

Applying Cognitive Patterns to Support

Software Tool Development

By

Hanna Farah

Thesis

Presented to the Faculty of Graduate and Postdoctoral Studies in

partial fulfillment of the requirements for the degree
Master of Applied Science

Ottawa-Carleton Institute for Electrical and Computer
Engineering

© Hanna Farah, 2006

 i

Acknowledgements

This research is supported by IBM, NSERC, and the Consortium for Software

Engineering Research.

I would like to express my gratefulness to the following:

• Dr. Timothy C. Lethbridge, my supervisor

• Marcellus Mindel, Director of the IBM Ottawa Center for Advanced Studies

(CAS)

• CAS Ottawa members

• IBM staff and coop students

• Family and friends

for their support, advice, feedback, and encouragement throughout my research.

Thank you.

 ii

Abbreviations
API: Application Program Interface

BTA: Borland Together Architect

CAS: Center for Advanced Studies

CORBA: Common Object Request Broker Architecture

CVS: Concurrent Versioning System

EMF: Eclipse Modeling Framework

GEF: Graphical Editing Framework

GMF: Graphical Modeling Framework (incorporates EMF and GEF)

TME: Temporal Model Explorer

TMEP: Temporal Model Explorer Prototype

RSA: Rational Software Architect

RSD: Rational Systems Developer

RSM: Rational Software Modeler

RSx: either RSA, RSD or RSM

 iii

Abstract
 This research was motivated by the development of a set of cognitive patterns [3],

and the hypothesis that those patterns could lead to innovative and useful features in software

development environments. Cognitive patterns are descriptions of ways people think and

act when exploring or explaining software. In this research we focused on the Temporal

Details cognitive patterns, which describe the dynamics of the changes in someone’s

mental model.

 The main objective of this research, therefore, is to determine to what extent

software engineering tool features could be derived from the cognitive patterns,

specifically belonging to the Temporal Details hierarchy.

 As the first step in our research, we analysed current tool support for cognitive

patterns. The second step was to create and evaluate a list of potential new features based

on the cognitive patterns. Thirdly, we developed a prototype for our most promising

feature entitled Temporal Model Explorer (TME). This prototype helps people

understand and manipulate the history of a software model. Users can use a slider to

browse the history of the construction of a UML diagram from its point of creation to its

current state. Navigation can be performed at different levels of granularity. Design

rationale can be included at any point in the history. The final step was to evaluate the

TME prototype with twelve participants from different backgrounds. The participants

found the tool useful, and agreed that they would use it if it was available in their work

environment.

 iv

Table of contents
Acknowledgements... i

Abbreviations ..ii

Abstract ..iii

Table of contents .. iv

List of tables ..vii

List of figures..viii

Chapter 1: Introduction.. 1

1.1 Main contribution.. 1

1.2 Background ... 2

1.3 About cognitive patterns.. 3

1.4 Problem and main hypothesis .. 5

1.5 Motivation... 6

1.6 Overview of the Temporal Model Explorer feature in the context of Cognitive

Patterns ... 6

1.7 Key results .. 7

1.8 Outline of the remainder of the thesis .. 7

Chapter 2: Review of current software development tools.. 8

2.1 Software development tools history ... 8

2.2 Current solutions and limitations ... 9

2.2.1 Physical division... 10

2.2.2 Temporal division... 12

2.2.3 Annotations, temporal annotations and design rationale documenting 16

2.2.4 Fine-grained change tracking .. 18

2.2.5 Persistent undo stacks ... 18

2.3 Support for other Temporal Details patterns .. 19

2.3.1 Rational Software Architect (RSA) 6.0 ... 19

2.3.2 Borland Together Architect (BTA) 2006 for Eclipse 23

2.4 Concluding remarks... 26

Chapter 3: On generating new features ... 27

 v

3.1 Initial list of features.. 27

3.1.1. Details equalizer .. 28

3.1.2. Elements filter ... 28

3.1.3. Diagram slider ... 29

3.1.4. Diagram version slider... 29

3.1.5. Package outline.. 29

3.1.6. Easy access to versions of a diagram.. 29

3.1.7. Search for feature... 30

3.1.8. Explanation diagrams... 30

3.1.9. Features list ... 30

3.1.10. Alternative diagrams display.. 31

3.1.11. Part swapping .. 31

3.1.12. Annotations ... 31

3.1.13. Version player ... 32

3.1.14. Diagram compare... 32

3.1.15. Save compare... 32

3.2 Evaluating and grouping the features ... 32

3.2.1 Participants feedback .. 33

3.2.2 Feature scores ... 36

3.3 Descriptions and analysis of the three main features .. 39

3.3.1 Diagram equalizer... 40

3.3.2 Diagram player ... 41

3.3.3 Diagram guide .. 42

3.3.4 Chosen feature.. 43

Chapter 4: Building the TME prototype.. 44

4.1 Prototype description... 44

4.2 Prototyping with informal tools ... 45

4.3 Initial prototype... 45

4.4 Functional prototype.. 49

4.4.1 For which tool, why? .. 49

4.4.2 Setting up the correct development environment ... 49

 vi

4.4.3 Iterations, functionality, and challenges .. 50

4.4.4 Design alternatives.. 55

4.4.5 Architecture and tool integration... 60

Chapter 5: Prototype evaluation .. 65

5.1 Summary of the procedure... 65

5.2 Details of the experiment setup and procedure for Steps 2 and 3.......................... 67

5.2.1 Participants... 67

5.2.2 Independent Variable.. 67

5.2.3 Variables controlled, and blocking.. 67

5.2.4 Setup of the equipment ... 70

5.2.5 Conduct of the experimental sessions.. 71

5.3 Results of performance improvements tests ... 72

5.3.1 Time and accuracy answering questions.. 72

5.3.2 Initial understanding time for participants ... 75

5.4 Participant preference .. 77

5.5 Additional participant feedback ... 80

5.5.1 Change management... 81

5.5.2 Visualization... 82

5.5.3 Operation.. 83

5.5.4 Navigation .. 83

Chapter 6: Conclusion .. 85

6.1 Problem statement ... 85

6.2 Proposed solutions and their effectiveness ... 85

6.3 Threats to validity.. 86

6.4 Future work... 87

References.. 89

Appendix 1 – Software systems descriptions and designs ... 92

A1.1 Elections Management System ... 92

A1.2 Investments System for OOBank .. 95

A1.3 Airline system... 97

Appendix 2 – Recruitment text... 100

 vii

Appendix 3 – Informed consent, step 1 .. 102

Apendix 4 – Informed consent step 3,4... 104

Appendix 5 – Preference questionnaire.. 106

Appendix 6 – Raw and normalized data from user study 108

A6.1 Preference questions ... 108

A6.2 Timings .. 109

Appendix 7 – Experiment data forms .. 111

A7.1 Participant steps for Treatment pattern 1 t23 and 1 t32.................................... 111

A7.2 Participant steps for Treatment pattern 23 t1 and 32 t1.................................... 113

List of tables
Table 1 - Prototype features' weights... 37

Table 2 - Prototype features' categorization ... 38

Table 3 - Prototype features' grouping to create three new main features 39

Table 4 - Main prototype features evaluation... 39

Table 5 - Prototype iterations .. 55

Table 6 - Allocation of participants to models ... 69

Table 7 - Blocking of participants ... 70

Table 8 - All participants, answering speed ... 72

Table 9 - All participants, answering accuracy .. 73

Table 10 - Non-expert particpants’ answering speed.. 73

Table 11 - Non-expert participants’ answering correctness .. 73

Table 12 - Expert participants’ answering speed.. 74

Table 13 - Expert participants’ answering accuracy... 74

Table 14 - Hypotheses evaluation by participant groups .. 75

Table 15 – All participants’ understanding times... 75

Table 16 - Above-average participants’ understanding times (all values in seconds)...... 76

Table 17 - Below average participants’ understanding times ... 76

Table 18 – Participants’ over or under estimation of self-ability 77

Table 19 - Participants’ preference data... 79

 viii

Table 20 - Usability study, positive participant experiences (columns represent

participants)... 80

Table 21 - Usability study, participant suggested improvements (columns indicate

participants)... 81

Table 22 - Answers to preference questions... 108

Table 23 - Performance results, timing 1 ... 109

Table 24 - Performance results, timing 2 ... 110

List of figures
Figure 1 - EASEL change sets [11] ... 11

Figure 2 - Eclipse history revisions view ... 12

Figure 3 - Eclipse CVS annotations view .. 13

Figure 4 - RSA model compare tree view.. 14

Figure 5 - RSA model compare visualization 1.. 14

Figure 6 - RSA model compare visualization 2.. 15

Figure 7 - RSA model compare visualization 3.. 15

Figure 8 – RSA UML note attached to a class ... 17

Figure 9 - StarTeam change request form, synopsis tab ... 17

Figure 10 - StarTeam change request form, solution tab .. 18

Figure 11 - RSA diagram elements popup menu.. 20

Figure 12 - RSA palette for class diagrams.. 20

Figure 13 - RSA popup menu for class diagrams... 20

Figure 14 - RSA model explorer view ... 21

Figure 15 - RSA find and replace view.. 21

Figure 16 - Eclipse popup menu, team options .. 22

Figure 17 - Eclipse CVS options ... 23

Figure 18 - Eclipse CVS Resource History view ... 23

Figure 19 - BTA palette for class diagrams.. 24

Figure 20 - BTA popup menu.. 24

Figure 21 – BTA Model navigator view .. 24

 ix

Figure 22 - StarTeam Topic view .. 25

Figure 23 - StarTeam topic properties view... 25

Figure 24 - StarTeam Audit view .. 26

Figure 25 - Details equalizer sketch... 28

Figure 26 - Diagram equalizer sketch .. 40

Figure 27 - Diagram player sketch... 41

Figure 28 - Diagram guide sketch.. 42

Figure 29 - Initial prototype, model screenshot with annotation..................................... 47

Figure 30 - Initial prototype, model screenshot with highlighting 48

Figure 31 - Initial prototype, model screenshot with annotations 48

Figure 32 – Diagram Player view (before using the term TME)..................................... 53

Figure 33 - Final prototype screenshot... 55

Figure 34 – TME prototype design, control package.. 61

Figure 35 – TME prototype design, integration package.. 62

Figure 36 – TME prototype design, UI functionality ... 63

Figure 37 – TME prototype design, information usage .. 64

Figure 38 - Elections system, design 1... 93

Figure 39 - Elections system, design 2... 94

Figure 40 - Investment system, design 1.. 96

Figure 41 - Investment system, design 2.. 97

Figure 42 - Airline system, design... 98

Chapter 1 – Introduction

 1

Chapter 1: Introduction
 The purpose of this research is to evaluate the benefits of designing application

features based on Murray’s cognitive patterns [3]. Therefore, our plan is to develop a

functional software prototype and evaluate its benefits to software developers. The idea

behind the prototype is to add a new feature to modeling tools for better support of

cognition, thus enhancing the user’s experience and performance. The research has been

performed in collaboration with the IBM Centers for advanced studies, benefiting both

the academic and industrial communities.

1.1 Main contribution

In this research, we have developed and evaluated a software prototype entitled

‘Temporal Model Explorer’ (TME) to help people explore, understand and manipulate

the history of a software model.

The motivation for the research was the development of a set of cognitive patterns

– descriptions of the ways people think and act when exploring or explaining software –

developed by other researchers in the Knowledge-Based Reverse Engineering group at

the University of Ottawa.

The main objective of our research is to determine to what extent software

engineering tool features could be derived from the cognitive patterns. We specifically

focused on patterns in the temporal details hierarchy (explained in Section 1.3).

As the first stage of our work, we studied the features in two major modeling

tools: Rational Software Architect (RSA) and Borland Together Architect (BTA). This

study analysed the extent to which the tools’ existing features relate to the cognitive

patterns. Following this analysis, we developed, discussed and refined a list of potential

new modeling tool features based on the cognitive patterns. Finally, we developed and

evaluated a prototype of the feature that our study determined was the most promising.

The prototype we developed records fine-grained changes made to a UML model

and allows a software engineer to review of the history of UML diagrams from their

point of creation to their current state. The tool allows the author or reviewers of the

diagram to edit and display temporal annotations associated with the state of a diagram at

Chapter 1 – Introduction

 2

a particular point in time (these are independent of UML notes and are not part of UML).

The annotations could be used, for example, to provide design rationale. They would only

appear when a software engineer reviews the diagram as it existed at the specific time;

they then disappear.

We developed the prototype in the context of IBM’s Rational suite of UML

modeling products [16]. The final prototype is a plug-in for Rational Software Modeler,

version 7; however, it is designed such that it should be able to work with any Eclipse-

based tool that uses the Eclipse Graphical Modeling Framework [13].

We evaluated the prototype to capture the participants’ preferences, experience

and performance while exploring UML models. We conclude that the cognitive patterns

are indeed a good basis for the development of software engineering tool features.

1.2 Background

 The cognitive patterns were developed by Murray as a key element of his PhD

research [1], under the direction of Lethbridge. The development of the patterns was

based on extensive literature review and user studies in industrial settings [4]. The

collection of patterns is divided into various categories including one called “Temporal

Details” [3], which was our main focus in this research. Temporal Details is both a high

level pattern, as well as a pattern language containing several sub-patterns.

 It is well understood that while understanding a software system, a software

engineer’s mental model changes over time. The Temporal Details patterns describe the

dynamics of the changes in someone’s mental model [3]. The pattern can be used to

describe the changes in how the mental model is expressed, e.g. using diagrams. One of

the most important of the Temporal Details Patterns is called Snapshot. Murray put

particular emphasis on developing this pattern, gathering a large amount of data and

developing a comprehensive snapshot theory.

 In Murray’s research, the cognitive patterns and snapshot theory were developed

with the hypothesis that they could help developers create better software engineering

tools. The idea is to base tool feature development on the results of scientific studies.

Resulting tools should better support aspects of human cognition, which is an important

Chapter 1 – Introduction

 3

factor in their evaluation [6]. In our research, we provide a practical implementation to

test Murray’s hypothesis.

1.3 About cognitive patterns

 “A cognitive pattern is a structured textual description to a recurring cognitive

problem in a specific context” [3].

 A cognitive pattern differs from the well-known software design patterns in the

following manner: A design pattern captures a technique to solve a design problem,

whereas a cognitive pattern captures a technique that is partly or wholly mental and that

is employed potentially subconsciously by a person trying to perform any complex task.

One example of a cognitive pattern is the ‘Thinking Big’ pattern. It describes how when

the user is exploring one part of a system, he will tend to need to see the big picture in

order to fully understand how the part he is studying relates to the rest of the system and

how it affects the system.

 Cognitive patterns are categorized in a hierarchy. Higher-level patterns may

contain several related sub-patterns. Two examples of higher-level patterns [2] are

Baseline Landmark, which describes how a person navigates his way to the

understanding of a problem with constant reference to familiar parts of the system, and

Temporal Details, which is our main focus in this research.

 The Temporal Details pattern and its sub-patterns deal with the fact that humans

cannot understand something complex instantly. Their understanding must evolve with

time. In particular, aspects of initial understanding might need to be augmented or

replaced. As a high level pattern, the temporal details pattern is broken down into the

following sub-patterns: Snapshot, Long View, Multiple Approaches, Quick Start,

Meaning, and Manipulate History1. The following briefly explains what each pattern is

about:

1 Readers studying background literature will notice that the set of patterns evolved
during its development. For example Thinking Big was removed as a Temporal Detail
sub-pattern, and two other patterns were merged to form the Meaning pattern.

Chapter 1 – Introduction

 4

 Snapshot: A snapshot is an instance of a representation2 at a point in time during

its evolution such that the most recent incremental changes to the representation is

conceptually complete enough for people to discuss and understand it. The snapshot does

not have to be an accurate or complete representation and it may contain inconsistencies.

Snapshots can be seen during a time when someone is creating a diagram or model in a

software engineering tool, or during an explanation someone presents on a whiteboard.

The process of identifying snapshots is somewhat subjective, but in [1], Murray provides

concrete guidelines for doing so, and also identifies a wide variety of types of snapshots.

To illustrate the key concept of being conceptually complete: if the user added a class

box in a UML diagram and then named the class, the snapshot would be considered to

occur only after the class is named.

 Long View: A Long View is a series of related snapshots; in other words, a set of

representation-instances through a period of time as the representation is being developed

to convey some concept. Showing the series of snapshots in a Long View is a way to tell

a story visually. A user might use a Long View to explain a new aspect of a system.

Multiple Approaches: Sometimes a user has difficulty understanding a concept

following a particular explanatory approach. A solution is to consider alternative

approaches to gain more understanding. Moreover, there might be different valid

alternatives to solve a particular problem.

Quick Start: People need simple starting places to begin understanding or

exploring a system. They will often refer to something familiar and evolve their

understanding from that point. Quick Starts can form the first snapshots in Long Views.

For example, rather than explaining all aspects of a system’s development, an explanation

could start with a simple version that is well known.

Meaning: It is important for reviewers to understand the reasons behind design

decisions or multiple approaches. The thoughts in the designer’s mind are lost with time.

It would be beneficial for the reviewer to be able to know what the designer was thinking

and the reason behind his design. It is also important to capture the logic while moving

on from one state of the system to another. It can also hold key information that explains

2 The representations we will focus on are UML models, but the cognitive patterns have
broader scope.

Chapter 1 – Introduction

 5

the changes made to a system. Meaning is essential in understanding how a system is

built and how it evolved. The notion of temporal annotations, discussed earlier, is the

most concrete manifestation used to explicitly record meaning, although the Meaning

pattern covers the idea of implicit meaning too.

Manipulate History: This pattern builds on Snapshot, Long View and Multiple

Approaches (those allow you to designate points, sequences and branches in the history

of a model’s evolution). Manipulate History allows you to adjust the history itself so you

can revisit your understanding process.

1.4 Problem and main hypothesis

Software developers encounter difficulties when trying to understand or explain

large software projects using current development tools. People have a difficult time

understanding a complex artifact, such as a model or design, which has been developed

over time.

The above problem can be broken down into several sub-problems:

a) Humans are fundamentally unable to absorb a complex model when it is

presented as a single chunk. Humans need assistance building a mental model of

the model. The understanding process helps people to organize their mental

model into chunks.

b) People do not know what the most important aspects of a model are; in particular

they have a hard time finding the parts of a complex model that they need to

solve their own problem.

c) People do not know the best place to start understanding a model. They do not

automatically know a reasonable sequence to approach the understanding so that

they can build on prior knowledge in a sensible way. They will therefore tend to

start in an arbitrary place, and waste time understanding parts of a model which

are not relevant to their needs, or which are not ‘central’ to the model.

d) People are overwhelmed by the numbers of details present in a model and so

become frustrated.

e) People looking at a complete model tend to miss important details due to

information overload.

Chapter 1 – Introduction

 6

f) People are unaware of the decisions and rationale that led the model to be the

way it is.

g) Unawareness of aspects of a model leads to incorrect decisions and repeated

work (such as re-analyzing the same issue someone has already analyzed).

h) People are unaware of design alternatives that were considered but did not find

their way into the final design – such lack of awareness can cause people to

choose a design alternative that should be rejected.

