code

Essentially, the original query strings provided by the searchers, as well as the entity

names in source code, can be cast into two categories:

• Multi-word term: Strings with spaces or other word delimiters that clearly indicate the

separation of words. For example, "CallForwardBusy" is a multi-word term.

• Single-word term: Strings in which word delimiters do not indicate the separation of

words. For example, both "_list" and "listdbg" are single-word terms.

4.1.3 Types of evaluation strings

Although evaluation strings are used in the evaluation stage, they are generated together

with the search candidates. Thus, we also introduce them here:

• List of related terms: A set of strings that are relevant to the whole query string, e.g.

synonyms, acronyms, superconcepts, subconcepts, etc. Although the acronyms might

not be defined in the knowledge base that shows the conceptual relationship between

strings, they represent the same meanings as the query string does. For example, “cfwb”

refers to exactly the same thing as “CallForwardWhileBusy” in the system we are

working with. Thus acronyms should also be in this category.

31

• List of words: The set of the words appearing in a query string or in an entity name.

This list contains all the items in the list of keywords and the list of stopwords.

• List of stopwords: A collection of all stopwords in a string. They are collected mainly

for evaluation purpose.

• List of keywords: A collection of all keywords in a string.

• List of abbreviations: A collection of computed abbreviations of a keyword.

The relationships among these concepts are shown in Figure 4.1; we will explain the

numbers in more detail in the following sections.

Query
string

List of related
terms

List of
words

List of
keywords

List of
evaluation
strings

List of
abbreviations

List of
search
candidates

List of
stopwords

1, 4
3, 5

2
2, 4

3

3, 4

3
3, 5

1

2
2

2

Figure 4.1 Relationship among the text operation objects.

32

4.2 GENERAL IDEA OF THE CANDIDATE GENERATION ALGORITHMS

In addition to the relationship among the objects of the text operations, Figure 4.1 also

demonstrates when and how the strings are formed. The numbers without oval shows in

which steps of the candidate generation stage the corresponding transformations happen,

whereas the numbers in an oval indicate which evaluation algorithms use the corresponding

strings, which will be the focus of the next chapter.

During the process of candidate generation, we tend to create for each query its

semantically relevant search candidates generated by computing the morphological variants

or consulting the dictionaries. In the following sections, the explanation of the algorithms

focuses on the morphological variants only, since the dictionary look-up techniques are

relatively simple and are similar to those used elsewhere.

The general procedure of computing the morphological variants of the query string

consists of the following steps: 1) identifying the keywords in the query, 2) computing new

search candidates by concatenating the keywords together using different sets of

abbreviations every time, 3) computing new search candidates by taking one of the

keywords only. The overall approach therefore starts with the identification of word

delimiters and the separation of the words in the original string.

The differences between the algorithms of computing morphological variants depend on

the type of the given query strings. As defined above, there are two types of query strings,

multi-word terms and single-word terms. Normal text operation methods work better on

multi-word terms, while the specifically designed abbreviation expansion techniques are

more useful for single-word terms. Therefore, different sequences of intelligent search

approaches are applied to these two types of original queries.

The candidate generation stage contains five steps. The first two steps are for

preparation, while the last three are the actual algorithms that generate search candidates:

Step 3 is a sequence of abbreviation concatenation methods that are suitable for both multi-

word terms and single-word terms; Step 4 includes abbreviation expansion methods, which

are applied to single-word terms only; Step 5 involves the knowledge bases for searching

the semantically related terms, and is useful for both types of query strings.

33

4.3 CANDIDATE GENERATION ALGORITHMS

4.3.1 Preparations

Step 1: Separation of words

• Techniques used: This step uses word delimiters to isolate individual words in the

query, then changes the words to lower case.

• Action: The following are what we regard as word delimiters in source code systems:

• Common word delimiters such as spaces, underscores, dash, period, and so on.

• As discussed in Chapter 3, in case-sensitive environments an upper case letter

embedded in a sequence of letters usually indicates the beginning of a new word

within a string.

• Numbers are also good places to split words. For example the variable name

‘sys5response’ would be split into ‘sys’ and ‘response’. We can then search for

‘sys*response’. This improves recall, but results in a potential loss of precision. For

instance, ‘sys5’ might be something very specific and a result like ‘sys4response’

might not be highly related. However, considering that query expansion is meant to

bring more results to users, we would like to keep these results and let the users

decide whether they are useful or interesting.

• Other non-alphabetic characters, though less seen than the above three cases, are

treated as word delimiters if they appear in the query. Such symbols can be ‘@’,

‘&’, ‘$’, and so on.

After word separation, we also transform all upper case letters to lower case because our

back-end database stores all names in lower case only.

• Output: The intermediate output of this step is a list of words extracted from the

original query string. For later evaluation, we also store the original query string itself

as the first member of the list of related terms.

34

• Example: If the original string is "CallForwardWhileBusy", we get "call", "forward",

"while" and "busy" at this step, and put them into the list of words. Moreover, we add

"CallForwardWhileBusy" to the list of related terms.

Step 2: Removal of stopwords

• Techniques used: Removing the stopwords by consulting the dictionary of stopwords.

• Action: We check every item on the list of words against the dictionary of stopwords,

and split the list of words into two new lists, i.e. the list of stopwords used in the

original query string, and the rest, the list of keywords. From now on, we will primarily

work with the keywords until the time when we need to know the removed stopwords

to help evaluate the relevancy of the query results.

• Output: The intermediate outputs of this step are the list of stopwords and the list of

keywords.

• Example: In the above example, the list of stopwords contains "while", and the list of

keywords contains "call", "forward" and "busy".

4.3.2 Abbreviation concatenation algorithms (ABBR)

Step 3: Concatenating abbreviations for the original query string

• Techniques used: This algorithm generates additional search candidates by computing

acronyms or using the abbreviation concatenation methods.

• Action: The basic idea is to produce new search candidates by concatenating every

keyword, which may be abbreviated differently in different candidates. The following

are the sub-algorithms that compute new search candidates:

Step 3.1: Computing the acronyms (ABBR_ACR) by picking the initials of each

word in the list of words, or in the list of keywords. In the above example, "cfwb"

and “cfb” are new candidates.

Step 3.2: Concatenating keywords in a regular expression (ABBR_KEY) in the

form of "keyword1*keyword2*keyword3". So "call*forward*busy" is a new

35

candidate. (We use simple regular expressions where * represents any sequence of

characters).

Step 3.3: Concatenating abbreviations of keywords in a regular expression

(ABBR_CUT). The algorithm first generates a list of abbreviations for each

keyword. With these abbreviations, we can generate a group of candidates, each of

which comprises one abbreviation format from every keyword, and is a regular

expression in the form of "abbrKW1*abbrKW2*abbrKW3". The following sub-

steps are the two ways we generate the abbreviations for each keyword:

Abbreviation generation algorithm:

• Step 3.3.1: Removing the vowels except the first letter.

For example, "call" becomes "cll" and "forward" becomes "frwrd". "cll" and

"frwrd" are the all-consonant format of the corresponding keyword.

• Step 3.3.2: Truncating the keywords and their consonant formats. Each new

abbreviation consists of the first few letters of the keyword or its consonant

format. As discussed in last chapter, the abbreviations of the keywords are 2 to 6

letters long.

As a result, each keyword can have up to 11 abbreviations: one is its consonant

format; half of the remaining ten are from truncating the keyword itself; and the

other half are from truncating its consonant format.

For example, the abbreviations of "forward" can be "forwar", "forwa", "frwrd",

"frwr" and so on.

Therefore, the intermediate output of step 3.4 is a list of abbreviations for each

keyword.

For the ongoing example, overall we have "call*frwrd*busy", "cll*forw*bsy",

"ca*fo*bu", and so on, as additional search candidates.

Step 3.4: Search every single keyword (ABBR_SNG). For all members of the list

of keywords, we search for entities containing at least one of the keywords.

36

• Output: Step 3 generates a list of search candidates using acronyms and contracted

keywords. It also generates a list of abbreviations for every keyword.

• Example: "CallForwardWhileBusy" can have new search candidates such as "cfb",

"call*forward*busy", "call*frwrd*busy", "ca*fo*bu", “busy” etc. Each keyword is

associated with its abbreviations, for instance, "forward" is linked to "frwrd", "frw",

"forw", and so on.

4.3.3 Abbreviation expansion algorithms (EXPN)

Step 4: Expanding potential abbreviations

• Techniques used: This algorithm uses the abbreviation expansion techniques to

decompose the single-word query string.

• Action: This step only applies to the single-word terms– i.e. query strings that can not

be decomposed into multiple words using the above methods, and which hence have

only one item on the list of words after the Preparation stages (Step 1 and Step 2). For

example, if the original query string is "actutl" or "listdbg", the above methods can not

split it into several components.

We assume that, in this case, the single-word term may be a combination of

abbreviations of several different words, so we try to split it. Conversely to what we did

in Step 3, we need to find out possible methods to expand the abbreviation or

abbreviations.

The following are the approaches to the expansion, from which we form regular

expressions as new search candidates:

Step 4.1: Searching for the regular expression that contains the whole query

string (EXPN_WHL). For instance, in the "listdbg" example, we would search for

"*listdbg*". This is like searching using grep.

Step 4.2: Breaking the abbreviation in front of vowels (EXPN_VOW) that

follow a consonant. For example, if the original string is "actutl", one way to split it

37

is "act-utl". In the above example, "listdbg" is split as "l-istdbg". So "l*istdbg" is

taken as a search candidate.

Step 4.3: Breaking the abbreviation after every consonant (EXPN_CON). For

the ongoing example, we create another search candidate as "l*is*t*d*b*g*".

Step 4.4: Breaking the abbreviation using the dictionary of abbreviations

(EXPN_ACR) from the knowledge base. By going through the dictionary of

abbreviations used in this system we obtain a list of abbreviations, which appear in

this query string. These abbreviations are then used to split the string and generate

search candidates. In the above example, if the list of abbreviations contains "db"

and "std", “listdbg” can be split as “list-db-g” and “li-std-bg”, hence the new search

candidates will be "list*db*g" and "li*std*bg".

Keyword generation algorithm:

One problem that remains until now is that there is only one member in the list of

keywords for this type of query string after Step 3. After the above operations in this

step, we have somehow broken up this string, consequently each part of the

decomposed string should be treated as a potential key unit of the original string. As

a result, the list of keywords grows by adding all the unique parts from all

candidates found in this step, except for the very short parts that have only one or

two letters.

For instance, when searching for "listdbg", we would already have search

candidates "l*istdbg", "l*is*t*d*b*g*", "list*db*g" and "li*std*bg" from the above

operations of this step. Now we would add, "istdbg", "list", and "std" to the list of

keywords; “listdbg” should also be on the list since it was added in Step 2. Each of

these keywords, except for the original string itself which has been taken care of in

the first three steps, generates additional search candidates in the following ways:

Step 4.5: Searching for each of the keywords (EXPN_KEY). In the example,

"*istdbg*", "*list*" and "*std*" are new search candidates.

38

Step 4.6: Breaking the keyword after every consonant (EXPN_KEY_CON).

Just as what we have done in EXPN_CON, from "std" we get "s*t*d*" in the same

example.

• Output: This algorithm produces additional search candidates for single-word terms

using abbreviation expansion methods. Various expanded versions of the query also

help forming the list of keywords of the single-word term.

• Example: "listdbg" has extra search candidates such as "list*db*g", "li*std*bg", "dbg",

"std", and etc. The list of keywords thus contains "list", "std", "dbg", and so on.

4.3.4 Algorithms using knowledge bases (KB)

Step 5: Looking for related concepts in the knowledge base-.

• Techniques used: This algorithm looks up the query string in the knowledge bases to

find its semantically related concepts.

• Action: From the knowledge base we have on hand, we can obtain the synonyms, as

well as superconcepts and subconcepts of the original query string. In addition, we look

for concepts containing every item on the list of keywords as well for multi-word query

strings, if the original query string is not found in the knowledge base. Finally, all these

related concepts are added to the list of search candidates, as well as to the list of

related terms.

• Output: The list of search candidates and the list of related terms have new members

found in the knowledge base.

• Example: If "cfb" is a synonym of "CallForwardWhileBusy", "cfb" is considered a new

search candidate and is added to the list of search candidates (if it has not been a

member of the list). Moreover, "cfb" should be appended to the list of related terms of

"CallForwardWhileBusy".

