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ABSTRACT 1. INTRODUCTION

We provide a computationally realistic mathematical frame- Constructing phylogenies can be very challenging, and there-
work for the NP-hard problem of the multichromosomal fore, restricted versions of the problem are often studied.
breakpoint median for linear genomes that can be used in One of the most common restrictions is to find one com-
constructing phylogenies. A novel approach is provided that mon ancestor of several given genomes. This problem can
can handle both signed and unsigned cases of the multichro- be modeled by using the notion of a median, where one
mosomal breakpoint median problem. Our method provides searches for a genome that is close to several other genomes.
an avenue for incorporating biological assumptions (when- Once we have a method to find the median, we can then use
ever available) such as the number of chromosomes in the it in an iterative manner to construct the evolutionary tree
ancestor, and thus, it can be tailored to obtain a more (see [16] for examples of such construction). A fundamental
biologically-relevant picture of the median. We demonstrate question in building phylogenies is how far apart two species
the usefulness of our method by performing an empirical are from each other. This idea can be captured under the
study on both simulated and real data with a comparison to notion of distance between two genomes. There are several
other methods. popular measures for distance, such as breakpoint, reversal,

double cut-and-join, etc.. For measuring distance, we focus
on breakpoint distance as it provides an intuitive link be-

Categorles and SUbJeCt Descrlptors tween the order of genes in each genome and how far two

J.3 [Life' and Medical Sci'ences]: BiOIng and genet.ics; genomes could be from each other. It has been argued that
G.2.3 [Discrete Mathematlcs}: Applications; G‘_Q-Q [Disc- the reversal distance is a more biologically accurate represen-
rete Mathematics|: Graph theory—graph algorithms tation of what can happen in nature [5]. However, there are

some disadvantages, such as the fact that finding the rever-
sal distance for unsigned genomes is NP-hard, whereas the

eneral Terms
G breakpoint distance can be easily computed in both signed

Algorithms and unsigned cases [10].

Keyw()rds In general, eukaryotic cells (cells with nuclei) have several
Breakpoint median problem, multichromosomal median prob- linear chromosomes (as opposed to prokaryotic cells which
lem, travelling salesman problem have circular chromosomes). Most of the research on the me-

dian problem involves the simplified unichromosomal case.
The multichromosomal median problem is less studied due
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mal breakpoint median problem (BMP). To the best of our

ACM-BCB '11, August 1-3, Chicago, IL, USA knowledge, our method is the first practical method that
provides solutions for both signed and unsigned linear mul-

Copyright ©2011 ACM 978-1-4503-0796-3/11/08... $10.00 tichromosomal BMP with the ability of considering several
possibilities for the number of chromosomes in the desired
solution.

The unichromosomal BMP is NP-hard for signed and un-
signed genomes ([6] and [14]). In 2009, Tannier, Zheng
and Sankoff ([19]) showed that for the case of multichro-
mosomal genomes where circular and mixed genomes are
allowed, the BMP can be solved in polynomial time. They
also showed that if we only allow linear chromosomes, the



median problem becomes NP-hard. In this paper we focus
on the case where only linear chromosomes are allowed, i.e.
the NP-hard case. As previously mentioned, the assumption
of allowing only linear chromosomes is the relevant case for
all eukaryotes. In this analysis, we consider multichromo-
somal genomes where each gene is present exactly once in
every genome. We first define the framework in which we
can mathematically represent the median problem. Sankoff
and Blancehtte [16] gave a reduction of the unichromosomal
BMP to another well-known problem, the Travelling Sales-
man Problem (TSP). In this paper we extend this method
and provide a novel approach for a transformation from the
multichromosomal BMP to the multiple salesmen TSP. We
study the case for both signed and unsigned linear genomes.
Then, we apply a second transformation from the multi-
ple salesmen TSP to the usual TSP. The subject of several
books in the past few years, TSP is arguably the most inten-
sively studied problem in combinatorial optimization [12].
Therefore, a transformation of multichromosomal BMP to
an instance of TSP opens the door to the vast knowledge
and tools available for solving TSP which we can apply for
finding the median. In particular, we take advantage of a
software package called Concorde for solving TSP [2]. We
demonstrate the usefulness of our method by presenting the
results of an empirical study on both simulated and real-
world data, with a comparison to another method.

