
The Vital Core Connectivity Problem

Sylvia Boyd and Amy Cameron∗

School of Information Technology & Engineering; Dept. of Mathematics & Statistics

University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada

Technical Report, University of Ottawa, 2011†

Abstract

Let G = (V,E) be an edge-weighted complete graph representing a net-
work in which the edges represent potential links, and the vertices (centres)
are partitioned into two classes – vital vertices, which represent the vital
core of the network, and secondary vertices. We consider the vital core

connectivity problem (VCC), which is the problem of finding a minimum
weight spanning multi-subgraph of G which is k-edge connected overall
and whose vital core remains at least l-edge connected even if some or all
of the secondary vertices are removed. The VCC arises naturally in many
practical applications in which one wishes to design a network at minimum
cost which will not only survive the loss of a certain number of links over-
all, but for which the vital core remains at least l-edge connected even if
some or all of the secondary centres are lost. We show that the VCC is,
in general, NP-hard, and present the first constant factor approximation
algorithm for this problem, as well as give an upper bound on the inte-
grality gap of its linear programming relaxation. In particular, we show
an approximation guarantee (and upper bound on the integrality gap) of
8
3 for l ≥ ⌈k

2⌉,
19
6 for 2 ≤ l < ⌈k

2⌉, and 5
2 for l = 1. We also show that in

the case that k = l = 1, the VCC results in a useful generalization of the
minimum cost spanning tree problem, for which we provide a complete lin-
ear description as well as a polynomial-time algorithm. Lastly, we provide
a complete linear description of, and a polynomial-time algorithm for, an
extension of a special case of VCC to numerous disjoint vital cores.

∗Sylvia Boyd: sylvia@site.uottawa.ca, Amy Cameron: acame097@uottawa.ca
†Published in: A. Cameron, Approximation Algorithms for Network Connectivity Problems,

Ph.D. Thesis, University of Ottawa (2012).

1

1 Introduction

Given a network consisting of vital and secondary centres, specific non-negative
costs for connecting any two centres with a link, and non-negative integers k ≥ 1,
l ≤ k, we examine finding a cheapest way to construct a network so that it is
k-edge connected (i.e., so that the network remains connected even if any k − 1
of the links are lost), and so that if some or all of the secondary centres are
lost, the vital core of the network (consisting of the vital centres) remains l-edge
connected. We call this problem the vital core connectivity problem.

This problem has a number of very useful applications in the construction of
survivable networks. For example, military outposts and/or remote transmitters
are often placed in key locations such as mountain ranges, etc.. Since these
outposts are often more vulnerable and susceptible to being lost through enemy
attack or weather, it is useful to have a communications network that is capable
of surviving the loss of a certain number of lines without being disconnected, as
well as capable of surviving the loss of any or all of the vulnerable (secondary)
outposts and still have the vital core remain connected. This holds as well for
subway systems. Subway stations with a high number of subway lines joined to
them are more vulnerable to targeted attack [1]. Thus, it is desirable for a subway
network to be constructed in such a way that not only is it able to sustain the
loss of a certain number of subway lines, but also that its vital core remains at
least connected if some or all of the more vulnerable (secondary) stations are lost.
Such a network makes serious disruption of the subway system through targeted
attack much more difficult. Usefulness to have such a network can be seen with
the March 2004 Madrid and July 2005 London subway bombings [1, 21]. Notice
that finding a solution that is either optimal or very close to optimal means
substantial financial savings for companies constructing such networks. Notice as
well that in some applications, it is useful to allow more than one link (i.e., multi-
links) to be built between a pair of centres in order to build a reliable network
at lower cost. Instances of this occur in the laying of underwater cables between
islands and a mainland, where a link failure is considered to be the failure of a
cable.

A graph is k-edge connected (respectively, k-vertex connected) if it has at least
k edge-disjoint (respectively, internally vertex-disjoint) paths between every pair
of vertices; i.e. if any k − 1 edges (respectively, vertices) are removed, the graph
is still connected. Given a complete graph G with non-negative edge costs, the
k-edge connected spanning subgraph problem (kEC) is the problem of finding a
minimum cost k-edge connected spanning subgraph of G. When multiple copies
of edges are allowed in the solution, we denote the problem by multi-kEC. The
problem of finding a minimum cost k-vertex connected spanning subgraph of G
is denoted kVC.

We can now more formally define our problem. The vital core connectivity

2

problem (VCC) is defined as follows: Given a complete graph, G = (V, E), with
non-negative edge costs c ∈ R

E, non-negative integers k, l ∈ Z, k ≥ l ≥ 1, and
the vertices partitioned into vital vertices V ∗ and secondary vertices V \V ∗, find
a minimum cost k-edge connected spanning multi-subgraph of G such that the
subgraph restricted to V ∗ is l-edge connected. We denote a particular instance
of VCC by VCC(k, l, V ∗). As we will see, the VCC is, in general, an NP-hard
problem and is a generalization of the minimum spanning tree (MST) and k-
edge connected (kEC) problems. Although this problem arises naturally in many
applications, and has some similarities with other problems, to the best of our
knowledge we present the first study of it.

Special cases of VCC that are worth noting are as follows: When V ∗ = V ,
the special case VCC(1, 1, V) is precisely the minimum spanning tree problem.
The more general special case VCC(1, 1, V ∗) will be referred to as the extended
minimum spanning tree problem (EMST), and will be examined separately in
this paper. It is the problem of finding a minimum cost spanning tree of G whose
subgraph induced by V ∗ is also a spanning tree of the vital core G[V ∗]. The
special case VCC(k, 1, V ∗) (i.e., when l = 1) is the problem of finding a minimum
cost k-edge connected spanning multi-subgraph of G such that the subgraph
restricted to the set of vital vertices V ∗ is connected; in particular, such that the
secondary vertices do not form a cut set (i.e., a subset of vertices whose removal
from a connected graph disconnects that graph). When l = 1 and the set of
secondary vertices V \V ∗ consists of a single vertex r ∈ V , then the problem is
that of finding a minimum cost k-edge connected spanning multi-subgraph of G
in which r is not a cut vertex (i.e., a vertex whose removal from a connected
graph disconnects that graph). As we will see, the special case VCC(k, l, V),
i.e. where V ∗ = V , is precisely the problem of finding a minimum cost k-edge
connected spanning multi-subgraph of G; i.e., it is precisely multi-kEC.

As it is considered highly unlikely that efficient algorithms for exactly solving
NP-hard problems exist, we look at designing efficient algorithms that return
approximate, or near-optimal, solutions. If an algorithm runs in polynomial time
and returns a solution whose value is always within a constant factor α of the
optimal value, then the algorithm is known as an α-approximation algorithm,
and the factor α is called the approximation guarantee of the algorithm. A
related concept to approximation guarantees is that of integrality gaps. Given a
minimization problem P , its integer linear program Q, and its linear programming
(LP) relaxation QLP , the integrality gap for the linear programming relaxation is
the largest ratio opt(Q)/opt(QLP) over all possible edge costs. If the integrality
gap of a problem’s LP relaxation is 1, then there always exists an optimal solution
of its LP formulation that is integer. The integrality gap provides a measure of
the quality of the lower bound provided by QLP for Q. Moreover, a polynomial-
time constructive proof for a bound α on the integrality gap provides an α-
approximation algorithm for problem P .

3

In this paper, we present the first constant factor approximation algorithm
for VCC(k, l, V ∗), as well as the first upper bound for the integrality gap for its
linear programming relaxation. For VCC(k, l, V ∗), we show an approximation
guarantee (and upper bound on the integrality gap) of 8

3
for l ≥ ⌈k

2
⌉, 19

6
for

2 ≤ l < ⌈k
2
⌉, and 5

2
for l = 1 or for l = ⌈k

2
⌉ and k even. When l = ⌈k

2
⌉ and k

is odd the approximation guarantee and upper bound for the integrality gap are
at most 8

3
and asymptotically approach 5

2
from above as k gets large. For the

special case VCC(2, 1, V ∗) (in which the secondary vertices are not a cut set),
our algorithm has a 3

2
approximation guarantee, generalizing our previous 3

2
-

approximation algorithm for multi-2EC [3]. In particular, when there is only one
secondary vertex r ∈ V , VCC(2, 1, V \{r}) has a 3

2
approximation guarantee and

finds a feasible multi-2EC solution in which r is not a cut vertex. For the special
case VCC(k, k, V ∗), V ∗ 6= V , our approximation guarantee is 2; while for the
special case VCC(k, l, V) (which is simply multi-kEC), we have an approximation
algorithm with approximation guarantee of 3

2
when k is even, and 3

2
+ 1

2k
when k

is odd (agreeing with our previous results [3]). We also show that in the case that
k = l = 1, VCC results in a useful generalization (EMST) of the minimum cost
spanning tree problem; a generalization for which we provide a complete linear
description as well as a polynomial-time algorithm. This polyhedral description
and algorithm for EMST will be used as an essential tool for the approximation
algorithm and integrality gap results for the general VCC. We also show that
EMST can be extended naturally to a problem on numerous disjoint vital cores,
and provide a complete linear description of, and a polynomial-time algorithm
for, this problem.

The VCC is related to, but distinct from, other connectivity problems, some
of which we outline here.
VCC and k-vertex Connectivity

While not guaranteeing vertex connectivity, there are instances of VCC that,
in particular, guarantee that a given subset V ′ ⊂ V , |V ′| < k, of vertices is
not a cut set. This is obtained by the instance VCC(k, 1, V \V ′), |V ′| < k; i.e.,
where the set of secondary vertices is V ′. On the other hand, kVC guaran-
tees that the removal of any k − 1 vertices does not disconnect the graph. In
particular, VCC(2, 1, V \{r}) finds a minimum cost 2-edge connected spanning
multi-subgraph in which r ∈ V is not a cut vertex; while 2VC finds a minimum
cost simple spanning subgraph that has no cut vertices. Notice that kVC is a
special case of VCC(k, 1, V \V ′), |V ′| < k. The best known approximation algo-
rithm for kVC has an approximation guarantee of 2 [16]. For VCC(k, 1, V \V ′),
we provide an approximation guarantee of 5

2
− 2

k
for k even, and 5

2
− 3

2k
for k odd.