To summarize: Software developers are not provided with enough features in

their development environments that go side by side with cognition. This reduces the

amount of understanding that developers are able to extract from software models

therefore requiring more time to understand changes and design decisions.

We hypothesize that this problem could be solved to a limited extent by

incorporating features based on the temporal details cognitive patterns.

1.5 Motivation

 A prototype proposing a solution to the above problem could allow developers to

understand software systems in a smaller amount of time, which would result in increased

productivity. Such a feature may also improve understanding, resulting in better

decisions, fewer defects, and higher quality.

 The prototype could also lead to a commercial product delivered to customers.

 The idea of basing tool features on cognitive patterns could influence the industry

to base development of software features on scientific studies, and more specifically on

studies of cognitive patterns.

1.6 Overview of the Temporal Model Explorer feature in the

context of Cognitive Patterns

 As discussed in Section 1.1, we created a feature in Rational Software Modeler

that we call TME (Temporal Model Explorer). This feature records the complete history

of development of a UML model at the level of the individual user-interface commands

Chapter 1 – Introduction

 7

the user employs (e.g. adds a class, renames a variable, or creates a relationship). The

resulting record is a Long View.

 The user can mark points in development history as Snapshots. People later trying

to understand the model can use a scrollbar to slide each diagram “backwards and

forwards in time”, and can jump from snapshot to snapshot. The set of snapshots can be

edited at any time.

 Finally, a user can create, edit and view temporal annotations, thus rendering the

Meaning of changes explicit.

 Incorporation of feature extensions related to Quick Start and Multiple

Approaches is left to future work.

1.7 Key results

 Participants expressed a very positive experience using our prototype. All the

participants agreed that the TME prototype helped them understand class diagrams faster.

Participants enjoyed the concept of snapshots and the majority wrote that temporal

annotations are very useful when understanding models.

 The majority of participants preferred a specific variant of our feature we call

“final position.” In this variant, when viewing an earlier state of the system, the layout of

the diagram appears with all classes in the positions to which they are eventually moved.

 Participants agreed that the tool is user-friendly and that they would use it if it

was available in their work environment if they were asked to understand a class

diagram.

1.8 Outline of the remainder of the thesis

 Chapter 2 includes a review of software development tools, with an analysis of

their features and limitations, as well as how they support cognitive patterns. Chapter 3

outlines the procedure for choosing a new feature to prototype. Chapter 4 talks about the

steps for building the prototype, and its functionality as well as the challenges faced

during the process. Chapter 5 describes our evaluation strategy and presents the results of

our user study. Finally we conclude this thesis in Chapter 6 by summarizing the work we

did and the results that were achieved.

Chapter 2 – Review of current software development tools

 8

Chapter 2: Review of current software development

tools
This chapter first introduces how development tool environments have evolved

over time and outlines some of the remaining limitations in such environments. We will

discuss current solutions and limitations illustrating these with examples from current

software development environments including IBM Rational Software Architect 6.0 and

Borland Together Architect 2006. We will relate current features to specific temporal

details cognitive patterns.

2.1 Software development tools history

 Software development tools and environments have advanced a lot starting with

simple editors and compilers [23] to large-scale software visualization and development

applications. With the advancement of computer hardware, software been able to

progress in size and complexity to places never thought of before, with sizes of hundred

of millions lines of code. Software exploration, search, analysis and visualization tools

have become necessary, as have change management systems. New tools are often

released, and studies of which tools are better have been performed [5]. Many tool

evaluation frameworks have also been set up to help developers and designers create

better tools.

 Early environments were useful but they did not provide tools that were clearly

integrated together [23]. It was the developer’s job to connect the tools together: using

pipes for example. The first tool integration efforts resulted in allowing a compiler to

send the location of syntax errors to the editor which would handle the event [23]. Tools

could register for events in other tools such that they would be notified when the

registered events took place.

 The main challenge in software development tools is still their integration [23].

While tools have advanced so much, in practise, their use has not advanced as much. The

problem lies in the fact that the tools are still specific. They might force the user to write

his program in a specific language or use a particular operating system. Some of the

solutions to this challenge include the adoption of XML for saving and exchanging data

Chapter 2 – Review of current software development tools

 9

by a large number of commercial applications. Parsers have been developed to allow

applications to read and save XML data easily.

 Another important factor that is has often not been given enough attention in

software applications is the problem of usability. While most developers know the basic

graphical user interface guidelines, only a few of them are able to incorporate User-

Centered Design in the software development lifecycle [20]. Developers should learn to

appreciate a user-centered design approach and to evaluate the impact of choosing certain

dialogue types and input/output devices on the user.

 The above remarks were key motivators when building our functional prototype.

We focused on the integration and usability factors: the prototype had to be well

integrated and very easy to use. Our experiments in later stages confirmed that the

participants found the prototype to be very user-friendly and they all agreed that they

would use it if it was available to them.

2.2 Current solutions and limitations

We decided to explore the features of two modeling tools that are well known and

well established in the software industry. The chosen tools were Rational Software

Architect 6.0, which continues the series of the well known Rational Rose modeling

products, and Borland Together Architect 2006.

IBM Rational Software Architect, RSA, is a software design and development

tool that provides users with modeling capabilities and other features for creating well-

architected applications and services [14]. Two powerful features of RSA are the browse

and topic diagrams that allow users to explore a UML model based on a chosen central

element from the model and looking through relationships of that element to the rest of

the model. Filters can specify the depth and types of relationships to show. IBM Rational

ClearCase, which is integrated with RSA, provides sophisticated version control [18].

Rational Software Modeler (RSM) [15] supports the same modeling features of RSA but

lacks the enterprise features such as creating J2EE applications. Rational Systems

Developer (RSD) supports modeling driven development for C/C++, Java 2 standard

edition and CORBA based applications [16].

Chapter 2 – Review of current software development tools

 10

Borland released a new series of products in 2006 related to software modeling:

Together Architect, Together Designer, and Together Developer [7]. Each tool provides

specialized features related to the role of its intended user (software architect, designer,

developer). However, they all provide the same modeling capabilities so we have chosen

to evaluate Borland Together Architect 2006 (BTA) to learn more about the modeling

features that Borland provides. The StarTeam product from Borland provides a complete

range of change and configuration management solutions [8].

A variety of types of solutions have already been developed to address the

problem described in the introduction (Section 1.4) – i.e. problem of people having a

difficult time understanding a complex artifact, such as a model or design that has been

developed over time.

The solutions can be broken down into several categories: physical division,

temporal division, annotations, fine-grained change tracking, and persistent undo stacks.

We will explain in the following the concepts in each category of solutions and the extent

to which they solve the problem. We will also show screen shots and comment on how

current products present features in certain solution categories. Additionally, we will

relate the features to cognitive patterns.

2.2.1 Physical division

The most common known partial solution to the main problem we are addressing

can best be described by the terms ‘divide and conquer’, ‘drilling down’ or ‘physical

division’ of the artifact. A model is divided into multiple views or documents, typically

arranged hierarchically. The understander starts by understanding a top-level overview

that typically contains only a few details, and then ‘drills down’, expanding details as

required.

 Facilities for doing this kind of hierarchical exploration are found in a vast

number of environments:

• Outline processors in a word processor allow you to see a table of contents to get

an overview of a document, and then expand any section or subsection as needed

• Tools in modeling environments show a hierarchy of the artifacts available in a

model

Chapter 2 – Review of current software development tools

 11

• ‘Grouping’ facilities in a spreadsheet allow you to hide and show groups of lines

or columns. These can be nested.

• Facilities in a map viewer allow you to expand the types of details shown as you

zoom in on a location.

• RSA browse diagrams allow you to browse a model by specifying a central

object and the depth of the relationships from that object to the rest of the model.

A user can increment the depth to learn incrementally about the model.

• EASEL [21] allows you to construct an architecture using several change sets

(group of artifacts). Reviewers can apply or remove change sets to understand

different features or versions of the represented system. Figure 1 shows EASEL’s

user interface including the different layers (change sets) that the user can apply

or remove.

• Physical division solutions relate to the Quick Start pattern discussed in Section

1.3.

Figure 1 - EASEL change sets [11]

Extent to which the above solves the fundamental problem we are addressing

 This first class of solutions, facilities for divide and conquer or drilling down,

partially solve sub-problems a) to e) in Section 1.4, but they offer very limited assistance

for sub-problems f) and h). In particular, the understander is always faced with

understanding the model as it exists in its full final complexity.

Chapter 2 – Review of current software development tools

 12

2.2.2 Temporal division

The second major class of solutions is facilities that allow you to look at different

versions of a model as they have existed at different points in time. For example, you can

use a configuration management or change control tool (such as CVS, to be discussed in

Section 2.2.3, or ClearCase [18]) to look at an earlier stage in a model’s development.

Often the earlier stage is simpler and thus easier to understand. The understander can

proceed by initially looking at the simpler model and then looking at subsequent versions

one by one. This naturally solves sub-problem c) (in Section 1.4).

Temporal division solutions relate to the Snapshot and Longview patterns

discussed in Section 1.3.

RSA and BTA support these solutions through the CVS features provided by

Eclipse. The user has the option to use CVS repositories to maintain different versions of

a system. The user is able to commit changes with comments that help understand the

reason of the changes in the future. A table lists all the versions of a file including the

time, date, author and comment related to the changes. The list of versions in the “CVS

Resource History” can be considered as a Long View (series of Snapshots) as it shows

the user the evolution of the system through each version. Figure 2 shows different

versions of a file, each version is tagged with a date, author and comment.

Figure 2 - Eclipse history revisions view

The “CVS Annotate” feature allows the user to go through a file (text based)

sequentially from the start until the end while seeing which part belongs to which version

and the comments on that version. The number of lines and the author of the change are

highlighted; the text inside the file is highlighted as well as the version number (as shown

in Figure 3). The user can easily associate the highlighted areas together.

Chapter 2 – Review of current software development tools

 13

Figure 3 - Eclipse CVS annotations view

 Some tools, such as Rational Software Modeler / Rational Software Architect

have Compare-Merge facilities that allow you to see the difference between two versions

to better understand the changes, and as a result, to better understand the overall model.

RSA compare-merge functionality demonstrates the Snapshot pattern.

As discussed in Section 1.3, a snapshot is a view of a partial or entire system that

can be discussed or contains relevant information.

RSA can show snapshots while comparing two versions of a system. The

snapshots can be at different levels of granularity. The compare-merge feature

automatically generates snapshots. Compare-merge produces snapshots at very low levels

of granularity, and groups them in higher-level snapshots. The low-level snapshots are

not meaningful from a user’s perspective. For example, if we make an association

between two classes, the snapshots shown are: 1) adding a reference in the source edges

collection of the first class, 2) adding a reference in the target edge collection of the

second class, 3) adding a reference in the edge collection of the diagram, and more, as

shown in the tree figure. The higher-level snapshots groups all the snapshots related to

the creation of the association. However, the user cannot have a customized-level of

snapshots. The snapshots cannot be edited (added, merged or removed).

Snapshots could be part of a tree structure (shown in Figure 4) or visualized on

side by side graphs (shown in Figures 5, 6, 7).

Chapter 2 – Review of current software development tools

 14

Tree:

Figure 4 - RSA model compare tree view

At the higher level of granularity, only Class1 and Class2 would be highlighted

since the added relationships concerned them most. But if we extend the tree node related

to adding the implementation relationship between Class1 and Interface1, we can

visualize three different snapshots that highlight the process very well: Class1 is

highlighted (shown in Figure 5), Interface1 is highlighted (shown in Figure 6), and the

link is highlighted (shown in Figure 7).

Figure 5 - RSA model compare visualization 1

Chapter 2 – Review of current software development tools

 15

Figure 6 - RSA model compare visualization 2

Figure 7 - RSA model compare visualization 3

The previous series of snapshots create a long-view (as discussed in Section 1.3,

the Long View pattern is similar to telling a story) that can show the evolution of the

system over time. While a snapshot consists of only 1 diagram, the long-view consists of

successive diagrams that could be reviewed by clicking on consecutive items in the tree

structure and visualizing the differences at each stage.

Our prototype builds on the general principle of temporal division, but does so in

a novel and more effective way.

Chapter 2 – Review of current software development tools

 16

Extent to which the above solves the fundamental problem we are addressing

This second class of solutions, the ability to look at points in the history of a

solution’s development and compare such points, partially solves most sub-problems

presented in Section 1.4.

The understander is able to see simpler versions of the model, and is also able to

obtain some appreciation of the decision making process that went into the design, by

observing the changes that were made. However, such solutions are somewhat awkward

– the user has to explicitly load earlier versions and run compare-merge operations. Also

the granularity of the deltas (differences between two versions) tends to be large

(versions are normally saved only after a complete problem is solved) and unpredictable

(people may do a large amount of work before saving a newer version).

2.2.3 Annotations, temporal annotations and design rationale
documenting

The third class of solutions is facilities that allow you to add annotations.

Annotations (often called ‘comments’ or ‘notes’) relate to the Meaning pattern discussed

in Section 1.3. Such facilities are available in word processors, spreadsheets, CAD tools

and software modeling tools. The modeler adds annotations to explain details that would

not otherwise be obvious. Annotations can often help the understander make sense of

some complex aspect of the model. However, UML notes should be added to a diagram

in moderate numbers, since too many notes would complicate the diagram and hide its

main design. Notes should be attached to existing elements only, if an element is deleted

at a given stage in time, its note would not make much sense afterwards.

 Annotations are also available in versioning systems (solution class 2.2.2 above).

For example, when saving a version of an artifact in a tool like CVS, the saver will be

prompted to document the reason for the change. (The reason might be automatically

documented if the change is tied to a bug-tracking system). We call this type of

annotation ‘temporal annotations’ since they document why something is being done at a

particular point in time. Temporal annotations are particularly useful for helping people

to understand the rationale for a particular change. In fact, there are tools explicitly

designed to document the rationale for decisions.

Chapter 2 – Review of current software development tools

 17

 Hipikat [10] can save artifacts (change tasks, source file versions, messages

posted on developer forums, and other project documents) during a project’s

development history. It can then recommend which artifacts are useful to complete a

particular task. Depending on the type of artifact, it could contain design rationale or

general information to help a developer better understand how to solve the task.

RSA and BTA support the following solutions related to annotations, allowing

people to learn aspects of the rationale behind design decisions and alternatives.

UML diagrams support adding explanatory notes (shown in Figure 8) that give

the user more information about the system (also available in BTA).

Figure 8 – RSA UML note attached to a class

Borland also presents additional features with its StarTeam product (RSA could

support similar repository features using ClearCase [18]): we were required to set up the

Borland StartTeam Server 2005 Release 2 [8] to enable the project sharing functionality.

Sharing a project using StartTeam gives the user more intuitive features allowing

him to input more rationale when making changes as shown in Figure 9 below.

Figure 9 - StarTeam change request form, synopsis tab

Chapter 2 – Review of current software development tools

 18

 The change request form allows the user to input all the details related to a

change: status, priority, type, severity, platform, external references, component,

category, synopsis, responsibility, description, solution, attachments, and comments.

Figure 10 - StarTeam change request form, solution tab

 The solution tab shown in Figure 10 separates the types of solutions used to

provide the user a better understanding of the context of the solution: work around or fix.

Extent to which the above solves the fundamental problem we are addressing

 This class of solutions, annotations, and particularly temporal annotations, can

work in conjunction with the other two classes of solutions to provide understanders with

considerable guidance. However, the granularity of temporal annotations made in

conjunction with a configuration management or version management system is

dependent on the granularity with which versions are saved. An alternative, using a

rationale-tracking tool [19] to explicitly document all design decisions is so cumbersome

that such tools are rarely used in practice.

2.2.4 Fine-grained change tracking

A fourth approach is change tracking. In most word processors, and many other

software tools, it is possible to track changes applied to a document by multiple authors.

The understander therefore can glean information by looking at the types of information

contributed by different people.

Extent to which the above solves the fundamental problem we are addressing

This approach does not solve the overall problem, but contributes to the solution

to a limited degree.

2.2.5 Persistent undo stacks

Most software tools delete the stack of ‘undoable’ commands when the user quits

Chapter 2 – Review of current software development tools

 19

or saves a model. However, some tools have implemented persistent undo such that on

reloading of a model, recent changes can be undone, perhaps all the way back to the

beginning. This could be used by an understander trying to understand a model and forms

the basis of a key aspect of this invention.

Extent to which the above solves the fundamental problem we are addressing

Persistent undo stacks have some potential to help with the understanding process,

in that the understander could undo all changes and then replay them one by one. This

has several drawbacks, including: 1) if a user undoes many changes and then starts

editing, or saves the model, all subsequent undo/redo states would be lost; 2) the

granularity of the undo stack is too fine; 3) persistent undo does not incorporate temporal

annotations.

2.3 Support for other Temporal Details patterns

 Rational Software Architect and Borland Together Architect also contain features

related to temporal details patterns that were not discussed in the previous section. The

analysis of these features helped us get better ideas for product new features as discussed

in Section 3.

2.3.1 Rational Software Architect (RSA) 6.0

 In the following, we will show how RSA to a certain extent supports the cognitive

patterns, particularly Temporal Details. We will start by stating the pattern’s name

followed by explanations and screenshots from the tool:

Quick Start

 The Quick Start pattern points out that people need a quick way to start a new

task.

If we consider the task of building a class diagram: the user creates a new project,

a blank model appears on the screen and the user has many alternatives to start building

the system:

Chapter 2 – Review of current software development tools

 20

1. If the user holds the cursor still for a few seconds, a simple menu appears with

alternatives to start building the system including classes and interfaces (shown in

Figure 11 below).

Figure 11 - RSA diagram elements popup menu

2. The user can choose from the items located on the palette (shown in Figure 12) by

clicking on one item then clicking on the location in the diagram where he wants

to place it.

Figure 12 - RSA palette for class diagrams

3. Other alternatives include right-clicking on the blank diagram and selecting an

option to add elements from the pop-up menu shown in Figure 13 below.

Figure 13 - RSA popup menu for class diagrams

If the user imported a project that already contained existing models, he has the

option to drag and drop an element from the “Model Explorer” (shown in Figure 14)

onto a diagram.

Chapter 2 – Review of current software development tools

 21

Figure 14 - RSA model explorer view

If the user is trying to understand a complex system, he can search a model for

basic elements (Baseline Landmarks pattern) including a main method or a diagram to

refer to his startup point. Double-clicking on the search results (shown in Figure 15

below) would open the diagram.

Figure 15 - RSA find and replace view

Multiple approaches

The following features are supported by Eclipse, hence they are available both in

RSA and BTA.

CVS features allow a user multiple approaches for building the system: e.g. an

evaluation version and a complete version.

a. The CVS features offered in Eclipse allow the user to tag multiple file

versions and to create different branches for files or projects. They can be

accessed through the menu shown in Figure 16.