2. DEFINITIONS AND BACKGROUND

We first present the definitions for unsigned genomes. An
unsigned gene g is a sequence of DNA where the orienta-
tion is unknown. A set of unsigned genes form an unsigned
genome. We can represent an unsigned genome on n genes
by a string of unsigned integers 1,2, ...,n which represents
the ordering of the genes in the genome. This string can be
broken into segments, representing the chromosomes of the
genome. Chromosomes can be circular or linear. Circular
chromosomes have a circular gene ordering (which will be
represented with brackets around the segment). A linear
chromosome has two extremities, called the telomeres of the
chromosome. For example, G = (3 6 10 1) | (24 5) |
(7 9 8) represents an unsigned genome G on 10 genes with
three circular chromosomes, where the chromosome are sep-
arated from each other by a vertical line. H =1 2 4 3 has
one linear chromosome with 4 unsigned genes. Gene 1 and
gene 3 are the telomeres of H. If all of the chromosomes in a
genome are circular, the genome is called circular, and if all
of the chromosomes are linear, the genome is called linear.
If some chromosomes are linear and some are circular, the
genome is called mized.

Given an unsigned genome A, we say two genes are adjacent
in A if they are adjacent in the gene ordering. For example,
in G above, 2 and 4 are adjacent, 7 and 8 are adjacent, and
3 and 10 are not adjacent. In H above, 4 and 3 are adjacent,
1 and 3 are not.

Next we present the definitions for signed genomes. In this
case, the orientation of each gene is known, and a gene g is a
sequence of DNA with two extremities called the tail and the
head, denoted by g: and g respectively. A signed genome
is a sequence of oriented genes. As in the unsigned case,
we can represent a signed genome on n genes by a string
of integers 1,2, ...,n broken into segments representing the

chromosomes, where each integer will be given a sign (+ or
-) representing the orientation of the gene. In this notation,
we let +g represent the gene g in the orientation g g:, and
we let —g represents the gene in the orientation g.g,. For
example, consider the following signed genome C with 5
genes:

C=(-3-4+1) | +5-2

Genome C has two chromosomes, one is circular and one is
linear. We could also represent C' by writing each gene as
its ordered tail and head extremities:

C == (3t3h 4t4h 1h1t) | 5h5t 2t2h

Note that for each linear or circular chromosome, there are
two equivalent strings where one is obtained from the other
by reversing the order and switching the signs of all the
genes.

For signed genomes, the adjacencies are not defined on the
genes, but instead on the extremities of the genes, namely
the heads and tails of the genes. We say an extremity of
gene u and an extremity of gene v are adjacent if they are
adjacent in the ordering of the genome. Thus, there are four
possible adjacencies between two genes u and v depending
on the direction of the genes: upvn, unve, utvn, or usve. The
telomeres are sets that contain one element, i.e. up, ut, vp
or vg.

For example, in the genomes C above, the adjacenies are 3;
and 1, 3n and 4, 45 and 1;, and 5; and 2;. The telomeres
of the genome are the gene extremities at the ends of linear
chromosomes. For example, in the genome C above, 55, and
25 are telomeres.

We now define breakpoint and breakpoint distance, for both
signed and unsigned genomes. Consider two genomes A and
B on the same set of n genes, where both are either signed or
both are unsigned. If two genes (or two gene extremities, in
the case of signed genomes) are adjacent in A, but not in B,
then we say they determine a breakpoint. Note that the usual
notion of breakpoint distance is defined on unichromosomal
genomes, where the breakpoint distance between A and B
is defined as the number of breakpoints in A (or B). This
can be calculated as d(A, B) = n — a(A, B) for two circular
genomes, where a(A, B) represents the number of common
adjacencies between genomes A and B.

As described in [19], the breakpoint distance between two
(signed or unsigned) multichromosomal genomes G and H
on the same set of n genes can be defined as

d(G,H) =n —a(G, H) — @ (1)

where a(G, H) is the number of common adjacencies be-
tween G and H, and e(G, H) is the number of common
telomeres of G and H. Such a definition counts one break-
point for a fusion or a fission of two linear chromosomes (for
two unsigned multichromosomal genomes, if each genome
contains a linear chromosome with exactly one gene g, then



g contributes twice to the number of common telomeres of
the two genomes). Note that we can equivalently think
of the breakpoint distance between two multichromosomal
genomes G and H as the number of breakpoints between G
and H plus half the number of times a gene g is a telomere
in one of the two genomes, but not the other.

As an example of using Equality (1), consider the genome
C from before, and the following genome D with 3 chromo-
somes on 5 genes:

D=(-3-4)| 5| -1-2
Then a(C,D) =1, e(C,D) = 2, and d(C, D) = 3.