4.4 SAMPLE OUTPUT OF THE CANDIDATE GENERATION ALGORITHMS

Table 4.1 and Table 4.2 show examples of the candidate generation procedure. Table

4.1 lists the sample output of "CallForwardWhileBusy", a multi-word term, and Table 4.2

39

lists that of "listdbg", a single-word term. The major difference between the two samples is

that Step 4 is not applicable for the multi-word term.

Step Intermediate Output Search Candidates Generated
1 list of words: call, forward, while, busy.

list of related terms:
CallForwardWhileBusy

2 list of keywords: call, forward, busy.
list of stopwords: while.

3 list of related terms: cfb, cfwb
list of abbreviations of each keyword:
callàcll, cal, ca, cl
forwardàfrwrd, forwar, frwr, forwa, …
busyàbsy, bus, bu, bs

cfb, cfwb,
call*forward*busy, cll*frwrd*bsy,
cal*frwr*bu, ca*fo*bs, busy,
…

4 (n/a)
5 Concepts including the keywords: call

forwarding-busy internal source, …
Call forwarding-busy internal
source
…

Table 4.1 Sample output of candidate generation stage for "CallForwardWhileBusy".

Step Intermediate Output Search Candidates
Generated

1 list of words: listdbg
list of related terms: listdbg

2 list of keywords: listdbg
list of related terms: listdbg

3 list of abbreviations of each keyword:
listdbgàlistdb, listd, list, lstdbg, lstdb, lstd,
…

listdb*, listd*, list*,
lstdbg*, lstdb*, lstd*, …

4 list of keywords: listdbg, istdbg, std, list, …
list of abbreviations of each keyword:
istdbgàistdb, istd, …; listàlist, lst, …;
stdàst; …

listdbg, li*stdbg, list*dbg,
li*std*bg, list*, s*t*d*, …

5 (none)

Table 4.2 Sample output of candidate generation stage for "listdbg".

40

4.5 SUMMARY OF THE CANDIDATE GENERATION ALGORITHMS

Table 4.3 sums up the techniques used and the outputs produced in the candidate

generation stage. The search candidates generated are used respectively in the searching

stage to retrieve entities in the database, while the intermediate outputs are adopted all

together in the evaluation of the retrieved results.

Step Techniques Used Intermediate Output Search Candidates
Generated

1 Transforming upper case to
lower case;
Removing numbers and
special symbols

List of words;
List of related terms

2 Removing common words List of keywords;
List of stopwords

3
ABBR

Acronyms;
Concatenating abbreviations

List of related terms;
List of abbreviations
of each keyword

Acronyms
Concatenation of
abbreviations

4
EXPN

Abbreviation expanded
without using knowledge base;
Abbreviation expanded using a
dictionary of abbreviations

List of keywords Expansion of
abbreviations

5
KB

Synonyms;
Superconcepts;
Subconcepts

List of related terms Related concepts

Table 4.3 Candidate generation techniques and results.

41

After collecting all the search candidates produced by the algorithms described in

Chapter 4, the intelligent search tool retrieves the new search candidates one by one

through the query module of TkSee. When finished with the search, the tool should

evaluate every retrieved result, and prioritize them when presenting them to the user.

This chapter first reviews the ordinary methods to evaluate the search results, as well as

their inappropriateness to our problem. Then we introduce our algorithms designed

specifically for source code systems with many abbreviations.

5.1 REVIEW OF RELATED RESEARCH

The major task of search result evaluation is to assess the similarity between the result

and the original query string. The similarity measures usually calculate either the semantic

proximity or the morphological proximity between the source and the target. The ranking

algorithms of conventional information retrieval typically judge a retrieved document based

on its semantic relationship with the query. Meanwhile, there are also some methods to

calculate the morphological distance between strings. We will briefly review both methods

in the next parts of this section.

5.1.1 Similarity between the query string and a retrieved document

Many normal information retrieval systems evaluate the retrieved documents based on

term frequency measurements [5]. These measurements involve two types of frequency of

the terms in the query:

• The frequency of the terms that appear in the retrieved document. A document with

many occurrences of the query terms is considered more relevant to the query than

those with few occurrences of the terms. So the internal occurrence of a term has

positive effect on the weighting of the document.

In addition to the occurrence, sometimes the font size and the position of the

occurrence also affect the judgment. For instance, in some search engines like

CHAPTER 5. RATING ALGORITHMS

42

“google” [8], if a query term is bigger in size than other text in a document, or if it

appears in the titles or sub-titles, the document gains weight in its relationship with

the query.

• The frequency of the terms that appear in the whole document set. The more

documents that contain the same term, the more common the term is. Therefore, a

common term appearing many times in a document does not necessarily mean that

it is extremely relevant to the term. On the other hand, if a document contains a

term that is rarely seen in other documents, probably this is a document in particular

about the subject represented by the term, and hence it is highly related to the term.

Consequently, the commonality of the term has a negative effect on the weighting

of the documents.

Term frequency measurements are reasonable for normal documents, and sometimes

work well. However, they are not appropriate for source code systems. As mentioned

earlier, the search targets of this information retrieval application are entity names.

Comparing with normal text, names are mini-documents. Programmers usually have to

balance the contents and the lengths of the identifiers when they name the entities. Or in

other words, they tend to put enough information in the names while keeping them from

being too long, and that is probably one of the reasons why there are so many abbreviations

in software systems. As a result, it is almost impossible for a term to appear twice or more

in one name. Therefore, the term frequency measurements are not suitable for such mini-

documents.

5.1.2 Similarity between strings

Comparing our intelligent search results with the original query is like comparing two

strings, as opposed to comparing a string and a longer text document. The similarity

between strings can be judged conceptually and morphologically.

Conceptual proximity between strings is typically derived from their semantic

relationships in a semantic network, which is constructed from a source such as WordNet

[17, 28] or Roget's thesaurus [18, 20].

43

Morphological proximity between a pair of strings does not involve any external

facilities such as thesauri. The similarity is often defined by a distance function. According

to Baeza-Yates [4], the two main distance functions are:

• Hamming distance: If the two strings are of the same length, their Hamming

distance is defined as the number of symbols in the same position that are different

(number of mismatches). For example, the Hamming distance between “text” and

“that” is 2.

• Edit distance: The edit distance is defined as the minimal number of symbols that is

necessary to insert, delete, or substitute to transform a string to another. For

example, the edit distance between “text” and “tax” is 2.

Naturally, the higher the morphological distance between two strings, the lower their

similarity. This technique is especially useful in spell_checking tools, which help people fix

spellings errors by recommending suitable replacements.

Unfortunately, morphological distance measures are not suitable for calculating the

alphabetical similarity between the original query string and a result derived from the above

intelligent search algorithms. For example, given a query “attgrpmgr”,

“abs_max_attmgr_grp_request” is a result found by a query generated in Step 4 of the

above algorithm. The distance between the two strings judged by the above methods is very

large, but according to human assessment, they are highly similar to each other.

The idea of conceptual distance is useful in some cases when the result is from a search

candidate found from the knowledge bases (Step 5 “KB” in Chapter 4). As an additional

example of the above query, “dvcmgr” is a superconcept of “attgrpmgr” in this system, and

this relationship is defined in our knowledge base. Therefore, they are conceptually close,

although they look very different. However, we can not obtain such kinds of relationship

through normal thesauri, rather, a smaller but more specific knowledge base, like the one

we have, is more useful.

Therefore, no matter whether we want to compare the semantic or the morphological

distance, we need to develop a new set of algorithms for judging the search results of the

intelligent search tool.

44

5.2 EVALUATION STRATEGIES

5.2.1 Rationale of using evaluation strings

Because of the difficulty of using normal evaluation methods to judge the search results

in source code, it is essential to acquire much knowledge that we can apply in the

evaluation. As we have learned before, both the query and the entity names can be a

mixture of natural English words, acronyms, and various other styles of abbreviations. To

deal with these combinations, we have to apply a certain amount of intelligence to break

them up before we can compare them.

The intelligence we add to our rating algorithms is based on the knowledge we obtain

during the generation procedure of the search candidates as we discussed in Chapter 4. We

have done our best to break entity names into components using the specially designed text

operation methods. More specifically, the knowledge that we have learned about a query

string is embodied in the intermediate outputs of the candidate generation procedure as

shown in Tables 4.1, 4.2, and 4.3. The intermediate outputs for a query are the list of words,

list of keywords, list of stopwords, list of abbreviations for every keyword, and list of

related terms; each item on these lists of strings resembles the original query string in one

way or another.

For instance, “dvcmgr” in the above example is semantically similar to the query string

“attgrpmgr” since it is its superconcept, while each of “att, “grp” and “mgr”, which may be

obtained by abbreviation expansion in Step 4, could be a keyword of "attgrpmgr".

Hence when it is hard to rate a result term directly against the original query term, these

strings can be used instead to judge the level of relevancy or similarity of the result. We

therefore, call these intermediate outputs evaluation strings. The evaluation strings are

weighted strings that are relevant to the original query term, and are used to evaluate the

query results.

5.2.2 Types of evaluation strings

From the above steps, we acquire two types of evaluation strings:

45

1) One type represents some aspect of the whole query string, such as the strings in the

list of related terms. For example, superconcepts and subconcepts stand for broader

or narrower scope of meanings of the query, while the original query string itself, its

acronyms and synonyms represent similar concepts but are alphabetically very

different.

2) The other type represents a part of the query string, such as the strings in the list of

words (including both keywords and stopwords). For example, according to the way

we broke it, every item in the list of words, no matter whether it is a keyword or a

stopword, is a meaningful component of the query. Therefore the appearance of any

word of the list in the result indicates that the result contains at least one component

of the query. Considering the fact that at times the keywords appear in their

abbreviation formats, the lists of abbreviations are also useful in judging the

existence of such components.

Due to the difference of the amount of the information they bear, every type is suitable

for evaluating a specific group of results, and hence is used differently in the rating

algorithms. Figure 4.1 shows, through the numbers in an oval, the rating algorithms in

which the evaluation strings are involved.

5.2.3 General idea

When it is hard to judge the closeness of a result directly against the query, the

evaluation strings will bridge the gap. That is, in order to compute the similarity between a

result and the query, we only need to know the similarity between the result and the

evaluation strings, as well as the similarity between the evaluation strings and the query.

Figure 5.1 shows the general idea of the result assessment using an evaluation string. If

we know that an evaluation string bears a proportion of the information in the query, and

that the result contains the evaluation string, we can decide that the result holds the

particular portion of information.

46

Furthermore, after we apply the same technique to every evaluation string in the whole

set, we should be able to determine overall what proportion of the information in the query

is contained in the result under investigation.

Consequently, the rating algorithm has to judge a result against every evaluation string

before it can draw a conclusion based on all evaluation strings. In the next section, we

present our considerations for every aspect of the evaluation.

Evaluation
String (es)

Original
query (S)

Query
result (T)? ?

w(S, es):

Algorithms,

Proportion in S

λ(es, T):

Length,

appearance

γ (T, S, es)= f(w, λ)

Figure 5.1 Using evaluation strings in the rating algorithm

5.2.4 Criteria for the evaluation

5.2.4.1 Judgment against one evaluation string

The evaluation strings carry the contents expected in the result under assessment.

Nevertheless, we have to figure out how these evaluation strings can lead to a judgment. In

general, the judgment depends on how good the evaluation string is, and whether it appears

in the result. Lots of facts contribute to the answer to these questions. The following are

what we believe to be the most important criteria, and what our rating algorithms compute:

47

1) Similarity between an evaluation string and the query: This can be defined as the

proportion of information contained in the evaluation string. In order to show how good an

evaluation string is, the major measure is how much of the contents of the query is borne in

it. We consider that it is associated with the following two concerns:

• Type of the evaluation string: Every one of the first type of evaluation strings

shares lots of contents with the whole query. No matter how they are alphabetically

different from it, they conceptually have the same granularity of the query. Thus

evaluation strings of this type intrinsically have a weighting of 1 in a scale of 0 to 1.

Unlike those of the first type, each of the second type of evaluation strings

conveys only a part of the information, because it is just one component of the

query. In other words, these strings have smaller conceptual granularity than the

query does. Thus evaluation strings of this type have a weighting of a fraction of 1;

and this weighting depends on how many components the query has altogether.

• Source of the evaluation string: An additional element to differentiate one

evaluation string from another is where they are from. Sometimes we have more

confidence in certain good candidate generation algorithms, which also generate the

evaluation strings, and hence more confidence in their outputs. For instance, a

synonym probably is closer in meaning to the query than a superconcept, while a

superconcept may be better than a short abbreviation computed by brutal truncation.