Chapter 2 – Review of current software development tools

 22

Figure 16 - Eclipse popup menu, team options

b. To exclude some features from the evaluation version of his software

product, a user creates another branch in CVS containing the files for the

evaluation version which will not be affected by further updates to the

files. The user will have the option to merge the branch with the other

versions of the system in the future. The user can also switch between the

development of multiple branches and versions as shown in Figure 17 or

compare them in the “CVS Resource History” (shown in Figure 18) that

also contains embedded rationale for the changes.

Chapter 2 – Review of current software development tools

 23

Figure 17 - Eclipse CVS options

Figure 18 - Eclipse CVS Resource History view

2.3.2 Borland Together Architect (BTA) 2006 for Eclipse

The following are the features in Borland Together Architect 2006 related to

cognitive patterns and particularly to the Temporal Details category. We will give each

pattern’s name followed by how it is demonstrated in BTA:

Quick Start

After creating a new modeling project, a blank diagram is displayed and the user has

the following quick start alternatives to start building a design:

1. Click on an item to be selected from the palette (shown in Figure 19) then click on

the diagram location for it to be placed:

Chapter 2 – Review of current software development tools

 24

Figure 19 - BTA palette for class diagrams

2. Right-click on the empty diagram and choose an item from the context menu

shown in Figure 20:

Figure 20 - BTA popup menu

3. If the user is working with an existing project, he could drag and drop existing

model elements from the model navigator (shown in Figure 21) onto the diagram

(given that they don’t already exist in the diagram)

Figure 21 – BTA Model navigator view

Snapshot

A snapshot is a view of a partial or entire system that can be discussed or contains

relevant information.

Chapter 2 – Review of current software development tools

 25

 The StartTeam environment allows a user to create and discuss a topic (as well as

a change request, a requirement, or a task). Other users could reply to the topic forming a

list of replies. Each topic or reply is a snapshot (related to the discussion, it’s not a

snapshot related to the artifact being discussed) since they contain a collection of

information that can be discussed in a fair amount of details. Figure 22 shows a topic and

multiple replies under it.

Figure 22 - StarTeam Topic view

 Figure 23 shows information related to the selected topic in the Figure 22. This

group of information is a snapshot.

Figure 23 - StarTeam topic properties view

Long View

Figure 22 displays a series of snapshots forming a sub-tree having the first topic

as the root. This sub-tree encapsulates the discussions on that topic from several users

following a Long View pattern: a person would move from one snapshot to the other in

order to fully understand the topic.

 Another view featuring a Long View pattern is the audits view which displays all

the changes being made to the shared project as well as additional information for each

change as shown below in Figure 24.

Chapter 2 – Review of current software development tools

 26

Figure 24 - StarTeam Audit view

2.4 Concluding remarks

 We learned that the previous tools support Temporal Details to a certain extent.

We note that the level of granularity supported by CVS is not fine grained. Submissions

to CVS cannot be changed: once a version has been submitted, it is persisted as a version.

A user cannot delete versions from CVS or edit the comment on a submission. CVS

branching is a powerful feature for managing multiple approaches.

 Snapshots are supported but their level of granularity cannot be customized and

they cannot be edited (added, merged, or removed).

 In the next chapter, we will describe new tool features that address the above

limitations.

Chapter 3 – On generating new features

 27

Chapter 3: On generating new features
 A major objective of the earlier research into cognitive patterns [1, 10, 12, 13]

was that they should lead to ideas for better software engineering tool features – in

particular, features that would better correspond to the way people think and work. This

chapter describes the process we used to develop and refine a list of new features for RSx

based on cognitive patterns.

 The first step in our approach was to use existing UML tools extensively, in

particular Rational Software Architect 6.0 and Borland Together Architect 2006, thinking

about the features they provide from a cognitive patterns perspective. In addition, we

attended one usability study for RSA in order to gain more information about how users

use it and try to generate a list of new ideas for improving their experience. The study

was performed by the user-centered design team at the IBM Ottawa Lab. We watched an

experienced RSA user participate in the study. The study took place in two separate

rooms in order not to bother the user. We monitored the study from the other room using

NetMeeting to see everything the user did on the screen and by telephone to listen to the

conversation.

 In the next section we will describe a list of potential prototype features that we

generated. In Section 3.2, we discuss how we evaluated those features in order to choose

the most appropriate idea to prototype. Section 3.3 presents the three main features we

generated and the chosen feature to prototype.

3.1 Initial list of features

We generated a list of potential new features while using Rational Software

Architect, Borland Together Architect and reviewing the papers about cognitive patterns

[1, 10, 13]. Our ideas where based on incremental learning, understanding how the

system works, and learning why the system was designed the way it has been.

Our focus was on features for working with class diagrams because they tend to

be complex, they are the most widely used UML diagram, and they capture important

aspects of the internal design of the system. The user needs to spend time to analyze class

diagrams and understand how the system works.

Chapter 3 – On generating new features

 28

 Please note that the ‘Thinking Big’ pattern (i.e. a user needs to see the bigger

picture in order to better understand how a part fits in the system) was removed from the

Temporal Details category at a later stage in this research. However, we have decided to

keep the feature related to this pattern in this list since it was evaluated at that time as

being part of the Temporal Details group.

 The following outlines each of the features that were generated.

3.1.1. Details equalizer

 Currently in RSA: filtering is applied to one object in the diagram at a time. RSA

“Browse” and “Topic” diagrams ignore the filtering specified in the original diagram.

This feature would filter attributes and operations from all the objects in any diagram

based on a defined level of detail (public, protected, private, package). This approach

would enhance incremental learning by showing the big picture then giving more details.

The user would use a series of sliders (visualized in Figure 25) to quickly set the level of

details on different criteria. (Relates to: Quick Start)

Figure 25 - Details equalizer sketch

3.1.2. Elements filter

 RSA supports other types of filtering including relationship-based filtering

(generalization, dependency, realization…) that is very well implemented as part of the

‘Browse’ or ‘Topic’ visualization diagrams. Using the Elements filter feature, a user

would be able to choose to see elements in the diagram according to specific criteria,

before looking at the full diagram. The user would be able to quickly understand some

concepts and have a base for further understanding. The criteria could include elements

that have notes attached to them, or the filter could be based on the most central elements

(e.g. most attributes, associations, inheritance). (Relates to: Quick Start)

Chapter 3 – On generating new features

 29

3.1.3. Diagram slider

In this feature, a user could view the entire history of a diagram’s creation by

using a slider control that would evolve the diagram from its initial state to its final state

(similar to telling a story). This was part of the Temporal Model Explorer (TME) feature

eventually chosen to implement. (Relates to: Quick Start, Long View)

3.1.4. Diagram version slider

This feature builds up on the previous one. Instead of having a very detailed

slider, the user could specify at which points to tag a version of the diagram. Future users

would review all the previous versions leading to the final diagram (an alternative would

be to have multiple tabs allowing the user to randomly jump between versions). Aspects

of this, i.e. the use of snapshots, are also found in the TME feature. (Relates to: Quick

Start, Long View, Snapshot)

3.1.5. Package outline

The icon of a Java package should have the ability to show the classes and

interfaces or other resources that belongs to it. This would show the big picture of the

system to the user and might reduce search time by allowing increased visibility in the

details of the system. However, if a package contains too many elements, an icon view

would show limited details because of the space limitations. (Relates to: Thinking Big)

3.1.6. Easy access to versions of a diagram

Currently in RSA, if a user wants to see different versions of a diagram, he has to

open the “CVS Resource History” view and double click on each version which will open

the model followed by the diagram. By the time three different versions are displayed, the

editor tabs are overwhelmed and it becomes confusing to switch between versions.

It would be much simpler if the diagram tab had ‘sub-tabs’ with version numbers,

that would save adding all the unnecessary tabs to the main editor tabs. A drop-down

menu could do the job as well. Right-clicking on the diagram and choosing which version

to see is yet a third alternative to solve this problem. (Relates to: Multiple Approaches)

Chapter 3 – On generating new features

 30

3.1.7. Search for feature

A user should have the option to view all areas related to a feature. This requires

defining what parts of the software relate to the feature in the first place. This could save

time when searching for textual matches or references that relate to the feature. An

example of using this feature would be to search for all the places in the code or diagrams

that relate to ‘printing’. (Relates to: Quick Start)

3.1.8. Explanation diagrams

This feature would provide a new type of diagram that would contain

explanations and links to diagrams or code. This feature could guide the user where to

start in understanding a problem. It lets the user go through the diagram step by step (e.g.

tabs) or view it all (e.g. tree) to understand a concept while looking at other diagrams at

the same time. The creator of a model could mark starting points for understanding each

diagram.

One can argue that the user can achieve this with any diagram including notes but

the advantage here would be the tree or tab view that allows the user to see all the steps in

a compact way and go through them. (Relates to: Quick Start, Meaning)

3.1.9. Features list

This feature would list the features in the system with links to the diagrams where

they are implemented.

A new user has no idea of a system he never saw before, he needs a starting point.

Instead of looking at various diagrams and trying to figure out what they are for, a view

could show a features list that contains multiple main features of the system with links to

related diagrams that could serve as a starting point for understanding the feature or the

system.

Each feature could include a sequence of diagrams to visit with some meaning of

each diagram to the feature. (Relates to: Quick Start, Meaning).

Chapter 3 – On generating new features

 31

3.1.10. Alternative diagrams display

Currently in RSA, if a user wanted to develop an alternative approach for a design

shown in a particular diagram, he needs to create a new diagram, build the other approach

into the new diagram and insert a link in the original diagram with a note informing the

user of an alternative design.

We’re proposing to have an icon in the original diagram which would represent

the availability of an alternative design. When the user clicks on that icon, the window

containing the original diagram would be divided in half and the two approaches would

be displayed side-by-side in the split window. This will allow the user to examine the

differences between the two approaches more effectively. (Relates to: Multiple

Approaches)

3.1.11. Part swapping

Part swapping involves switching between design alternatives inside the same

diagram. A user could select parts of a diagram and specify alternative files containing

alternative design for the selected parts. An icon would specify that an alternative design

exists and with a button click on that icon, the user would swap design alternatives in the

diagram. (Relates to: Multiple Approaches)

3.1.12. Annotations

Annotations would highlight the reasons behind changes. Annotations could be

included in the “Compare with local history” feature within Eclipse. This existing Eclipse

feature saves a copy of the file that the user is working with each time the user saves the

file in order to track versions of the file over time. Our feature would involve adding

optional annotations to each point in time where a file version exists to explain the reason

for a change.

Interesting questions come up: At what level could the user add these (perhaps

after saving the file, without forcing him)? Another option is that a new shortcut key

could pop-up an input dialog to enter a comment for the last saved file. This could

potentially help developers in resolving bugs more efficiently by understanding changes

quickly. This feature was adopted into TME. (Relates to: Meaning, Snapshot)

Chapter 3 – On generating new features

 32

3.1.13. Version player

This feature would show the user different versions of a file or diagram in

sequence. This could help the user understand how the file contents evolved.

Currently, the user could open all the versions of a diagram but it would result in

too many editors and can become confusing. It would be useful if the user could see a

sequence of diagrams, each one lasting for a specific time interval then move to the next.

This could be done by selecting many versions in the “CVS Resource History” view and

having a ‘play’ option. The version currently showing will be highlighted in the view so

that the user can see the highlighted comment (entered when the user submits an update

to the CVS repository). Aspects of this appeared eventually in TME. (Relates to:

Snapshot, Long View, Multiple Approaches)

3.1.14. Diagram compare

When comparing diagrams in the RSA compare-merge view, highlight all the

changes at the same time (currently not working), and have the option to see the change

description (e.g. “added generalization class1-class2”) right on the diagram instead of

having it as a separate tree (Figure 4), this would save the user having to click the item

each time and switch to the diagram view. (Relates to: Snapshot, Meaning)

3.1.15. Save compare

Add the capability to save a compare-merge view (Figures 5, 6, 7) as one diagram

to which the user can add notes explaining some changes. Currently, the user can

compare two versions of a diagram side by side with highlighted changes but he cannot

save that comparison. (Relates to: Snapshot, Multiple Approaches)

3.2 Evaluating and grouping the features

 We held meetings with five senior IBM product managers and developers to

evaluate the value of each of the ideas in our list. Product managers were closely linked

to customers and they took in consideration the importance of a feature to the customers

when evaluating its value. We did not question customers directly for confidentiality

Chapter 3 – On generating new features

 33

purposes, this evaluation was restricted to IBM but in a way that ensured taking into

consideration what the users of this tool desired.

3.2.1 Participants feedback

 We interviewed participants with different qualifications: software developers,

team managers, product managers and members from the IBM Centers for Advanced

Studies (CAS) in Ottawa. We wanted to gather feedback from different points of views

and capture a general perspective of what feature is mostly desired.

Participant 1

IBM Software Group, Rational

Model Driven Development Product Management

 The discussion was brief, about 20 minutes. The participant knew RSA very well

and quickly judged if a feature was beneficial for the overall product or not. He was able

to point out the developer who would be the appropriate contact for every feature. I was

able to hold meetings with these contacts to obtain better feedback on all the features.

Participant 2

IBM Software Group, Rational

IBM Ottawa Center for Advanced Studies

 This participant gave us feedback on all the features, the meeting lasted about 40

minutes. His perspective focused on how to make the tool communicate the design

between developers effectively. His judgment was also affected by how often or how

likely the users are to use the feature. He gave us the following comments and

suggestions:

• Add the ability to mark key objects (e.g. objects where the user would start

understanding) for the element filtering feature (3.1.2).

• The diagram slider (3.1.3) would probably help the user see how the system

evolved rather then to understand it.

Chapter 3 – On generating new features

 34

• The search for a feature (3.1.7) would not be very effective because people will

not trust it since some areas might be forgotten to be marked.

• Add a diagram player feature that records the order in which objects were

created.

• Finally, he had doubts that the save compare annotations (3.1.14) would be used

frequently.

Participant 3

IBM Software Group, Rational

Rational Modeling Platform Lead

 The meeting lasted for about one hour. We discussed in depth the features related

to understanding change in the compare-merge area. Prototyping opportunities were clear

in that area. The following were some of his comments on the proposed features:

• The diagram player feature (3.1.3) could encounter limitations regarding

maintaining the size of the history files but it could also be very instructive.

• The diagram version slider (3.1.4) could be improved by allowing the user to

designate diagram snapshots (this was implemented in our prototype) and

assigning them specific names.

• The search for feature (3.1.7) would be a great idea if users use it well: this

required a user to link what he is currently working on to a feature of the system.

If the user forgot to make a link to a feature any time he worked on something

new, the search for feature would not return complete results.

• He suggested that a feature other than explanation diagrams (3.1.8) could be the

use of hyperlinks (similar to the TODO concept: in Eclipse, while writing source

code, a developer can add a comment using ‘//TODO’. This will automatically

place his comment in a separate Eclipse view called ‘Tasks’. This feature helps

the developer track all his remaining tasks in all the files in his development

environments.).

• The feature list (3.1.9) was an improved way of reverse engineering the

component architecture. It could be useful in cross model reference.

Chapter 3 – On generating new features

 35

• Alternative diagrams display could be useful in the markup and review: The user

could look at different alternatives and choose the main one.

• The diagram compare feature (3.1.14) could have one model (instead of two side-

by-side displays) with add/change/delete annotations. When a user hovers over

an annotation with the cursor, a tool tip could be displayed containing more

information about the change.

• Saving the compare merge view was a feature taken into consideration by the

team for future development; it takes a lot of time.

Participant 4

IBM Software Group, Rational

Senior Software Developer, Architect

 This participant was related to the field of semantic concern: how to distinguish

(e.g. using different colors) parts of the diagram based on some concerns. He was

particularly interested in the first two filtering features (3.1.1 and 3.1.2) for browse and

topic diagrams and suggested to merge them into one feature. He mentioned that the

diagram player (3.1.3) is more of a demo feature and that it would have more value if the

user could explain or add explanations later to playback (this was implemented in our

prototype).

Participant 5

IBM Software Group, Rational

Aurora Shapes Management

 This participant is involved in the field of visualization and diagram

representation and filtering. He had the following comments:

• The diagram equalizer (3.1.1) feature would have more value if it was more

general (not limited to browse and topic diagrams).

Chapter 3 – On generating new features

 36

• Modify to the second suggestion (3.1.2) by linking it to a query. The challenge

would be the way it is presented to the user. However, something was already

being done in that area.

• The diagram slider (3.1.3) was cool but he questioned how useful it would be.

• The search for feature (3.1.7) has something similar already available: Rational

RequisitePro is a requirements management tool that facilitates the

communication of project goals between a group of people. It provides detailed

traceability to show how requirements may be affected by changes [17].

• For part swapping (3.1.11), how would we handle printing hidden sections?

• The model annotation (3.1.12) was very interesting, an idea would be

commenting as well (MS Word example: users could choose text and include a

comment that would appear on the side of the screen for other users to read and

possibly reply to).

• The diagram player (3.1.13) would have scalability issues.

• An alternative to the save compare screen (3.1.15) feature: a user could take a

snapshot by a third-party program, annotate it then save it as an image.

3.2.2 Feature scores

Table 1 shows the features and their evaluation scores given by the different

participants indicated as P1, P2, P3, P4, and P5. We asked each participant to rank each

feature between 1 and 3: 1 meant that the feature was needed and 3 meant that this

feature was not required.

Chapter 3 – On generating new features

 37

ID Feature Weight

1 Details equalizer

2 Elements filter

3 Diagram slider

4 Diagram version slider

5 Package outline

6 Easy access to versions

7 Search for feature

8 Explanation diagram

9 Feature list

10 Alternative diagrams display

11 Part swapping

12 Annotations

13 Version player

14 Diagram compare

15 Save compare

P1 P2 P3 P4 P5 Avg

1 1 1 1 2 1.2

2 3 2 1 3 2.2

1 2 2 2 3 2

2 2 2 2 2 2

3 2 3 3 2 2.6

3 2 1 2 2 2

1 3 1 1 1 1.4

2 2 2 2 2 2

3 2 1 2 1 1.8

3 2 2 3 3 2.6

3 2 3 3 2 2.6

2 3 1 2 1 1.8

2 3 3 2 3 2.6

3 2 1 2 2 2

1 3 1 3 3 2.2

Table 1 - Prototype features' weights

Participants were asked about the features in the same order but each time they

were asked to rank each feature independently from the others. This was necessary

because each team manager might rank the features depending on whether they were

related to his work or not, and we wanted to get feedback independent of that to gain a

better idea of the overall importance of each feature.

The package outline (3.1.5), alternatives diagram displays (3.1.11), part swapping

(3.1.12), and version player (3.3.13) features averaged a score of 2.6. They were

considered as possible future enhancements. There was a lack of interest in implementing

such features and they were removed from our list.

 A grouping strategy that we used was to determine if the feature was related to

static incremental learning, system evolution, or could be an enhancement.