Given three genomes A, B, and C, the breakpoint median
problem (BMP) is the problem of finding a genome M, called
the median, such that the sum of the breakpoint distances
between M and each other genome is minimized.

One of the most well-known problems in combinatorial opti-
mization is the Travelling Salesman Problem (TSP) (see [12]
for background on the TSP). Consider a complete weighted
graph. A Hamilton cycle is a cycle of the graph that vis-
its every vertex exactly once. A minimum-weight Hamilton
cycle is a Hamilton cycle such that the sum of the edge-
weights of the cycle is minimized. An optimal solution to
the TSP calls for finding such a minimum-weight Hamilton
cycle. Due to the wide range of applications and its theoret-
ical appeal, there is a huge amount of research on the TSP
(see [11] and [12] for example).

The TSP is known to be NP-hard. Currently the best
k-approximation algorithm known for the TSP, when the
costs satisfy the triangle inequality, is the algorithm due to
Christofides [8] for which k = 2. However, for the general
TSP, a k-approximation algorithm for any constant k& would
imply P=NP, and thus it is considered highly unlikely to

exist [12].

A generalization of the well-known TSP is to consider mul-
tiple salesmen. A Multiple Travelling Salesman Problem
(mTSP) is an assignment of exactly m salesmen to a set
of vertices of a graph such that all salesmen start and end
their journey at a fixed vertex called the depot and each
other vertex gets visited exactly once by exactly one sales-
man. The goal of the mTSP is to minimize the total cost of
all of the routes. We define the r-to-m Multiple Travelling
Salesman Problem (rmTSP) as a variation of the mTSP in
which at least » and at most m salesmen are used. Due to
several real-life applications, the mTSP has been the subject
of several studies [4].

3. TRANSFORMING THE MULTICHROMO-

SOMAL MEDIAN PROBLEM TO MTSP

3.1 Median problem for unsigned genomes

In this section we describe our solution method for solving
the linear multichromosomal BMP in the case where the
genomes are unsigned. In 1997, Sankoff and Blanchette [16]
showed that the unichromosomal circular BMP can be re-
duced to the TSP in the case of three unsigned genomes A,
B and C over a set of n genes. In [17] the same authors

Figure 1: BP-median graph constructed for three
circular genomes A = (126543), B=(21456 3),
and C = (1234605). A breakpoint median is M =
(123654).

used a branch-and-bound method to solve this TSP. Al-
though useful for many problems in combinatorial optimiza-
tion, branch-and-bound is not usually an effective method
for solving the TSP.

The transformation in [16] is as follows. Let G be a complete
undirected graph of n vertices such that each vertex repre-
sents one gene. For each edge uv let adj(uv) be equal to the
number of times the genes corresponding to u and v are ad-
jacent (do not form a breakpoint) in genomes A, B, and C
(so adj(uv) can be 0, 1, 2, or 3). Let the weight of the edge
wv, w(uv), be equal to 3 —adj(uv). Then the solution to the
TSP for the weighted graph G traces out a permutation of
{1,2,...,n} that provides an optimal solution to the BMP.
We call the weighted graph G the BP-median graph. Note
that in this method, if we use an edge wv in the final TSP
solution, this corresponds to genes u and v being adjacent in
the median genome M. The weight w(uv) in the BP-median
graph (i.e. 3 — adj(uv)) represents the number of times u
and v are not adjacent in three genomes A,B and C. Thus
using the edge uv in the TSP solution contributes exactly
w(uv) to the sum d(M, A) + d(M, B) + d(M,C) which we
are trying to minimize, i.e. the sum of the distance between
the median and the other genomes.

Since the goal of the TSP is to find a minimum cost Hamil-
ton cycle, the solution given by the TSP optimizes the use of
adjacencies available in the three genomes. Hence, starting
at any vertex of a cycle that is a TSP solution for the prob-
lem, we will have a genome that is the breakpoint median for
the given three genomes. Figure 1 provides the BP-median
graph for a simple example of three circular unichromoso-
mal genomes A = (126543), B=(214563), and
C =(123465). The edge weights are assigned by using
w(uv) = 3 — adj(uv). It can be seen from the example that
an optimal TSP solution is 1236541 with the minimum cost
equal to 6. Therefore, a breakpoint median for this problem
isM=(123654), and d(M, A)+d(M,B)+d(M,C) =6.

We first provide a transformation from the unsigned linear
multichromosomal BMP to an instance of an rmTSP.