VCC and Multi-k-edge Connectivity
The VCC is a generalization of multi-kEC, since, as we will see, multi-kEC

is precisely VCC(k, l, V), i.e., the case where the set of vital vertices is V . The
current best general constant factor approximation guarantee for multi-kEC and

4

kEC is 2, from Kamal Jain [14]. In addition to providing an approximation
guarantee, Jain’s approximation algorithm provides a constructive proof that the
integrality gap of the LP relaxation of kEC and multi-kEC is at most 2. There
exist approximation algorithms that, as a special case, for multi-kEC have an
approximation guarantee (and integrality gap) of 3

2
when k is even, and 3

2
+ 1

2k

when k is odd [3, 13].1 In this special case, our approximation guarantee and
integrality gap matches these results.
VCC and Element Connectivity Problem

In addition to allowing edge failures, VCC allows certain vertex failures. Thus,
the element connectivity problem (ELC-SNDP) [15], which is also an intermediate
problem between vertex and edge connectivity, is a problem that is related to
VCC. Let G = (V, E) be a graph with non-negative edge costs c ∈ R

E , T ⊂ V be a
subset of vertices called terminals, and ruv be a non-negative integer connectivity
requirement for each pair of distinct vertices u, v ∈ T . Elements are defined as
the edges in E and the vertices in V \T . ELC-SNDP is the problem of finding a
minimum cost (simple) subgraph of G such that there exist at least ruv element-
disjoint paths between every distinct pair of vertices u, v ∈ T . The best known
approximation guarantee for ELC-SNDP is 2 [9]. Although both VCC and ELC-
SNDP allow vertex and edge failures, the problems are clearly different: Let
T = V ∗ and let rij = l for all i, j ∈ V ∗. A feasible solution of ELC-SNDP is
such that between all distinct pairs of vital vertices i, j ∈ V ∗, there are at least l
edge-disjoint paths that are disjoint with respect to the secondary vertices V \V ∗.
There is no guarantee regarding the overall edge connectivity of the subgraph. On
the other hand, a feasible solution of VCC(k, l, V ∗) is k-edge connected overall,
but also is such that between all distinct pairs of vital vertices i, j ∈ V ∗, there
are at least l edge-disjoint paths that do not contain any vertices from V \V ∗.
VCC and Augmentation Problems

Given a, possibly disconnected, multi-subgraph H ′ = (V, E ′) of a weighted
graph G = (V, E), and a non-negative integer k, the multi-edge connectivity
augmentation problem (multi-AUG) is the problem of finding a minimum cost set
of edges F ⊆ E such that H ′ +F is a k-edge connected spanning multi-subgraph
of G. The set F may contain edges from E ′, and may also contain multiple
copies of edges. Although Jain does not explicitly mention it, a 2-approximation
algorithm can be obtained for multi-AUG from Jain’s 2-approximation algorithm
for his problem [14].2 There is a 3

2
-approximation algorithm for instances of multi-

AUG in which H ′ is a simple, connected, unweighted graph and k = 2 [8]. In the
special case where H ′ consists of the secondary vertices V \V ∗ plus an optimal
multi-l-edge connected spanning subgraph of G[V ∗], the solution to multi-AUG

1There is also a 3

2
-approximation algorithm for 2EC and 2VC when the edge costs are metric

(satisfy the triangle inequality) [10].
2This can be obtained by simply applying Jain’s problem to the survivable network design

problem and adjusting the cut constraints by the appropriate amount.

5

is a feasible solution to VCC(k, l, V ∗). However, as shown in Figure 1, such a
solution, while being a feasible solution to VCC(k, l, V ∗), is not necessarily an
optimal solution to VCC(k, l, V ∗). In Figure 1(a), we show a complete weighted
graph on 5 vertices. In Figure 1(b) and 1(c), we find different optimal 1-edge
connected subgraphs of G[V ∗] (the subgraphs formed by the red, bold edges) and
respectively solve multi-AUG with k = 2 (the dashed edges are the edges added
in the minimum cost augmentation). Clearly, the multi-AUG solutions shown in
Figure 1(b) and (c) are both feasible solutions to VCC(2, 1, V ∗), but only Figure
1(c) is an optimal solution to VCC(2, 1, V ∗). Thus, contrary to what might be
expected, finding a minimum cost multi-l-edge connected spanning subgraph on
G[V ∗], and then augmenting it at minimum cost to a multi-k-edge connected
spanning subgraph on G, is not the same problem as VCC(k, l, V ∗).

total cost = 3 + 3 = 6 opt(VCC(2,1,V*) on G) = 3 + 2 = 5

V’1

1

1 4

1

1

V*

6

8

31

G:

V’1

1

1 4

1

1

V*

6

8

31

V’1

1

1 4

1

1

V*

6

8

31

(a) (b) (c)

Figure 1: Example showing that finding a minimum cost multi-l-edge connected
spanning subgraph on G[V ∗], and then augmenting it at minimum cost to a multi-
k-edge connected spanning subgraph on G, does not always yield an optimal
solution to VCC(k, l, V ∗).

An outline of this paper is as follows: In Section 2 we show that VCC(2, 1, V ∗),
and thus VCC(k, l, V ∗), is NP-hard, but that there exists a polynomial-time algo-
rithm that solves EMST. We also give a complete linear description for EMST. In
Section 3.1, we present the results necessary for our approximation algorithm and
integrality gap results for the general VCC(k, l, V ∗). In Section 3.2, we present
Algorithm VCC, an approximation algorithm for VCC(k, l, V ∗); and present an
upper bound on the problem’s LP relaxation. In Section 3.3, we present the
results for special cases of VCC, as well as present special cases in which the
approximation guarantee and upper bound of the integrality gap can be further
improved; in particular, when l = 1. Both the algorithm and polyhedral de-
scription of EMST in Sections 2.1 and 2.2 are fundamental to Section 3. We
conclude the section by making some final observations and comparisons. In
the final section, Section 4, we provide a complete linear description of, and a

6

polynomial-time algorithm for, an extension of EMST to numerous disjoint vital
cores.

We conclude this introduction with some notation. Given a minimization
problem P, its integer linear program Q, and its linear programming relaxation
QLP , let optG(Q) be the total edge cost of an optimal solution to the linear
programming problem Q on the graph G = (V, E), and let optG(QLP) be the
total edge cost of an optimal solution to the linear programming relaxation QLP

on G. Let costG(H) be the total edge cost of a feasible solution H to problem
Q. Note that the subscript G will be omitted when it is clear what graph we
are discussing. For V ′ ⊂ V , let γG(V ′) be the edge set consisting of the edges
of G with both ends in V ′, and δG(V ′) be the edge set consisting of the edges of
G with exactly one end in V ′. Let G[V ′] be the subgraph of G induced by the
vertex set V ′; in other words, G[V ′] consists of the vertices V ′ along with the
edges γG(V ′). Let V (G) := V and E(G) := E. Given a subgraph H of G, let
H + V̂ be the subgraph H with the vertices V̂ ⊂ V added to it, and let H + Ê
be the subgraph H with the edges Ê ⊆ E added to it. For the notation and
definitions of polyhedral theory, we refer the reader to Chapter 6 of [5].

2 Complexity of VCC; and the Extended Min-

imum Cost Spanning Tree Problem

In this section we consider the complexity of the general VCC problem. We
show that VCC(2, 1, V ∗), and thus VCC(k, l, V ∗), is NP-hard, but that there
exists a polynomial-time algorithm that solves VCC(1, 1, V ∗). We also give a
complete linear description for VCC(1, 1, V ∗). Both the algorithm and polyhedral
description of VCC(1, 1, V ∗) will be used in subsequent sections as an essential
tool for the approximation algorithm and integrality gap results for the general
VCC(k, l, V ∗).

Lemma 1 Problem VCC(2, 1, V ∗) is NP-hard.

Proof: We show that VCC(2, 1, V ∗) is NP-hard by showing that the decision form
of multi-2EC is polynomial time reducible to the decision form of VCC(2, 1, V ∗).
The decision form, D1, of VCC(2, 1, V ∗) and the decision form, D2, of multi-2EC
are defined as follows:

D1: Given a complete graph G = (V, E) with non-negative edge costs c ∈ R
E ,

a set of vital vertices V ∗ ⊆ V , and some L ∈ R≥0, is there a solution of
VCC(2, 1, V ∗) with total edge cost less than or equal to L?

D2: Given a complete graph Ĝ = (V̂ , Ê) with non-negative edge costs ĉ ∈ R
Ê ,

and some Q ∈ R≥0, is there a solution of multi-2EC with total edge cost
less than or equal to Q?

7

Clearly, D1 is in NP. We will complete the proof that VCC(2, 1, V ∗) is NP-hard
by showing that D2 is polynomially reducible to D1. We create an instance of
D1 from an instance of D2 as follows. Let G be the complete graph obtained by
adding a non-empty set of vertices V ′ to Ĝ and edges such that G is a complete;
such that the edge cost of edges in γG(V ′) is 0, the edge cost of ru for some vertex
u ∈ V̂ and some vertex r ∈ V ′ is 0, and all other edges in δG(V ′) each have edge
cost M , where M is twice the total cost of the edges in Ĝ. See Figure 2. Let
V ∗ = V \V ′(= V̂). Let L := Q.

0

0

0
0

0

00
0

0

r

M
M

M

M
MM

G[V] = G

G[V]u

G

0
M M

0

:

Figure 2: Illustration of G in the proof of Theorem 2. Edges in δG(V ′)\{ru} have
cost M .

Suppose H is a solution to VCC(2, 1, V ∗) on G with total cost less than or
equal to L, i.e., we have a ‘yes’ instance of problem D1. Due to the edge costs,
H has only 2 copies of the edge ru in the cut δH(V ′) (this satisfies the cut
requirement that in any feasible solution there are at least two edges in the cut
δG(V ′), and taking any other edge in δG(V ′) will make the total cost greater than
M). Thus, since H is a multi-two-edge connected subgraph, the multi-subgraphs
H [V ′] and H [V̂] are both multi-2-edge connected subgraphs. Hence, H [V̂] is a
feasible solution to multi-2EC on G[V̂] = Ĝ. Furthermore, since the edge costs
of ru and the edges in γG(V ′) are 0, the total cost of H is equal to the total cost
of H [V̂]. Thus, the total cost of H [V̂] is less than or equal to Q, and H [V̂] shows
that we had a ‘yes’ instance of problem D2.

Conversely, suppose Ĥ is a solution to multi-2EC on Ĝ with total cost less
than or equal to Q, i.e., we have a ‘yes’ instance of problem D2. Clearly, H ′ :=
Ĥ +V ′+{ru, ru}+E(G[V ′]) is 2-edge connected and H ′[V ∗] is connected. Thus,
H ′ is a feasible solution to VCC(2, 1, V ∗) on G. The total cost of H ′ is equal to
the total cost of Ĥ . Thus, the total cost of H ′ is less than or equal to Q, and we
had a ‘yes’ instance of problem D1.

8

Therefore, the decision form of multi-2EC is polynomial time reducible to the
decision form of VCC(2, 1, V ∗). Since multi-2EC is an NP-hard problem [3, 12],
therefore VCC(2, 1, V ∗) is an NP-hard problem. �

Theorem 2 Problem VCC(k, l, V ∗) is NP-hard.

Proof: Lemma 1 shows that VCC(2, 1, V ∗) is NP-hard. The result then follows
from the fact that VCC(2, 1, V ∗) is a special case of VCC(k, l, V ∗). �

2.1 A Polynomial-time Algorithm for VCC(1, 1, V ∗)

We now consider VCC(1, 1, V ∗), i.e., VCC when k = l = 1: Given a complete
graph, G = (V, E), with non-negative edge costs c ∈ R

E , and a given non-empty
subset of vital vertices V ∗ ⊆ V , find a minimum cost spanning tree T of G that
remains connected when the secondary vertices V ′ = V \V ∗ are removed, i.e.,
such that T [V ∗] is also a spanning tree of the vital core G[V ∗]. We call this
special case of VCC the Extended Minimum Spanning Tree Problem (EMST).
Instances of EMST are denoted by EMST(V ∗). When V ∗ = V , EMST reduces
to the minimum cost spanning tree problem (MST), which is the special case
VCC(1, 1, V). Thus, we have the following inequality:

Proposition 3 Given a complete graph G = (V, E) with non-negative edge costs
c ∈ R

E, and a non-empty subset of vertices V ∗ ⊆ V , the following holds on G:
opt(MST) ≤ opt(EMST (V ∗)).

The following characteristic of a feasible solution of EMST is used by the
algorithm for EMST(V ∗):

Lemma 4 Let G = (V, E) be a complete graph with non-negative edge costs
c ∈ R

E, and let V ∗ ⊆ V be a non-empty subset of vertices. Let M be an optimal
solution to EMST(V ∗) on G. Then M [V ∗] is a minimum cost spanning tree of
G[V ∗].

Proof: Since the removal of the secondary vertices does not disconnect M , there-
fore, M [V ∗] is a connected subgraph of G[V ∗]. Moreover, since M is a spanning
tree of G, therefore M [V ∗] is a spanning subgraph of G[V ∗] and is acyclic. Since
M [V ∗] is a connected, acyclic, spanning subgraph of the vital core G[V ∗]; thus,
M [V ∗] is a spanning tree of G[V ∗]. Therefore, M [V ′] has connected components
T1, . . . , Tt (for some t ∈ N>0) which are each trees, and which are each connected
in M to M [V ∗] by a single distinct edge in δM(M [V ∗]), say e1, . . . , et respectively.