Consequently, we need a way to represent our confidence in an evaluation string

from a candidate generation algorithm. Yet confidence is hard to characterize using

a fixed number; rather, we use two numbers to represent the range of the rating a

result could get if it contains the evaluation string. The minimal value stands for the

minimal rating that might be assigned to such a result, while the maximal value

gives the upper bound.

In summary, the similarity between the evaluation string and the query depends on the

type of the evaluation string, and the algorithms that produce it.

48

2) Similarity between the evaluation string and the result: This measure mainly

judges the appearance of the evaluation string in the result, which is harder to estimate than

one might first imagine.

First, we clarify what we mean by saying that one string appears in another. Typically,

“A appears in B” means “A is a substring of B”. According to this definition, A either

appears in B or not. The decision can be represented by 1, which means “appear”, or 0,

otherwise.

However, being a substring is not a sufficient indication of appearance for our purposes.

For instance, sometimes a word is not a substring of a result, but it does occur in it because

the word is in one of its abbreviation formats. Many factors could affect the appearance

measure. Thus, instead of giving an answer of exact “0” or “1”, many times our algorithms

produce a value between “0” and “1”, and the following are the factors to consider:

• The length of the evaluation string: If a result contains either the evaluation

string itself, or any of its abbreviations, the evaluation string is considered toappear

in the result. However, the appearance of the evaluation string itself is believed to

be more “complete” than that of its shorter versions, the abbreviations. Therefore,

the longer a string occurs in a result, the more possible that the result contains the

information the string carries.

• Variants of the result: The same length judgment also applies when the evaluation

string does not occur in the result, but in the variant of the result. For example, if an

evaluation string is “clstr”, a result like “msg_cl_str” is considered to contain the

evaluation string, because after removing the word delimiters, it is easier to see that

“clstr” is really a component of the result. Take another example, suppose the

query is “listdbg”, and two of its evaluation strings are “list” and “dbg”. Given a

result like “list_debug”, a normal substring measure only shows the appearance of

“list”. However, if we compute the all-consonant format of this result, which is

“lst_dbg”, we can easily see the existence of “dbg”. Hence computing the variants

of the result by applying simple text operations can also improve the accuracy of

the judgment.

49

In summary, the similarity between the evaluation string and the result is a function of

the length of its parts that appear in the result or the variant of the result.

3) The likelihood of the appearance: The presence of a word in a result is sometimes

hard to define because the words are so short that they can be just a substring of other

English words. For instance, “of” as a stopword itself, may occur in words like “office”.

Moreover, “oos” as an acronym of “out of service” might be a part of “choose”, or be the

abbreviation of other phrases. Hence, even when a word or one of its abbreviations is a

substring of a result, it is possible that the substring does not represent the same meaning as

the word does.

As a result, there needs to be a method that computes the likelihood of the appearance

for an evaluation string to state its chance of occurring in the result, given that the

evaluation string or one of its abbreviations is a substring of the result. The following two

features of the specific substring are considered relevant to the likelihood of the appearance

of the evaluation string:

• Distinct independence of the substring: One way to judge the likelihood is by

checking whether there are any word delimiters in the result presented before and

after the substring. If word delimiters help distinguish the substring from other

parts, we are more confident that the word of the query represented by this

substring appears in the result. Otherwise, the likelihood of this word occurring in

the result is less than 100%.

• Length of the substring: Another way to judge the likelihood of appearance is

through the length of the substring. Sometimes even if no word delimiters appear, a

substring long enough can confirm the existence of the word or phrase it represents,

because usually a longer string is less probable to be a part or an abbreviation of

various words than a shorter one.

For instance, it is relatively easy to decide that “forward” is a component of a result

like “forwardmessage”. However, when it comes to a short word like "bus", things

are different. It is hard to tell if the "bus" in a result like "servicebusy" is really the

one we are looking for. Also, it is hard to judge which of the following results is

50

better in terms of “bus”, “msgbuserr” or “servicebusy”. Therefore, longer words and

their longer abbreviations make us more confident than shorter ones.

So when we are evaluating the appearance of a short word or abbreviation, e.g. one

with less than 4 letters, and if their appearances are not distinct (no word delimiters),

we consider that the presence of this word in the result is a chance of less than 100%.

In summary, the likelihood of the appearance of the evaluation string in a result relies

on the length and the independence of the part that is a substring of the result.

5.2.4.2 Judgment against the whole set of evaluation strings

Once the algorithm gives a rating against every evaluation string, the final rating of a

result is based on the whole set of individual ratings. The following are the considerations

that lead to the strategies of using the set of ratings:

• List of the related terms: If any item in the list of related terms appears in the

result, probably the query string as a whole is a vital component of the result,

because usually the entity names are so short that only important contents show up.

Hence, the presence of any of the related terms indicates the strong relevancy

between the result and the query. If the result happens to contain multiple related

terms, which is rarely seen, the algorithms will choose the one that brings the

highest rating. Therefore, among all the ratings from the first type of evaluation

strings, the maximal value of them will be taken as the final rating for the result.

And the whole evaluation process of a result will stop once a rating is obtained

here.

• List of words: When no related terms are found, it is natural to assess the result by

comparing the number of components it contains with that of the query. So, our

algorithms should compute the appearance of all keywords and stopwords in order

to show how many components of the query are present in the result.

51

• Number of keywords present: A result that contains more keywords is

considered closer to the query in meaning than one that contains fewer.

• Number of stopwords present: Stopwords play an important role in source

code systems, as well as they do in normal documents. If a query includes

stopwords, the evaluation should reflect their presence, even though the

candidate generation algorithms drop them to expand the query. For

example, a query “out of service” may find “device_out_of_service” and

“device_in_service”, in which case only stopwords can tell the difference

between the results.

The sum of the appearance of all the components in the result embodies how

much content of the query has been found. Hence, addition is the operation that is

applied to the whole set of ratings given by the second type of evaluation strings.

Besides the above factors, there might be many other attributes that can differentiate

one result from another; however, we do not want to consider all of them in our algorithms

so that they turn out to be too complicated to follow. We believe the above thinking

includes the most important aspects. If our later experiments show that the accuracy of the

algorithms is not satisfactory, we shall adjust current attributes, or take more aspects into

account.

5.3 THE RATING ALGORITHM

5.3.1 Denotations

In the rating algorithm, we use a set of symbols to denote the concepts or functions

discussed above. First is the input of the rating algorithms:

S: the original query string;

T: the result under evaluation;

T': T's simple variations, such as with word delimiters removed, its acronym, or

its all-consonant format;

52

ES: the set of evaluation strings, could be ES1 or ES2;

ES1: the set of evaluation strings of the first type, i.e. the list of related terms;

ES2: the set of evaluation strings of the second type, i.e. the list of words;

es: an evaluation string in ES;

Aij: the jth abbreviation of the ith item of ES2;

Wij: the similarity of Aij to ES2i;

LX: the string length of a string X;

n: number of items in ES2;

mi: number of items in the list of abbreviations of an es as the ith item of ES2;

The following are the values computed by the rating algorithms:

mines: the minimal possible level of similarity between T and S based on es;

maxes: the maximal possible level of similarity between T and S based on es;

w(S,es): the similarity between S and es;

λ(es,T): the similarity between es and T;

ϕ(es,T): the likelihood of appearance of es in T;

γ(T, S, es): the similarity between T and S according to es;

R(T, S): the overall rating of the similarity between T and S.

These denotations represent the general symbols in the algorithms. As discussed below,

the algorithms, based on different types of evaluation strings, share the same framework,

but differ in details. Therefore, there are two versions of the above functions: one version

for rating against ES1, the other for ES2. Correspondingly, the names of different versions

of the functions are numbered as R1, λ1, w1, and R2, λ2, w2.

5.3.2 Evaluating a result in up to three steps

The evaluation process has three steps. The first two steps apply the rating algorithms

utilizing the two types of evaluation strings respectively, while the last step handles the rest

of the results that can not be evaluated by the evaluation strings.

53

The rating process of each result stops whenever it obtains a value other than zero in a

step. As a consequence, it may need up to all three steps to complete the evaluation of a

search result. :

��

�
�
�

=>
>

=
otherwiseSTR

ESSTRandESSTRifESSTR

ESSTRifESSTR

STR

),,(3

0)1,,(10)2,,(2),2,,(2

0)1,,(1),1,,(1

),(

(Equation 0-0)

Where R1, R2, and R3 each represent the respective algorithms used in the three steps.

5.3.3 A general framework for rating against evaluation strings

As a summary of Section 5.2 and an introduction to the next part of this section, the

following formulas and pseudo-code show the general framework of the first two

algorithms:

1) The overall rating is given against the whole set of evaluation strings:

R(T, S) =F(γ(T, S, es)), for all es ∈ ES

(Equation 0-1)

The function first computes the rating of T given by every es, which is the γ function

defined in 2). Then, the type of ES determines which function to apply on the whole ES set,

as defined in Equation 1-1 and Equation 2-1.

2) The similarity between T and S according to an es:

γ(T,S,es)=[mines+ (maxes -mines)*w(S,es)*λ(es,T)]*ϕ(es,T)

(Equation 0-2)

54

W, λ, and ϕ should all compute a value from 0 to 1. Hence, the γ function provides a

value between min and max, depending only on the similarity between es and S (the w

function), the similarity between es and T (the λ function), and the likelihood of es

appearing in T (the ϕ function).

The min, max, w, λ values are very much dependent on the type of es. They will be

discussed in detail later.

The ϕ function, the likelihood of the appearance of es in T is defined in 3).

3) The likelihood of the appearance of es in T, ϕ(es,T), can be described as the

following pseudocode:

input: es, T;

t: T, or one of its variants T’;

if es is not a substring of t

return 0;

if es is a distinct individual of t

return 1;

else

if the length of es >= 4

return 0.75;

else

return 0.5;

In this pseudocode, T’ is calculated in 4). The judgment “es is a distinct individual of t”

is given in the pseudocode as 3.1).

When es is a distinct individual of T or T’, there is no doubt that it does not appear as a

part of other word. Thus the likelihood of the appearance should be 1. Otherwise, for the es

that we can not separate from other parts of T, we simply consider its prospect of appearing

in T as either moderate or high, which has a value of 0.5 or 0.75 respectively.

55

3.1) The distinct independence of es in T can be simply judged by the following

pseudocode:

input es, T;

if there are word delimiters before and after the substring es in T

return true;

else

return false;

The way to determine the word delimiters is the same as that in Step 1 of Chapter 4.

A value of “true” indicates that es is clearly separated from other parts of T.

4) T’s, the variants of T, are the set of strings obtained by applying any one of the

following text operation methods on T:

• Removing word delimiters;

• Taking the all-consonant format of T;

• Computing the acronyms.

These are computed in the same way as the Step 3.1, 3.2 and 3.3 of the candidate

generation algorithms in Chapter 4.

Besides the above conformity, the differences between Algorithm 1 and Algorithm 2

reside in the way we obtain R, w, λ, mines and maxes, in 1) and 2) of the framework. We

will discuss these differences in detail below, plus Algorithm 3, the rating algorithm that

does not use the evaluation strings.

5.3.4 Algorithm 1 (R1)

This algorithm examines the similarity between the result and the original query string

using ES1, i.e. the list of related terms. Its purpose is to identify some of the best results

quickly so that it does not have to analyze the components of S and T, as Algorithm 2 does.

56

1) Overall rating of the result. If we let R1 denote the rating of a result T against ES1,

and suppose there are n strings on ES1, then R1, and hence R, is calculated by Equation 1-

1:

R(T, S)=R1(T, S, ES1)=max(γ(T, S, es)), for all es ∈ ES1

(Equation 1-1)

R1 takes the maximum value of the similarity between T and S against every item on

ES1 as the overall rating of T against the whole ES1 set.

R1 will be 0 (zero), if none of the evaluation strings appears in T or T’. Or it will take

the highest rating if one or more evaluation strings are contained in T or T’, in which case,

R1 is our final rating, and we will not proceed to Algorithm 2 or Algorithm 3.