The following are the codes used in Table 2:

Chapter 3 – On generating new features

 38

 [inc] Allows incremental understanding on static system by managing views

 [dev] Shows system evolution dynamically

 [enh] Facilitates and enhances existing usability/new feature

ID Feature

[inc] Details equalizer

[inc] Elements filter

[dev] Diagram slider

[dev] Diagram version slider

[enh] Easy access to versions

[inc] Search for feature

[inc] Explanation diagram

[inc] Feature list

[enh] Annotations

[enh] Diagram compare

[enh] Save compare
Table 2 - Prototype features' categorization

We removed most of the features related to enhancements and merged similar

features in order to group them in one common feature. Table 3 shows how the remaining

features were grouped:

Chapter 3 – On generating new features

 39

Feature

[inc] Details equalizer

[inc] Elements filter

[dev] Diagram slider

[dev] Diagram version slider

[enh] Annotations

[inc] Search for feature

[inc] Explanation diagram

[inc] Feature list
Table 3 - Prototype features' grouping to create three new main features

Finally, we gave names to the three larger ‘main’ features resulting from this

grouping: Diagram equalizer, Diagram player and Diagram guide. Table 4 shows these

three features with the highest and lowest rankings that they received (highest and lowest

rankings relate to the combined rankings of the features that were merged):

ID Feature Weight (max/min)

A) Diagram equalizer

B) Diagram player

C) Diagram guide

P1 P2 P3 P4 P5 Avg

1/2 1/3 1/2 1/1 2/3 1.2/2.2

1/2 1/2 1/2 2/2 1/3 1.2/2.2

1/3 2/3 1/2 1/2 1/2 1.2/2.4

Table 4 - Main prototype features evaluation

3.3 Descriptions and analysis of the three main features

The three main features are described in the following:

Chapter 3 – On generating new features

 40

3.3.1 Diagram equalizer

Figure 26 - Diagram equalizer sketch

The diagram equalizer shown in Figure 26 uses several sliders to control the level

of details in a diagram. Each combination of slider positions applied by the user can be

saved for reuse.

It could help the user by reducing the amount of details in the diagram and so

reducing the size of the diagram making initial understanding easier. It also removes

uninteresting details from the diagram and leaves the user with only what he wants to see

making understanding easier by only having related material that flows with the user’s

thought.

One of the problems to be addressed is the diagram layout after filtering is

applied: The “Arrange all” option in RSA can sometimes produce unpredictable results

which are not optimal, we shouldn’t rearrange the diagram, and we should rather shrink

the size of the boxes and shorten the length of the connectors (compacting the diagram as

needed).

 We used the following three criteria to analyze the feasibility of implementing

this feature:

1. Possible to implement

a. There is something already under development for next version of

RSA that can change the level of details (attributes and operations) for

a group of elements.

2. How important is it for the teams

a. Very important to have such filtering capabilities

3. How relative is it to temporal details

Chapter 3 – On generating new features

 41

a. The diagram representation is still static but the different views

obtained after applying different filtering patterns could allow the user

to learn incrementally about the diagram.

Currently in RSA, relationship filtering can be applied for the entire diagram.

Details filtering can be applied for one element at a time but there is work already being

done to apply filtering to multiple items at once

3.3.2 Diagram player

Figure 27 - Diagram player sketch

The diagram shown in Figure 27 player plays back the construction of the

diagram and allows tagging playback locations as snapshots with annotations. The

playback could possibly keep elements fixed at their final position in the diagram. New

additions and deletions in the diagram could be highlighted to help the user visualize the

changes better.

It could help the user by replacing the final static representation of the diagram

with a dynamic approach. We hypothesize that seeing how the diagram was constructed

can help the user better understand the diagram (e.g. the most important element might

have been added first to the diagram).

One of the problems to be addressed is scrolling a diagram not fitting on the same

page.

 The following were the results of our three analysis questions for this feature:

1. Possible to implement

a. Depends on how hard it is to capture, save, and replay the undo stack

(we implemented this feature for our prototype)

2. How important is it for the teams

a. It is important from product management perspective

3. How relative is it to temporal details

Chapter 3 – On generating new features

 42

a. Directly related to Temporal Details as it shows how the diagram was

built from start to finish with annotation capability to add embedded

rationale.

Currently in RSA, the history maintains a limited number of versions of the

diagram each time it is saved. We cannot add annotations to versions in the history. We

cannot play sequential changes. We have to open each saved diagram separately.

3.3.3 Diagram guide

Figure 28 - Diagram guide sketch

When the user is looking at a diagram, the diagram guide shown in Figure 28

would tell him of related diagrams to look at and for what purposes (e.g. alternative

designs), it allows the user to go to the diagrams with a single click. It could also list or

open diagrams related to a feature (e.g. printing). It could as well indicate the relationship

of the diagram to the feature (e.g. controls access to the printer).

This feature would help the user by reducing the search pain and the time

analyzing search results to find a logical link between diagrams containing the

implementation of a feature.

One of the problems to be addressed is how to teach the guide initially and relate

diagrams to features or between each other.

 Answers to the three analysis questions are as follows:

1. Possible to implement

a. Might be easier as a view with dynamic behavior instead of a character

2. How important is it for the teams

a. Relatively important, however less than the two previous ideas.

Chapter 3 – On generating new features

 43

3. How relative is it to temporal details

a. Users working on several diagrams understand how they relate. Being

able to communicate relationships between diagrams to others might

bring a lot of help in understanding big systems. This information is

usually lost.

Currently in RSA, we can put links to other diagrams and notes explaining how

they relate, however, they are part of the diagram itself and not separate.

3.3.4 Chosen feature

 The diagram filtering feature was encouraged by everyone. It was a main concern

that needed to be addressed. However, it is not very close to the Temporal Details

category of the cognitive patterns. It can be argued that this feature allows you to

understand better over time by limiting the amount of details shown in the diagram. A

user could start by applying a filter that shows only the high level components without

their internal details. The level of details can then be augmented step by step allowing

incremental understanding of the system. But there is a difference between understanding

incrementally over time and showing the evolution of the system over time.

The average features scores were similar with a small decrease for the diagram

guide feature. However, the diagram player had the least current tool support and relates

very well to Temporal Details. The diagram player had four 1s and one 3 in its evaluation

while the other options had four 1s and two 3s.

 The diagram player (later named Temporal Model Explorer) was chosen to be

prototyped. The next steps discuss how we built the prototype in an iterative process, and

how we evaluated our hypothesis with user studies.

Chapter 4 – Building the TME prototype

 44

Chapter 4: Building the TME prototype
 In this chapter, we begin by giving a general overview of our prototype.

Following the brief description, we explain how we developed an initial proof of concept

before deciding to implement a functional prototype. In order to explain how we built our

functional prototype, we will discuss several steps including: our decision to adopt RSx

as our target application, the challenges in setting up our development environment, the

iterations, functionality and challenges we encountered. We will also discuss our design

alternatives, core ideas behind our prototype, its architecture and integration within the

target application.

4.1 Prototype description

The TME prototype is a plug-in for Rational Software Architect/Modeler 7.0

enabling users to record changes on a UML model and its diagrams and to replay those

changes at any time using features such as temporal annotations and snapshots.

Temporal annotation support enables the user to add a note after making any

change to the model or a diagram. This annotation will be shown to any user later

viewing the diagram’s historical state corresponding to the time that change was applied.

Snapshot marking enables the user to group a set of changes that will be applied

together providing a higher level of granularity for moving between changes.

Recording is done automatically once the TME plug-in is loaded (except if the

user disabled the TME functionality from its preference page). The changes are recorded

at the EMF level allowing us to record changes on different kinds of diagrams.

While reviewing the history, a user can go through the changes step by step, or

jump from snapshot to snapshot. The user can use the keyboard or a slider control to go

through the history.

For the purpose of this research, we have studied the use of the tool with class

diagrams only, given the time limitations and the hypotheses we wanted to validate.

Chapter 4 – Building the TME prototype

 45

4.2 Prototyping with informal tools

We developed the early iterations of the TME feature using an informal tool,

since studies have shown that informal tools are better then both pencil and paper as well

as high fidelity tools for building early prototypes [9].

Low fidelity tools or pencil and paper are very easy to use: they don’t force the

prototyper to include unnecessary details. The prototyper has the freedom to represent his

ideas as he likes, and this tends to encourage him to propose more ideas. However, the

downside of such approaches is that they limit the prototyper’s ability to communicate

behavioural design ideas (temporal and interactive parts of the application).

High-fidelity tools, on the other hand, allow the user to express and show the

application’s full behaviour. However, they require the user to spend much more time

and effort as compared to using low-fidelity tools.

In order to obtain the advantages of both pencil and paper and high-fidelity tools,

an informal design tool tries to transform a designer’s early design representations into a

functional prototype. It can allow the user to edit the representations, include annotations

to capture the rationale behind the design, and facilitate group work.

We used MS PowerPoint and screen capturing tools to design our early prototype

of the TME feature. This allowed us to demonstrate its projected functionality and get a

good feel of the user’s response if he was presented with a functional prototype. We

received positive feedback about our proposed feature and started the development of a

functional prototype.

4.3 Initial prototype

We performed an initial study with a colleague at the IBM Center for Advanced

Studies in Ottawa. The study involved asking her to model a given system using a class

diagram. Afterwards, the system description was modified and she was asked to modify

her class diagram to reflect the changes. A screen snapshot was taken after each of her

modifications using a screen capturing tool. After the modeling was completed, the

person was allowed to add annotations to screen snapshots she selected as being relevant.

The following is the initial system description that the user was asked to model:

“A TIVO-type recording device that can be programmed to record TV shows from

Chapter 4 – Building the TME prototype

 46

various channels at various times. It can also record any show of a certain type or a

certain series. It downloads the schedule so it knows what is playing. It has to manage the

total amount of storage available and erases shows that the user did not explicitly ask to

have recorded.” [22]

After the participant completed modeling the system, the requirements were

modified as follows: the recording device has to contact a database to authenticate

storage, and storage is not local anymore, it is on the network and needs to be accessed

through a particular storing device. Commercials can be recorded as well as shows but a

user can decide to view a show with or without commercials. The recording device has

playback functionality now to play shows or commercials.

While the participant was modifying the system, screen snapshots were also

captured. After the participant completed modifying the system, we showed her the

snapshots and asked where she felt that she could add annotations to improve the user’s

understanding of the evolving system. The participant decided to add the following two

annotations: the first was that the playCommercial() method was removed from the TIVO

class because of the re-interpretation of the requirements (commercials cannot be played

individually) and the second was that the association between the storage and the

authentication database was replaced by an association between the authentication

database and the network access device to reduce unnecessary access to the storage.

Figure 29 is an example of the snapshots being captured (after the annotation was added):

Chapter 4 – Building the TME prototype

 47

Figure 29 - Initial prototype, model screenshot with annotation

Many interesting questions were discussed after we captured the first set of

snapshots: Do we play back the changes as they were performed by the user? Should we

ignore changes related to movements and keep elements in their final positions (less

distraction)? Should we highlight new changes or annotate them (making them easily

identifiable)? We created a set of snapshots with elements showing always in their final

position in the diagram and discussed two highlighting techniques: the first would be to

mark new changes with a circle as shown in Figure 30, the second would be to annotate

additions with a ‘+’ sign and items that were to be deleted in the next step with a ‘-‘ sign

as shown in Figure 31.

Chapter 4 – Building the TME prototype

 48

Figure 30 - Initial prototype, model screenshot with highlighting

Figure 31 - Initial prototype, model screenshot with annotations

Chapter 4 – Building the TME prototype

 49

We demonstrated the initial prototype as a slide show for interested IBM staff and

it was judged to be a very good idea for a new feature. After the positive feedback, we

decided to start a functional prototype.

4.4 Functional prototype

4.4.1 For which tool, why?

 We have decided to choose Rational Software Architect/Modeler (RSx) as our

base application. The alternative was to implement a prototype for Eclipse. However,

RSx is built on top of Eclipse so we can use the same Eclipse plug-in architecture

including the components of RSx related to modeling. RSx has functionality already

implemented that we could re-use for our prototype including the EMF change-recording

functionality that allows us to capture the changes in a diagram between two different

instances of time. This saves us a lot of implementation difficulties regarding comparing

two instances of a diagram. The challenge here was to learn how to use the EMF change

recording functionality, which we succeeded in doing. All of the functionality relies only

on GMF, so it would work in any Eclipse tool using GMF.

4.4.2 Setting up the correct development environment

 It was challenging to find out how to set up the needed components for the

development environment.

We started by using a special version of Eclipse to build the source code for

Rational Software Architect 7.0. Our initial decision was to target the prototype to plug

into RSA 7, however, this version of RSA was in a build phase and wasn’t stable. We

encountered various exceptions when building diagrams because of missing classes or

bugs (for example, a class diagram always placed classes at the top left of the diagram

overlapping each other but the problem did not exist for interfaces). Another issue was

compile time: the code base would take about an hour to compile and this operation was

performed each time the development environment was closed and re-opened. We could

not leave the development environment running all the time because it would consume

too much memory and would crash. We must mention that this was annoying and wasted

precious time. Even though our development machine had one gigabyte of random access

Chapter 4 – Building the TME prototype

 50

memory, we encountered a lot of out of memory problems since RSA is a huge

application. We tried to reduce the number of plug-ins loaded into RSA but this operation

was very confusing because of plug-in dependencies that would cause certain needed

product features to stop working. Moreover, the underlying API for the Rational

Modeling Platform was also undergoing changes so there was a risk that the functionality

we used in our prototype might also have to undergo changes.

 We consulted developers from the Rational division and we were recommended

to use the Rational Software Architect 6.0.1.1 itself as our development tool because it

was proven to be the most stable release for that product (as opposed to building RSA

using Eclipse and the RSA source code, we could use RSA as the development

environment since it has all the required binaries to support our plug-in). We followed

that recommendation which required us to refactor our code for the prototype because

there were major API changes between version 7.0 and version 6.0.1.1.

In addition to deciding on the target environment for our feature, we also had to

decide on the development environment we would use. Again we chose RSA 6.0.1.1 as it

proved to be the most stable, until we reached a stage where we encountered blocker bugs

existing in 6.0.1.1 and were obligated to switch to RSA 7.0 even though it was under

development. Furthermore, we decided to use RSM instead of RSA because it contained

all the required modeling features less the extra features available in RSA that use more

memory and CPU power. It was not until June 2006 that we were able to work with a

stable version of RSM 7.0 with the debugging capability.

4.4.3 Iterations, functionality, and challenges

We used an iterative development process while implementing the prototype. This

process allowed us to gather feedback and merge suggestions in the development process.

It was also a successful risk management strategy as we always knew that we were

developing a prototype that will please the interested parties.

Iteration 1

The first step was to create a new project and set up its dependencies on other

components. We created a plug-in project to integrate our prototype within RSA. We

Chapter 4 – Building the TME prototype

 51

were required to get access rights to separate repositories to download the required base

projects: this step lasted several weeks to go through the process and figure out the right

components to download (about four hundred projects).

We had no prior experience with the technologies used within RSA including the

Eclipse Modeling Framework (EMF) and the Graphical Editing Framework (GEF). We

therefore had to discover the functionalities provided by these two technologies and

evaluate how to take advantage of their offerings to build our prototype. We held

meetings with development team members in order to build up knowledge of available

APIs and techniques currently being used. We learned multiple approaches that could

become possible solutions to be used in our tool. We had also researched and debugged

the source code for locations that handle the undo and redo requests because they could

hold promising functionality that could be reused in our tool. Finally, we decided to use

the EMF change recorder (an alternative is discussed in the design decisions, Section

4.4.4) that provided the core of our functionality to detect and serialize changes.

The first prototype had four buttons: record, stop, move forward, and move

backward. The user had to press the stop button each time a change was made in order to

capture it then press the record button to track the next change. The changes were kept

only in memory: this meant that the user could not review the history of a model after

closing the main application since the changes were not persisted. Also, the user could

not add annotations to the changes to explain the rationale behind a change. The user

could, however, use the ‘move forward’ and ‘move backwards’ buttons to review the

change history.

Iteration 2

In this iteration, we used the Java API’s timer functionality to schedule the

change-capturing tasks. We automatically captured changes every 500 milliseconds. This

time interval was chosen to be small enough to capture each user operation on the model

as a separate change. The user was only required to press record once. After each capture,

the EMF change recorder returned a change description that our code then checked for

change content. If changes were detected, we added the change description to a list

Chapter 4 – Building the TME prototype

 52

containing all the change descriptions that were then serialized when the diagram was

saved.

Serialization support enabled us to persist the change descriptions and load them

if they were available inside the resource containing the diagram (a .emx file in RSA

contains the UML model and its diagrams). One of the challenges was to find the location

of the resource file. We had two choices to get the file path: the first choice was to use the

Eclipse API to find the file associated with the editor showing the diagram; the second

choice was to use the Rational Modeling Platform (RMP) API to find which file the

diagram belongs to. We decided to use the RMP API because of the various editor types

and the differences in determining which file belongs to a particular editor: Different

editors in RSA related to different diagram types do not share the same API to discover

which file is represented by the editor, however, the RMP approach was common to all

types of diagrams.

The changes became persistent and saved within the model: this allowed the user

to review the changes at any time and to share change history with other users (this could

not be achieved if the changes are saved in memory only).

Annotation support was added: we enabled the user to add annotations while

recording the changes (the user could write inside a text area and click the annotate

button). We showed the annotations at the correct time while the user is going through

the diagram’s history (the annotation would pop-up as a message box on playback).

A slider control was introduced to enhance the tool’s usability: the user could now

move the slider back and forth to review the change history instead of having to press the

buttons.

Iteration 3

Annotation display was improved for this iteration: the message box used to block

playback requiring the user to press ‘ok’ in order to continue. The annotation now

showed in a small modeless window and automatically disappeared after three seconds or

when the user moved to the next change.

We added the ability to continue recording changes after loading changes from a

file. In the previous iteration, pressing the record button would start recording a new set

Chapter 4 – Building the TME prototype

 53

of changes. We added the functionality of loading all existing changes and continuing to

record future changes from that point.

Shortcut keys were added: When the user clicked on the TME view, the focus was

given to the slider: the left and right arrow keys then allowed the user to go step by step

through the changes. The up arrow would advance the user smoothly until an annotation

shows then it stopped. The down arrow would just play all the changes. The user could

press the down arrow again to pause playback (playback showed a new change every half

second).

Figure 32 shows our plug-in’s view after the third iteration. All the functionality

of the prototype is inside the same view.

Figure 32 – Diagram Player view (before using the term TME)

Iteration 4

 This iteration witnessed major functional changes. Earlier iterations allowed

recording and playback for a single diagram only, and the user needed to press the record

button to load and record changes.

 For iteration 4, we supported automatically tracking changes on multiple

diagrams. The record and stop buttons were removed; their functionality is now

automated (when switching from one diagram to another, we would stop recording on the

first and start recording on the second). Details of this functionality can be found in the

discussion of architecture, Section 4.4.5.

We also modified our technique for capturing changes from being timer-based to

being event-based as discussed in the design alternatives, Section 4.4.4.