Suppose B is a minimum cost spanning tree of G[V ∗]. Thus, we have that
cost(B) ≤ cost(M [V ∗]). Suppose cost(B) < cost(M [V ∗]). Let M̂ be the sub-
graph of G obtained from M by replacing M [V ∗] by B; i.e., M̂ is the subgraph of

9

V’

V*

= M

= B
T

T

3

4

e

e

e

1

3

e2

4

T2
T1

Figure 3: Replacing M [V ∗] by B in M .

G consisting exactly of the subtree B, the (disjoint) subtrees T1, . . . , Tt, and the
unique “connecting” edges e1, . . . , et (see Figure 3). It is easy to see that M̂ is a
spanning tree of G. Furthermore, M̂ [V ∗] is connected, since M̂ [V ∗] is precisely
B (which is connected). Thus, M̂ is a feasible solution to EMST(V ∗) on G, and

cost(M̂) = cost(B) +

t
∑

i=1

cei
+

t
∑

i=1

cost(Ti)

< cost(M [V ∗]) +

t
∑

i=1

cei
+

t
∑

i=1

cost(Ti)

= cost(M),

which is a contradiction with the fact that M is an optimal solution to ENST(V ∗)
on G. Thus, cost(B) 6< cost(M [V ∗]). Therefore, M [V ∗] is a minimum cost
spanning tree of G[V ∗]. �

Notice, from Lemma 4, that in a feasible solution of EMST, every secondary
vertex v ∈ V ′ = V \V ∗ is either a leaf of the spanning tree, or is part of a branch
of the spanning tree such that, from v to the leaf/leaves of the branch, all the
vertices are secondary vertices.

Given a graph G = (V, E), and V ∗ ⊆ V , define the multi-graph G/V ∗ to be
the shrunk graph of G, obtained by identifying all the vertices in V ∗ into a single
(“shrunk”) vertex w and deleting all the edges of G that have both endpoints
in V ∗, i.e., deleting all the edges γG(V ∗). Notice that G/V ∗ has |V | − |V ∗| + 1
vertices, and its edge set, EV ∗ , consists of all the edges of G that have exactly
one or no endpoint in V ∗, i.e., EV ∗ = E\γG(V ∗) = δG(V ∗) ∪ γG(V \V ∗). Notice
that edges iw, i ∈ V ′ = V \V ∗, in G/V ∗ are in 1 to 1 correspondence with edges
ij ∈ E, j ∈ V ∗. Edges in G/V ∗ that are not incident to the shrunk vertex w are
in 1 to 1 correspondence with the edges in G that do not have both endpoints in

10

V ∗. Without loss of generality in this paper, we can convert G/V ∗ into a simple
graph by removing all but the lowest cost edge in every set of parallel edges.

Lemma 5 Let G = (V, E) be a complete graph with non-negative edge costs
c ∈ R

E, let V ∗ ⊆ V be a non-empty subset of vertices, and let V ′ = V \V ∗. Let
M be an optimal solution to EMST(V ∗) on G. Then M restricted to the shrunk
graph G/V ∗ is a minimum cost spanning tree of G/V ∗.

Proof: Notice that G/V ∗ is connected (since G is connected), and thus contains
a spanning tree. Let M∗ be M restricted to the shrunk graph G/V ∗. Since M [V ∗]
is a spanning tree of G[V ∗] (by Lemma 4), therefore, M [V ′] has connected com-
ponents T1, . . . , Tt (for some t ∈ N>0) which are each trees, and which are each
connected in M to M [V ∗] by a single distinct edge in δM(M [V ∗]), say e1, . . . , et

respectively. Thus, M∗ consists of the shrunk vertex w, the edges e1, . . . , et, and
the subtrees T1, . . . , Tt. Therefore, M∗ is a spanning tree of G/V ∗.

Suppose A is a minimum cost spanning tree of G/V ∗. Thus, cost(A) ≤
cost(M∗). Suppose cost(A) < cost(M∗). Let M̂ be the subgraph of G obtained
from M by replacing the edges of M∗ by the edges of A; i.e., M̂ is the subgraph of
G consisting exactly of the subtree M [V ∗], the (disjoint) subtrees A1, . . . , As (for
some s ∈ N>0) of A−w = A[V ′], and the distinct “connecting” edges eA

1 , . . . , eA
s ,

where eA
i joins the subtree Ai with w in A (for each i ∈ {1, . . . , s}). It is easy to

see that M̂ is a spanning tree of G. By construction, cost(M̂) = cost(M [V ∗]) +
cost(A) < cost(M [V ∗]) + cost(M∗) = cost(M). This is a contradiction with the
assumption that M is a minimum cost spanning tree of G. Thus, cost(A) =
cost(M∗), and M∗ is a minimum cost spanning tree of G/V ∗. �

Based on Lemmas 4 and 5 above, we have the following polynomial-time al-
gorithm for EMST(V ∗):

Algorithm M

Input: A complete graph G = (V, E) with non-negative edge costs c ∈ R
E ,

and a non-empty subset of vital vertices V ∗ ⊆ V .

M1. Find a minimum cost spanning tree, M̃ , of the vital core G[V ∗].

M2. Find a minimum cost spanning tree, M∗, of the shrunk graph G/V ∗.

M3. Form the subgraph M ′ =
(

V, E(M̃) ∪ E(M∗)
)

.

Lemma 6 Let G = (V, E) be a complete graph with non-negative edge costs
c ∈ R

E, and let V ∗ ⊆ V be a non-empty subset of vertices. The subgraph M ′

returned by Algorithm M is an optimal solution to EMST(V ∗) on G, and can be
constructed in worst case running time O(|V |2).

11

Proof: By Lemmas 4 and 5, an optimal solution to EMST(V ∗) on G consists
exactly of the vertices V along with the edges of a minimum cost spanning tree of
G[V ∗] and the edges of a minimum cost spanning tree of G/V ∗.3 This is precisely
M ′. Thus, M ′ is an optimal solution to EMST(V ∗) on G.

For a connected graph with n vertices and m edges, a minimum cost spanning
tree can be found in O(n log n+m) time [11]. This becomes O(n2) for a complete
graph. Thus, steps (M1) and (M2) can be implemented in worst case running
time O(|V |2). �

2.2 A Complete Linear Description for VCC(1, 1, V ∗)

The following is needed in order to provide a complete linear description of
EMST(V ∗), which is the special case VCC(1, 1, V ∗). The description we present
will be used in the next section to obtain our approximation algorithm and in-
tegrality gap results for VC(k, l, V ∗). Given a complete graph G = (V, E), a
partition P = (V1, V2, . . . , VkP

) of the vertex set V , is a set of subsets of V such
that V1 ∪ V2 ∪ · · · ∪ VkP

= V and Vi ∩ Vj = ∅ for all i, j ∈ {1, 2, . . . , kP}, i 6= j.
Notice that in such a partition, each part Vi induces a complete subgraph G[Vi]
for all i = 1, 2, . . . , kP . In this paper, when we refer to a partition P of G, we are
referring to a partition P of the vertex set of G. The multi-graph GP is the graph
obtained by identifying all the vertices in Vi, i = 1, 2, . . . , kP , into a single vertex
ṽi and deleting all the edges of G that have both endpoints in the same part,
Vi, of the partition P . Thus, GP has kP vertices, and its edge set, EP , consists
of all the edges of G that have endpoints in different parts, Vi, of the partition
P . In this paper, without loss of generality, we can convert GP into a simple
graph by removing all but the lowest cost edge in every set of parallel edges. Let
xe represent the number of times each edge e ∈ E is included in a solution of a
given problem on G. The resulting vector x ∈ N

E
≥0 is called an incidence vector

on G. For any edge set E ′ ⊆ E and x ∈ R
E , let x(E ′) denote the sum

∑

e∈E′ xe.
The next lemma follows from results from Chopra [4], as they apply to complete
graphs. The lemma states that we can find the cost of a minimum cost spanning
tree by solving a linear program that has no integrality constraints. Note that
the spanning tree polytope is the convex hull of spanning tree incidence vectors.

3Notice that, without loss of generality, G/V ∗ can be made into a simple graph by removing,
for each secondary vertex u ∈ V ′, all the multiple copies of uw except for the copy of uw with
the cheapest edge cost. Thus, any algorithm for finding a minimum cost spanning tree can be
used, regardless of whether or not that algorithm starts on a simple or multi-graph.

12

Lemma 7 ([4], Theorem 2.3) If G = (V, E) is a complete graph, and c ∈ R
E

with c ≥ 0, then the cost of a minimum cost spanning tree of G is equal to the
optimal value of

minimize cx (1)

subject to
∑

e∈EP

xe ≥ kP − 1, for all partitions P of G, (2)

xe ≥ 0, for all e ∈ E. (3)

Moreover, the feasible region of LP(1) is precisely the dominant of the spanning
tree polytope.

Consider the following linear programming (LP) formulation on a complete
graph G = (V, E) with non-negative edge costs c ∈ R

E and a given subset of
vertices V ∗ ⊆ V . We will show that this is a linear programming formulation for
EMST(V ∗):

minimize cx (4)

subject to
∑

e∈EP

xe ≥ kP − 1, for all partitions P of G/V ∗, (5)

∑

e∈EP

xe ≥ kP − 1, for all partitions P of G[V ∗], (6)

xe ≥ 0, for all e ∈ E. (7)

Notice that constraints (5) and (7) are precisely those constraints for the mini-
mum spanning tree LP(1) on the shrunk graph G/V ∗ of G, and constraints (6)
and (7) are precisely those constraints for the minimum spanning tree LP(1) on
the vital core G[V ∗].

We will now show that LP(4) is a linear programming formulation for EMST(V ∗)
whose integrality gap is 1; i.e., for which there always exists an optimal solution
that is integer. Let PEMST (V ∗) be the associated polytope of EMST(V ∗), i.e., let
PEMST (V ∗) be the convex hull of the incidence vectors of solutions of EMST(V ∗).
Let DP be the dominant4 of PEMST (V ∗). Let PMST be the associated polytope of
the minimum cost spanning tree problem. By Lemma 7, the dominant of PMST

is given by the feasible region of LP(1).

Theorem 8 Let G = (V, E) be a complete graph with non-negative edge costs
c ∈ R

E, and let V ∗ ⊆ V . The dominant, DP, of PEMST (V ∗) is given by the
feasible region of LP(4).

4The dominant of a polytope P is the polyhedron formed by P plus the non-negative orthant
R

n

+).

13

Proof: We show that every feasible solution to the constraints (5)-(7) can be
expressed as a convex combination of incidence vectors of optimal solutions of
EMST(V ∗), i.e., extreme points of DP, plus some non-negative vector h ∈ R

E
≥0.