Construct the graph G for the genomes the same way as de-
scribed for the BP-median graph, i.e. G is a complete graph
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Figure 2: An example of transforming a linear mul-
tichromosomal BMP to an rmTSP with one de-
pot. The three genomes are A =12|3|45|6]|7,
B=153|27]46,and C=374|6|512. The chro-
mosomes in each genome are separated by vertical
lines.

of n vertices corresponding to n genes where the weight of
an edge uv is equal to 3 — adj(uv). Then add a vertex d
called the depot and add an edge between d and every other
vertex g of the graph. Let 7(g) be equal to the number of
times g is a telomere in one of the three genomes. Then, the
edge dg has a weight w(dg) = 37%((’)

Figure 2 provides an example of such a transformation for
the following three linear multichromosomal genomes A,B
and C, where the chromosomes are separated by vertical
lines:

A=12]3|45|6]7,
B=153|27]46,
and C =374]6|512.

An rmTSP solution to this graph corresponds to a set of say
C cycles, with r < C' < m, starting and ending at the depot
such that each non-depot vertex belongs to exactly one cy-
cle, with the total cost minimized. Once we obtain such a
solution, we can delete the depot and have C disjoint paths
(r< C < m) covering all vertices of the graph such that the
overall cost is minimized. Each path will correspond to a
linear chromosome in the solution to the multichromosomal
BMP. We claim this is the solution to the BMP, and that
this solution has cost equal to the cost of the rmTSP solu-
tion. To see this, first consider an edge wv in the rmTSP
graph where u and v are gene (non-depot) vertices. As we
described before for the unichromosomal circular BMP, if we
use the edge uv in the final rmTSP solution, this corresponds
to u and v being adjacent in the final BMP solution, and the
rmTSP solution contributes exactly w(uv) = 3 — adj(uv) to

~
-~ weights of e{iges

0.5

Depots

Original BP-median Graph

Figure 3: Transforming an rmTSP to TSP for r=3,
m=>5. The original BP-median graph is the graph
presented in Figure 2 (without the depot). The
edges between the depots and the original graph
are grouped together based on their endpoint in
the original graph. Each group has the same weight
written besides the arrow.

the BMP solution cost d(M, A) + d(M, B) + d(M,C) that
we are trying to minimize. Next, consider an edge Dg in the
rmTSP graph, where D is a depot vertex and g is a gene
(non-depot) vertex. The weight w(Dg) = 37%@) represents
half the number of times g is not a telomere in A, B, or C'. If
we use the edge Dg in the final rmTSP solution, this corre-
sponds to gene g being a telomere in the final BMP solution,
and the rmTSP solution contributes exactly w(Dg) = 37%(9)
to the BMP solution value of d(M, A) +d(M, B) +d(M,C).

Next we show that an rmTSP can be transformed to a TSP.
Several methods for such a transformation exist (see [4] for a

survey of the results). We provide the most straight-forward
transformation in this context.

ALGORITHM 1. A transformation of rmTSP to TSP

e Include m copies of the depot, d1,...,dm,.

o Add edges from each depot to all non-depot vertices
Vi,...,Un. An edge djv; has the same weight as its
corresponding edge dv; in the original graph.

e Add an edge between each pair of depots.

e Assign the weight oo to the edges between di, ..., dr—1
depots and from these r — 1 depots to all other depots.

e Assign the weight 0 to the edges between dy,...,dm
depots.



o All other edges in the graph (edges with vi,...,vn ver-
tices as endpoints) have weights equal to the weights
assigned as per the original BP-median graph.

e [ind a TSP solution for this expanded graph.

Figure 3 provides a sketch of the transformation mentioned
in Algorithm 1 for r =3 and m = 5.

In order to minimize the total cost, a TSP solution to the
expanded graph explained above will be forced to not choose
the edges with weight co. Therefore, a TSP tour visits at
least r — 1 depots (the r — 1 depots with costs co between
them) and for the remaining depots, it will require between
1 and m — r + 1 visits. Thus it provides a solution to the
rmTSP problem.

A TSP solution on this graph visits every vertex exactly once
while minimizing the total sum of the edges it goes through.
Therefore, those edges with weight co are not included in
the TSP solution. So for the » — 1 depots for which the
incident edges from depots all have value infinity (d1 and
d2 in Figure 3), a TSP solution must visit those depots by
using two edges that have one end in the original BP-median
graph. The other depots (ds, dsa and ds in Figure 3) may get
visited by using the edges between them (edges of weight 0),
or the edges with one end in the original BP-median graph,
or a combination of these two types of edges. Therefore, a
TSP solution has to visit the subgraph containing the depots
(the left side of Figure 3) at least r times and at most m
times. So we have obtained a solution to the rm-TSP.