We realized in earlier iterations that tracking changes related to the diagram only

is not sufficient (discussed in the design alternatives, Section 4.4.4). In this iteration,

tracking was performed on the entire model, not on the diagram.

Chapter 4 – Building the TME prototype

 54

Iteration 5

 This was the final iteration. Its main enhancements were better integration, more

functionality and bug fixing. We had built the base of our prototype in earlier iterations:

mechanisms to capture changes, saving and loading. We now took the step of managing

changes at a higher conceptual level: what do we do with the changes?

We changed the functionalities of the shortcut keys to support generally adopted

concepts in other tools: ‘page-up’ and ‘page-down’ replaced the ‘up’ and ‘down’ keys.

They allowed the user to jump between snapshots or temporal annotations in the history

of a model. We removed the concept of the annotation disappearing after three seconds

because we realized the user might not get enough time to read it. The annotation box

would now disappear when the user presses any key.

We added the ability to edit or remove a temporal annotation by adding another

one at the same place which would overwrite it (an empty text would mean that the

annotation is to be deleted).

A palette item was added to allow adding a temporal note. We aimed to give the

user a behavior that is common to his modeling routines. Since the user would use the

palette to drop elements on a diagram, we thought it would be easier for him to choose to

add a temporal annotation from the palette which would pop up a box and allow him to

enter a message to explain a design rationale for example.

We added the capability to filter the changes of certain types. For example, we

had the ability to filter out all the changes that related to moving something in the

diagram. This was necessary for our final positioning feature.

We added ability to add or remove snapshots while exploring the history of a

model. Another user could jump between those marked positions, therefore applying a

group of change at the same time. This allows for increasing the level of granularity at

which a user can explore the history of a model.

We added another console window that was initially used for debugging our

prototype and later on to give confirmations to the user when loading changes, saving

changes, adding or removing snapshot positions.

Figure 33 is a screenshot of the latest version of the TME prototype:

Chapter 4 – Building the TME prototype

 55

Figure 33 – Final TME prototype screenshot

Table 5 summarizes the idea behind each iteration:

Iteration # Idea

Iteration 1 Basic UI

Iteration 2 Basic automation

Iteration 3 Basic prototype

Iteration 4 Enhanced automation

Iteration 5 More functionality, better integration
Table 5 - Prototype iterations

4.4.4 Design alternatives

 As our prototype evolved, we discovered limitations and came up with various

alternatives for improving our design and providing better functionality. We discuss in

Chapter 4 – Building the TME prototype

 56

the following some of the interesting issues we encountered. The objective of this section

is to provide insight for future tool developers.

Event-driven versus timer-based approaches for capturing changes

 We developed four different techniques for capturing changes. We learned from

the limitations of the first three techniques to solve the problem of capturing changes of

appropriate size in the final technique.

a) Event-driven approach: extending the EMF change recorder

• The first technique was to subclass the change recorder class and to extend its

notifyChanged() method to add the functionality of capturing and saving a

change description on every call. This technique provided a very fine level of

granularity. For example, if a user added a new class to a diagram, calls to

notifyChanged() would be performed after each of the following: adding the

class to the top left of the diagram, moving the class to the correct x position,

moving the class to the correct y position, sizing the class width

appropriately, and sizing the class height appropriately.

• The advantage of this technique was that it had support for serialization

which would facilitate saving and loading changes to/from disk. The

drawback of that method was that the level of granularity of the changes was

too fine-grained.

• The level of granularity provided by this alternative was not desired since it

does not reflect the real actions of the user and it would be confusing for the

user to see that much detail when reviewing the changes individually.

Moreover, we did not want to change the user’s original visual experience

(when building the diagram).

b) Event-driven approach: using MUndoInterval

• The second technique was to use the MUndoInterval class that captures

changes on the undo stack. The advantage of this method was that it captured

the changes at the level the user performs them (each change is similar to

what the user can undo and redo in the environment).

Chapter 4 – Building the TME prototype

 57

• However, a major drawback of this technique was that the changes cannot be

serialized. We could not persist the list of changes, which was a blocker for

using this method.

c) Timer-based approach: In this approach, we tried to solve the problem in a) (fine

level of granularity)

• We needed a technique to group related changes together in order to show a

number of changes at the same time that made sense to the user (refer to the

example on the snapshot pattern in RSA, Section 2.2.2, Figure 4: fine-grained

details are grouped at a higher level, we needed to do something similar but

that was very challenging, specially at the beginning of our research).

• We tried using the Java API to provide timer functionality to perform tasks at

specific intervals (ex: 500 milliseconds). At the end of each interval, we

would check for changes using the EMF change recorder to compare the state

of the diagram between the two points in time. If there were changes, we

would add the change description to a list.

• The approach worked, but theoretically it could provoke some undesired

behaviour such as capturing only a part of a change if the interval was not

small enough. Moreover, this approach was not very elegant.

d) Event-driven: Combining the undo stack listener with the EMF change recorder

• The better and more elegant approach was to use an event based technique

that would only require capturing a change in the case it actually exists. The

solution that was adopted was to track the changes at the same level as the

undo stack (by adding a listener that would notify us of changes on the undo

stack). We would play back the changes to the user in the same way he can

undo or redo them.

• We took the best of the previous methods: we listened for events on the undo

stack and captured the change using the EMF change recorder. This allowed

us to control the level of granularity and to serialize the changes.

Chapter 4 – Building the TME prototype

 58

Recording on diagram or model

 The EMF change recorder tracks changes on a target. Our initial design decision

was to track changes on a diagram. This choice was not appropriate because adding

attributes or operations to a class was not being detected. If a user followed the following

steps when building a diagram: adds class A, adds another class B, adds an attribute to

the class A. When playing back the history the previous sequence, the first time class A

showed, it included its attribute and did not follow the same sequence of events since

class B was to show before the attribute was added to class A. The reason behind this was

that the diagram did not contain the semantic information of the model. This information

was saved as part of the model. We distinguish between semantic information (part of the

UML model) and notational information (visual to the user).

 To address this limitation, we chose to record changes on the model itself.

However, change information will be saved for the diagram they belong to (but they

affect the entire model not only the diagram).

 Recording on the diagram only would enable us to easily manipulate recording in

multiple diagrams. Recording on the model complicates things because a change in the

model can affect many diagrams at the same time. This would require us to manage

properly which change recorders are enabled on which diagrams at a specific time in

order not to capture the same change twice.

How to save changes

The diagrams are saved in an XML format; the EMF change recorder supports

serializing changes as XML data. To persist a change, the TME prototype creates a new

XML node to hold the change information. In the early versions of the TME prototype, it

was added to the resource containing the diagram: when the user saved the diagram, the

resource was saved and so the change information was saved as well.

Adding change descriptions to the resource limited it to contain a single diagram’s

change information (while the resource can contain multiple diagrams). To solve this

problem, we know that XML nodes are nested so a more general solution was to include

the change information node as a child node of the diagram node. However, this means

that the editor of the diagram would be confused since it expects nodes of known types

Chapter 4 – Building the TME prototype

 59

that are part of the diagram. To address this issue, we take advantage of the fact that EMF

support nodes of type EAnnotation that are used to add extra information to the diagram

(those nodes were not rendered as diagram elements by an editor). Our prototype

understands that those nodes are related to change descriptions. The EAnnotation has a

type so we can detect which EAnnotations relate to change information inside each

diagram.

At a later stage in our design, we decided to separate the change information from

the resource file. We decided to save changes related to a diagram in separate file named

after the diagram and with the extension .chg. This approach has many benefits:

• Separation the concerns: resource and change. If a user wanted to share a

resource without including its history, the changes needed to be in a separate

file.

• If a user wanted to delete the change history, he could simply delete the

change file instead of having to go through complicated XML data and

deleting individual EAnnotation nodes that relate to changes.

• Allowing Multiple Approaches: Several users could work on the same base

model and produce separate change files that could be used to demonstrate

multiple approaches in solving a problem.

The one disadvantage is that the change file can become disassociated from the

resource file.

Model View Controller approach for extendibility

 The initial approach for designing our system was to have a controller that used

the EMF change recorder and listened on the undo stack to capture and record changes.

The controller would send the Temporal Model Explorer view update calls in order to

extend the slider with each new change description. However, we thought that this would

introduce an inconvenience in the future for extending the system with other functionality

since the controller would have to hold an extra variable for each class that wishes to

handle the event of diagram changes; the name of the method to call in that class is also

required.

Chapter 4 – Building the TME prototype

 60

 Instead of the limited approach above, there is a very well-known design pattern

called Observable/Observer [12] which we applied in our case. We created two new

classes. The first named ChangeInfo to encapsulate the data related to a change

description including the time stamp at which it occurred, a temporal annotation if it

exists for that change and a Boolean to indicate if that change position represents a

snapshot. The other class named DiagramInfo contains and manages all the ChangeInfo

objects for a diagram (refer to the architecture Section 4.4.5). The DiagramInfo class

extends the Observable superclass.

 Each class that wishes to handle change events needs to implement the Observer

interface and its update method. The update method is called each time the diagram

change information is changed. This makes extending the system easier by implementing

an Observer class and adding it to the list of observers of the DiagramInfo class.

4.4.5 Architecture and tool integration

As discussed earlier, we developed the Temporal Modeler Explorer feature

prototype in Rational Software Modeler as an Eclipse plug-in. It uses three APIs: Eclipse

API to provide views and detect switching between diagrams, GEF API to integrate with

the GEF palette in RSM, and EMF API to capture and serialize changes.

In the following, we will refer to the various components using the following

letters:

 a) A diagram tracker, which includes a listener for user interface events.

 b) A listener for commands in the diagram commands stack (i.e. the undo stack)

 c) A component of EMF that generates a delta between two versions of a model

 d) A change file corresponding to each diagram with the same name as the

diagram but with the extension .chg.xml.

 e) A change recorder that loads and records changes in the file.

 f) A preferences page

 g) An item in the palette marked ‘Temporal annotation’

 h) A dialog to input a temporal annotation

 i) A slider (scrollbar)

 j) A key listener on the slider (h).

Chapter 4 – Building the TME prototype

 61

 k) The Temporal Model Explorer view, which contains the slider (h).

 l) A box to display a temporal annotation

 m) A tracker for the TME view

 The following class diagrams and explanations demonstrate how our prototype is

implemented. Note that we created all the classes shown in the diagrams. Also note the

notation used to visualize attributes: public (circle), protected (triangle) and private

(square).

Figure 34 – TME prototype design, control package

 The control package, described in Figure 34, is responsible for tracking,

recording, saving and loading change data. It uses the Eclipse API to track the selection

of views and editors. It can detect the selection of a diagram editor and ensure recording

can be performed to capture its changes:

• The DiagramTracker (a) detects when the user switches among different views.

• If the newly displayed view shows a diagram, the DiagramTracker (a) ensures

there is a change recorder (e) for that diagram, in order to track changes.

• If the change file (d) already exists for the diagram, the change recorder (e) first

Chapter 4 – Building the TME prototype

 62

loads the existing change descriptions, and continues recording at the end.

Otherwise a new change file (d) is created.

• The change recorder (e) uses the command listener (b) and the EMF component

(c) to obtain a change description corresponding to each change made to the

diagram.

• The change recorder (e) writes out serialized change descriptions to the change

file (d)

The information about each change is saved as follows:

 An XML node is created with four children at most:

1. The EMF change description

2. The user's temporal annotation if included for that change

3. A time stamp of when the change was captured (can be analyzed to

detect snapshots). The time stamp should be relative to the time the

diagram was opened or created (this addresses the issue of sharing

between multiple computers with different times or in different time

zones).

4. An indication if the change is a snapshot.

Figure 35 shows the integration package containing the classes to integrate some

features of our prototype with RSM:

Figure 35 – TME prototype design, integration package

• When a user selects the 'Temporal annotation' palette item (g), code in the

Chapter 4 – Building the TME prototype

 63

TemporalPaletteFactory shows a dialog (h) allowing the user to enter a temporal

annotation. The temporal annotation is saved along with the change description. A

new temporal annotation overwrites any existing temporal annotation. If a user

adds an empty temporal annotation, this has effect of deleting any existing

temporal annotation.

• The ConsoleWriter can display messages for the user on the Eclipse console. It

can be used to confirm loading or saving changes, or marking/unmarking a

position as a snapshot.

• The preference page (f) can be used to enable or disable the recording

functionality of the TME prototype. The user does not need to restart the

application in order for the changes to take effect, the behavior is dynamic.

Figure 36 shows some of the user interface functionality:

Figure 36 – TME prototype design, UI functionality

• When a user moves the slider (i) or presses certain keys (j), the Temporal Model

Explorer (k) applies a set of changes (forward or in reverse) through EMF

functionality. The changes are reflected on the diagram by adding or removing

elements. The SliderMover class is a thread that handles moving several positions

at a time. The goal could be to hit a snapshot or a temporal annotation location.

• If the change being applied has a temporal annotation the Temporal Model

Chapter 4 – Building the TME prototype

 64

Explorer (k) displays the temporal annotation box (l) implemented by the

AnnotationBox class.

• If the user presses the ‘s’ key the Temporal Model Explorer (k) will ask the

change recorder (e) to mark the most recently displayed change in the change file

(d) as a snapshot. If it is already a snapshot, then it is no longer marked as a

snapshot.

• Marking snapshots in an existing change file can be automated by sequentially

examining each change in the change file (d) and applying defined snapshot rules.

Figure 37 shows how the information can be used and processed in our system:

Figure 37 – TME prototype design, information usage

• The change file contents (d) can be filtered to remove change descriptions

related to moving elements of the display. This implements the final

positions feature. The DiagramInfo class contains a list of objects of type

ChangeInfo that capture each change description and its related

information (time stamp, annotation, snapshot). DiagramInfo could be

processed in order to use the change in a more intelligent way, giving the

user more ways to improve their understanding as we do with filtering

changes related to movement.

Chapter 5 – Prototype evaluation

 65

Chapter 5: Prototype evaluation
We evaluated the Temporal Model Explorer prototype using twelve participants.

We involved participants with different backgrounds to reduce potential bias.

We gathered data of two kinds: 1) The personal opinions the participants had of

the tool, and 2) Performance comparisons. The latter included tracking the amount of

time taken to understand a diagram and answer questions about it, as well as the quality

of answers given by each participant. Performance results are discussed in Section 5.3,

while opinion data are discussed in Section 5.4 and 5.5.

Overall, we aimed to validate the following hypotheses:

H1: When given a complex UML class diagram, and asked various questions

about it to show he understands it, a software engineer will be able to answer the

questions more quickly (H1a), and accurately (H1b) if using TME. Furthermore the

software engineer will prefer to have TME as opposed to not having it (H1c).

H2: Software engineers using TME to explore an earlier stage in diagram history

will benefit from having modeling elements in their final position, as opposed to where

the elements were actually located at earlier times. Showing the final position should

improve speed (H2a) and accuracy (H2b). Furthermore, software engineers will prefer it

(H2c)

The rationale for this hypothesis is as follows: Showing elements always at their

final position in the diagram should reduce confusion: the understander will not see

changes related to moving elements in the diagram so he will be able to focus more on

how the diagram was constructed.

5.1 Summary of the procedure

 We followed the steps below to evaluate the TME prototype. It should be noted

that the whole process was first approved by the Research Ethics committee of the

University of Ottawa (see recruitment script and consent forms in the Appendices 2, 3,

and 4).

Chapter 5 – Prototype evaluation

 66

Step 1

Two problems were selected (See Appendix 1). The author of this thesis, his

supervisor (the project’s ‘principal investigator’, Dr. Lethbridge), a CAS student, and a

software engineer within IBM then developed UML class diagrams for these problems

using a version of RSM in which the recording functions of the TME prototype had been

activated.

Then the researchers reviewed the class diagram with the person who created it,

so that additional changes and improvements could be made to it.

The result of this step was 8 models with their development history recorded. The

researchers chose the best 4 models to include in the study, two of an investments system

and two of an elections system. An additional model, of an airline scheduling system (See

Appendix 1), was developed by the principal investigator in order to have a common

model that all the experiments would use for tracking.

Given that all the participants were knowledgeable about UML, the total time

required per participant was about 90 minutes (45 minutes per model).

Step 2

We conducted some formal experiments to investigate the hypotheses. Details of

the experiments setup are discussed in the next section (5.2).

Step 3

We administered a short questionnaire (after each experiment in step 2)

containing preference questions with fixed answers ranging from ‘strongly agree’ to

“strongly disagree” and two questions for the user to write his positive experience and

suggestions for improvements. Details of the questionnaire are found in Appendix 5. The

results of the preferences questions are discussed in Section 5.4. The user suggestions for

improvements are grouped into categories in Section 5.5.

Chapter 5 – Prototype evaluation

 67

5.2 Details of the experiment setup and procedure for Steps 2

and 3

5.2.1 Participants

Twelve participants were selected to answer questions about UML class

diagrams. The participants all had to have some experience creating UML class diagrams.

Participants were coded A to L to maintain anonymity.

5.2.2 Independent Variable

The independent variable we were concerned with manipulating in this study was

one of the following three ‘treatments’ consisting of particular setups of Rational

Software Modeler (RSM):

T1

 ‘Only final diagram’: Standard RSM without the Temporal Model Explorer feature.

The participant studied the class diagram without any ability to explore its history.

T2

‘TMEP original pos’: RSM with the TMEP view at the bottom of the screen, and the

model set up with the slider at the far left. By using page down (or page up to go

back, or arrow keys to see smaller increments), the participant can step through the

editing history of the class diagram. The participant can see the final class diagram as

in T1 by pressing page down enough times, or pressing ‘End’.

T3

‘TMEP final pos’: Same as T2 except that the model elements always appear in their

final position in the diagram while exploring its editing history, i.e. not in the

positions they were originally placed.

5.2.3 Variables controlled, and blocking

The following variables were controlled to the greatest extent possible to

minimize their influence and improve generalization of the results. Tables 6 and 7 show

how the blocking was done.

Chapter 5 – Prototype evaluation

 68

Problem

Three different problems were used to create the original models, an Airline

system, an Investments system, and an Elections system. Each participant saw one model

for each problem. Using three models ensured the result generalizes to multiple models.

Problem sequence

 All possible combinations of model sequences were used with various

participants to ensure there was no transfer of learning.

Person creating original model

 Models from three different people were used

Model

Five different models were used, one from the Airline system, two from the

Investments system, and two from the Elections system.

Treatment pattern

Four treatment patterns were used. Each treatment pattern involved the participant

doing work with three models. The treatment patterns were named using a three-number

code with the numbers corresponding to the treatment. The lower-case ‘t’ was inserted to

indicate the point in the sequence at which the TMEP training would be performed. This

training is discussed in Section 5.2.5.

The first two treatment patterns involved T1 (only final diagram) first, followed

by training in TMEP, then the two possible sequences of T2 (TMEP original pos) and T3

(TMEP final pos).