Let x be a feasible solution to the constraints (5)-(7), i.e., x is a point in the
feasible region determined by the constraints (5)-(7). Let x1 be x restricted to the
edges in G[V ∗], and let x2 be x restricted to the edges in G/V ∗. Thus, by Lemma
7, x1 and x2 are feasible points in the dominant of PMST on G[V ∗] and G/V ∗,
respectively. Thus, x1 can be written as a convex combination of the extreme
points of the dominant of PMST on G[V ∗], plus a non-negative vector f ∈ R

γ(V ∗)
≥0 ;

i.e., let x1 = λ1y1 + λ2y2 + . . . + λtyt + f where yi is an extreme point of the
dominant of the MST polytope on G[V ∗] (i.e., yi is the incidence vector of an
MST of G[V ∗]), and λi is a non-negative multiplier such that λ1+ · · ·+λt = 1, for
i ∈ {1, 2, . . . , t}. Similarly, let x2 = α1z1 + α2z2 + . . . + αszs + g where g ∈ R

EV ∗

≥0

is a non-negative vector, zj is an extreme point of the dominant of the MST
polytope on G/V ∗ (i.e., zj is the incidence vector of an MST of G/V ∗), and αj

is a non-negative multiplier such that α1 + · · ·+ αs = 1, for j ∈ {1, 2, . . . , s}.
By Lemmas 4 and 5 applied to the corresponding incidence vectors, any yi,

i ∈ {1, 2, . . . , t}, combined with any zj , j ∈ {1, 2, . . . , s}, gives an extreme point
of DP. Let β be the lowest common denominator of λ1, . . . , λt, α1, . . . , αs, and
rewrite each λi and each αj as a sum of β. Expanding these out in the sums
of x1 and x2, we then get that x1 and x2 are both a sum consisting of β terms
(plus f , respectively g), with each term having the multiplier 1/β. Therefore,
combining together each ‘corresponding’ kth term of x1 and x2, k = 1, 2, . . . , β,
and letting h ∈ R

E
≥0 be the vector by combining f and g, we obtain x−h written

as a linear combination of extreme points of DP. Moreover, this combination has
exactly β terms, each with a multiplier of 1/β, and thus the multipliers add up
to 1. Therefore, x can be written as a convex combination of extreme points of
DP plus a non-negative vector in R

E
≥0. Thus, feasible region determined by the

constraints (5)-(7) is the dominant of PEMST (V ∗). �

Notice that Theorem 8 can also be proved using matriods.

Corollary 9 Given a complete graph G = (V, E) with non-negative edge costs
c ∈ R

E, and a non-empty subset of vertices V ∗ ⊆ V , there exists an optimal
solution to LP(4) that is the incidence vector of a minimum cost spanning tree
of G. Thus, LP(4) is a linear programming formulation for EMST(V ∗) whose
integrality gap is 1. In particular, the cost of an optimal solution to EMST(V ∗)
is equal to the optimal value of LP(4).

Proof: Since we are minimizing over DP, and, from Theorem 8, all the extreme
points of DP are incidence vectors of optimal solutions of EMST(V ∗), there-
fore there exists an optimal solution to LP (4) that is the incidence vector of a
minimum cost spanning tree of G. �

14

3 The Vital Core Connectivity Problem

In this section we present our integrality gap and approximation algorithm results
for VCC, and the preliminary results necessary in order to obtain them. Let
G = (V, E) be a complete graph with non-negative edge costs c ∈ R

E, let V ∗ ⊆ V
be a non-empty set of vital vertices, V ′ = V \V ∗ be the secondary vertices, and
let k, l ∈ Z, 1 ≤ l ≤ k be non-negative integers. An integer linear programming
formulation for VCC(k, l, V ∗) is as follows:

minimize cx (8)

subject to x(δG(S)) ≥ k, for all ∅ ⊂ S ⊂ V, (9)

x(δG[V ∗](S)) ≥ l, for all ∅ ⊂ S ⊂ V ∗, (10)

xe ≥ 0, for all e ∈ E, (11)

xe integer, for all e ∈ E. (12)

The constraints (9) ensure that the multi-subgraph is k-edge connected; and
the constraints (10) ensure that the multi-subgraph on the vital core V ∗ is l-
edge connected. The linear programming formulation of the LP relaxation of
VCC(k, l, V ∗) (denoted by VCC(k, l, V ∗)LP) is ILP(8) without the integer con-
straints (12), and will be referred to as LP(VCC). The linear programming for-
mulation of the LP relaxation of multi-kEC on G (denoted by multi-kECLP) is
ILP(8) without the constraints (10) and (12).

Proposition 10 On a complete graph G = (V, E), problem VCC(k, l, V) is
equivalent to multi-kEC, and their LP relaxations are also equivalent. Thus,
their optimal values are equal, as are the optimal values of their LP relaxations.

Proof: When V ∗ = V , the constraints (10) are: x(δG(S)) ≥ l, for all ∅ ⊂ S ⊂ V .
Since k ≥ l, these constraints are redundant, and thus LP(VCC) consists of just
the constraints (9) and (11), which is precisely the LP of multi-kECLP . Clearly,
the same applies for the respective ILP formulation. The results follow. �

Notice that, from the proof of Proposition 10, we can, without loss of gener-
ality, set l = k for instances of VCC in which V ∗ = V .

3.1 Preliminary Results

Before proceeding to our approximation algorithm and an upper bound on the
integrality gap of the LP relaxation of VCC(k, l, V ∗), a few general results are
needed. We briefly present these results now.

Given a connected graph G = (V, E) with non-negative edge costs c ∈ R
E ,

and given T ⊆ V , a minimum cost T-join is a minimum cost set of edges Ẽ ⊆ E
such that |δ(v)∩ Ẽ| is odd if and only if v ∈ T . The following theorem is needed:

15

Theorem 11 (Cook et. al. [5], Theorem 5.28) If G = (V, E), T ⊆ V with
|T | even, and c ∈ R

E with c ≥ 0, then the minimum cost of a T -join of G is equal
to the optimal value of

minimize cx (13)

subject to x(δ(S)) ≥ 1, for all S ⊆ V s.t.

|S ∩ T | odd, (14)

xe ≥ 0, for all e ∈ E. (15)

Lemma 12 Let T ⊆ V , |T | even. The following holds on G:

optG(T -join) ≤
1

k
optG(VCC(k, l, V ∗)LP) ≤

1

k
optG(VCC(k, l, V ∗)).

Proof: Let x∗ be an optimal solution to LP(VCC). In particular, x∗ satisfies the
constraints (9). Thus, 1

k
x∗ satisfies x(δG(S)) ≥ 1 for all ∅ ⊂ S ⊂ V . Therefore

l
k
x∗ satisfies constraints (14). Additionally, since x∗ satisfies the constraints (11),

1
k
x∗ also satisfies the constraints (15). Therefore, 1

k
x∗ satisfies the constraints

(14) and (15), and thus is a feasible solution of LP(13). Using Theorem 11, we
have that

opt(T-join) ≤
1

k
cx∗ =

1

k
opt(VCC(k, l, V ∗)LP) ≤

1

k
opt(VCC(k, l, V ∗)).

�

Corollary 13 Let T̃ ⊆ V ∗, |T̃ | even. The following relationship exists on G and
G[V ∗]:

optG[V ∗](T̃ -join) ≤
1

l
optG(VCC(k, l, V ∗)LP) ≤

1

l
optG(VCC(k, l, V ∗)).

Proof: By Lemma 12, optG[V ∗](T̃ -join) ≤ 1
l

optG[V ∗](VCC(l, l, V ∗)LP). Clearly,
optG[V ∗](VCC(l, l, V ∗)LP) ≤ optG(VCC(k, l, V ∗)LP). The result follows. �

The next lemma gives an upper bound on EMST(V ∗).

Lemma 14 The following holds on G:

optG(EMST(V ∗)) ≤
2

l
optG(VCC(k, l, V ∗)LP) ≤

2

l
optG(VCC(k, l, V ∗)).

Proof: Let x∗ be an optimal solution to LP(VCC) on G and let x′ = 2
l
x∗. Since

x∗ satisfies the constraints (9) and (10), and since k ≥ l, therefore x′ satisfies

x′(δ(S)) ≥
2k

l
≥ 2, for all ∅ ⊂ S ⊂ V (16)

16

and

x′(δG[V ∗](S)) ≥
2l

l
= 2, for all ∅ ⊂ S ⊂ V ∗. (17)

Let P = (S1, S2, . . . , SkP
) be a partition of G. For x′ on G we have, using

(16):

∑

e∈EP

x′
e =

1

2

[

x′
G(δ(S1)) + x′

G(δ(S2)) + . . . + x′
G(δ(SkP

))
]

≥
1

2
(kP · 2) = kP

≥ kP − 1.

Therefore, x′ satisfies
∑

e∈EP
x′

e ≥ kP − 1, for all partitions P = (S1, S2, . . . , SkP
)

of G. Thus, x′ satisfies the constraints (5).
Similarly, let P̃ = (T1, T2, . . . , Tk

P̃
) be a partition of G[V ∗]. For x′ on G[V ∗]

we have, using (17):

∑

e∈E
P̃

x′
e =

1

2

[

x′
G[V ∗](δ(T1)) + x′

G[V ∗](δ(T2)) + . . . + x′
G[V ∗](δ(Tk

P̃
))
]

≥
1

2
(kP̃ · 2) = kP̃

≥ kP̃ − 1.

Thus, x′ satisfies
∑

e∈E
P̃

x′
e ≥ kP̃ −1, for all partitions P̃ of G[V ∗], and therefore,

x′ satisfies the constraints (6).
Clearly, x′ satisfies the constraints (7). Thus, x′ = 2

l
x∗ is a feasible solution

of LP(4), and we therefore have that opt(EMST(V ∗)) ≤ 2
l
opt(VCC(k, l, V ∗)LP).

Noticing that opt(VCC(k, l, V ∗)LP) ≤ opt(VCC(k, l, V ∗)) completes the proof.
�

Corollary 15 The following holds on G:

optG(MST) ≤
2

k
optG(VCC(k, l, V ∗)LP) ≤

2

k
optG(VCC(k, l, V ∗)).

Proof: Notice that MST is precisely the special case EMST(V). Thus, from
Lemma 14, opt(MST) ≤ 2

l
opt(VCC(k, l, V)LP) = 2

k
opt(VCC(k, l, V)LP). By

Proposition 10, opt(VCC(k, l, V)LP) ≤ opt(VCC(k, l, V ∗)LP). The result follows.
�

17

3.2 Vital Core Connectivity – Approximation Algorithm
and Integrality Gap

Lemmas 12 and 14, and Corollaries 15 and 13 will be used to create a solution
for VCC(k, l, V ∗) within a given bound of the optimal. Before presenting these
upper bounds, and the special cases in which the upper bounds can be further
improved, we present an approximation algorithm for VCC(k, l, V ∗). This algo-
rithm forms a feasible solution for VCC(k, l, V ∗) by combining together copies
of the following: An extended minimum cost spanning tree of G with respect to
V ∗, a T -join on G, a T̃ -join on G[V ∗], and a minimum cost spanning tree of G.
Using appropriate combinations of these, we can get a multi-subgraph H with
the desired edge connectivity on H and on H [V ∗]. Notice that for l = 1, the
approximation algorithm and its upper bound, as well as the upper bound for
the integrality gap, is in the Special Cases section (Section 3.3).

Algorithm VCC

Input: A complete graph G = (V, E) with non-negative edge costs c ∈ R
E , a

non-empty subset of vital vertices V ∗ ⊆ V , and non-negative integers k, l ∈ Z,
2 ≤ l ≤ k.

1. Using Algorithm M from Section 2.1, find an extended minimum cost span-
ning tree, M ′, of G with vital vertices V ∗. Let E ′ ⊂ E be the edge set of
M ′.

2. Let V̂ odd ⊂ V be the set of vertices of G having odd degree in M ′. Find
a minimum cost T̂ -join Ĵ ⊆ E, on G, where T̂ = V̂ odd, i.e., M ′ has a
corresponding V̂ odd-join. This is accomplished by finding a minimum cost
“pairing” of the odd degree vertices of M ′ using minimum cost paths from
G.

3. Let M̃ := M ′[V ∗], i.e., M̃ is the minimum spanning spanning tree of G[V ∗]
obtained by restricting M ′ to G[V ∗] (cf Lemma 4). Let Ṽ odd ⊂ V be the
set of vertices of G having odd degree in M̃ . Find a minimum cost T̃ -join
J̃ ⊆ E, on G[V ∗], where T̃ = Ṽ odd.