2) In the γ function, which computes the similarity between T and S according to an

es in ES1, the w and λ, mines and maxes are defined as follows for any es in ES1:

• 2.1) min and max values: These values represent the extent to which an evaluation

string resembles S. The weights should be from 0 to 1, where 0 stands for no

resemblance at all and 1 means exactly the same. So we give a minimum and

maximum value, mines and maxes, to each of them to denote the range of its

similarity. This weight depends on the source of the evaluation string, which is the

candidate generation step that produces it. Of course, S is considered the best

representative of itself, and hence it has a weight from 0.9 to 1; therefore, any

results containing S will have a rating better than 0.9, and a result that is exactly the

same as S will get a rating of 1.0. The rest have lighter weights. Initially, we set the

value for each type of evaluation strings in Table 5.1. If later experiments show that

the rating algorithms’ performance is bad, we will adjust these values to improve

the performance.

57

Source min max
Original query string (S) 0.9 1.0
Acronym (ABBR_ACR) 0.8 0.8
Synonym (KB) 0.75 0.75
Super concept (KB) 0.65 0.65
Sub-concept (KB) 0.65 0.65
Concept containing all keywords (KB) 0.65 0.65

Table 5.1 min, max value of items in ES1.

• 2.2) w(S, es): The w function for items in ES1 is set to 1 because each one

resembles the whole string S. So:

w(S, es) = 1, es ∈ ES1

(Equation 1-2)

• 2.3) λ(es, T): We then check if T or T’ contains at least one item from ES1 as its

substring. If so, we consider T similar to one of the related terms of S, and thus

similar to S itself. Otherwise, the similarity between T and the related terms must be

zero.

Let λ1(x, T) denote the similarity between T and a string x in this algorithm.

Then the similarity between T and an item es of ES1 is given by Equation 1-3:

�
�
� 

=
otherwise. 0,

ES1es and,T'or T of substring a is es if ,L/ L
 T) (es,1 Tesλ

(Equation 1-3)

5.3.5 Algorithm 2 (R2)

This algorithm examines the similarity between T and S using the list of words that

contains the keywords, which are associated with their lists of abbreviations, as well as the

stopwords. This makes sense. Since all the keywords and stopwords are extracted from S,

each of them should represent a unique part of S. Thus, we believe that a result T

58

containing some of these parts must be partially similar to S, which contains all of them.

Our second algorithm, therefore, is to calculate how many of the parts appear in a result.

1) Overall rating of the result. If we let R2 denote the rating of a result T given by

this algorithm:

�


==
2

)),,(()2,,(2),(
ESes

esSTESSTRSTR γ

(Equation 2-1)

So R2 sums up for T the level of appearance of all the unique parts of S, and should

provide a rating from 0 to 1. Again, if R2>0, it is the final rating R for T, and the evaluation

procedure will not proceed to the next step.

2) In the γ function, the w and λ, mines and maxes are defined as follows for an es in

ES2:

• 2.1) min and max values: Given only a part of S appearing in T, the range of the

similarity between T and S is very hard to determine. So we simply set a wide

range, and will let later experiments tell us whether the range is appropriate.

Initially, for every es on ES2:

mines = 0.20, es ∈ ES2;

 maxes = 0.95, es ∈ ES2;

• 2.2) w(S, es): Like in Algorithm 1, each evaluation string has its own weight in a

range from 0 to 1. There should be a range of possible similarity between T and S if

T contains an evaluation string.

Unlike in Step 1, however, the sum of these weights should be 1 because each

string stands for one part of S and they altogether form the whole string. Initially,

we treat all these evaluation strings equally, no matter whether they are keywords or

stopwords. Suppose there are n items in ES2, thus:

59

w(S, es) = 1/n, es ∈ ES2

(Equation 2-2)

• 2.3) λ(es, T): We then check, for every evaluation string in ES2, whether it appears

in the result T. Again, the appearance of es in T as its substring determines the level

of similarity between them.

This function is defined differently for stopwords and keywords, because we do

not abbreviate stopwords. Hence, the appearance of a stopword is solely

determined by whether it is a substring of T or T’:

�
�
� 

=
otherwise. 0,

ES2;es and T'or T of substring a is es 1,
 T) (es,2λ

(Equation 2-3)

Unlike a stopword, a keyword should also be considered as appearing in T if T

or T’ does not include the whole keyword but one of its abbreviations. Therefore,

the appearance of a keyword is,

�
�

�
�

�
=

=>

=

otherwise. 0,

 T; of substring a is A and ES2es if

 m to1jfor 0,)max(),max(

 T) (es,2 iji

iijij WW

λ

(Equation 2-4)

An evaluation string es appears in T if es is a keyword and one of its

abbreviations is a sub-string of T or T'. Therefore, in Equation 2-4, λ2 is mostly

determined by another type of weight i.e. Wij, the level of similarity between a

keyword and its abbreviation. Such a similarity should be determined because an

abbreviation can not always fully represent the whole word. We believe Wij is

60

strongly related to Lij, the length of Aij, because the longer the abbreviation, the

more possible it represents to the whole word. Initially we set:

Wij =

0,Lij < 2;

0.3, Lij = 2;

0.7, Lij = 3;

0.9, Lij = 4;

1, Lij >= 5;













(Equation 2-5)

Therefore, λ2(es, T) returns the weight of the longest abbreviation of an es of

ES2 that appears in T. Again, we will let later experiments to show whether the

settings are appropriate.

5.3.6 Algorithm 3 (R3)

At this point, most of the good results have been rated in the above two steps. The

remaining results must be either very hard to evaluate or not relevant at all, because after

the above steps none of them contains a meaningful component of S indicated by the

evaluation strings, not even a sub-string with a length of 2 letters has been found that is an

abbreviation format of S or its key components.

Conceivably, these results are found by querying "a*b*c*"-like candidates generated by

the query expansion algorithms (EXPN) for the single-word query string cases. It is almost

infeasible to judge the similarity between S and such kinds of result T. For instance, it is

hard to come up with a good way to judge if a T "check_for_call_annc_button" is similar to

the S "cfb". Hence we simply consider these results are not relevant at all. So all these

results have a same rating, which is the lowest rating in our system, as expressed in

Equation 3-1:

R3(T, S)=0.20

(Equation 3-1)

61

Result Search
Candidate

Algorithm Rating by the
algorithm

Rating by
users

Busy_cfb_set cfb* R1 80% 85%
Dpn_nsi_call_forward_busy call*forward*busy R2 72.5% 60%
Serial_call_from_busy Call*for*busy R2 59.375% 35%
Agm_case_force_man_busy ca*for*busy R2 55.625% 25%

Table 5.2 Ratings of results for "CallForwardWhileBusy".

Result Search
Candidate

Algorithm Rating by the
algorithm

Rating by
users

Listdbg_summ List*dbg,
li*stdbg,…

R1 95.83% 85%

Listmgr_write_debug List*,l*is*t*d*b*
g

R2 56.375% 65%

List List* R2 41% 50%
Cpacd2rte_enab_disab_rt
e_dbg

Dbg* R2 40% 35%

Ls_reset Ls* R2 22.25% 30%
ac15_outpulse_delay_tim
er_t_type

Ls* R3 20% 20%

Table 5.3 Ratings of results for "listdbg".

5.4 EXAMPLES OF RATINGS OF RESULTS

Table 5.2 and 5.3 show some ratings of the two query examples in Chapter 4. We will

discuss these ratings in detail in the next chapter.

5.5 SUMMARY

Table 5.4 sums up the algorithms by comparing the values, methods or concerns for

calculating each attribute. The shared cells between algorithms show their commonalities.

Meanwhile, the numbers in brackets indicate the formulas that define the attributes.

62

Level in the
framework

Attribute Definition R1 R2 R3

1) R(T, S) the overall rating Maximum of γ
(1-1)

sum of γ
(2-1)

0.20
(3-1)

2) γ(T, S,
es)

rating against an es min, max, w, λ, ϕ
(0-2)

 2.1) Min minimal possible
rating

Candidate
generation
algorithm

0.20

 2.1) max maximal possible
rating

Candidate
generation
algorithm

0.95

 2.2) w(S, es) similarity between S
and es

1
(1-2)

1/n
(2-2)

 2.3) λ(es, T) similarity between T
and es

Les

(1-3)
Les , Wij

(2-3,4,5)
3) ϕ(es, T) likelihood of the

appearance of es in T
L, the distinctiveness of es

4) T’ Variants of T Text operations

Table 5.4 Summary of the rating algorithms.

63

We performed a series of experiments to examine the performance of our algorithms.

We first performed intelligent search against a selected group of query terms, comparing

the quantity and the quality of the results obtained from the above candidate generation

algorithms. After that, we evaluated the accuracy of our rating algorithms according to

human judgment.

6.1 REVIEW OF MEASUREMENTS OF RETRIEVAL EFFECTIVENESS

The performance of an information retrieval system is typically measured by retrieval

effectiveness, which is highly related to users’ satisfaction with system output. There are

many measures to retrieval effectiveness, among which relevance is the most frequently

used one [11]. In inspection of the output of a query, an item’s relevance to the user is

usually indicated by his/her acceptance or rejection of the item, while the number of

relevant items is used to calculate the effectiveness of retrieval.

6.1.1 Precision and recall

The most widely used measures of effectiveness that are based on relevance are

precision and recall [4, 11], and they are defined as:

• Precision is the proportion of retrieved items that are relevant.

querythebyretrieveditemsofnumbertotal

querythebyretrieveditemsrelevantofnumber=Precision

• Recall is the proportion of relevant items that are retrieved.

itemsrelevantofnumbertotal

querythebyretrieveditemsrelevantofnumber=Recall

CHAPTER 6. EXPERIMENTS

64

Both precision and recall range in value from 0 to 1. In general, precision goes up while

recall goes down if the number of items retrieved by the query is reduced, and vice versa.

6.1.2 Drawbacks of precision and recall

In spite of their popular use, there are some major objections to precision and recall

[11]. The first one is the difficulty of obtaining the total number of relevant items. When

the query is based on a large collection of documents, this number is normally estimated by

statistical techniques. Therefore, in these situations, recall is inexact.

Moreover, precision and recall don’t take the difference among users into account. They

assume that people have the same opinion on the relevance of a result. However, in the real

world a retrieved item may be relevant to one user’s query while being considered

irrelevant to that of another, since everybody has different knowledge and information

needs.

Furthermore, research has shown that "precision is not significantly correlated with the

user's judgment of success" [29]. Because of these problems, we believe some user-oriented

measures are more appropriate for us to evaluate the effectiveness of the tool. We might

still mention precision and recall for general discussion purpose, but would not use them as

a measure of our tool.

6.1.3 User-oriented measures

Korfhage [11] summed up the user-oriented measures that had been proposed. Among

those measures, coverage ratio and novelty ratio are the most typical ones:

Coverage ratio: the proportion of the relevant documents known to

the user that are actually retrieved.

Novelty ratio: the proportion of the relevant retrieved documents that

were previously unknown to the user.

A high coverage ratio means the search has found most of the relevant items known to a

user. A high novelty ratio means the search can reveal lots of relevant items that are new to

65

the user. Searches with high coverage ratio and high novelty ratio will increase the user’s

satisfaction with the search tool. Therefore in our experiments, we are going to use these

two ratios as a part of the assessment of the performance of our tool.

6.2 METHODOLOGIES

We performed a series of experiments to evaluate the effectiveness of the tool, the

performance of the search candidate generation algorithms, and the accuracy of the rating

algorithms. Some of the experiments were conducted in our lab by running the tool in

different situations without involving real users, while some other experiments used the

actual software engineers to evaluate the query results of the tool.

6.2.1 Automatic evaluations

First of all, we obtained a group of searches actually performed by the software

engineers maintaining a large telecommunication system. The searches were logged by

users of TkSee during maintenance activities which took place during April, 2000.

We extracted from the log all the searches that produced only a small number of results.

We worked with such searches since the fewer the results found, the more likely a software

engineer would want to use intelligent search, in order to find additional results. Altogether

we obtained 34 query strings with which to experiment; 14 of these contained multi-word

terms, and the rest were single-word terms.

Then we performed a query for each string using the intelligent search process in a

system that has more than 300,000 identifiers. The performance of each candidate

generation algorithm was evaluated by comparing the average number of candidates

generated and the portion of results found by each of them. Our rationale for this is that a

good candidate algorithm should produce a number of useful results.

 In addition, we calculated the average rating of the results generated from each

candidate generation algorithm, where the ratings were given by our own rating algorithms.

At this stage, the assessment was based on the whole result set of each query. None of the

query returns was pruned.