 • 1 t32 (i.e. T1, followed by training, followed by T3, followed by T2)

 • 1 t23

The second two treatment patterns involved training in TMEP first, then the two

possible sequences of T2 and T3, then finally T1

 • t32 1

 • t23 1

Participant ability

The experiments were careful to ensure that participants with higher experience

were distributed over the other variables (such as treatment pattern) as were participants

Chapter 5 – Prototype evaluation

 69

with lower experience. This was to avoid biasing a treatment pattern or treatment with

people with a particular experience level.

Those users who had industrial experience creating class diagrams for real

problems, or who had worked on the class diagram features of software engineering tools

were classed as high experience. Those who only had classroom experience creating class

diagrams were classed as low experience.

Table 6 shows the allocation of participants A-K to five models (horizontal axis)

and treatment (vertical). The number after the participant letter indicates whether this

model (row) and treatment (column) was first, second or third in the sequence for that

participant.

T1: Only final

diagram
T2: TMEP
original pos

T3: TMEP
final pos

Investments-A A1 G1 C2

 E3 K2 I2
Investments-B B1 H1 D2

 F3 J2 L2
Elections-A C1 F2 A3

 H3 I3 J3
Elections-B D1 E2 B3

 G3 L1 K1
Airline I1 A2 E1

 K3 C3 G2
 J1 B2 F1
 L3 D3 H2

Table 6 - Allocation of participants to models

Chapter 5 – Prototype evaluation

 70

To further reduce bias, we allocated the twelve users making sure to have at least

one user with higher UML experience allocated to each of the four possible problem

sequences. This is illustrated in Table 7.

Participant Experience
Treatment

pattern
Problem
sequence

A Higher 1 t23 IAE
B Lower 1 t23 IAE
C Higher 1 t32 EIA
D Lower 1 t32 EIA
E Higher t32 1 AEI
F Lower t32 1 AEI
G Higher t23 1 IAE
H Lower t23 1 IAE
I Not applicable 1 t32 AIE
J Not applicable 1 t23 AIE
K Not applicable t23 1 EIA
L Not applicable t32 1 EIA

Table 7 - Blocking of participants

5.2.4 Setup of the equipment

 We created detailed documents describing what was to be said and done in each

experiment session, in order to ensure that nothing would be omitted, and all sessions

would be consistent. These forms had places in which to record such information as

timings (refer to Appendix 7).

Prior to each session we set up a computer with each required diagram pre-loaded

and set to the correct initial state.

We also set up a spreadsheet to analyze the data. Following each session we

entered the data into the computer and sanity-checked it, e.g. to make sure that the

timings made sense.

We had planned to consider the first couple of participants to be part of a pilot

study, however, their sessions went without a hitch, so we dispensed with the need to

‘start again’.

Chapter 5 – Prototype evaluation

 71

5.2.5 Conduct of the experimental sessions

Each session of the experiment was conducted in the following manner.

Participants were first given the consent form and asked to read and sign it. One

participant backed out very shortly into the study over personal concerns; this person’s

data was not counted.

Prior to working on the first model using T2 or T3, the participants were given a

short training session in the TME feature. The training session consisted of showing the

participant a class diagram of a University system, and showing the participant how the

home key would rewind the history of the diagram back to its ‘empty’ starting point. The

experimenter then demonstrated how pressing the arrow and page-up/page-down keys

would allow navigation of the history. The experimenter ensured that a temporal

annotation appeared in this process. Finally, the participant was given the chance to play

with the feature using the University system, and was asked to let the experimenter know

when he or she understood the user interface well enough to proceed.

For each model in the treatment pattern, the experimenter first revealed on the

computer screen the model in its initial state. Participants were asked to take some time to

understand it. When doing T1, they could simply look at the class diagram on the screen.

When doing T2 and T3, they could use the facilities of TME – the model was presented

in initial (empty) state, so participants were forced to use TME in some way.

Both experimenters (the author of this thesis and his supervisor) started timers to

time the period the participant took to understand the model. The reason for having two

separate timings was twofold: Firstly, if one researcher forgot to start timing for a given

activity, then data would not be lost. Secondly, the exact end of an activity is slightly

subjective, so having two people detecting it helps reduce systematic bias.

Participants were asked to let the experimenter know when they felt they

understood the model well enough to start answering some questions about it.

Participants were asked to answer three specific questions about each model.

Participants were passed the first two questions on a paper and asked to write down their

answer. The third question was answered orally and the experimenters took notes.

We recorded the time that a participant took to arrive to each answer. Following

the experiment, each answer was evaluated for correctness.

Chapter 5 – Prototype evaluation

 72

Again the author and his supervisor recorded timing separately. Upon studying the

data after a few participants had completed their work, we noticed that both people were

using two slightly different timing criteria: Timing 1 took in consideration everything the

participant said before moving to the next question while Timing 2 stopped as soon as the

participant wrote his final answer on paper. Timing 2 would account for additional time if

the participant decided to change his answer. In the end both timings showed statistically

the same or very close results. Overall, each session took between 45 minutes and one

hour.

We used a correctness scale between 0 and 5, 5 representing a correct answer. The

answers were evaluated by the principal investigator as he wrote the problems and has the

necessary skills and teaching experience to do this evaluation.

5.3 Results of performance improvements tests

5.3.1 Time and accuracy answering questions

 First we analyzed the results including the complete set of twelve participants.

The numbers in the speed and accuracy tables are normalized values by model and by

participant. The average for all timings within the timing method (1 or 2) is set to 1. So

for example, a mean of 1.06 for ‘-TME’ means that not using TME it took 6% longer

than the average. Normalization by model was necessary so overall performance

differences on the five models considered will not bias the results (to account for models

that were easier or harder than other models). Normalization by participant was necessary

so participants who are overall better or worse won't bias the results.

 Table 8 and 9 show the results for twelve participants (‘+/- TME’ columns refer to

users using/not using the TME prototype and ‘Orig.P./Final P.’ columns refer to the

absence/presence of the final positioning feature while using the TME prorotype):

 Timing 1 Timing 2

 - TME + TME Orig. P. Final P. - TME + TME Orig. P. Final P.

Mean 0.99 1.00 1.04 0.97 1.01 0.99 1.04 0.94

95% c.i. 0.14 0.07 0.14 0.08 0.18 0.09 0.19 0.12
Table 8 - All participants, answering speed

Chapter 5 – Prototype evaluation

 73

 - TME + TME Orig. P. Final P.

Mean 1.00 1.00 1.01 0.98

95% c.i. 0.08 0.04 0.08 0.05
Table 9 - All participants, answering accuracy

 The overall accuracy results using the TME prototype were equal to the results

without using TMEP, not validating hypothesis H1b. Hypothesis H2b was not validated

either, in fact, it was slightly reversed but without any statistical significance. If we

consider the speed of answering questions, hypothesis H1a was evaluated to be neutral:

overall, participants took the same amount of time to answer questions with or without

the TME prototype. However, participants took less time to answer questions when they

used the final positioning feature, validating H2a.

 Next we analysed the twelve results excluding the four expert participants (those

who ranked themselves as highly knowledgeable or expert in UML). Tables 10 and 11

summarize the results of the non-expert participants. We show the results for both timing

strategies that we applied. Both results show the same conclusions.

 Timing 1 Timing 2

 - TME + TME Orig. P. Final P. - TME + TME Orig. P. Final P.

Mean 1.02 0.99 1.05 0.93 1.06 0.97 1.07 0.86

95% c.i. 0.14 0.07 0.16 0.09 0.18 0.09 0.20 0.15
Table 10 - Non-expert particpants’ answering speed

 - TME + TME Orig. P. Final P.

Mean 1.05 0.98 0.98 0.97

95% c.i. 0.10 0.05 0.08 0.07
Table 11 - Non-expert participants’ answering correctness

We notice that the non-expert participants were able to answer questions faster

using the TME prototype compared to understanding a final static model (hypothesis H1a

Chapter 5 – Prototype evaluation

 74

valid). We also notice average participants taking less time answering the questions using

the final positioning feature (hypothesis H2a valid). However, results for better accuracy

were not validated using the TME prototype (H1b invalid), in fact the result was reversed

but without statistical significance. Using the final positioning showed to have a neutral

effect on accuracy (H2b neutral).

 On the other hand, if we consider only the four expert participants, the

conclusions regarding our hypotheses are different. Expert participants answered

questions more accurately using the TME prototype (H1b) than without. The speed factor

was neutral using TMEP (H1a). The hypotheses that playing the changes using the final

positioning feature would increase the speed and accuracy for answering questions were

not validated for expert participants.

 Tables 12 and 13 show the results for expert participants.

 Timing 1 Timing 2

 - TME + TME Orig. P. Final P. - TME + TME Orig. P. Final P.

Mean 1.01 1.00 0.91 1.09 1.02 0.99 0.84 1.14
95% c.i. 0.15 0.07 0.06 0.10 0.17 0.08 0.08 0.11

Table 12 - Expert participants’ answering speed

 - TME + TME Orig. P. Final P.

Mean 0.94 1.03 1.05 1.01
95% c.i. 0.15 0.08 0.16 0.02
Table 13 - Expert participants’ answering accuracy

 Table 14 summarizes our finding for the various participant categories, including

which hypotheses were validated and which were not. Note that statistical significance

was not achieved in these results, so when we say ‘positive’ we are merely saying there is

good suggestive evidence in favor of the hypothesis, and when we say ‘negative’, we are

merely saying there is suggestive evidence for the opposite of the hypothesis.

Chapter 5 – Prototype evaluation

 75

 H1a
(TME ehables
answering
questions more
quickly)

H1b
(TME enables
answering
questions more
accurately)

H2a
(Final position
enables answering
questions more
quickly)

H2b
(Final position
enables answering
questions more
accurately)

All participants Neutral Neutral Positive Negative

Experts Positive Negative Positive Neutral

Non-expert Neutral Positive Negative Negative
Table 14 - Hypotheses evaluation by participant groups

5.3.2 Initial understanding time for participants
 The above section related to answering questions following a period of

understanding. In this section we analyse how the TME prototype and the final

positioning feature affected the initial understanding time for the participants.

 Table 15 shows the understanding time taken for all twelve participants.

 - TME + TME Orig. Pos. Final Pos

Min 56 106 74 137
Max 225 317 385 425
Mean 118.8 234.5 234.3 234.7
95% c.i. 32.0 42.7 53.0 49.2
Table 15 – All participants’ understanding times

Overall, we notice that the participants took more time to understand the diagrams

using the TME prototype and that the final positioning feature did not make a difference.

However, you will note in the next section (5.4) that all the participants agreed that the

prototype helped them understand faster. We hypothesize that the quality and the amount

of understanding the participant was able to achieve using TMEP is greater than trying to

understand a static final diagram. Future studies could try to validate this hypothesis by

asking the participant a larger number of questions related to the diagram.

 We separately evaluated the times taken by those six participants who ended up

scoring better then the average when they later answered the questions, then the ones who

scored below the average.

Chapter 5 – Prototype evaluation

 76

 Table 16 compares the minimum, maximum and mean understanding times using

TME prototype or not and using the final positioning feature or not:

 - TME + TME Orig. Pos. Final Pos.

Min 56 158 164 145
Max 225 317 385 334
Mean 138.2 255.3 266.2 244.3
95% c.i. 72.7 68.1 85.3 71.8

Table 16 - Above-average participants’ understanding times (all values in seconds)

 This group of participants saved understanding time using the final positioning

feature. All values (min, max, and mean) indicate this. However, the confidence interval

shows clearly that there was not enough data for statistical significance.

 Another interesting result is that the participants who scored less than the average

for answering the questions took less time to understand the models. The final positioning

feature did not help those participants to understand the diagrams faster. Table 17

contains the times for six below-average participants:

 - TME + TME Orig. Pos. Final Pos

Min 61 106 74 137
Max 147 309 349 425
Mean 99.3 213.8 202.5 225.0
95% c.i. 28.8 83.0 97.8 106.1

Table 17 - Below average participants’ understanding times

Table 18 shows the results for each of the participants’ average correctness and

over or under self-estimation of ability. The actual ability column is measured depending

on the correctness with which the participant answered our questions; the data is

normalized so that the average equals 1. The declared expertise column was chosen by

the participant in one of the preferences questions. The over- or under-self-estimation is

calculated by computing a normalized value of declared expertise (setting the mean to 1),

Chapter 5 – Prototype evaluation

 77

and then computing how much this normalized compared value exceeds (or is below) the

measured expertise.

Participant ↓ Actual ability

(mean = 1)

Declared expertise Over (>1) or under

(<1) self-estimation

A 1.17 4 0.88

B 0.91 3 0.96

C 0.96 5 1.23

D 0.73 3 1.20

E 1.02 5 1.15

F 1.08 2 0.68

G 1.06 2 0.69

H 0.81 3 1.08

I 1.15 3 0.77

J 1.11 3 0.79

K 1.01 2 0.73

L 0.95 2 0.77
Table 18 – Participants’ over or under estimation of self-ability

The correlation coefficient between measured ability and declared expertise was

0.02, which indicates almost no relationship. We conclude from these results that the

participants declared self-ability is questionable.

Refer to Appendix 6 for complete user study data.

5.4 Participant preference

 All twelve participants were all very satisfied from the benefits of using our

prototype. The ratings they gave (on a scale between 1 and 5, respectively ranging from

strong disagree to strongly agree) to the preference questions clearly show how their

experience of understanding a model was enhanced by using our prototype. Preference

questions details can be found in Appendix 5.

Chapter 5 – Prototype evaluation

 78

Question 1 addressed time taken for the participant to gain an understanding of a

class diagram. All the participants agreed that the TME prototype helped them

understand class diagrams more quickly. The mean value for this question was 4.2/5 with

a very strong 95% confidence interval of only 0.22. This means that we can be 95%

confident that the population mean would be at least 3.98 out of 5, where any value above

3 would constitute a positive response.

Note that, as discussed earlier, in practice the time taken to understand diagrams

was actually longer using TME, so the results of Question 1 disagree with participants’

actual performance.

 Question 2 addressed the concept of snapshots, in particular it asked whether the

grouping of steps in the development of the model was useful to the participant. Most

participants agreed that the increments while using page up and page down were of an

appropriate size. The mean value for this question was 4.1/5, and the 95% confidence

interval is 0.45.

 Question 3 asked whether the participants preferred that classes appeared in their

final positions in the diagram and did not move when exploring history. Overall, this

question received a mean of 3.8/5 and a 95% confidence interval of 0.8 which means

participants preferred final positioning, and we can be statistically confident that the

population mean would be above the neutral value of 3.

 However, two participants (managers) strongly disagreed with this, they thought

that seeing classes move around in the diagram might present some design logic.

Excluding those two of twelve participants would raise the mean value to 4.3/5 with a

confidence interval of 0.42. Note that this is an optional feature that our prototype

features for playing back the history of a model, so we do satisfy all of our users – those

who don’t like it can turn it off.

 Question 4 asked whether the participant would actually use our prototype if it

was available in his work environment and they were asked to understand a class

diagram. The results were positive. The mean value is 3.9/5 with a 95% confidence

interval of 0.45. This is encouraging and proves that we are helping developers get more

out of software tools.

Chapter 5 – Prototype evaluation

 79

 Question 5 evaluated whether important classes appeared at earlier stages in the

history of a model and less important classes came at later stages. In general participants

agreed with a mean of 3.4/5 and a 95% confidence interval of 0.56. This question was of

general interest, and did not serve to evaluate the prototype itself. The confidence interval

is low enough, such that for this question we cannot be certain the population mean

would be above neutral 3.

 Question 6 took another approach: we reversed the direction of the question and

asked about the participant’s negative experience instead of the positive experience. We

asked the participants if using the TME prototype resulted in them taking longer to

answer the questions. Most participants disagreed, although some were neutral about this.

The mean value for this question was 2.4/5 and the 95% confidence interval is 0.29,

indicating that this is statistically significant. Asking questions in a negative way is

common practice when using a Likert scale – having questions with both polarities serves

to double-check the results.

 Similar to question 6, the final question (Question 7) about the participant’s

experience addressed a usability issue: was the prototype awkward to use? We calculated

a mean value of 1.7/5 and a 95% confidence interval of 0.37 clearly showing that the

participants found this prototype to be easy to use. This is positive because users would

naturally be more willing to use a simple tool.

Table 19 groups the rankings of participant preferences including minimum value,

maximum value, mean value, standard deviation and 95% confidence interval:

 Q1
Faster

undertanding

Q2
Useful

snapshots

Q3
Prefer

final pos.

Q4
Would
use it

Q5
Important
class first

Q6
More time
to answer

Q7
Awkward-

ness

Max 5 5 5 5 5 3 3
Min 4 2 1 3 1 2 1

Mean 4.2 4.1 3.8 3.9 3.4 2.4 1.7
StDev 0.4 0.8 1.4 0.8 1.0 0.5 0.7
.95 cfd 0.22 0.45 0.80 0.45 0.56 0.29 0.37

Table 19 - Participants’ preference data

 All of our results calculated from participant preferences are positive. This is an

excellent sign that this prototype could become a successful tool feature.

Chapter 5 – Prototype evaluation

 80

5.5 Additional participant feedback
 We compiled Tables 20 and 21 to show the positive experiences of participants

and their suggestions for improvements of the prototype. The participants wrote these in

their answers to open ended questions. We mark a box in the tables with an ‘x’ if the

participant mentioned the described positive aspect or suggestions in his answers to

Questions 11 and 12.

Positive participant experience A B C D E F G H I J K L

Ease of use x x x
Ability to go back and forth between steps x x
Stepping between snapshot x x x x
Intuitive/Enhanced learning/Not
overwhelming

 x x x x x

Useful temporal annotations x x x x x x x x x x
Table 20 - Usability study, positive participant experiences (columns represent participants)

 It is remarkable that almost every participant mentioned the usefulness of the

temporal annotations. This shows that capturing temporal design decision information in

the model is considered extremely important for understanding. However, this requires

that the creator of the model makes the decision of including a temporal annotation,

although not necessarily at the moment that the change is made. On our part, we have

integrated this functionality inside the palette that the model creator uses to create the

model. We aimed to make this as visible and easy to use as possible in order for this

feature to be adopted.

 The participants also suggested many useful extensions to the prototype. These

are listed in Table 21 (columns indicate participants).

Chapter 5 – Prototype evaluation

 81

 Suggested Improvements A B C D E F G H I J K L

1 Filter changes related to moving
elements x

2 Maintain final variable names throughout
the history x

3 Highlight new changes x x x x x

4 Handle multiple diagrams on the same
model x

5 Show comparison of snapshots on the
same surface x

6
Check points that we can jump to instead
of sequentially moving between
snapshots

 x x

7
Stepping buttons need to work when the
diagram is selected (when TMEP view
does not have focus)

 x

8 Faster operation x

9 Separate semantic and notational
changes x

10 Scalability issues x
11 Label each iteration in the timeline x x

12 Displaying the annotation box should not
block the diagram view x

13 Show the number of steps left to reach
the end x

14 Annotation box should be displayed even
when going backwards in the history x x

15 Ability to choose what types of changes
to show or not x

Table 21 - Usability study, participant suggested improvements (columns indicate participants)

 We will discuss in the following the suggested improvements grouped in the

following categories: change management, visualization, operation, and navigation.