4a. If l ≥ ⌈k
2
⌉:

Take ⌈k
2
⌉ copies of the edges E ′, and let this form the edge set E ′′;

Take ⌊k
2
⌋ copies of the edges in Ĵ , and let this form the edge set Ĵ ′;

Take
(

l − ⌈k
2
⌉
)

copies of the edges in J̃ , and let this form the edge set J̃ ′.

Combine these copies of the spanning tree M ′, of the T̃ -join, and of the
T̂ -join, i.e.: Form the multi-subgraph H := (V, E ′′ ∪ Ĵ ′ ∪ J̃ ′).

18

4b. If l < ⌈k
2
⌉:

Take ⌈ l
2
⌉ copies of the edges E ′, and let this form the edge set Ê ′′;

Take ⌊ l
2
⌋ copies of the edges in J̃ , and let this form the edge set J̃ ′′;

Take ⌊ l
2
⌋ copies of the edges in Ĵ , and let this form the edge set Ĵ ′′.

Find a minimum cost spanning tree, M , of G. Let EM ⊂ E be the edge set
of M . Take ⌈k−l

2
⌉ copies of its edges, and let this form the edge set E ′

M .
Let V odd ⊂ V be the set of vertices of G having odd degree in M . Find a
minimum cost T -join J ⊆ E, on G, where T = V odd. Take ⌊k−l

2
⌋ copies of

the edges in J , and let this form the edge set J ′.
Combine these copies of the spanning tree M ′, of the T̃ -join, of the spanning
tree M , and of the T -join, i.e.: Form the multi-subgraph H := (V, Ê ′′ ∪
J̃ ′′ ∪ Ĵ ′′ ∪ E ′

M ∪ J ′).

5. Return H .

Proposition 16 Algorithm VCC runs in polynomial time and produces a feasible
solution of VCC(k, l, V ∗).

Proof: A minimum cost spanning tree can be found in O(|V | log |V |+ |E|) time
[11]. This becomes O(|V |2) for a complete graph. Finding a minimum cost T -join
can be done in the worst case running time O(|V |3) [3]. Therefore, using Lemma
6, Algorithm VCC has worst case running time O(|V |3+|V |3+|V |3+|V |2+|V |2) =
O(|V |3).

We now show that the graph H returned by Algorithm VCC is a feasible
solution to VCC(k, l, V ∗). We show first that H is a k-edge connected spanning
multi-subgraph of G. Since a connected graph has a T -join if and only if |T | is
even, and every graph has an even number of odd degree vertices, therefore, G has
a V̂ odd-join and a V odd-join, and G[V ∗] has a Ṽ odd-join. Clearly, all the vertices of
the multi-subgraph K ′ := (V, E ′∪ Ĵ) have even degree. This means that K ′ is an
Eulerian graph, i.e., it contains an Euler tour. Hence, K ′ is two-edge connected,
i.e., it has two edge disjoint paths between every pair of vertices. Similarly, the
multi-subgraph K := (V, EM ∪ J) is two-edge connected.

Suppose l ≥ ⌈k
2
⌉. When k is even, the edges of H partition into k

2
extended

spanning trees and k
2

V̂ odd-joins (in particular, into k
2

copies of K ′). Hence,
when k is even, H partitions into k

2
Eulerian subgraphs, i.e., k

2
2-edge connected

subgraphs. Therefore, H is (k
2
· 2) = k-edge connected. When k is odd, the

edges of H partition into k+1
2

extended spanning trees and k−1
2

V̂ odd-joins; thus,
H partitions into k−1

2
Eulerian subgraphs and one (extended) spanning tree of G,

i.e., k−1
2

2-edge connected subgraphs and one connected subgraph. Thus, H has
(k−1

2
·2+1) = k edge-disjoint paths (counting multiple copies of edges as distinct

edges) between any two vertices, and is therefore k-edge connected. Hence, H

19

is a k-edge connected spanning multi-subgraph of G. Next, consider the edge
connectivity of H [V ∗]. Notice that the edges of H [V ∗] partition into ⌈k

2
⌉ copies

of the edges of M̃ , and l − ⌈k
2
⌉ copies of the edges in J̃ . Thus, H [V ∗] partitions

into l−⌈k
2
⌉ Eulerian subgraphs of G[V ∗] and

(

⌈k
2
⌉−(l−⌈k

2
⌉)
)

= 2⌈k
2
⌉−l spanning

trees of H [V ∗], i.e.,
(

l−⌈k
2
⌉
)

2-edge connected subgraphs and
(

2⌈k
2
⌉−l

)

connected

subgraphs. Thus, H [V ∗] has
(

2
(

l − ⌈k
2
⌉
)

+
(

2⌈k
2
⌉ − l

)

)

= l edge-disjoint paths

between any two vertices, and is therefore l-edge connected. Hence, H [V ∗] is a
l-edge connected spanning multi-subgraph of G[V ∗].

On the other hand, suppose that l < ⌈k
2
⌉. The edges of H [V ∗] partition

into ⌈ l
2
⌉ copies of the edges of M̃ , and ⌊ l

2
⌋ copies of the edges in J̃ . Thus, H [V ∗]

partitions into ⌊ l
2
⌋ Eulerian subgraphs of G[V ∗] and

(

⌈ l
2
⌉−⌊ l

2
⌋
)

spanning trees of
H [V ∗], i.e., ⌊ l

2
⌋ 2-edge connected subgraphs and

(

⌈ l
2
⌉−⌊ l

2
⌋
)

connected subgraphs.

Thus, H [V ∗] has
(

2⌊ l
2
⌋ +

(

⌈ l
2
⌉ − ⌊ l

2
⌋
)

)

= l edge-disjoint paths between any two

vertices, and is therefore l-edge connected. Hence, H [V ∗] is a l-edge connected
spanning multi-subgraph of G[V ∗]. Next, the edges of H partition into ⌈ l

2
⌉ copies

of the edges of M ′, ⌊ l
2
⌋ copies of the edges in Ĵ , ⌈k−l

2
⌉ copies of the edges of M ,

and ⌊k−l
2
⌋ copies of the edges in J . Thus, the edges of H partition into an l-edge

connected subgraph of G and a (k − l)-edge connected subgraph of G. Hence, H
is (l + k − l) = k-edge connected.

The result follows. �

We will use the following value repeatedly throughout the remainder of this
paper: Given non-negative integers k, l ∈ Z with 2 ≤ l ≤ k, define ωk,l to be:

• 1
2

(

3 + k
l

)

, when l ≥ ⌈k
2
⌉ and k is even;

• 1
2

[

(

3 + k
l

)

+
(

1
l
− 1

k

)

]

, when l ≥ ⌈k
2
⌉ and k is odd;

•
(

3 − l
k

)

, when l < ⌈k
2
⌉ and k, l even;

•
(

3 − l
k

)

+ 1
2l

, when l < ⌈k
2
⌉ and l odd, k even;

•
(

3 − l
k

)

+ 1
2k

, when l < ⌈k
2
⌉ and l even, k odd;

•
(

3 − l
k

)

+
(

1
2l
− 1

2k

)

, when l < ⌈k
2
⌉ and k, l odd.

Notice that ωk,l ≤ 21
2

when l ≥ ⌈k
2
⌉ and k is even; ωk,l ≤

5
2

+ 1
6

= 22
3

when
l ≥ ⌈k

2
⌉ and k is odd; ωk,l < 3 when 2 ≤ l < ⌈k

2
⌉ and k, l even; and ωk,l < 31

6

when 2 ≤ l < ⌈k
2
⌉ and l odd, k even or l even, k odd or k, l odd. Thus, in general,

ωk,l ≤ 22
3

= 8
3

when l ≥ ⌈k
2
⌉ and ωk,l < 31

6
= 19

6
when 2 ≤ l < ⌈k

2
⌉.

20

Theorem 17 (Upper Bound of Integrality Gap of VCC(k, l, V ∗)LP) Let
G = (V, E) be a complete graph with non-negative edge costs c ∈ R

E, let V ∗ ⊆
V be a non-empty set of vital vertices, and let k, l ∈ Z, 2 ≤ l ≤ k be non-
negative integers. The integrality gap for the linear programming relaxation of
VCC(k, l, V ∗) is at most ωk,l.

Proof: Let H be the feasible solution of VCC(k, l, V ∗) that is returned by Al-
gorithm VCC. Case 1: Suppose l ≥ ⌈k

2
⌉. Then, using Lemma 14, Corollary 13,

and Lemma 12, we have,

cost(H) =
⌈k

2

⌉

· optG(EMST (V ∗)) +
(

l −
⌈k

2

⌉)

·optG[V ∗](T̃ -join)

+
⌊k

2

⌋

· optG(T̂ -join)

≤

(

⌈k

2

⌉

·
2

l
+
(

l −
⌈k

2

⌉)

·
1

l
+
⌊k

2

⌋

·
1

k

)

·optG(VCC(k, l, V ∗)LP). (18)

Case 1a: If k is even, (18) becomes

cost(H) ≤

(

k

2
·
2

l
+
(

l −
k

2

)

·
1

l
+

k

2
·
1

k

)

· optG(VCC(k, l, V ∗)LP)

=

(

k

l
+ 1 −

k

2l
+

1

2

)

· optG(VCC(k, l, V ∗)LP)

=
1

2

(

3 +
k

l

)

· optG(VCC(k, l, V ∗)LP). (19)

Case 1b: If k is odd, (18) becomes

cost(H) ≤

(

(k + 1

2

)

·
2

l
+
(

l −
k + 1

2

)

·
1

l
+
(k − 1

2

)

·
1

k

)

·optG(VCC(k, l, V ∗)LP)

=

(

2k

2l
+

2

2l
+ 1 −

k

2l
−

1

2l
+

1

2
−

1

2k

)

· optG(VCC(k, l, V ∗)LP)

=
1

2

(

(

3 +
k

l

)

+
(1

l
−

1

k

)

)

· optG(VCC(k, l, V ∗)LP). (20)

21

Case 2: Suppose l < ⌈k
2
⌉. Then, using Lemmas 12 and 14, and Corollaries 15

and 13, we have,

cost(H) =
⌈ l

2

⌉

· optG(EMST (V ∗)) +
⌊ l

2

⌋

· optG[V ∗](T̃ -join) +
⌊ l

2

⌋

· optG(T̂ -join)

+
⌊k − l

2

⌋

· optG(T-join) +
⌈k − l

2

⌉

· optG(MST)

≤

(

⌈ l

2

⌉

·
2

l
+
⌊ l

2

⌋

·
1

l
+
(⌊ l

2

⌋

+
⌊k − l

2

⌋)

·
1

k
+
⌈k − l

2

⌉

·
2

k

)

·optG(VCC(k, l, V ∗)LP). (21)

Case 2a: When k, l are even, (21) becomes

cost(H) ≤

(

l

2
·
2

l
+

l

2
·
1

l
+
(l

2
+

k − l

2

)

·
1

k
+
(k − l

2

)

·
2

k

)

·optG(VCC(k, l, V ∗)LP)

=

(

1 +
1

2
+

l

2k
+

1

2
−

l

2k
+ 1 −

l

k

)

· optG(VCC(k, l, V ∗)LP)

=

(

3 −
l

k

)

· optG(VCC(k, l, V ∗)LP). (22)

Case 2b: When l is odd and k is even, (21) becomes

cost(H) ≤

(

(l + 1

2

)

·
2

l
+
(l − 1

2

)

·
1

l
+
(l − 1

2
+

k − l − 1

2

)

·
1

k

+
(k − l + 1

2

)

·
2

k

)

· optG(VCC(k, l, V ∗)LP)

=

(

1 +
1

l
+

1

2
−

l

2l
+

l

2k
−

1

2k
+

1

2
−

l

2k
−

1

2k
+ 1 −

l

k
+

1

k

)

·optG(VCC(k, l, V ∗)LP)

=

(

(

3 −
l

k

)

+
1

2l

)

· optG(VCC(k, l, V ∗)LP). (23)

22

Case 2c: When l is even and k is odd, (21) becomes

cost(H) ≤

(

l

2
·
2

l
+

l

2
·
1

l
+
(l

2
+

k − l − 1

2

)

·
1

k

+
(k − l + 1

2

)

·
2

k

)

· optG(VCC(k, l, V ∗)LP)

=

(

(

3 −
l

k

)

+
1

2k

)

· optG(VCC(k, l, V ∗)LP). (24)

Case 2d: When k, l are odd, (21) becomes

cost(H) ≤

(

(l + 1

2

)

·
2

l
+
(l − 1

2

)

·
1

l
+
(l − 1

2
+

k − l

2

)

·
1

k

+
(k − l

2

)

·
2

k

)

· optG(VCC(k, l, V ∗)LP)

=

(

(

3 −
l

k

)

+
1

2l
−

1

2k

)

· optG(VCC(k, l, V ∗)LP). (25)

Therefore,

optG(VCC(k, l, V ∗)) ≤ cost(H) ≤ ωk,l · optG(VCC(k, l, V ∗)LP),

i.e.,

optG(VCC(k, l, V ∗))

optG(VCC(k, l, V ∗)LP)
≤ ωk,l, (26)

where ωk,l is the bound from equation (19), (20), (22), (23), (24), or (25), de-
pending on whether we are in Case 1a, 1b, 2a, 2b, 2c, or 2d, respectively. The
result follows. �

The next corollary follows directly from Theorem 17 and its proof.