66

6.2.2 Human evaluations

6.2.2.1 Procedure of the experiment

Next, we assessed the performance of our algorithms using human evaluators. We

obtained the assistance of four volunteer software engineers in the system's maintenance

group. Two of these participants had been working on the system for more than ten years.

Another one had more than ten years of experience of software development, too, but had

only been working in this system for about one year. The remaining one had been with this

system for several months, and this was his first software development job.

We selected the 10 most typical query terms from the above 34 strings, and then

randomly picked about 15 to 20 result terms for each of them. Altogether there were 178

result terms chosen for the 10 queries. Therefore, the questionnaire included the 10 selected

queries, each alone with the results listed below it, as shown in Appendix A. The results

were not listed in any specific order, and their ratings given by the rating algorithms were

not shown to the participants.

For each query, the participants were first asked to rate their familiarity with it in a

range from 1 to 5, where 1 meant no idea at all and 5 meant extremely familiar with it

(Appendix B).

Then, for each result of the query, they were asked to rate the relevance, interestingness

and their level of familiarity with it by answering "how useful is the result", "how

interesting is the result" and "how familiar are you with the result" respectively. Again, the

ratings were from 1 to 5, where 5 meant the highest level of relevance, interestingness or

familiarity.

After rating each result, the participants were also asked to list other relevant strings

that they knew, but were not found by the query. These missing results would be used to

evaluate the general effectiveness of the tool.

The experiment lasted about 1 hour and 15 minutes. We first briefly introduced the

research of intelligent search in large software systems, and the purpose of the experiment.

Then the participants all read and signed the consent forms. Before we started the tasks, we

also asked them to read the instructions carefully, and we explained every task in detail.

Next the participants spent about 1 hour on filling out the questionnaires. All four

67

participants finished and handed in their questionnaires. After the experiment, we also had

about 15 minutes of debriefing with every participant.

6.2.2.2 Usage of the experiment data

From the set of ratings of relevance, we calculated for each one of the 178 result terms

its average human rating. Furthermore, according to the average human ratings, we grouped

them into 5 categories, each represented one human rating level. We put the results with

human ratings between 1 and 1.5 (including 1.5) in Category 1, which contained the least

relevant terms. And similarly, results with average human ratings between 1.5 (not

including 1.5) and 2.5 (including 2.5) appeared in Category 2, and so on. Category 5

consisted of the best results, rated more than 4.5 by the participants.

We used the human evaluation results to assess:

• The performance of the candidate generation algorithms. The number of results

obtained by the algorithms in the above five categories helped us evaluate our

analysis in the automatic experiments.

• The performance of the rating algorithms. First, we examined a few cases to see

whether the rating algorithms computed reasonable grades for different results

comparing with human ratings. Then, we analyzed the accuracy of the rating

algorithms by comparing the ratings given by them with the average human ratings

of the 178 results. Since ratings from the algorithms were from 20 to 100, and

human ratings were from 1 to 5, we computed the rating accuracy for each result

after dividing the rating from the algorithms by 20 times its average human rating.

• The consistency of the rating algorithms. We used the correlation coefficient

between the ratings given by participants and by the rating algorithms, as well as the

correlation coefficients between the ratings of different participants, to determine

how the rating algorithms were consistent with human judgment.

68

6.3 OVERALL PERFORMANCE

6.3.1 Response time

The average response time of the 34 samples queries was 37 seconds, which is

relatively long comparing with general user preferences of response time, i.e. 2 seconds. In

multi-word cases, it was about 27 seconds, while in single-word cases it was 44 seconds.

After further investigation, we learned that there were three major reasons that contributed

to the long response time:

1) The long response time of the intelligent search tool was due to the infrastructure it is

based on. The kernel of the infrastructure was a DBMS-like query mechanism, which was

very efficient. Its optimized searching algorithms allowed instant response to the queries of

strings starting with a non-wildcard character (e.g. dbg*). However, it was not very

efficient when looking for patterns like “*d*b*g*” or “*dbg*”, because there was no index

for fragmentary strings and therefore the query mechanism had to scan the whole database.

On average, it took about 1 second for the query mechanism to scan the whole database of

hundreds of thousands of entries to retrieve such a regular expression.

Unfortunately, there were many search candidates in the pattern like “*d*b*g*” or

“*dbg*”, especially in the single-word cases. As shown in Table 6.1, on average the

intelligent search tool generated for each query more than 30 search candidates, which were

all such types of regular expressions that the query mechanism could not handle efficiently.

Therefore, it needed more than 30 seconds for each query to scan the database for all the

regular expressions.

Normal information retrieval tools such as the search engines of the Web have better

performance because they use indexes like inverted files. As discussed in Chapter 2, these

indexes make search very efficient. However, because the construction and maintenance of

the indexes of the components of entity names, which were in fact fragmentary strings that

could be as short as one letter in software systems, was very expensive, we did not adopt

the “inverted files”-like index in our system. Nevertheless, even though the tool is less

efficient than other tools, after all it is still much faster in searching a number of expanded

queries than doing that using a series of “grep” commands.

69

2) In addition, the experiments we performed so far examined the performance of all the

algorithms. All search candidates were treated equally, and no results were pruned. Thus,

after the examination, we would be able to tell which algorithms outperform others because

of the quality of their search candidates and results.

3) Also, in the 34 experiments we were retrieving all types of objects in the software

system, such as files, routines, variables, constants, types, strings, and etc. In real world,

people often only retrieve a certain type of objects in a query, e.g. files, routines, or

variables, and each type accounted only a subset of the whole database. We found that the

size of the subset affected the performance. For example, if the queries were looking for

files, all of them had a response time of less than 1 second. However, if we were looking

for variable, which was a much bigger subset, the average response time was about 20

seconds.

6.3.2 Coverage ratio and novelty ratio

From the data of the experiment with human evaluators, we obtained the average

coverage ratio and novelty ratio for the 10 sample queries, as shown in Table 6.1.

6.3.2.1 Methods to calculate the ratios

According to the definition of these ratios, we needed to know how many of the results

were relevant, how many relevant items were known to the users, and how many relevant

items were not retrieved. We obtained these data from the set of ratings about relevance and

familiarity given by the participants.

First of all, an item was considered relevant if its average relevance ratings was better

than a threshold t (not including t). In other words, only those with moderate or high ratings

were relevant results.

Similarly, an item was known by the users if its average familiarity ratings was better

than the threshold t (not including t). Otherwise the item was considered unknown by the

users.

70

In order to obtain the above two types of data, we need to set the threshold first.

Because the users rated both the relevance and the familiarity from 1 to 5, we set the

threshold to be 2, 3, or 4, and could examine the ratios respectively.

Threshold
(t)

Coverage ratio Novelty ratio

All users 2 87% 65%
3 25% 97%
4 0% 100%

Experts 2 69% 48%
3 50% 76%
4 25% 92%

Novices 2 100% 85%
3 100%
4 100%

Table 6.1 Average coverage ratio and novelty ratio

Besides, in order to calculate how many relevant items known to the users were not

retrieved, we asked the users to write down all the missing items that they knew for every

query. These items, plus all the retrieved items that they knew were relevant, were all the

relevant items known to the user.

Then, we calculated the two ratios for the 10 queries, and got the first set of rows of

Table 6.1. We also applied the same methods for experts and novices respectively, and got

the remaining rows of the table. Please note that here “experts” refers to those who were

very familiar with a query, but were not necessarily those who had worked with the system

for a long time. Our rationale was that no one knew every aspect of a large software

system, even if he had been with it for more than 10 years; on the other hand, a newcomer

could also have lots of knowledge on a specific topic if he had focused on it for weeks or

months. In our experiments specifically, if a user’s level of familiarity with a query was

more than 2 (not including 2), we regarded this user as an expert on the query; otherwise he

was a novice on the query. Therefore, the experts all rated themselves as moderate to high

(3, 4, or 5) in terms of their familiarity with the query.

71

6.3.2.2 Analysis of the ratios

According to the table, our intelligent search tool had high coverage ratio and novelty

ratio if the threshold was set to 2, which means that it found most (87%) of the relevant

items known by the users, while at the same time brought to them lots of other relevant

items (65%) that were previously unknown to them.

The table also showed that the tool was useful not only for novices, but also for experts.

For novices who were facing a topic that was new to them, the tool might be a great starting

point because it retrieved many results relevant to the topic, among which 85% were

previously unknown to them. For experts, although both ratios were lower than that of

novices, the tool also covered nearly 70% of what the experts had already known; and

among all the relevant results, nearly 50% were new to them.

If the threshold was set to 3, the overall coverage ratio dropped significantly to 25%,

while the novelty ratio rose to 97%. If the threshold was 4, the coverage ratio dropped to

0% and the novelty ratio became 100%.

The trend was even clearer for novices, who, according to the above definitions of

“experts” and “novices”, had little knowledge about the queries. If the threshold was equal

to or higher than 3, it was hard to find relevant terms known to them (their level of

familiarity with the term was higher than 3), thus we could not compute the coverage ratio

because the base was 0. In the other hand, the novelty ratio was 100% because all results

were new to them.

Moreover, the effects of the relatively high thresholds on the data of novices also

affected the overall coverage ratios and novelty ratios as mentioned above. The reason was

that, when the threshold was set equal to or more than 3, only a small (or even zero) portion

of the retrieved results were considered known to the users as a whole, and the vast majority

of the relevant results were new to them.

In the cases of high threshold, it was more reasonable to examine the data from experts

only than from all users. Table 6.1 showed that when the threshold went higher, coverage

ratio went lower and novelty ratio went higher. In the middle level where the threshold was

72

3, the ratios showed that half of the relevant items that experts knew were retrieved, while

about _ of the retrieved relevant items were new to experts. On the other hand, the low

coverage ratio when the threshold was 4 meant that among the relevant items that the

experts knew extremely well, the retrieved items were far fewer than those that were not

retrieved. Nevertheless, the proportion of the relevant retrieved items that were previously

unknown to them turned out to be very high.

In fact, a threshold of 2 was more reasonable than the higher ones for this set of

experimental data; because according to the instructions [Appendix B], a rating better than

2 meant that the term was at least moderately relevant to the query. Further investigations

showed that it was very harder for the users to reach an agreement in terms of the relevance

of the results; it was even hard to find such agreement among experts. Most of the best

results presented to the experts that knew them extremely well had an average rating

between 3.5 and 4, and quite a few of the results that were considered moderately or highly

relevant by those experts could have a rating below 3 (mostly between 2 and 3). Moreover,

most of the results that were considered unrelated at all (rated as 1) by the experts had an

average rating below 2.

Overall, the coverage ratios and novelty ratios indicated that the tool retrieved a

significant portion of relevant items, many of which were new to both experts and novices.

6.3.3 Summary

To sum up, the intelligent search tool did not work very fast, but was much better than

normal search tools in satisfying user information needs by finding many relevant items

that were previously unknown to users.

6.4 PERFORMANCE OF CANDIDATE GENERATION ALGORITHMS

Table 6.2 shows for each candidate generation algorithm the number of search

candidates derived, the number of results found, and the average ratings of the results

provided by our rating algorithms. This table was based on all the 34 queries in our

73

experiment. Tables 6.3 and 6.4 demonstrate these measures for single-word terms and

multi-word terms respectively.

In Table 6.5, we present the distribution of the 178 result terms in the 5 categories

according to human evaluation. The sum of the numbers from all the cells of the table is

more than 178 because a result may originate from multiple algorithms.

Algorithms CandidatesResults Average Rating
ALL 31.61 2307.76 37.27%

ABBR 21.55 1318.88 40.92%
 ABBR_ACR 0.97 29.79 61.17%
 ABBR_KEY 2.00 68.24 90.00%
 ABBR_CUT 20.30 931.94 44.80%
 ABBR_SNG 0.97 405.76 45.47%

EXPN 18.53 2242.35 33.69%
 EXPN_WHL 1.00 58.80 94.73%
 EXPN_CON 1.00 154.65 66.36%
 EXPN_VOW 1.00 78.10 84.97%
 EXPN_ACR 5.05 109.90 82.00%
 EXPN_KEY_CON 6.68 1817.95 33.19%
 EXPN_KEY 6.21 750.25 50.46%

KB 1.15 22.24 82.13%

Table 6.2 For each candidate generation algorithm, the number of search candidates

derived (Candidates), the number of results found (Results), and the average ratings

of the results provided by our rating algorithms (Rating).