5.5.1 Change management

 Suggestions (1), (2), (9), and (15) are related to filtering. We already support

filtering changes related to movements (1) by keeping the elements in the final position in

the diagram. A participant suggested that we also maintain the final name given to an

element (2). This means that we would filter out changes related to renaming elements.

We could hypothesis that this would give the user a better perspective on what the final

design is going to be. Another participant suggested (9) separating changes that affect the

Chapter 5 – Prototype evaluation

 82

user interface (notational changes) and semantic changes that only affect the semantic

UML model without being reflected in the UI. A generalization of (2) and (9) is (15), we

support filtering in our prototype’s architecture by creating a class implementing the

IProcessor interface. Each filtering class could manage the changes following a particular

strategy. Further user studies could determine which strategies are useful to the users.

Specific types of users might need specific strategies: a system architect perspective

might be different from a junior programmer.

5.5.2 Visualization

 Suggestions (3), (5), (12), and (14) discuss visualization enhancements. We

already discussed the idea of highlighting new changes (3) but did not achieve it in the

current prototype because of time constraints. Techniques for highlighting new changes

are described in Chapter 4. We have investigated how highlighting could be performed

within GMF and we will incorporated it in future versions of the prototype.

 Another visualization technique is to superimpose two representations of the

diagram using shading to separate their elements (5): the previous representation could be

faded out so the new additions would stand out clearly to the person understanding the

changes.

 A small bug was mentioned in (12): the annotation box displaying the temporal

annotation could perhaps hide elements of the diagram. We will need to find a strategy to

display this box in an empty location in the diagram, let this box have some degree of

transparency or dedicate a particular view in the application to display annotations (a

challenge here would be to make sure the user notices that an annotation has been

displayed in the view).

 We had decided to display an annotation if the person understanding the changes

was going forward in time, but not backward. We made this decision because we wanted

to show how the original creator of the diagram was thinking. However, some

participants also wanted to see that temporal annotation when navigating backwards in

time (14). The reason behind this was that it is confusing that they don’t see the same

elements being shown and hidden (if the annotation should show whether its change was

being applied or reversed). We could include this option as a preference in our prototype.

Chapter 5 – Prototype evaluation

 83

5.5.3 Operation

 Suggestions (4), (8) and (10) relate to the operation of the prototype.

 Tracking changes on multiple diagrams (4) within a model is part of the

architecture of our prototype. Currently, there are some bugs when recording changes on

multiple diagrams, this functionality works well for playing back changes. The bugs will

be addressed in the future.

 One participant wanted to instantly jump between the start and end of a diagrams

history. Currently, we need to apply or reverse changes sequentially in order to move

between two points in time. This is the architecture of the EMF change recorder that our

prototype depends on. One participant did not like the fact in a particularly complex

diagram it took a few seconds to jump between the start and the end of the set of changes.

A suggestion to improve performance was to disable refreshing the user interface

(diagram) until all the changes have been applied.

Another issue was the scalability (10) of our prototype. Currently, change files

captured for our models were between 166 KB and 385 KB. We noted that the change

file is larger then the model itself, since model size was between 68KB and 96KB. We do

not have control over the size of the change descriptions as they are serialized by the

EMF change recorder. However, they are XML data with many repetitive textual

elements, they could be compressed significantly. Further studies could determine how a

change files grows over time.

5.5.4 Navigation

 Suggestions (6), (7), (11), and (13) addressed issues related to navigating changes.

 Currently, we have a slider control that shows the user the where he is in the

changes timeline. A participant wanted a more accurate location description (13) by

showing the number of steps left to reach the end.

There is no mechanism to quickly move between points in the timeline. Some

participants wanted to jump among a list of checkpoints (6). Labeling snapshots (11) in

the timeline is also desired: we could have an indicator in the timeline with a tip that is

displayed when the user hovers over a snapshot with the mouse.

Chapter 5 – Prototype evaluation

 84

 The controls to navigate the history are tied to the slider. The user exploring the

history of a model needs to select a particular view in RSx (Eclipse view), in order to use

the keys to navigate. Sometimes, an element is out of the scope of the visible diagram

area and the user needs to use the scrollbar in order to view it. A couple of participants

forgot to click back on the TME view and wondered why the keys would not work. A

more convenient way to navigate the changes would be to tie the keys to the diagram (7):

a user would be able to press a navigation key while having the diagram view selected so

he doesn’t have to switch between views.

Chapter 6 – Conclusion

 85

Chapter 6: Conclusion

6.1 Problem statement

 People face limitations in quickly understanding a complex artefact such as a

UML model. As the artefact has been developed other time, many temporal aspects are

not embedded in its final static representation. These temporal details are important for

understanding. Current software development environments present features with limited

support to the Temporal Details patterns. Users do not know what the most important

elements in a model are. They are overwhelmed by a great number of details. People

encounter difficulties understanding design decisions in UML class diagrams since they

are unaware of the rationale that led the design to be the way it is.

6.2 Proposed solutions and their effectiveness

 We proposed a tool that captures model and diagram changes and allows users to

add annotation associated with any change. The tool allows playing back the changes and

viewing and editing the annotations. Snapshot marking allows the user to navigate the

changes at various levels of granularity. The ‘final positioning’ feature can filter out

particular types of changes (related to movement) allowing the user to only focus on how

the diagram was constructed.

The tool idea is based on the cognitive patterns category Temporal Details. The

main idea of the tool is to show a software representation dynamically and incrementally,

this is the idea of capturing temporal details that are usually lost in the final static

representation of the system. We directly support the Snapshot and Meaning patterns by

allowing the user to mark snapshot positions in the history of a model and to attach a

temporal annotation to any change at any position in the history of the model. The Long

View pattern is supported by jumping between snapshots while reviewing the history.

The Quick Start pattern is supported by letting the user understand a diagram

incrementally starting at the point the diagram was created. The Multiple Approaches

pattern is future work.

The following represent some of the advantages to our approach compared with

the other known solutions:

Chapter 6 – Conclusion

 86

a) The understander can step through history and add annotations at different

levels of granularity, unlike other approaches such as persistent undo and

configuration/version management.

b) Control of what aspects of history can be explored are controllable by the

understander, whereas configuration/version management approaches put that control

largely in the hands of the modeler alone.

c) Movement through history is in real-time, unlike in configuration/version

management approaches which require discrete interactions.

d) Temporal annotations can be added and manipulated at any time, unlike in

version management tools.

e) Unlike change tracking as in a word processor, all changes back in time were

tracked, not just the last set.

f) Unlike persistent undo, the final model is preserved when the understander

looks back in time.

Our empirical study with twelve industrial participants showed that practitioners

overwhelmingly approve of the feature and would use it if it were installed when they

have to understand class diagrams.

We attempted to obtain evidence that performance (in terms of time savings and

better answers) of practitioners would be improved when using our prototype. However,

results were mixed and generally not statistically significant. There was significant

evidence (for expert users), however suggesting that displaying the ‘final positions’ of

model elements is better than showing their original positions, when viewing the earlier

state of a diagram.

Our overall conclusion is that the TME feature would be useful and should be

deployed. It could attract customers to IBM’s product line (in a small incremental

manner), and would help modelers feel they can better perform their work.

6.3 Threats to validity

 In our user study we attempted to control a wide variety of variables, therefore

reducing threats to validity. However, some of the remaining threats to validity are the

following:

Chapter 6 – Conclusion

 87

• Low number of participants: Participant time is expensive, so we limited

ourselves to twelve people. It is possible that with very significantly larger

numbers of people, our results might have been different: In particular, we

would have eventually obtained statistically significant results on our

performance tests.

• Questionable expertise level of participants: We observed that participants

tended to have lower expertise at modeling than we expected, and were

generally poor at self-assessing their levels of expertise.

• Self-evaluation of whether participants would use the TME feature: Although

the participants were enthusiastic about the prototype, and said they would use

it, they may have been over-optimistic. In an extended study it would be

necessary to install the tool and observe their use of it over time.

• Limited population from which the sample was drawn: The participants were

primarily UML tool developers or their managers, not people doing large-

scale modeling. They may be biased in favour of tool features in some way.

6.4 Future work

 The Temporal Model Explorer prototype opens doors for other features based on

cognitive patterns including Multiple Approaches: while playing back the diagram

history, a user might decide to stop at a certain point and continue the design from a

different approach. The TME prototype could be extended to provide support for this

functionality allowing the users to create and view multiple design approaches.

 Multiple levels of snapshots could be incorporated: we currently support only one

level of snapshots that groups a set of changes. An additional feature would be supporting

a snapshot that groups a set of other snapshots. This would be particularly useful if the set

of changes is very large. It would allow users to quickly navigate through the entire

history and then review in more detail the evolution between two selected higher-level

snapshots.

 Highlighting changes between two consecutive steps in the history would increase

the user-friendliness of our prototype. We already attempted to implement this

functionality and it will become available in future versions of the TME prototype.

Chapter 6 – Conclusion

 88

 Other interesting features that would increase the user’s performance using our

prototype is to allow users to search temporal annotations, having the capability of

placing the user at a position in the history where a certain artefact was created, and

allowing the user to re-order snapshots in order to provide alternative explanations.

 Further user studies could include a larger number of participants, more complex

models, and more questions per model in order to attempt to get more statistically

significant results.

References

 89

References
[1] Adam Murray, Discourse Structure of Software Explanation: Snapshot Theory,

Cognitive Patterns and Grounded Theory Methods, Doctoral thesis, Computer

Science, University of Ottawa, 2006.

 http://www.site.uottawa.ca/~tcl/gradtheses/amurray/

[2] Adam Murray, Timothy C. Lethbridge, “A Brief Summary of Cognitive Patterns

for Program Comprehension”, Working Conference on Reverse Engineering,

Delft, Netherlands, IEEE Computer Society, pp. 304-305.

[3] Adam Murray, Timothy C. Lethbridge. “Cognitive Patterns for Program

Comprehension: Temporal Details”, Pattern Languages of Programs (PLoP)

2005, Allerton Park, IL, USA, http://hillside.net/plop/2005/proceedings.html

[4] Adam Murray, Timothy C. Lethbridge. On Generating Cognitive Patterns of

Software Engineering” CASCON 2005, Toronto, October, IBM, in ACM Digital

Library, pp. 129-139.

[5] Ahmed Seffah and Alina Andreevskaia. “Empowering Software Engineers in

Human-Centered Design”, Proc. 25th International Conference on Software

Engineering (ICSE). IEEE Computer Society. 2003, pp. 653-659.

[6] Andrew Walenstein. “Theory-based Analysis of Cognitive Support in Software

Comprehension Tools”. 10th International Workshop on Program

Comprehension (IWPC'02). IEEE. 2002, pp 75-84.

[7] Borland’s website, http://www.borland.com/ca/products/together/index.html,

visited on May 8, 2006.

References

 90

[8] Borland StarTeam website

http://www.borland.com/us/products/starteam/index.html, visited on September

10, 2006

[9] Brian P. Bailey, Joseph A. Konstan. “Are Informal Tools Better? Comparing

DEMAIS, Pencil and Paper, and Authorware for Early Multimedia Design”, Proc.

SIGCHI conference on Human Factors in Computing Systems. ACM Press. 2003,

pp. 313-320.

[10] Davor Cubrani, Gail C. Murphy, Janice Singer, Kellogg S. Booth, “Learning

from Project History: A Case Study for Software Development”. Proc. 2004 ACM

conference on Computer-supported cooperative work. ACM Press. 2004, pp. 82-

91.

[11] EASEL website, http://www.isr.uci.edu/projects/easel/index.html, visited on

September 16, 2006

[12] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley Professional;

1st edition (January 15, 1995)

[13] Graphical Modeling Framework website, http://www.eclipse.org/gmf/, visited on

September 11, 2006

[14] IBM, Rational Software Architect website, http://www-

306.ibm.com/software/awdtools/architect/swarchitect/, visited on September 09

2006.

[15] IBM’s website, http://www-

306.ibm.com/software/awdtools/modeler/swmodeler/index.html, visited on May

8, 2006.

References

 91

[16] IBM Rational Software products website, http://www-

306.ibm.com/software/rational/offerings/design.html, visited on September 11,

2006

[17] IBM Rational RequisitePro website, http://www-

306.ibm.com/software/awdtools/reqpro/, visited on September 12, 2006

[18] IBM Software, Rational ClearCase website, http://www-

306.ibm.com/software/awdtools/clearcase/, visited on September 11, 2006

[19] Jintae Lee, “SIBYL: a tool for managing group design rationale”. Proc. 1990

ACM conference on Computer-supported cooperative work. ACM Press. 1990,

pp. 79-92.

[20] Mary Beth Rosson, Susanne Maass, and Wendy A. Kellogg. “The Designer as

User: Building Requirements for Design Tools from Design Practise.”

Communications of the ACM. 31, 11, ACM Press. 1988, pp. 1288-1298.

[21] Scott A. Hendrickson, André van der Hoek, “Modeling Product Line

Architectures through Change Sets”. Technical report.

[22] Timothy C. Lethbridge, Robert Laganière, Object Oriented Software

Engineering:

Practical Software Development Using UML and Java, 2nd Edition, 2004,

McGraw Hill, London.

[23] William Harrison, Harold Ossher and Peri Tarr. “Software Engineering Tools and

Environments: A Roadmap”, ICSE 2000, Proc. Conference on The Future of

Software Engineering. ACM Press. 2000, pp. 261-277.

Appendix 1 – Software systems descriptions and designs

 92

Appendix 1 – Software systems descriptions and

designs

A1.1 Elections Management System

 The Ootumlia Elections Commission is a designing a system to manage

elections. The system will manage elections for a variety of different elected bodies (e.g.

school boards, city councils etc.). Each elected body can have various positions (also

called seats, e.g. mayor, councilor etc.). Elections are scheduled for a specific date, and

usually several (or all) positions are voted on together; however, sometimes there may be

the need for a by-election (e.g. to elect a particular councilor because the incumbent - the

previous person who held the position - has resigned).

 The system will keep track of candidates for each seat. The system will also

record who is the incumbent for a seat, since newspaper reporters are interested in

reporting whether incumbents have won again or lost. The system records the name and

address of each candidate and incumbent.

The system will also keep track of the list of eligible voters. Each voter can only vote for

certain positions (e.g. a particular council seat that represents their area). Each voter is

also assigned to vote at a specific poll - each poll has a number and is located in a polling

station. The system records the name and address of each voter.

 Finally, the system will keep track of the number of votes for each candidate at

each poll. However, under no circumstance will it record which voter voted for which

candidate, nor whether a voter voted at all.

 Figures 38 and 39 show the two design solutions for the problem above.

Appendix 1 – Software systems descriptions and designs

 93

Figure 38 - Elections system, design 1

 Participants who were given the Elections system diagram in Figure 38 were

asked to answer the following questions:

 1. Each voter needs a voter number. This number will be printed on a registration

card that they take to the polling station. This should be added as an attribute in which

class?

2. We need to add a derived attribute showing the total number of votes a

candidate got in the election. Which class should this go in?

 3. We want to change the model to record whether a voter has voted, but without

recording who the voter voted for. The idea is to stop the voter voting twice. Explain to

the experimenter how you would edit the model to incorporate this feature.

Appendix 1 – Software systems descriptions and designs

 94

Figure 39 - Elections system, design 2

 Participants who were given the Elections system diagram in Figure 39 were

asked to answer the following questions:

 1. Each voter needs a voter number. This number will be printed on a registration

card that they take to the polling station. This should be added as an attribute in which

class?

2. In which class would I put a derived attribute ‘\totalVotes’ to indicate the total

number of votes a candidate received in the election?

3. Class Person does double duty representing a Voter and a Candidate. However,

associations in the model currently state that a voter is

 a) always an incumbent in a seat,

 b) always a candidate in a seat, and

 c) always has results in a poll.

Appendix 1 – Software systems descriptions and designs

 95

Describe to the experimenter what you would do to fix these three problems. Hint: The

solution to each problem is similar.

A1.2 Investments System for OOBank

 OOBank has a separate investment division. This division manages various

mutual funds in which investors may invest and also looks after the investment portfolios

of investors.

 An investor may at any point in time have several investment advisors. These

help the investor decide in what to invest. Different investment advisors specialize in

different types of investments.

 Investors make a series of transactions and may have to pay a commission on

each transaction. The commission is paid to the investment advisor that arranged the

transaction.

 For each investment the system must keep track of the number of shares (also

called units) in addition to the amount the investment is worth today and the amount

originally invested.

 Each mutual fund invests its money in various securities. The securities can be

stocks, bonds or other mutual funds. We must be able to calculate the original amount

invested in each security as well as how much that investment is worth today. Each

mutual fund may have several investment advisors that help the fund decide what

securities in which to invest.

 The mutual funds in which investors invest may be managed by OOBank or by

some other company. Each mutual fund company may manage several mutual funds.

 Figures 40 and 41 show the two design solutions for the problem above.

Appendix 1 – Software systems descriptions and designs

 96

Figure 40 - Investment system, design 1

 Participants who were given the Investment system diagram in Figure 40 were

asked to answer the following questions:

1. Mutual funds have an alphanumeric code used to uniquely identify them. In

which class should I add an attribute fundCode?

2. Some investment transactions, such as payment of a dividend, do not involve

an investment advisor at all. Currently, however the diagram requires that all transactions

do involve an advisor. What change to the diagram should you make to fix this?

3. Explain to the experimenter how you would modify the diagram to allow an

investor to invest in stocks. The new Stock class should have attribute ‘dividendRate’.

Appendix 1 – Software systems descriptions and designs

 97

Figure 41 - Investment system, design 2

 Participants who were given the Investment system diagram in Figure 41 were

asked to answer the following questions:

 1. Mutual funds have an alphanumeric code used to uniquely identify them. In

which class should I add an attribute fundCode?

2. A transaction must specify an amount of shares bought or sold. What change or

changes to the diagram should you make to fix this?

3. Currently the single instance of OOBankInvestDivision can take on the role of

IMFManager to manage a mutual fund. Imagine an InvestmentAdvisor can also take on

this role. Explain to the experimenter how you would modify the diagram to this.

A1.3 Airline system

The Basic Airline Reservation System will enable a new airline to quickly

configure is flights and start taking bookings. The airline will fly a number of routes,

each broken down into legs, where a leg involves flying from one airport to another.

Airports are identified by three-letter codes, such as LAX for Los Angeles International

Airport, or YOW for Ottawa International Airport.

Appendix 1 – Software systems descriptions and designs

 98

Once a set of routes are established, the airline schedules flights on those routes.

There may be more than one flight a day on the same route. Each scheduled flight is

given a flight number, which is reused from day to day. When defining a scheduled flight

on a given route, the departure and arrival time must be defined for each leg. Finally each

daily departure of a given scheduled flight must be set up. The actual and expected

departure and arrival times for these are changed in real time as data becomes available.