Corollary 18 Let H be the feasible solution of VCC(k, l, V ∗) that is returned by
Algorithm VCC on G. Then, on G,

cost(H) ≤ ωk,l · opt(VCC(k, l, V ∗)LP) ≤ ωk,l · opt(VCC(k, l, V ∗)).

Proof: The first inequality follows directly from equations (19), (20), (22), and
(23). Noting that opt(VCC(k, l, V ∗)LP) ≤ opt(VCC(k, l, V ∗)) completes the
proof. �

23

Corollary 19 (Approximation Guarantee of Algorithm VCC) Let G =
(V, E) be a complete graph with non-negative edge costs c ∈ R

E, let V ∗ ⊆ V
be a non-empty set of vital vertices, and let k, l ∈ Z, 2 ≤ l ≤ k be non-negative
integers. Algorithm VCC is an ωk,l-approximation algorithm for VCC(k, l, V ∗).
In particular, Algorithm VCC is an 8

3
-approximation algorithm when l ≥ ⌈k

2
⌉ and

a 19
6
-approximation algorithm when 2 ≤ l < ⌈k

2
⌉.

Proof: Follows directly from Proposition 16 and Corollary 18. �

3.3 Special Cases

It is worth noting some special cases: When k = l and V ∗ 6= V , Algorithm VCC
is a 2-approximation algorithm, and the integrality gap for VCC(k, k, V ∗)LP has
an upper bound of 2. Recall that, as shown in Proposition 10, VCC(k, l, V) is
precisely the problem multi-kEC, and we can, without loss of generality, set l = k.
In this case, we can modify step (4a) of Algorithm VCC by omitting all the edges
in J̃ and thus forming H := (V, E ′′ ∪ J ′). Since this is precisely our Algorithm
A from [3], we have an approximation guarantee for VCC(k, l, V) (and an upper
bound on the integrality gap for VCC(k, l, V)LP) of 3

2
when k is even, and 3

2
+ 1

2k

when k is odd.
In the special case l = ⌈k

2
⌉, notice that when k is even Algorithm VCC is

a 5
2
-approximation algorithm (and we have a 5

2
upper bound for the integrality

gap); and when k is odd the approximation guarantee and upper bound for the
integrality gap are at most 8

3
and asymptotically approach 5

2
from above as k gets

large.

3.3.1 The Special Case VCC(k, 1, V ∗)

As mentioned earlier, the case of l = 1, i.e., VCC(k, 1, V ∗), is treated separately.
In this case, we use the following approximation algorithm:

Algorithm E

Input: A complete graph G = (V, E) with non-negative edge costs c ∈ R
E , a

non-empty subset of vital vertices V ∗ ⊆ V , and non-negative integer k ∈ Z≥1.

1. Using Algorithm M from Section 2.1, find an extended minimum cost span-
ning tree, M ′, of G with vital vertices V ∗. Let E ′ ⊂ E be the edge set of
M ′. (If k = 1, set H := M ′ and go to Step 4.)

2. Let V̂ odd ⊂ V be the set of vertices of G having odd degree in M ′. Find a
minimum cost T̂ -join Ĵ ⊆ E, on G, where T̂ = V̂ odd.

24

3. Find a minimum cost spanning tree, M , of G. Let V odd ⊂ V be the set of
vertices of G having odd degree in M . Find a minimum cost T -join J ⊆ E,
on G, where T = V odd. Take ⌈k−2

2
⌉ copies of the edges in M , and let this

form the edge set E ′
M . Take ⌊k−2

2
⌋ copies of the edges in J , and let this form

the edge set J ′. Take 1 copy of the edges in Ĵ . Form the multi-subgraph
H := (V, E ′ ∪ Ĵ ∪ E ′

M ∪ J ′).

4. Return H .

Proposition 20 Algorithm VCC runs in polynomial time and produces a feasible
solution of VCC(k, 1, V ∗).

Proof: A minimum cost spanning tree can be found in O(|V | log |V |+ |E|) time
[11]. This becomes O(|V |2) for a complete graph. Finding a minimum cost T -join
can be done in the worst case running time O(|V |3) [3]. Therefore, using Lemma
6, Algorithm E has worst case running time O(|V |3+|V |3+|V |2+|V |2) = O(|V |3).

We now show that the graph H returned by Algorithm E is a feasible solution
to VCC(k, 1, V ∗). Clearly, H [V ∗] is connected, since it contains the spanning
tree M ′[V ∗]. Next, the edges of H partition into 1 copy of the edges of M ′, 1
copy of the edges in Ĵ , ⌈k−2

2
⌉ copies of the edges of M , and ⌊k−2

2
⌋ copies of the

edges in J . Thus, the edges of H partition into a 2-edge connected subgraph of
G and a (k− 2)-edge connected subgraph of G. Hence, H is (2+ k− 2) = k-edge
connected. The result follows. �

The following lemma gives an improvement on the bound of Lemma 14 in the
case where l = 1:

Lemma 21 Given a complete graph G = (V, E) with non-negative edge costs
c ∈ R

E, a non-empty subset of vital vertices V ∗ ⊆ V , and a non-negative integer
k ∈ Z, k ≥ 1, the following holds on G:

opt(EMST(V ∗)) ≤ opt(VCC(k, 1, V ∗)LP) ≤ opt(VCC(k, 1, V ∗)).

Proof: Since EMST(V ∗) is precisely the special case VCC(1, 1, V ∗), we have that
opt(EMST(V ∗)LP) ≤ opt(VCC(k, 1, V ∗)LP). However, by Corollary 9, the cost
of an optimal solution to EMST(V ∗) is equal to the optimal value of its linear
programming relaxation. The result follows. �

Theorem 22 (Upper Bound of Integrality Gap of VCC(k, 1, V ∗)LP) Let
G = (V, E) be a complete graph with non-negative edge costs c ∈ R

E, let V ∗ ⊆ V
be a non-empty set of vital vertices, and let k ∈ Z≥1 be a non-negative integer.
The integrality gap for the linear programming relaxation of VCC(k, 1, V ∗) is at
most 5

2
− 2

k
when k is even, and at most 5

2
− 3

2k
when k is odd.

25

Proof: Let H be the feasible solution of VCC(k, 1, V ∗) that is returned by Al-
gorithm E on G. Using Lemma 12, Lemma 21, and Corollary 15 we have,

cost(H) = 1 · optG(EMST (V ∗)) + 1 · optG(T̂ -join)

+
⌊k − 2

2

⌋

· optG(T-join) +
⌈k − 2

2

⌉

· optG(MST)

≤

(

1 · 1 +

(

1 +
⌊k − 2

2

⌋

)

·
1

k
+
⌈k − 2

2

⌉

·
2

k

)

·optG(VCC(k, 1, V ∗)LP). (27)

When k is even, (27) becomes

cost(H) ≤

(

1 +
(

1 +
k − 2

2

)

·
1

k
+
(k − 2

2

)

·
2

k

)

· optG(VCC(k, 1, V ∗)LP)

=
(5

2
−

2

k

)

· optG(VCC(k, 1, V ∗)LP). (28)

When k is odd, (27) becomes

cost(H) ≤

(

1 +
(

1 +
k − 2 − 1

2

)

·
1

k
+
(k − 2 + 1

2

)

·
2

k

)

·optG(VCC(k, 1, V ∗)LP)

=
(5

2
−

3

2k

)

· optG(VCC(k, 1, V ∗)LP). (29)

Since optG(VCC(k, l, V ∗)) ≤ cost(H), the result follows. �

The next corollary follows directly from Theorem 22 and its proof.

Corollary 23 Let H be the feasible solution of VCC(k, 1, V ∗) that is returned by
Algorithm E on G. Let α = 5

2
− 2

k
when k is even, and let α = 5

2
− 3

2k
when k is

odd. On G,

cost(H) ≤ α · opt(VCC(k, 1, V ∗)LP) ≤ α · opt(VCC(k, 1, V ∗)).

Proof: The first inequality follows directly from equations (28), and (29). Noting
that opt(VCC(k, l, V ∗)LP) ≤ opt(VCC(k, l, V ∗)) completes the proof. �

Corollary 24 (Approximation Guarantee of Algorithm E) Let G = (V, E)
be a complete graph with non-negative edge costs c ∈ R

E, let V ∗ ⊆ V be a non-
empty set of vital vertices, and let k ∈ Z≥1 be a non-negative integer. Algorithm
E is a (5

2
− 2

k
)-approximation algorithm for VCC(k, 1, V ∗) when k is even and a

(5
2
− 3

2k
)-approximation algorithm when k is odd. In particular, Algorithm E is

an 5
2
-approximation algorithm for VCC(k, 1, V ∗).

26

Proof: Follows directly from Proposition 20 and Corollary 23. �

From Theorem 22 and Corollary 24, notice that the special case VCC(2, 1, V ∗)
(in which the secondary vertices are not a cut set) has a 3

2
approximation guaran-

tee and a 3
2

upper bound on the integrality gap. This generalizes our previous 3
2

results for multi-2EC [3]. In particular, when there is only one secondary vertex
r ∈ V , VCC(2, 1, V \{r}) has a 3

2
approximation guarantee and finds a feasible

multi-2EC solution in which r is not a cut vertex.
Lastly, notice that when l = 1 and k = 1, we get an approximation guarantee

and upper bound of 1. This is as expected, since this is just the problem EMST.

VCC Heuristic from Combining Approximation Algorithms
We briefly examine approximation algorithms for VCC that can be obtained

by combining known heuristics for other problems, and note that our approxi-
mation algorithms VCC and E do better in all instances. First, we need a few
upper bounds. By Lemmas 6 and 14,

optG[V ∗](MST) ≤ optG(EMST (V ∗)) ≤
2

l
optG(V CC(k, l, V ∗)). (30)

Since the cost of an optimal multi-lEC solution on G[V ∗] is not greater than the
cost of an optimal solution of VCC(k, l, V ∗) on G restricted to G[V ∗],

optG[V ∗](multi-lEC) ≤ optG(V CC(k, l, V ∗)). (31)

Since multi-kEC is a relaxation of VCC(k, l, V ∗),

optG(multi-kEC) ≤ optG(V CC(k, l, V ∗)). (32)

Lastly, the approximation guarantee for multi-kEC using our Algorithm A from
[3] is 3

2
, for k even; and 3

2
+ 1

2k
, for k odd ([3], Theorem 5).