6.4.1 Search Candidates generated

From Table 6.2, we can see that on average, the algorithms altogether derived more

than 30 search candidates for each query. Step 3 (ABBR), which derived the abbreviation

format of the original string, found about 2/3 of the search candidates alone. However, in

single-word term cases it derived less than 1/2 of the candidates, whereas in the multi-word

74

cases it generated more than 90% of them. For both query term types, concatenating the

abbreviations of the keywords (ABBR_CUT) derived the highest number of candidates

among all algorithms.

Algorithms CandidatesResults Average Rating
ALL 30.89 2879.10 32.88%

ABBR 14.79 1198.00 39.08%
 ABBR_ACR 0.00 0.00
 ABBR_KEY 2.00 61.85 93.11%
 ABBR_CUT 13.68 1199.60 39.11%
 ABBR_SNG 0.00 0.00

EXPN 18.53 2242.35 33.69%
 EXPN_WHL 1.00 58.80 94.73%
 EXPN_CON 1.00 154.65 66.36%
 EXPN_VOW 1.00 78.10 84.97%
 EXPN_ACR 5.05 109.90 82.00%
 EXPN_KEY_CON 6.68 1817.95 33.19%
 EXPN_KEY 6.21 750.25 50.46%

KB 0.63 12.80 87.83%

Table 6.3 For each candidate generation algorithm in single-word term cases, the

number of search candidates derived (Candidates), the number of results found

(Results), and the average ratings of the results provided by our rating algorithms

(Rating).

Step 4 (EXPN), which was designed solely for the single-word cases, on average

accounted for more than a half of the candidates alone. Most of the candidates were formed

by decomposing the query strings using the dictionary of abbreviations (EXPN_ACR), or

taking the unique parts of the decomposed query strings (EXPN_KEY and

EXPN_KEY_CON).

75

Algorithms CandidatesResults Average Rating
ALL 32.57 1491.57 43.55%

ABBR 30.71 1491.57 43.55%
 ABBR_ACR 2.29 72.36 61.17%
 ABBR_KEY 2.00 77.36 86.18%
 ABBR_CUT 29.29 549.57 52.93%
 ABBR_SNG 2.29 985.43 45.47%

KB 1.86 35.71 65.00%

Table 6.4 For each candidate generation algorithm in multi-word term cases, the

number of search candidates derived (Candidates), the number of results found

(Results), and the average ratings of the results provided by our rating algorithms

(Rating).

The Knowledge Base (KB) helped us find about 1 search candidate per query on

average. We noticed that it found nearly two search candidates for multi-word terms, while

less than one candidate for single-word terms. Maybe this is because the concepts in the

knowledge base mostly consisted of English words rather than abbreviations, and the

abbreviations were mostly defined in the dictionary of abbreviations.

To sum up, ABBR and EXPN produced more than 90% of the candidates. The biggest

contributor among the sub-algorithms was ABBR_CUT, and each of EXPN_ACR,

EXPN_KEY, and EXPN_KEY_CON also found more than five candidates.

6.4.2 Quantity of results found

In our experiments, a multi-word term on average produced nearly 1500 results, while a

single-word term found nearly 3000. No matter which case a human is facing, it is

infeasible for him to deal with every item of such a big group. We therefore have to

investigate the effectiveness of each algorithm, as we will explain later in this chapter, so

that we can adjust the algorithms and find out the best way of removing bad results from

the query return.

76

From Table 6.2, we notice that in general, big contributors of search candidates also

found lots of results. For example, each of ABBR_CUT, EXPN_ACR, EXPN_KEY and

EXPN_KEY_CON alone could find hundreds or even more than a thousand results on

average.

However, even though some algorithms did not compute many search candidates, they

queried a large number of results. For instance, ABBR_SNG, which retrieved every single

word in the multi-word term cases, generated nearly 1000 results. In addition, EXPN_CON

computed only one candidate, but queried about 150 results every time.

It should be also noted that in single-word cases, although EXPN_ACR computed about

the same number of candidates as did EXPN_KEY and EXPN_KEY_CON, it obtained

slightly more than 100 results, which were many fewer than that of the latter two

algorithms.

The remaining algorithms, which are ABBR_ACR, ABBR_KEY, EXPN_WHL,

EXPN_VOW, and KB, found less than 100 results per query.

In short, we may say that the shorter versions of the query strings, which were derived

from ABBR_CUT, ABBR_SNG, EXPN_KEY and EXPN_KEY_CON are the major

contributors of the query results.

6.4.3 Quality of the results

6.4.3.1 Automatic evaluation

The quality was first measured by the average rating, which was the mean value of the

ratings of all the results from an algorithm. High average rating of an algorithm should

indicate that its overall findings are highly relevant. As Table 6.2 shows, in general, results

from algorithms that queried hundreds or even thousands of terms had less relevancy than

results from the rest of the algorithms.

1) Results from ABBR. Among the abbreviation concatenation methods (ABBR), the

first two algorithms (ABBR_ACR and ABBR_KEY) found results with moderate to high

ratings, while ABBR_CUT and ABBR_SNG had average ratings around 45%.

77

The acronyms of the original query string (ABBR_ACR), which were for multi-word

cases exclusively, found quite a few results generally, and sometimes even contributed to

90% of the results. However, their findings had only moderate ratings (around 60%), even

if at many times these findings are very useful results. This is reasonable, though, because

the acronyms' likelihood of appearance in the results might be very low according to our

rating algorithms. Since acronyms were generally short (3 or 4 characters long), sometimes

they introduced a large number of obviously unrelated results, along with many highly

relevant ones, that contained an English word that had the acronyms as one of its sub-

strings. These “bad” findings were rated as low as 40%, and therefore largely hurt the

performance of the acronym algorithms.

Further investigations revealed that most of the bad findings from ABBR_CUT were

from the candidates that took only the first 2 or 3 letters of the keywords as their

abbreviations. However, considering the fact that these candidates also contributed lots of

good results, we did not want to discard them, lowering the recall, but rather to rely on the

rating algorithms to improve the precision by identifying and removing the bad results.

The results also supported our selection of the lengths of the abbreviations (2 to 6) in

ABBR_CUT. Shorter abbreviations (containing 2 or 3 letters) found a significant number

of results, while longer ones found highly relevant results. In fact, in most cases,

abbreviations with 5 letters long retrieved the results that were almost identical to the

query. Thus, if we want to improve the performance of the query, we can change the

ABBR_CUT algorithm by computing abbreviations with a length from 2 to 5, which

reduces the number of candidates to compute and query without losing any good results.

2) Results from EXPN. Among the abbreviation expansion methods (EXPN), querying

the whole strings (EXPN_WHL), splitting the abbreviations before vowels (EXPN_VOW),

or splitting them using the abbreviations from the dictionary of abbreviations

(EXPN_ACR) found closely related results. Considering the fact that EXPN_ACR also

provided more candidates than other abbreviation expansion methods, we can say that the

dictionary of abbreviations was the most important source of intelligence in the single-word

cases.

78

Besides the above methods, expanding the abbreviations after every consonant provided

moderate returns. And querying parts of the original strings (EXPN_KEY and

EXPN_KEY_CON) obtained a large number of poor results.

3) Results from KB. Finally, although the results from the knowledge bases (KB) only

made a very small portion of the whole retrieved set, they were all highly rated.

Algorithms C1 C2 C3 C4 C5
ABBR
 ABBR_ACR 0 2 1 4 0
 ABBR_KEY 2 8 4 18 3
 ABBR_CUT 41 32 21 29 5
 ABBR_SNG 7 10 3 5 0

EXPN
 EXPN_WHL 2 4 1 14 3
 EXPN_CON 11 0 2 5 1
 EXPN_VOW 1 3 0 4 1
 EXPN_ACR 6 3 0 4 1
 EXPN_KEY_CON 14 13 7 2 0
 EXPN_KEY 11 7 8 1 0

KB 0 2 1 5 1

Table 6.5 Number of results generated by each algorithm in the 5 human rating

categories (C1 to C5).

6.4.3.2 Human evaluation

Our analysis of the user ratings also verifies most of the above observations. In Table

6.5, we categorized the 178 results evaluated by the software engineers from 1 to 5,

according to their average human ratings. We again noticed that the worst results (rated 1 or

2), which were also the biggest portion of the whole result set, were mainly from truncating

the original query string (ABBR_CUT), searching the parts of the query string

(ABBR_SNG, EXPN_KEY, EXPN_KEY_CON), and decomposing the single-word strings

after all consonants (EXPN_CON). Other methods found fewer, but gave fairly good

results (rated better than 3).

79

6.4.4 Summary of the performance of the candidate generation algorithms

According to the above discussion, the performance of the candidate generation

algorithms in terms of the quality of the results can be cast into three categories:

• High: ABBR_KEY, EXPN_WHL, EXPN_VOW, EXPN_ACR and KB were the

algorithms whose results have an average rating of more than 80%.

• Medium: ABBR_ACR and EXPN_CON found results with their average ratings of

more than 60%.

• Low: ABBR_CUT, ABBR_SNG, EXPN_KEY, EXPN_KEY_CON deluged users

with poor findings.

6.5 RATING ALGORITHMS

We assessed our rating algorithms by comparing the ratings given by them to ratings

given by human evaluators. We first performed some case studies to see if the rating

algorithms judged the results in a reasonable and consistent way. Table 5.2 and 5.3 were

two samples among those we had investigated.

Next, we examined the accuracy of the rating algorithms by comparing their values

with human average ratings for the 178 results. The summaries are shown in tables 6.6 to

6.10. Tables 6.6, 6.7 and 6.8 shows the percentage of results handled by each algorithm,

and their average ratings, as computed by our automatic algorithms. Table 6.10

demonstrates for the five human rating categories, the average ratings given by the rating

algorithms, along with the standard deviation, and median, minimum, and maximum

values. Finally, Table 6.9 shows for each rating algorithm its average accuracy by

comparing their ratings with 20 times the average human evaluations.

Last we performed correlation coefficient analysis between different sets of ratings.

6.5.1 Evaluation of the accuracy from case studies

From the two samples given in Table 5.2 and 5.3, we notice that the ratings given by the

algorithms were reasonable and consistent. Most of the highly rated results were considered

80

highly relevant by human, while most of the poorly rated ones were regarded as irrelevant

terms. In other words, many of the ratings fell into the same range as that of the human

ratings.

In addition, ranking the terms according to their ratings from high to low provided

mostly the same order as that given by ranking them according to the software engineers'

evaluations. Consequently, even if their individual ratings given by the algorithms are not

accurate, the results presented in descending order according to their ratings should be able

to promote the best ones to the top of the list, and hence should increase the chances for

users to investigate the most relevant results.

Moreover, the best ratings were given by Algorithm 1, which used related terms as the

evaluation string. Next were ratings from the second algorithm, which handled the majority

of the returns. Algorithm 3 covered the remaining, mostly poor results.

Noticeably, the rating algorithms had difficulty in assessing some types of results. For

example, in Table .5.3, "list*debug" can easily be judged by humans as highly relevant to

"listdbg", but the rating algorithm only gave it a moderate rating value. However, this is the

hardest part of the rating algorithm. Our methods at least made "list*debug" about 15 points

superior to other "list*"-like terms by identifying that "debug" might be a good

representative of "dbg".

6.5.2 Average accuracy of the rating algorithms

6.5.2.1 Automatic evaluations

Table 6.6 tells us that in the 34 queries, Algorithm 1 handled less than 4% of the results,

but these were the best results. Algorithm 3 handled about 10%, but they were most noisy.

Algorithm 2 covered more than 80% of all the results, but the average rating was very low

(less than 40%). This could mean that the rating algorithm underestimated the results, or

there was too much noise in the results.

81

Rating Algorithms Percentage Rated Average Rating
R1 3.61% 87.60%
R2 86.55% 37.68%
R3 9.84% 20.00%

Table 6.6 Percentage of all results handled by the rating algorithms and their average

ratings.

Rating Algorithms Percentage Rated Average Rating
R1 2.75% 93.72%
R2 80.52% 34.11%
R3 16.73% 20.00%

Table 6.7 Percentage of results handled by the rating algorithms and their average

ratings in single-word cases

Rating Algorithms Percentage Rated Average Rating
R1 4.84% 78.93%
R2 95.16% 42.78%
R3 0.00%

Table 6.8 Percentage of results handled by the rating algorithms and their average

ratings in multi-word cases

Mean Std Dev Median Min Max

Algorithm 1 1.19 0.25 1.12 0.94 2.03
Algorithm 2 1.13 0.48 1.06 0.34 2.88
Algorithm 3 0.85 0.21 1.00 0.29 1.00

Table 6.9 Average accuracy of the rating algorithms (average ratings from the

algorithm/(the average human rating * 20))

82

C1 C2 C3 C4 C5
Mean 34.41 45.43 49.53 76.47 96.39
Std Dev 11.92 16.29 21.18 22.61 2.31
Median 31.86 42.50 51.12 91.36 95.96
Min 20.00 23.21 20.00 32.50 93.64
Max 63.13 91.20 91.50 99.30 100.00

Table 6.10 Summary statistics: the ratings by our rating algorithms in the 5 human

rating categories (C1 to C5).