Crew members must be defined for each flight leg. The system tracks the job title,

employee umber, name and address of each crew member, as well as who is their

supervisor.

Finally, passengers are added t the system. A passenger has a name, and may have

a frequent flier number, emergency contact number, home address and passport number.

A passenger can be booked on a set of flight legs. Each booking is has a class (e.g.

economy, business), a fare, and an assigned seat.

Figure 42 shows the design solution for the problem above.

Figure 42 - Airline system, design

Appendix 1 – Software systems descriptions and designs

 99

 Participants who were given the Airline system diagram in Figure 42 were asked

to answer the following questions:

 1. The model doesn’t currently keep track of the name of the cities where flights

go. In which class should I add an attribute cityName?

2. Imagine the airline regularly flies from Ottawa to Toronto, but wants to create

an extra charter flight tomorrow from Ottawa to Toronto. To enable this, the system will

have to create instances of one or more classes. Which classes will the system have to

make instances of? No need to worry about booking any passengers or assigning crew.

3. Explain to the experimenter how you would modify the diagram to allow

several bookings to be grouped (e.g. when family members fly together).

Appendix 2 – Recruitment text

 100

Appendix 2 – Recruitment text

The following email was sent to prospective participants for Step 1. When sent to

students, the wording about managers was not used.

Hi,

My name is Hanna Farah and I am an IBM CAS Student. I am doing my masters degree

at the University of Ottawa under the supervision of Timothy Lethbridge.

I am looking for volunteers to participate in a research project. I need a couple of people

to build UML models using a special version of Rational Software Modeler. The models

you create would then, anonymously be used in another step of my research, in which we

will ask participants to try to understand them.

If you agree to participate, the total time requirement would be about an hour and a half,

at a time convenient for you. It could also be broken into two 45-minute sessions.

If you are willing to participate, would you simply reply to this email (or drop by my

desk at IBM). Participation is strictly voluntary. Your name was one of the names

suggested by IBM managers, but they do not require you to participate.

Thanks

Hanna

Appendix 2 – Recruitment text

 101

The following email was sent to prospective participants for Steps 3 and 4

Hi,

My name is Hanna Farah and I am an IBM CAS Student. I am doing my masters degree

at the University of Ottawa under the supervision of Timothy Lethbridge.

I am looking for volunteers to participate in a research project. I need several people to

participate in an experiment in which you would try to answer some questions about a

class diagram. This would be done using a version of Rational Software Modeler in

which certain special features may have been activated. The purpose of the experiment is

to evaluate the features.

If you agree to participate, the total time requirement would be about 55 minutes, at a

time convenient for you.

If you are willing to participate, would you simply reply to this email (or drop by my

desk at IBM). Participation is strictly voluntary. Your name was one of the names

suggested by IBM managers, but they do not require you to participate.

Thanks

Hanna

Appendix 3 – Informed consent, step 1

 102

Appendix 3 – Informed consent, step 1

I, (name of research subject) ___________________________________, accept to

participate in a University of Ottawa research project entitled “Applying Cognitive

Patterns to Software Tool Development”. The student performing the research, Hanna

Farah, will use the results as part of his Master’s thesis. The research supervisor is Dr.

Timothy C. Lethbridge, of the School of Information Technology and Engineering.

The purpose of the research is to help improve certain features of software modeling

tools. Specifically, we are interested in a feature that allows a user to look at the

history of development of a UML class diagram in order to understand it.

In the step of the work in which I am participating involves performing two

modeling tasks. The models I create, including the steps I used (the order in which I

added classes and associations, for example) will then be used in later experiments

with other users. However, nobody will know that it was I that created the models.

More specifically, my participation will consist of the following:

• To use a special version of Rational Software Modeler (RSM) to create two class

diagrams. I will be given some simple requirements on which to base the diagrams.

The version of RSM has been instrumented to record the steps I use as I create the

model.

• After completing each model, I will review it with the researcher and possibly make

some changes to the model.

It is anticipated that developing each model will take about 45 minutes, resulting in a

total of about an hour and a half of participation.

There are no known risks to this activity, however I understand that I have the right to

stop participating at any time. In such a case, a partial models I have built will not be

used.

Appendix 3 – Informed consent, step 1

 103

I understand that participation is strictly voluntary. If I am a student, my grades and

academic standing will in no way be affected by my participation as a research subject, or

my choice not to participate.

I have received assurance from the researchers that the models I create during the

session will remain strictly anonymous. Anonymity will be assured because my name

will not be recorded anywhere.

Any information requests or complaints about the ethical conduct of the project may be

addressed to the Protocol Officer for Ethics in Research, +1 613 562-5800 ext. 1787.

There are two copies of this consent form, one of which I may keep.

If I have any questions, I may contact the student at +1 612 262-4567 (email

drhif@yahoo.com) or Dr. Lethbridge at +1 613 562-5800 ext. 6685 (email

tcl@site.uottawa.ca).

Research Subject’s signature __________________________ Date ______________

Researcher signature __________________________ Date _______________

I wish to receive a summary of findings of this research when available:

Yes ___ No ___

If I wish to receive a summary of findings of this research, then I can be reached at

Appendix 4 – Informed consent, step 3,4

 104

Apendix 4 – Informed consent step 3,4

I, (name of research subject) ___________________________________, accept to

participate in a University of Ottawa research project entitled “Applying Cognitive

Patterns to Software Tool Development”. The student performing the research, Hanna

Farah, will use the results as part of his Master’s thesis. The research supervisor is Dr.

Timothy C. Lethbridge, of the School of Information Technology and Engineering.

The purpose of the research is to help improve certain features of software modeling

tools. Specifically, we are interested in a feature that allows a user to look at the

history of development of a UML class diagram in order to understand it.

In the step of the work in which I am participating involves attempting to answer

some questions about UML class diagrams. The class diagrams have been created

anonymously by other participants.

More specifically, my participation will consist of the following:

• To use a special version of Rational Software Modeler (RSM) to study three class

diagrams and answer five questions about each of them. Various features will be

available to me, and the researcher will explain these features.

• After completing the above, I will be asked some general questions about my

experiences.

It is anticipated that my participation will take about 55 minutes in total.

The time it takes me to answer the questions about the class diagrams will be measured.

However, I understand that it is not me that is being evaluated; instead it is the

software tool.

Appendix 4 – Informed consent, step 3,4

 105

There are no known risks to this activity, however I understand that I have the right to

stop participating at any time. In such a case, the data gathered from my participation

will not be used.

I understand that participation is strictly voluntary. If I am a student, my grades and

academic standing will in no way be affected by my participation as a research subject, or

my choice not to participate.

I have received assurance from the researchers that the data arising from my

participation will remain strictly confidential. Anonymity will be assured because my

name will not be recorded anywhere.

Any information requests or complaints about the ethical conduct of the project may be

addressed to the Protocol Officer for Ethics in Research, +1 613 562-5800 ext. 1787.

There are two copies of this consent form, one of which I may keep.

If I have any questions, I may contact the student at +1 612 262-4567 (email

drhif@yahoo.com) or Dr. Lethbridge at +1 613 562-5800 ext. 6685 (email

tcl@site.uottawa.ca).

Research Subject’s signature __________________________ Date ______________

Researcher signature __________________________ Date _______________

I wish to receive a summary of findings of this research when available:

Yes ___ No ___

If I wish to receive a summary of findings of this research, then I can be reached at

Appendix 6 – Raw and normalized data from user study

 106

Appendix 5 – Preference questionnaire

For Q1-Q5 of the following, please circle whether you strongly agree, agree, are neutral,
disagree or strongly disagree with the statement:

Q1: I found that the TMEP feature (the ability to explore the history of development of a
diagram) helped me understand class diagrams more quickly.

Strongly agree agree neutral disagree strongly disagree

Q2: When exploring the history of a model using the page-up and page-down keys, I
found that a useful set of steps in the development of the model (snapshots) were
presented. In other words the increments with which the development of the model was
revealed were neither to small nor too large.

 Strongly agree agree neutral disagree strongly disagree

Q3: When exploring the history of a model using TMEP, I preferred when the classes did
not move. In other words, they were shown in their final position, even though the
modeler may have moved them.

Strongly agree agree neutral disagree strongly disagree

Q4: I would use the TMEP feature if it was available to me in my work environment
and I was asked to understand a class diagram.

Strongly agree agree neutral disagree strongly disagree

Q5: When looking back at the earliest stages of a model’s development with the TMEP
feature, the most important classes appeared first, and the less important classes
appeared later.

Strongly agree agree neutral disagree strongly disagree

Q6: Overall, I found that using the TMEP feature to step through the changes resulted in
me taking a longer time to answer the questions presented, than if I had just looked at
the final diagram. In other words, TMEP didn’t save me time.

Strongly agree agree neutral disagree strongly disagree

Q7: The TMEP feature was awkward to use.

Strongly agree agree neutral disagree strongly disagree

Q8: My expertise in UML is:

Very high high medium low very low

Q9: I create class diagrams:

Appendix 6 – Raw and normalized data from user study

 107

Every day every week every month occasionally only when I was
being educated

Q10: I have to try to understand class diagrams:

Every day every week every month occasionally only when I was
being educated

Q11: What aspects of the TME feature did you most like?

Q12: What aspects of the TME feature could be improved?

Appendix 6 – Raw and normalized data from user study

 108

Appendix 6 – Raw and normalized data from user study

A6.1 Preference questions

Preference questions are ranked between 1 and 5 (1:strongly disagree – 5:strongly

agree), refer to Appendix 5 for more details about the questions.

Participant ↓ Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

A 4 4 4 3 4 2 1 4 2 2
B 4 4 4 3 4 3 2 3 2 3
C 4 2 3 3 3 3 2 5 5 4
D 4 5 5 4 3 2 2 3 3 2
E 4 5 5 4 5 2 2 5 4 2
F 4 4 4 4 3 3 1 2 2 2
G 4 5 1 5 1 3 1 2 2 2
H 4 4 1 4 3 2 2 3 4 4
I 5 4 4 5 3 2 1 3 2 2
J 5 4 4 5 4 2 1 3 2 2
K 4 4 5 3 4 3 2 2 2 2
L 4 4 5 4 4 2 3 2 2 2

Max 5 5 5 5 5 3 3 5 5 4
Min 4 2 1 3 1 2 1 2 2 2
Median 4 4 4 4 3.5 2 2 3 2 2
Mean 4.2 4.1 3.8 3.9 3.4 2.4 1.7 3.1 2.7 2.4
StDev 0.4 0.8 1.4 0.8 1.0 0.5 0.7 1.1 1.1 0.8
.95 Confidence
interval +/- 0.22 0.45 0.80 0.45 0.56 0.29 0.37 0.61 0.61 0.45

Table 22 - Answers to preference questions

Appendix 6 – Raw and normalized data from user study

 109

A6.2 Timings

 Table 23 shows the normalized (by model and by participant) performance results

for speed and accuracy for the twelve participants in our study according to the first

timing strategy. The letters A to L represent the participants.
 Accuracy Speed
 Only T1 T2 & T3 Only T2 Only T3 Only T1 T1 & T2 Only T2 Only T3
 no TMEP TMEP TMEP orig TMPE final no TMEP TMEP TMEP orig TMEP final

A 0.88 1.06 1.15 0.96 0.96 1.02 0.86 1.18
B 1.12 0.94 1.09 0.79 1.03 0.98 1.12 0.85
C 1.07 0.97 0.85 1.08 1.20 0.90 0.91 0.88
D 1.21 0.90 0.80 1.00 0.90 1.05 1.20 0.91
E 1.01 1.00 1.02 0.97 0.57 1.21 1.34 1.08
F 0.94 1.03 0.97 1.08 1.13 0.94 0.95 0.92
G 1.14 0.93 0.84 1.02 0.73 1.13 1.51 0.76
H 0.74 1.13 1.26 1.00 1.06 0.97 1.01 0.93
I 1.18 0.91 0.98 0.84 1.16 0.92 0.92 0.92
J 1.06 0.97 0.99 0.95 1.45 0.77 0.58 0.97
K 0.85 1.07 1.12 1.03 0.99 1.01 0.80 1.21
L 0.85 1.07 1.09 1.06 0.73 1.14 1.23 1.05

Max 1.21 1.13 1.26 1.08 1.45 1.21 1.51 1.21
Min 0.74 0.90 0.80 0.79 0.57 0.77 0.58 0.76

Median 1.03 0.98 1.01 1.00 1.01 0.99 0.98 0.93
Mean 1.00 1.00 1.01 0.98 0.99 1.00 1.04 0.97
StDev 0.15 0.07 0.14 0.09 0.24 0.12 0.26 0.14

.95
Confidence
interval +/-

0.08 0.04 0.08 0.05 0.14 0.07 0.14 0.08

.90
Confidence

interval
0.07 0.04 0.07 0.04 0.11 0.06 0.12 0.06

Table 23 - Performance results, timing 1

Appendix 6 – Raw and normalized data from user study

 110

Table 24 shows the same results according to the second timing strategy:
 Accuracy Speed
 Only T1 T2 & T3 Only T2 Only T3 Only T1 T1 & T2 Only T2 Only T3
 no TMEP TMEP TMEP orig TMPE final no TMEP TMEP TMEP orig TMEP final

A 0.88 1.06 1.15 0.96 0.86 1.07 0.84 1.30
B 1.12 0.94 1.09 0.79 1.20 0.90 1.12 0.68
C 1.07 0.97 0.85 1.08 1.35 0.83 0.81 0.84
D 1.21 0.90 0.80 1.00 0.85 1.07 1.24 0.91
E 1.01 1.00 1.02 0.97 0.47 1.26 1.39 1.14
F 0.94 1.03 0.97 1.08 1.15 0.92 0.98 0.87
G 1.14 0.93 0.84 1.02 0.61 1.20 1.75 0.64
H 0.74 1.13 1.26 1.00 1.06 0.97 0.97 0.96
I 1.18 0.91 0.98 0.84 1.28 0.86 1.00 0.73
J 1.06 0.97 0.99 0.95 1.54 0.73 0.45 1.01
K 0.85 1.07 1.12 1.03 1.06 0.97 0.79 1.15
L 0.85 1.07 1.09 1.06 0.71 1.14 1.20 1.09

Max 1.21 1.13 1.26 1.08 1.54 1.26 1.75 1.30
Min 0.74 0.90 0.80 0.79 0.47 0.73 0.45 0.64

Median 1.03 0.98 1.01 1.00 1.06 0.97 0.99 0.93
Mean 1.00 1.00 1.01 0.98 1.01 0.99 1.04 0.94
StDev 0.15 0.07 0.14 0.09 0.32 0.16 0.33 0.20

.95
Confidence
interval +/-

0.08 0.04 0.08 0.05 0.18 0.09 0.19 0.12

.90
Confidence

interval
0.07 0.04 0.07 0.04 0.15 0.08 0.16 0.10

Table 24 - Performance results, timing 2

Appendix 7 – Experiment data forms

 111

Appendix 7 – Experiment data forms

A7.1 Participant steps for Treatment pattern 1 t23 and 1 t32

Subject letter and initials _________________ Date _____________ Treatment
pattern _____

0. Make sure the experiment is set up properly well before the participant arrives.

1. Welcoming the participant: Explain general purpose of the experiment and have the
participant sign the informed consent form.

2. First diagram (No TMEP). Show them their first diagram _______.

Record the start time _______________

Ask them to generally try to understand the model for 2-3 minutes, and to tell you when
done.

Notes about interesting things he/she did

Record the time after basic understanding ______________

Give them the problem sheet for that diagram. Ask them to answer the questions by
looking at the diagram.

Time done Q1 ________________

Time done Q2 ________________

Time done Q3 ________________ Evaluation of correctness ____________________

Record their general comments about the diagram.

3. Training: Show them TMEP in the University system. Show them the operation of
page down, page up, home and end, and have them walk through the system to
understand how TMEP operates.

Ask them if they understand how TMEP operates. Continue explaining if they seem
unsure.

Continued on next page

Appendix 7 – Experiment data forms

 112

4. Second diagram (TMEP): Show them their correct second diagram _______ that
should be blank since it is TMEP in home position.

Record the start time _______________

Ask them to generally try to understand the model by stepping through the time
sequence, and looking at the final model. Ask them to tell you when done.

Notes about interesting things he/she did

Record the time after basic understanding ______________

Give them the problem sheet for that diagram. Ask them to answer the questions by
looking at the diagram, and using TMEP to go back if they find it helpful.

Time done Q1 ________________

Time done Q2 ________________

Time done Q3 ________________ Evaluation of correctness ____________________

Record their general comments about the diagram

5. Third diagram. Repeat of 4 for the correct third diagram _______.

Start time ________

Notes about interesting things he/she did

Time after basic understanding __________

Time done Q1 ________________

Time done Q2 ________________

Time done Q3 ________________ Evaluation of correctness ____________________

Record their general comments about the diagram:

6. Preferences: Ask the participant to complete the preference questions, and thank
them.

Appendix 7 – Experiment data forms

 113

A7.2 Participant steps for Treatment pattern 23 t1 and 32 t1

Subject letter and initials _________________ Date _____________ Treatment
pattern _____

0. Make sure the experiment is set up properly well before the participant arrives.

1. Welcoming the participant: Explain general purpose of the experiment and have the
participant sign the informed consent form.

2. Training: Show them TMEP in the University system. Show them the operation of
page down, page up, home and end, and have them walk through the system to
understand how TMEP operates.

Ask them if they understand how TMEP operates. Continue explaining if they seem
unsure.

3. First diagram: Show them their correct first diagram _______ that should be blank
since it is TMEP in home position.

Record the start time _______________

Ask them to generally try to understand the model by stepping through the time
sequence, and looking at the final model. Ask them to tell you when done.

Notes about interesting things he/she did

Record the time after basic understanding ______________

Give them the problem sheet for that diagram. Ask them to answer the questions by
looking at the diagram, and using TMEP to go back if they find it helpful.

Time done Q1 ________________

Time done Q2 ________________

Time done Q3 ________________ Evaluation of correctness ____________________

Record their general comments about the diagram:

Continued on next page

Appendix 7 – Experiment data forms

 114

4. Second diagram. Repeat of 3 for the correct second diagram _______.

Start time ________

Notes about interesting things he/she did

Time after basic understanding __________

Time done Q1 ________________

Time done Q2 ________________

Time done Q3 ________________ Evaluation of correctness ____________________

Record their general comments about the diagram:

5. Third diagram. Show them their third diagram _______. Explain that TMEP will
now not be available.

Record the start time _______________

Ask them to generally try to understand the model for 2-3 minutes, and to tell you when
done.

Notes about interesting things he/she did

Record the time after basic understanding ______________

Give them the problem sheet for that diagram. Ask them to answer the questions by
looking at the diagram.

Time done Q1 ________________

Time done Q2 ________________

Time done Q3 ________________ Evaluation of correctness ____________________

Record their general comments about the diagram:

6. Preferences: Ask the participant to complete the preference questions, and thank
them.