When l = 1, heuristic solutions for VCC(k, 1, V ∗), can be obtained by (a):
finding an optimal MST solution on G[V ∗], using our Algorithm A from [3] to
find a feasible multi-kEC solution on G, and combining them together; or by (b):
finding an optimal EMST(V ∗) solution on G, using our Algorithm A from [3]
to find a feasible multi-(k − 1)EC solution on G, and combining them together.
Using the inequality (30) and the approximation guarantee from [3] for multi-
kEC, when k is even method (a) yields a feasible VCC(k, l, V ∗) solution with
cost less than or equal to 7

2
of the cost of an optimal VCC(k, l, V ∗) solution; and

when k is odd method (b) yields a feasible VCC(k, l, V ∗) solution with cost less
than or equal to 7

2
of the cost of an optimal VCC(k, l, V ∗) solution. Algorithm E

gives a better approximation guarantee than this for all values of k.
When l ≥ 2, a heuristic solution for VCC(k, 1, V ∗) can be obtained by (c):

using our Algorithm A from [3] to find a feasible multi-lEC solution on G[V ∗],
using our Algorithm A from [3] to find a feasible multi-kEC solution on G, and

27

combining them together. Using the above mentioned approximation guarantee
for Algorithm A for multi-kEC ([3], Theorem 5), and the inequalities (31) and
(32), method (c) is a 3

2
+ 3

2
= 3-approximation algorithm for VCC(k, l, V ∗) when k

and l are even; a (3
2
+ 1

2l
)+ 3

2
= (3+ 1

2l
)-approximation algorithm for VCC(k, l, V ∗)

when k is even and l is odd; a 3
2
+(3

2
+ 1

2k
) = (3+ 1

2k
)-approximation algorithm for

VCC(k, l, V ∗) when l is even and k is odd; and a (3
2
+ 1

2l
)+(3

2
+ 1

2k
) = (3+ 1

2l
+ 1

2k
)-

approximation algorithm for VCC(k, l, V ∗) when k and l are odd. Comparing
these with Theorem 19, Algorithm VCC gives a strictly better approximation
guarantee for all instances. Appendix A presents the approximation guarantees
of Algorithm VCC for certain instances of VCC, and lists them against those of
method (c). Not only this, but also notice that method (c) does not yield an
upper bound on the integrality gap for the LP relaxation of VCC.

Notice that finding a feasible multi-lEC solution on G[V ∗], finding a fea-
sible multi-kEC solution on the graph with V ∗ identified as a single vertex
(i.e., on G/V ∗), and then combining them together does not necessarily solve
VCC(k, l, V ∗).

4 Extension: Multiple Vital Cores

Instead of being defined for just one vital core, EMST can be generalized to
include numerous disjoint vital cores as follows: Given a complete graph, G =
(V, E), with non-negative edge costs c ∈ R

E , and a set of given non-empty pair-
wise disjoint subsets of vital vertices V := {V ∗

1 , V ∗
2 , . . . , V ∗

q } such that V ∗
m ⊆ V

for m = 1, 2, . . . , q, find a minimum cost spanning tree of G that remains con-
nected on each component G[V ∗

1], G[V ∗
2], . . . , G[V ∗

q] when the secondary vertices
V ′ := V \(V ∗

1 ∪V ∗
2 ∪· · ·∪V ∗

q) are removed; i.e., whose induced subgraphs on each
of the vital cores G[V ∗

1], G[V ∗
2], . . . , G[V ∗

q] are themselves a spanning tree on that
vital core. We call this generalization of EMST the vital core minimum span-
ning tree problem (VCMST). Instances of VCMST are denoted by VCMST(V).
Clearly, if G is not connected, there is no solution to VCMST. Also, if G is
connected but not complete, we can make it complete by adding in the “miss-
ing” edges and assigning them each a very large edge cost. Clearly, without loss
of generality, we can assume G is simple. When V consists of a single subset
V ∗ ⊆ V , VCMST reduces to EMST. Thus, we have the following inequality:

Proposition 25 Given a complete graph G = (V, E) with non-negative edge
costs c ∈ R

E, and a set of non-empty disjoint subsets of vertices V ∗
1 , V ∗

2 , . . . , V ∗
q ⊆

V , the following holds on G: opt(EMST) ≤ opt(VCMST).

In this section, we present a polynomial-time algorithm for solving VCMST, as
well as a complete linear description for VCMST. This generalizes EMST results
from Section 2.

28

The following characteristic of a feasible solution of VCMST is used by the
algorithm for VCMST(V):

Lemma 26 Let G = (V, E) be a complete graph with non-negative edge costs
c ∈ R

E, and let V = {V ∗
1 , V ∗

2 , . . . , V ∗
q } be a set of non-empty pairwise disjoint

subsets of vertices such that V ∗
m ⊆ V for m = 1, 2, . . . , q. Let M be an optimal

solution to VCMST(V) on G. Then M [V ∗
m] is a minimum cost spanning tree of

G[V ∗
m], for m = 1, 2, . . . , q.

Proof: Consider the subset of vital vertices V ∗
m, m ∈ {1, 2, . . . , q}. Since the

removal of the secondary vertices V ′ does not disconnect M [V ∗
m], therefore, M [V ∗

m]
is a connected subgraph of G[V ∗

m]. Moreover, since M is a spanning tree of G,
therefore M [V ∗

m] is a spanning subgraph of G[V ∗
m] and is acyclic. Since M [V ∗

m]
is a connected, acyclic, spanning subgraph of the vital core G[V ∗

m]; thus, M [V ∗
m]

is a spanning tree of G[V ∗
m]. Since this holds for all m ∈ {1, 2, . . . , q}, therefore

M [V ′] has connected components T1, . . . , Tt (for some t ∈ N>0) which are each
trees, and which are each connected in M to each M [V ∗

m] by at most one distinct
edge in δM(M [V ∗

m]), respectively.
Suppose Bm is a minimum cost spanning tree of G[V ∗

m]. Thus, cost(Bm) ≤
cost(M [V ∗

m]). Suppose cost(Bm) < cost(M [V ∗
m]). Let M̂ be the subgraph of G

obtained from M by replacing M [V ∗
m] by Bm. See Figure 4. It is easy to see

that M̂ is a spanning tree of G. Furthermore, M̂ [V ∗
m] is connected, since M̂ [V ∗

m]

V*
1

V*
2

e1
e2 e3

e4

= M

= B
T

T

3

4

T2
T1 V’

V*
m

m

e5

e6

Figure 4: Replacing M [V ∗] by Bm in M .

consists precisely of Bm (which is connected). Thus, M̂ is a feasible solution
to VCMST(V) on G, and cost(M̂) < cost(M), which is a contradiction with
the fact that M is an optimal solution to VCNST(V) on G. Thus, cost(Bm) 6<

29

cost(M [V ∗
m]). Therefore, M [V ∗

m] is a minimum cost spanning tree of G[V ∗
m], for

m = 1, 2, . . . , q. �

Notice, from Lemma 26, that in a feasible solution of VCMST, every secondary
vertex v ∈ V ′ is either a leaf of the spanning tree, or is part of a branch of the
spanning tree such that from v to the leaf/leaves of the branch all the vertices
are secondary vertices.

Given a graph G = (V, E), and V = {V ∗
1 , V ∗

2 , . . . , V ∗
q } for non-empty disjoint

subsets V ∗
m ⊆ V , m = 1, 2, . . . , q, define the multi-graph G/V to be the shrunk

graph of G with respect to V, obtained by identifying all the vertices in V ∗
m into

a single (“shrunk”) vertex wm and deleting all the edges of G that have both
endpoints in V ∗

m; for m = 1, 2, . . . , q. Notice that G/V has |V | −
∑q

i=1 |V
∗
i | + q

vertices, and its edge set, EV , consists of all the edges of G that have exactly
one or no endpoint in V. Notice that edges iwm, i ∈ V ′, in G/V are in 1 to 1
correspondence with edges ij ∈ E, j ∈ V ∗

m, m ∈ {1, 2, . . . , q}. Edges wpwm in
G/V, m, p ∈ {1, 2, . . . , q}, m 6= p, are in 1 to 1 correspondence with the edges in
G that have one endpoint in V ∗

m and one endpoint in V ∗
p . Edges in G/V that are

not incident to any of the shrunk vertices wm are in 1 to 1 correspondence with
the edges in G that do not have any endpoints in V ∗

m, for all m = 1, 2, . . . , q.

Lemma 27 Let G = (V, E) be a complete graph with non-negative edge costs
c ∈ R

E, and let V = {V ∗
1 , V ∗

2 , . . . , V ∗
q } be a set of non-empty disjoint subsets of

vertices such that V ∗
m ⊆ V for m = 1, 2, . . . , q. Let V ′ = V \V. Let M be an

optimal solution to VCMST(V) on G. Then M restricted to the shrunk graph
G/V is a minimum cost spanning tree of G/V.

Proof: Notice that G/V is connected (since G is connected), and thus contains
a spanning tree. Let M∗ be M restricted to the shrunk graph G/V. Since, by
Lemma 26, each M [V ∗

m] is a spanning tree of G[V ∗
m], for m = 1, 2, . . . , q; it is easy

to see that M∗ is a spanning tree of G/V. See Figure 4.
Suppose A is a minimum cost spanning tree of G/V. Thus, cost(A) ≤

cost(M∗). Suppose cost(A) < cost(M∗). Let M̂ be the subgraph of G ob-
tained from M by replacing the edges of M∗ by the edges of A. Clearly, M̂ is a
spanning tree of G. By construction, cost(M̂) =

∑q
i=1 cost(M [V ∗

i]) + cost(A) <
∑q

i=1 cost(M [V ∗
i])+ cost(M∗) = cost(M). This is a contradiction with M a min-

imum cost spanning tree of G. Thus, cost(A) = cost(M∗), and M∗ is a minimum
cost spanning tree of G/V. �

Notice that, from Lemmas 26 and 27, any multiple copies of edges in G can
be removed, keeping only, for each pair of distinct vertices, the edge joining them
which has the cheapest edge cost. Thus, in considering VCMST, without loss of
generality we can always assume that G is simple.

Based on Lemmas 26 and 27 above, we have the following polynomial-time
algorithm for VCMST(V):

30

Algorithm GM

Input: A complete graph G = (V, E) with non-negative edge costs c ∈ R
E , a

set of vital cores V = {V ∗
1 , V ∗

2 , . . . , V ∗
q }, such that V ∗

m ∩ V ∗
p = ∅ for distinct

m, p ∈ {1, 2, . . . , q}, and V ∗
m ⊆ V for m = 1, 2, . . . , q; and the set of secondary

vertices V ′ := V \V.

G1. For m = 1, 2, . . . , q, find a minimum cost spanning tree, M̃m, of the vital
core G[V ∗

m].

G2. Find a minimum cost spanning tree, M∗, of the shrunk graph G/V.

G3. Form the subgraph M ′ =
(

V, E(M̃1) ∪ · · · ∪ E(M̃q) ∪ E(M∗)
)

.

Lemma 28 Let G = (V, E) be a complete graph with non-negative edge costs
c ∈ R

E, and let V = {V ∗
1 , V ∗

2 , . . . , V ∗
q } be a set of non-empty pairwise disjoint

subsets of vertices such that V ∗
m ⊆ V for m = 1, 2, . . . , q. Let V ′ = V \V. The

subgraph M ′ returned by Algorithm GM is an optimal solution to VCMST(V) on
G, and can be constructed in worst case running time O(|V |2).