From Table 6.9, we in fact see that except for Algorithm 3, which gave the lowest

possible rating to every result, other algorithms slightly overestimated the results.

Algorithm 1 outperformed Algorithm 2 by rating the best results while with lower standard

deviation. However, as we have discussed above, Algorithm 2 was doing an intrinsically

harder job.

In addition, Table 6.7 and Table 6.8 show that Algorithm 1 handled fewer results in

single-word cases than it did in multi-word cases, but the average ratings were higher. This

was because single-word terms contained only one word in the query, therefore, it was

easier for the first algorithm to judge the results.

Algorithm 2 assessed a larger proportion of the results in multi-word cases than in

single-word cases, yet the average ratings were better. Maybe this was because the word

delimiters in multi-word queries helped the algorithms accurately decompose the strings for

both query expansion and result evaluation.

Algorithm 3 handled more than 16% of all results in single-word cases, but none in

multi-word cases. The reason was that the results left to this algorithm were mostly

retrieved by querying search candidates like "*d*b*g*", which were impossible to generate

from our rating algorithms for multi-word cases.

6.5.2.2 Human evaluations

Another good way to assess the performance of the rating algorithms in general is to

compare their ratings with human evaluation. We can develop some patterns of our

83

algorithms from Table 6.10, which gives the ratings by our algorithms in the 5 user rating

categories:

• The mean ratings of category 1, 2, 3, 4 and 5 were roughly at a level of 34%, 45%,

50%, 76% and 96%, respectively. The ideal average rating should be 20%, 40%,

60%, 80%, and 100%.

• The rating algorithms were strong at identifying highly relevant results (rated by

users as 4 or 5) or the mostly irrelevant ones (rated as 1) from the others.

• It was hard for our rating algorithms to draw a fine line between the results with

moderate relevance (rated by human as 3) and those with low relevance (rated as 2).

To sum up, our algorithms provided reasonable ratings for the results, especially for the

best. Typically, the higher the rating, the better the accuracy. Low accuracy mainly

occurred at the moderate to low rating levels. However, our algorithms were good at

identifying the worst results, too, especially those rated by Algorithm 3. If the poor results

identified by our algorithms were pruned from the return, the overall precision should have

obvious improvement.

6.5.2.3 Percentage of false positives

Another way to judge the rating algorithms is by examining the number of false

positives. False positives are the items that are considered relevant by the tool, but

irrelevant by users.

Average user rating
<

Rating given by
the algorithms

>

2 3 4

60% 3.09% 8.02% 17.28%
70% 2.47% 4.94% 10.49%
80% 2.47% 3.09% 5.56%

Table 6.11 Percentage of false positives using different thresholds

84

A result with a rating of 60% by our rating algorithms was considered fairly close to the

original query. Thus, it was reasonable for us to set 60% as a threshold to judge the

relevance of the results. Any result with a rating better than 60% was relevant.

Again, the threshold to judge user opinion could be set to 2, 3, or 4. If the threshold of

user rating was 2, then the percentage of false positives was the proportion of relevant

results according to the rating algorithms (the ratings by the algorithms were better than

60%) that were considered irrelevant by users (user ratings worse than or equal to 2). As

shown by the first column in the first row of Table 6.11, about 3% of the results were false

positives. Similarly, other cells of the table illustrated the percentage false positives using

different thresholds.

From Table 6.11, it was safe to say that more than 80% of the results that had a rating

better than 60% were relevant to the query. Moreover, among the results that were rated at

least 80%, only less than 6% of them were considered irrelevant. Hence, the proportion of

noise among the relevant results was very low.

6.5.3 Correlation coefficient analysis

Finally, we need to decide the reliability of our experimental data, because we were

using human evaluators, who in general are not always consistent when evaluating the

same thing. In statistics, people usually use correlation coefficients to judge the inter-rater

reliability [26]. We, too, used the most common Pearson's correlation [9] to assess the

reliability or consistency of our data.

Pearson's correlation measures the degree of the relevance of two sets of data by giving

a number between -1 and 1. A correlation of 0 means the two sets of data have no

relationship at all, while 1 means they have a perfect positive linear relationship. In our

case, a correlation of 1 means the two raters have a maximum level of agreement, and

therefore, given the ratings from one of the two raters, it is very easy to predict that of the

other.

Table 6.12 lists some correlation we computed, which are explained below:

85

• Average inter-rater correlation. We first calculated the correlation between the

ratings of every two users, and then took the average of the correlation values. 0.64

showed that users did not have a high level of agreement with each other in rating

the results. Their difference in background, experience, domain knowledge, work

requirement, and many other aspects determined that they could interpret the same

result in very different way.

This poor average correlation may imply that we do not have to seek perfect

consistency between our rating algorithms and human evaluators, because

sometimes humans do not agree with each other, either.

Moreover, we believe our previous judgments based on average human ratings

are still useful because the average values should have minimized the differences

among people and have shown their commonness.

Groups to compare Correlation coefficient
Average inter-rater correlation 0.64
Average rater-average
correlation

0.86

Experts vs. novices 0.83
Rating algorithms vs. all users 0.71
Rating algorithms vs. experts 0.66
Rating algorithms vs. novices 0.70

Table 6.12 Correlation coefficient between different sets of ratings

• Average rater-average correlation. We calculated the correlation coefficient

between the average rating and that of every user, then took the average of the

correlation coefficients. This value, 0.86, was better than the average inter-rater

correlation because everybody's rating had contributed a part to the average ratings.

• Experts vs. novices. We also computed the average ratings of experts and novices.

The correlation coefficient between these two sets of values was 0.83, which means

there were no big difference between the judgment of experts and novices of the

system.

• Rating algorithms vs. all users. When comparing the ratings given by the rating

algorithms with the average ratings given by all users, the correlation coefficient

86

was 0.71. Interestingly, this number was better than the inter-rater correlations. As

discussed above, although 0.71 did not show a perfect linear relationship between

the two sets of data, it was a good number that revealed the relatively consistent

relationship between our rating algorithms and human evaluators as a whole.

• Rating algorithms vs. experts, and Rating algorithms vs. novices. We also

compared the ratings given by the rating algorithms with the average ratings given

by experts of the systems, as well as with that given by novices. There was no big

difference between these two correlation values. However, it seemed that the rating

algorithms were slightly closer to the attitudes of novices than that of experts.

Maybe this means both our rating algorithms and novices lacked the domain

knowledge that experts had.

To sum up, the correlation coefficient analysis showed that although every individual

user might rate a result differently, there was in general no big difference between the

ratings given by novices and experts. It also showed that the ratings computed by our rating

algorithms were a fair representative of average human ratings, and hence our evaluation of

the candidate generation algorithms using the data from our rating algorithms was

reasonable.

6.6 IMPROVING THE TOOL

From the above experiment analysis, we can see that the intelligent search tool was

effective in finding relevant results, and the rating algorithms were reasonably good at

evaluating the findings. Therefore there is no urgent need for us to significantly change the

text operations and the initial settings in the rating algorithms at the moment.

The biggest problem was that the response time was long. According to previous

analysis, this problem was caused by retrieving all the generated search candidates one by

one in a form of regular expressions. If we can manage to reduce the number of search

candidates, the response time can also be shortened.

87

6.6.1 Methods

The principle of the improvement strategy was to reduce the search candidates that can

find duplicated results as much as possible. In the following, we describe in detail how we

improved the tool.

As mentioned before, a result can be found by multiple search candidates. If we can

reduce the number of the candidates that find the same results, the retrieval should take less

time without losing any results.

ABBR_CUT, the candidate generation algorithm that computed abbreviations through

truncation, produced the most search candidates among all algorithms. However, many of

these search candidates found the same results; that is, the results found by a longer version

of abbreviations were usually covered by those retrieved by a shorter one. For example, all

the results found by retrieving "*busy*" could be found by retrieving "*bus*". Hence, we

reduced the longer versions of the abbreviations and retained only the ones with a length of

2, and the tool had many fewer candidates to search, yet found the same number of results.

Other big contributors of search candidates were the EXPN_ACR, EXPN_KEY, and

EXPN_KEY_CON algorithms. EXPN_KEY and EXPN_KEY_CON each found a large

number of results, most of which were noise. Moreover, the results found by EXPN_KEY

could all be found by EXPN_KEY_CON. For example, the results found by querying

"*dbg*" (from EXPN_KEY) can be found by querying "*d*b*g*" (from

EXPN_KEY_CON). In order to improve the performance, we should drop the search

candidates from one of these two algorithms. According to the previous experiments,

EXPN_KEY_CON could find far more results than EXPN_KEY, but the average rating of

its results was very poor, only 33%. Considering the fact that retrieving the search

candidates from EXPN_KEY_CON, such as "*d*b*g*", was very inefficient, we decided

to drop these candidates. In this way, we lost some results, but they probably were mostly

the "bad" results that usually had little chance of being examined by the users, even if they

were retrieved.

EXPN_ACR also generated many search candidates. Each represented one way to

decompose the single-word query string. Although normally only one of the

decompositions was correct, the algorithm did not tell us which one was. Thus the tool's

88

performance was hurt by having to try all the possibilities. Yet we would not drop these

candidates because they were not replaceable by the others.

Noticeably, no matter what search candidates we dropped, the process of computing the

candidates remained unchanged. Thus, the candidate generation algorithms produced the

same set of evaluation strings as they did before the improvement. Consequently, the rating

algorithms would also give the same rating to a result as they did before.

6.6.2 Improved performance

Through the above methods, the average response time was improved to less than 20

seconds, if the user wanted to retrieve all types of objects in the database. When they only

retrieved variables, which were the biggest subset of the database, the average response

time was within 10 seconds. Retrieving other types, such as routines, took less than 5

seconds.

6.7 LIMITATION OF THE HUMAN EXPERIMENT

The major drawback of the human experiment was that it was using prerecorded

queries, rather than the live queries that the participants posed while actually using the tool.

In this case, the participants only judged the results by comparing them with general

information needs, without knowing the context (i.e. the original intent of the query).

However, the data of the experiments were still valuable, because:

• They show that the tool can retrieve a set of results that would be relevant in

general. Results relevant to a specific context would most likely be a subset of

these, so the tool would find those, too.

• The experiments helped us identify the strength and weaknesses of the tool. Hence,

we could improve it according to the data from these experiments before we

perform further studies. We leave it as future research to conduct a series of other

experiments, including the evaluation of search results for live queries posed by

human developers.

89

6.8 SUMMARY OF THE EXPERIMENT ANALYSIS

From the experiment analysis, we learned that in general:

• The intelligent search tool was effective at retrieving relevant results in large

software systems.

• Its response time could be reduced to an acceptable level, but in general the tool was

not as fast as normal information retrieval systems because it had no such “inverted-

file”-like indexing mechanisms as those systems had.

As for the search candidate algorithms:

• The knowledge base helped the tool find many relevant results with only a few

search candidates.

• The dictionary of abbreviations was very useful for decomposing the single-word

query strings and retrieving many relevant results, but also hurt the performance by

suggesting many different ways of doing decomposition.

• Search candidates representing the whole query string found fewer, but more

relevant results than those representing only a part of the query string.

As for the rating algorithms:

• The rating algorithms gave reasonable ratings to search results.

• The rating algorithms were good at identifying the most relevant and the irrelevant

results.

• The rating algorithms were relatively weak at evaluating results with moderate to

low relevance.

90

7.1 REVIEW OF THE RESEARCH

This thesis has presented our experience of using intelligent search techniques in a large

software system. Our methods are relatively simple to implement, and are shown to be

helpful in finding relevant entities for the queries in software maintenance in our

preliminary experiments.

We first selected a model for the intelligent search tool that was suitable for software

systems and was relatively easy to implement. The model was designed in such a way that

it took the advantage of the intelligent search methods, as well as of the existing DBMS

query mechanisms.

Then, we selected a group of text operations that were suitable for software

maintenance. After that, we applied these techniques in the search candidate generation

algorithms to expand the original query. The algorithms generated many search candidates,

and each of the candidates retrieved many results through the query mechanisms.

Next, we designed several rating algorithms to automatically evaluate and rank the

query results before they were presented.

We also performed a series of experiments to analyze the efficiency and the

effectiveness of the tool. We showed that this was a useful tool for software maintenance.

Finally, according to the experiment results, we slightly adjusted the search strategies to

improve the performance of intelligent search.

7.2 CONCLUSIONS

Through this study, we learned that the wide spread usage of abbreviations was the

major factor that differentiated source code systems from other documents in terms of

information retrieval. This difference leads to the observation that many information

retrieval techniques that worked well in normal systems were not appropriate for software

systems.

CHAPTER 7. CONCLUSION AND FUTURE WORK

91

When expanding the queries, the most important techniques we used were abbreviation

concatenation and abbreviation expansion. Among these methods, taking the acronyms,

removing the vowels, and truncating the query were all very useful for finding relevant

results.

In addition, the use of domain knowledge also played an important role in retrieving

and evaluating the results. Usually, the domain knowledge that could be used by a tool was

in a form of knowledge base (the dictionary of abbreviations we used could also be treated

as one type of knowledge base). However, these knowledge bases had to be constructed

before being applied in the intelligent search, and doing so required considerable manual

effort. However, as was pointed out in [22], “a little knowledge goes a long way”. In other

words, a relatively simple knowledge base can be of considerable use.

In the rating algorithms, the usage of evaluation strings made the judgment of the

similarity between strings that involved abbreviations much easier. The ratings of the

results were close to those given by human evaluators, and the order of the results ranked

according to the ratings computed by the algorithms was very similar to that provided by

the users.

7.3 LIMITATIONS AND FUTURE WORK

The major limitation of the intelligent search tool was that the response time was

relatively long. However, within the current model it was very hard to ultimately solve this

problem. One way for the tool to reach the speed that normal information retrieval systems

have, is to build an index that lists all the fragments of the identifiers found in the system.

Future research should study how such an index can be constructed automatically. For

example, we could use the text operations described in this thesis to decompose all

identifiers in a system during the pre-processing stage. Although these text operations will

suggest multiple decomposition methods for every identifier, they are much cheaper to

adopt than those involving human beings.

In the candidate generation algorithms, there are other text operations that have not

been used; therefore their usefulness is not entirely clear. For example, further studies

should show to what extent stemming, soundex, and antonyms add value to the intelligent

92

search tool in software systems. Moreover, when investigating the soundex techniques,

there should be some research on the specific soundex algorithm for software systems.

Another weakness of our methods was that they only minimally used domain

knowledge. The only domain knowledge we used were from some pre-built knowledge

bases, without which the candidate generation algorithms and the rating algorithms would

be less effective. Future research should study how to obtain the domain knowledge

automatically in the absence of the knowledge bases. For example, getting the term-term

relationship from the context, the comments, and the reference information in the source

code is one possible approach.

Further studies should also investigate the general effectiveness of intelligent search for

software maintenance. The effectiveness could be measured in many different aspects, for

example, the general usefulness of the intelligent search techniques in solving the software

engineers’ problems, the time saved by the software engineers when they use a tool with

intelligent search, or the usability of such tools. The assessment of the effectiveness

involves more experiments with the software developers as they are actually maintaining a

large software system.

Finally, the intelligent search techniques should be generalized in such a way that not

only does it work well with TkSee within a specific software domain, it can also be part of

other tools and be efficient in other software systems. For instance, the intelligent search

tool should easily incorporate other knowledge bases, or be incorporated into any search

tool. Future study should also examine how these techniques can benefit searches in places

other than software systems, e.g. normal document systems or information resources on the

Internet.

93

 1. A list of English stopwords,

http://oradoc.photo.net/ora81/DOC/inter.815/a67843/astopsup.htm

2. Albrechtsen, H., “Software information systems: information retrieval techniques”. In

Hall, P., Software Reuse and Reverse Engineering, Chapman & Hall, London, New

York, 1992.

3. Anquetil, N. and Lethbridge, T., "Extracting concepts from file names; a new file

clustering criterion", in International Conference on Software Engineering ICSE'98,

pages 84-93. IEEE, IEEE Comp. Soc. Press, Apr. 1998.

4. Baeza-Yates, R. "Introduction to Data Structures and Algorithms related to Information

Retrieval". In W. Frakes and R. Baeza-Yates, editors, Information Retrieval: Data

Structure and Algorithms, Prentice hall, Englewood, NJ, 1992.

5. Baeza-Yates, R. Modern information retrieval, Addison-Wesley, New York, 1999.

6. Boldyreff, C. (1989), “Reuse, Software concepts, Descriptive methods and the

Practitioner project”, in ACM SIGSOFT Software Engineering Notes 14 (2), pp. 25-31.

7. Bolstad, J. (1975), “A proposed classification scheme for computer program libraries”, in

SIGNUM Newsletter 10 (2-3), pp. 32-39.

8. Brin, S. and Page, L. (1998), "The anatomy of a large-scale hypertextual web search

engine", In Proceedings of the 7th International World Wide Web Conference, pages

107--117, Brisbane, Australia, April 1998. Elsevier Science. Online source:

http://www7.scu.edu.au/programme/fullpapers/1921/com1921.htm.

9. Computing Pearson's correlation coefficient.

http://davidmlane.com/hyperstat/A51911.html.

REFERENCES

94

10. Frakes, W.B.; Nehmeh, B.A. (1987), “Software reuse through information retrieval”, in

SIGIR FORUM 21 (1-2), pp. 30-36.

11. Korfhage, Robert R. "Research in Relevance Feedback and Query Modification". In

Information Storage and Retrieval. New York: John Wiley & Sons, Inc.

12. Lethbridge, T. and Anquetil, N., (1997), "Architecture of a Source Code Exploration

Tool: A Software Engineering Case Study", University of Ottawa, CS Technical report

TR-97-07. http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.html

13. Lethbridge, T., "Integrated Personal Work Management in the TkSee Software

Exploration Tool", Second International Symposium on Constructing Software

Engineering Tools (CoSET2000), ICSE 2000, pp. 31-38.

14. Lethbridge, T. and Singer Janice, "Studies of the Work Practices of Software

Engineers", In Advances in Software Engineering: Comprehension, Evaluation, and

Evolution, H. Erdogmus and O. Tanir (Eds.), Springer-Verlag, pp. 53-76.

15. List of software visualization tools, http://www.iro.umontreal.ca/labs/gelo/sv-

survey/list-of-tools.html.

16. Maletic, J. I. and Marcus, A., "Supporting Program Comprehension Using Semantic

and Structural Information", in Proceedings of 23rd ICSE, Toronto, 2001, pp. 103-112.

17. Miller, G. (1990), "WordNet: An On-line Lexical Database", in International Journal

of Lexicography, vol. 3, No. 4, 1990.

18. Morris, J. and Hirst, G. (1991), "Lexical cohesion computed by thesaural relations as

an indicator of the structure of text", in Computational Linguistics, 17:21-48.

19. Microsoft Visual C++, http://msdn.microsoft.com/visualc.

20. Roget's thesaurus, http://www.soi.city.ac.uk/text/roget/thesaurus.html.

95

21. Salton, G. and Buckley, C., "Improving Retrieval Performance by Relevance

Feedback", in Journal of the American Society for Information Science, 41(4):288-197,

John Wiley & Sons, 1990.

22. Sayyad-Shirabad, J., Lethbridge, T. and Lyon, S. (1997), "A Little Knowledge Can Go

a Long Way Towards Program Understanding", IWPC, Dearborn, MI., pp. 111-117.

23. SHriMP (University of Victoria),

http://www.csr.uvic.ca/~mstorey/research/shrimp/shrimp.html.

24. The Soundex Indexing System, http://www.nara.gov/genealogy/coding.html.

25. Source Navigator, http://sources.redhat.com/sourcenav/index.html.

26. Types of Reliability. http://trochim.human.cornell.edu/kb/reltypes.htm.

27. Wood, M.; Sommerville, I. (1988), “An Information Retrieval System for Software

Components”, In SIGIR FORUM 22 (3-4), pp. 11-25.

28. WordNet, http://www.cogsci.princeton.edu/~wn/.

29. Su, L. T. (1994), “The Relevance of Recall and Precision in User Evaluation”, in

Journal of the American Society For Information Science (JASIS), 45(3), pp.207-217,

1994.

30. IBM Java Technology, http://www-106.ibm.com/developerworks/java/.

31. jCentral: The Ultimate Resource for Java,

Developershttp://ftp.mayn.de/pub/unix/devel/MIRROR.docs/jcentral.pdf.

96

APPENDIX A: SAMPLE QUESTIONAIRE OF THE HUMAN EXPERIMENT

1. Query string: “CallForwardWhileBusy”

How familiar are you with the query string? _____

1 = no idea at all about it

2 = know a little

3 = know it moderately

4 = know it well

5 = extremely familiar with it

Results:

Results: How useful is
the result?

How interesting is
the result?

How familiar are
you with the
result?

Result 1
Result 2
Result 3
…

Please list any other relevant strings that you know, not found by the query:

APPENDICES

97

APPENDIX B: INSTRUCTIONS FOR THE HUMAN EXPERIMENT

Evaluating Intelligent Search Results – Instructions

Purpose:

To evaluate the algorithms of, and identify problems in the Intelligent Search function

which will be added to the software system entitled “TkSee”.

Intelligent Search is a technique used when exact search does not find the expected

results. Intelligent Search expands the scope of the search by loosening search conditions;

for example, allowing parts of the query string to be missing in the target, allowing

different formats of the query string in the target, searching for synonyms, and so on.

The Intelligent Search function in “TkSee” aims at helping software developers work

more efficiently with a legacy system. For novices of the legacy system, Intelligent Search

may help them figure out what names are used to represent a certain concept and where

those names are used. For developers who have lots of knowledge of the system, this tool

will help them find out interesting objects which are related to the expected target.

The purpose of this experiment, therefore, is to examine how well this tool is designed

and how much the future users will be benefit from it. The result of this experiment will be

used to fine-tune the tool and to gather general scientific information that will be of use to

designers of similar tools.

Tasks:

You will be asked to evaluate the results of 15 Intelligent Search queries. For each

query, you will be given an input string, which is the string the Intelligent Search function

was asked to search for. And you will be given about 10 to 20 result items to evaluate.

These result items were selected randomly from the results of each query, and were not

sorted in any sense. The results are not those you will see in the final tool, since in the final

tool you will only see the best results.

In the sample below, we will explain each question you will be asked to answer.

98

Imagine you were searching for 'CallForwardWhileBusy'. You are, first of all, asked

about your knowledge of this string:

• How familiar you with the query string? (CallForwardWhileBusy in this

example – A query string is familiar to you if you have heard of it, or have worked on it, or

you are confident you can guess its meaning)

You will be asked to choose from one of the following options.

1 = no idea at all about it

2 = know a little

3 = know it moderately

4 = know it well

5 = extremely familiar with it

You will then be given some of the results generated by the search engine. You will be

asked to answer the some questions about each result, on a scale of 1 to 5. The questions

will appear in a table that looks like the following:

Results: How useful is
the result?

How interesting is
the result?

How familiar are
you with the
result?

Result1

Result2

You fill in blank cells in the above table, as follows:

• How useful is the result? (A result is useful if you believe it is what you would be

looking for)

1 = not useful at all

2 = a little useful

3 = moderately useful

99

4 = very useful

5 = exactly what I want

• How interesting is the result? (A result is interesting if it reveals something new to

you even it is not useful right now, or if you think there is a meaningful relationship

between the query and the result, but you would not have easily known about or found this

result yourself)

1 = uninteresting

2 = a little interesting

3 = moderately interesting

4 = very interesting

5 = extremely interesting

• How familiar are you with the result? (A result is familiar to you if you have heard

of it, or have worked on it, or you are confident you can guess its meaning)

1 = no idea at all about it

2 = know a little

3 = know it moderately

4 = know it well

5 = extremely familiar with it

• There are other relevant strings that I know, but are not found by the query (please

list):(In this example, suppose you know that “cfb” stands for “call forward busy” in this

system, and you believe it is relevant to the query string, then you may write it down as)

cfb, or

cfb

After you finish all the queries, you will then be asked to answer some general

questions.

100