Proof: By Lemmas 26 and 27, an optimal solution to VCMST(V) on G consists
exactly of the vertices in V along with the edges of a minimum cost spanning
tree of each of G[V ∗

1], . . .G[V ∗
q] and the edges of a minimum cost spanning tree

of G/V.5 This is precisely M ′. Thus, M ′ is an optimal solution to VCMST(V)
on G.

For a connected graph with n vertices and m edges, a minimum cost spanning
tree can be found in O(n log n+m) time [11]. This becomes O(n2) for a complete
graph. Thus, steps (G1) and (G2) can be implemented in worst case running
time O(|V |2). �

A complete linear description of EMST is given in Section 2.2. Using the
same techniques as above, this can be extended naturally to form a complete

5Notice that, without loss of generality, G/V can be made into a simple graph by removing,
for each secondary vertex u ∈ V ′, all the multiple copies of edges uv, v ∈ {w1, . . . , wq} ∪ V ′,
except for the copy of uv with the cheapest edge cost. Thus, any algorithm for finding a
minimum cost spanning tree can be used, regardless of whether or not that algorithm starts on
a simple or multi-graph.

31

linear description of VCMST:

minimize cx (33)

subject to
∑

e∈EP

xe ≥ kP − 1, for all partitions P of G/V, (34)

∑

e∈EP

xe ≥ kP − 1, for all partitions P of (35)

G[V ∗
1], G[V ∗

2], . . . , G[V ∗
q], respectively,

xe ≥ 0, for all e ∈ E. (36)

Constraints (34) and (36) are precisely those constraints for the minimum span-
ning tree LP(1) on the shrunk graph G/V of G, and constraints (35) and (36)
are precisely those constraints for the minimum spanning tree LP(1) on the vital
cores G[V ∗

1], G[V ∗
2], . . . , G[V ∗

q], respectively.

5 Conclusion

We have shown that in the case that k = l = 1, VCC results in a useful gener-
alization of the minimum cost spanning tree problem; a generalization for which
we provide a complete linear description as well as a polynomial-time algorithm.
We have also presented an approximation algorithm for VCC(k, l, V ∗), and have
presented an upper bound for the integrality gap for its linear programming re-
laxation. These results for VCC are the first such to be presented. Although a
better guarantee than that of Algorithm VCC can be obtained for large differ-
ences between k and l, Algorithm VCC yields the best guarantee both for smaller
differences between k and l and for small connectivities.

For VCC(k, l, V ∗) with k > l > ⌈k
2
⌉, as an upper bound Algorithm VCC

has an approximation guarantee (and upper bound on the integrality gap) of
8
3

for l ≥ ⌈k
2
⌉, 19

6
for 2 ≤ l < ⌈k

2
⌉, and 5

2
for l = 1 or for l = ⌈k

2
⌉ and k even.

When l = ⌈k
2
⌉ and k is odd the approximation guarantee and upper bound for the

integrality gap are at most 8
3

and asymptotically approach 5
2

from above as k gets
large. For the special case VCC(k, k, V ∗), V ∗ 6= V , our approximation guarantee
is 2. When l < ⌈k

2
⌉, Algorithm VCC is very similar to our previous approximation

algorithm (Algorithm A) for, in particular, multi-kEC [3]. This is because when
l < ⌈k

2
⌉, for an optimal solution H of VCC(k, l, V ∗), H [V ∗] is ⌈k

2
⌉-edge connected,

and thus is certainly l-edge connected. The only difference in this case between
Algorithm A for multi-kEC [3] and Algorithm VCC (for VCC(k, l, V ∗)) is that
Algorithm A uses copies of an MST of G, whereas Algorithm VCC uses copies of
an EMST(V ∗) of G. Thus, from Proposition 3, the approximation guarantee of
Algorithm VCC is expected to be at least that of Algorithm A, which is indeed
the case. In the special case VCC(k, l, V), which is simply the problem multi-

32

kEC, we have an approximation algorithm with approximation guarantee of 3
2

when k is even, and 3
2

+ 1
2k

when k is odd (agreeing with our previous results
[3]). Thus, Algorithm VCC generalizes our previous approximation algorithm for
multi-kEC.

Additionally, it is interesting to note that when l = k − 1, Algorithm VCC
has an approximation guarantee of 3

2
+ 1

2
(k

k−1
) for k even, and 3

2
+ 1

2
(k2+1

k2−1
) for k

odd. In particular, when there is only one secondary vertex r ∈ V , Algorithm
VCC is a 3

2
-approximation algorithm for VCC(2, 1, V \{r}), i.e., in which r is not

a cut vertex. For the special case VCC(2, 1, V ∗) (in which the secondary vertices
are not a cut set), Algorithm E has a 3

2
approximation guarantee, generalizing

our previous 3
2
-approximation algorithm for multi-2EC [3].

Finally, observe that our approximation algorithm for VCC has approximation
guarantee (and upper bound on the integrality gap) that is strictly less than 2
for the special cases VCC(2, 1, V ∗) and VCC(k, l, V).

Lastly, we have provided a complete linear description of, and a polynomial-
time algorithm for, VCMST (the extension of EMST to numerous disjoint vital
cores).

References

[1] P. Angeloudis, D. Fisk, Large Subway Systems as Complex Networks, Phys-
ica A 367 (2006) 553-558.

[2] V. Auletta, Y. Dinitz, Z. Nutov, A 2-Approximation Algorithm for Finding
an Optimum 3-Vertex-Connected Spanning Subgraph, J. of Algorithms 32
(1999) 21-30.

[3] S. Boyd, A. Cameron, Integrality Gap and Approximation Algorithm for the
Multi-survivable Network Design Problem, University of Ottawa, Technical
Report TR-2009-03 (2009).

[4] S. Chopra, On the Spanning Tree Polyhedron, Operations Research Letters
8 (1989) 25-29.

[5] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Shrijver, Combinato-
rial Optimization, Wiley Interscience (1998).

[6] K.P. Eswaran, R.E. Tarjan, Augmentation Problems, SIAM J. Comput. 5
(1976) 653-665.

[7] G. Even, J. Feldman, G. Kortsarz, Z. Nutov, A 3/2-Approximation Algo-
rithm for Augmenting the Edge-Connectivity of a Graph from 1 to 2 Using
a Subset of a Given Edge Set, APPROX-RANDOM 2001, LNCS2129 (2001)
90101.

33

[8] G. Even, G. Kortsarz, Z. Nutov, A 1.5-approximation for Augmenting a
Connected Graph into a Two-connected Graph, Inf. Process. Lett. 111(6)
(2011) 296-300.

[9] L. Fleischer, K. Jain, D.P. Williamson, Iterative Rounding 2-approximation
Algorithms for Minimum-cost Vertex Connectivity Problems, Journal of
Computer and System Sciences 72 (2006) 838867.

[10] G.N. Frederickson, J. Ja’Ja’, On the Relationship Between the Biconnectiv-
ity Augmentation and Travelling Salesman Problems, Theoretical Computer
Science 19 (1982) 189-201.

[11] M.L. Fredman, R.E. Tarjan, Fibonacci Heaps and Their Uses in Improved
Network Optimization Algorithms, Journal of the Association for Computing
Machinery 34 No.3 (1987) 596-615.

[12] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman & Co., New York, NY (1979).

[13] M.X. Goemans and D.J. Bertsimas, Survivable Networks, Linear Program-
ming Relaxations and the Parsimonious Property, Mathematical Program-
ming 60 (1993) 145-166.

[14] K. Jain, A Factor 2 Approximation Algorithm for the Generalized Steiner
Network Problem, Combinatorica 21 No.1 (2001) 39-60.

[15] K. Jain, I. Mandoiu, V. V. Vazirani, D.P. Williamson: A Primal-dual Schema
Based Approximation Algorithm for the Element Connectivity Problem,
Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (1999) 484489.

[16] G. Kortsarz, Z. Nutov, Approximating Node Connectivity Problems via Set
Covers, Algorithmica 37 (2003) 7592.

[17] G. Kortsarz, Z. Nutov, Tight Approximation Algorithm for Connectiv-
ity Augmentation Problems, Journal of Computer and System Sciences 74
(2008) 662670.

[18] G. Leberman, Connectivity Augmentation Problems, M.Sc. Thesis, The
Open University of Israel (2005).

[19] T. Mashima, S. Taoka, T. Waranabe, A 2-Approximation Algorithm to (k +
1)-Edge-Connect a Specified Set of Vertices in a k-Edge-Connected Graph,
IEICE Trans. Fundamentals, V.E88A N.5 (2005) 1290-1300.

34

[20] Z. Nutov, Approximating Connectivity Augmentation Problems, SODA ’05
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms (2005) 176-185.

[21] J. Ramirez-Marquez, C. Rocco, G. Levitin, Optimal Protection of General
Sourcesink Networks Via Evolutionary Techniques, Reliability Engineering
& System Safety 94 Issue 10 (2009), 1676-1684.

35

Appendix A:

Comparison of Approximation Guarantees

Near the end of Section 3.3, we briefly examined some approximation algorithms
for VCC that can be obtained by combining known heuristics for other problems,
and we noted that our approximation Algorithms VCC and E do better in all
instances. Among combinations of known heuristics that we mentioned, we noted
what we called Method (c): When l ≥ 2, a heuristic solution for VCC(k, 1, V ∗)
can be obtained by using our Algorithm A from [3] to find a feasible multi-lEC
solution on G[V ∗], using our Algorithm A from [3] to find a feasible multi-kEC
solution on G, and combining them together. Method (c) is a 3-approximation
algorithm for VCC(k, l, V ∗) when k and l are even; a (3 + 1

2l
)-approximation

algorithm for VCC(k, l, V ∗) when k is even and l is odd; a (3+ 1
2k

)-approximation
algorithm for VCC(k, l, V ∗) when l is even and k is odd; and a (3 + 1

2l
+ 1

2k
)-

approximation algorithm for VCC(k, l, V ∗) when k and l are odd. Algorithm
VCC gives a strictly better approximation guarantee for all instances.

The below table presents the approximation guarantees of Algorithm VCC
for certain instances of VCC, and lists them against those of Method (c). In the
special case that l = 1, Algorithm E has an approximation guarantee of 1 when
k = 1; of 3

2
when k = 2; of 2 when k = 3, 4; of 11

5
when k = 5; of 13

6
when k = 6;

etc.

36

Approx. Guarantee Approx. Guarantee
l k of Algorithm VCC of method (c)

k = l 2 3
k = 2l 5/2 3
k, l even 2 6 8/3 3

· · ·
4 6 9/4 3

10 13/5 3
· · ·

6 8 13/6 3
10 14/6 3
14 18/7 3
16 21/8 3
· · ·

· · · · · ·
k even, l odd 3 4 13/6 19/6

8 67/24 19/6
· · ·

5 6 21/10 31/10
8 23/10 31/10
12 161/60 31/10
14 96/35 31/10
· · ·

7 8 29/14 43/14
10 31/14 43/14
12 33/14 43/14
16 295/112 43/14
18 169/63 43/14
· · ·

· · · · · ·

37

Approx. Guarantee Approx. Guarantee
l k of Algorithm VCC of method (c)

k odd, l even 2 3 7/3 19/6
5 27/10 31/10
· · ·

4 5 43/20 31/10
7 17/7 43/14
9 47/18 55/18
· · ·

6 7 44/21 43/14
9 41/18 55/18
11 27/11 67/22
13 67/26 79/26
· · ·

· · · · · ·
k, l odd 3 5 12/5 49/15

7 8/3 68/21
9 25/9 29/9
· · ·

5 7 78/35 111/35
9 22/9 142/45
11 13/5 173/55
13 174/65 204/65
· · ·

7 9 136/63 197/63
11 178/77 240/77
13 32/13 283/91
15 18/7 326/105
17 313/119 369/119
· · ·

38