By combining the transformation from the unsigned linear
multichromosomal BMP to an instance of an rmTSP and
Algorithm 1, we have reduced the unsigned linear multichro-
mosomal BMP to a TSP. Once a solution to the TSP with
r to m visits to the depots is obtained, we delete the depots
and the adjacent edges. Deleting the depots will result in
at least 7 and at most m disjoint paths covering all vertices
exactly once. A TSP solution has minimized the total cost
on the edges. Therefore, after removal of the depots, this
solution traces a set of minimum cost disjoint paths covering
the vertices of the graph. Each of the these disjoint paths
gives the sequence of genes in one linear chromosome of the
median. So we have obtained a median with at least r and
at most m linear chromosomes.

For example, if we consider our previous example of A, B
and C, our optimal TSP tour for the TSP problem shown
in Figure 3is d1 3 74 ds d3 2d2 51 dsa 6 , which gives the
optimal median solution M =374(2|51]6.

It should be noted that there is a one-to-one correspondence
between the solutions of the multichromosomal BMP and
the TSP formed. As explained above, every linear multi-
chromosomal BMP can be solved by transforming it into a
TSP. On the other hand, every optimal TSP tour provides
an ordering that minimizes the total cost of the edges of the
graph and therefore, it provides the order of genes in a mul-
tichromosomal breakpoint median. Also, the length of the
TSP tour is equal to the sum of the breakpoint distances
between the median and the other genomes.

3.1.1 Special cases for various numbers of chromo-

somes

Note that our solution method for the linear multichromo-
somal BMP allows us to choose the range (r to m) of the
number of linear chromosomes which we will allow in the
BMP solution. Thus, we can extend our method to include
several special cases of the median problem that may be
useful in real-world applications. For example, the common
ancestor of the grass family in 52.5 million years ago has 12
chromosomes, while the children have anywhere from 5 to 12
chromosomes: sorghum has 10, rice has 12, Brachypodium
distachyon has 5 and wheat lineage has 7 chromosomes [15].
Therefore, in such examples it may be appropriate for the
algorithm to set a maximum for the number of the chro-
mosomes of the ancestral genome, where that maximum is
defined by some parameters or biological data such as the
largest number of chromosomes in the children. In such
cases, we would use an rmTSP with » = 1 (or 7 = mini-
mum number of chromosomes required) and m equals the
maximum.

Other cases, such as enforcing the ancestor to have exactly
k chromosomes might be desired in cases when k is given by
some other methods (statistical, laboratory, etc.), but the
sequence of genes in the median is unknown. In this case we
would use r = m = k in the rmTSP model.

3.1.2 Linear unichromosomal BMP

We must point out that if we only add one depot (set r =
m = 1 in our transformation), we are using exactly one
salesman. This corresponds to having one chromosome, i.e.
the unichromosomal BMP.

There is a key difference between how the unichromosomal
BMP for a linear versus a circular chromosome is modeled
that often goes unnoticed. The transformation provided in
[16] from the unichromosomal BMP to the TSP is valid for
circular unichromosomal genomes. Though not specifically
mentioned in the literature, it is commonly assumed that
the case for linear unichromosomal genomes is similar to
the circular case, in the sense that the circular median can
be found and then “cut” to obtain a linear median. However,
this assumption is not necessarily true. The main problem
is that once a circular median in the form of a TSP tour
is obtained, it is unclear where to “cut” the tour to obtain
a path corresponding to a linear median. Moreover, an op-
timal TSP tour corresponding to a solution to the circular
BMP, may not contain the optimal solution to the linear
case (an optimal path covering all vertices of the graph ex-
actly once) at all. For instance, in the example shown in
Figure 1, a circular median is M = (1 2 3 6 5 4) with an
optimal cost of 6. This is an optimal solution to the circular
unichromosomal BMP and an optimal TSP tour. The op-
timal solution to the linear unichromosomal BMP for this
example is P =12 3 4 5 6 with cost 3. However, it is im-
possible to obtain an optimal path P from M. Indeed, the
best path that can be obtained from M by removing one
edge, would have a cost of at least 4, which is higher that
the cost of P. Therefore, the optimal solution M to the
circular unichromosomal BMP may not yield to an optimal
solution for the linear version of the problem.



To fix this problem, we propose the following solution. Use
our method for the linear multichromosomal BMP, with the
restriction that there is exactly one chromosome in each
genome. Then, the unichromosomal case is just a special
case of the multichromosomal BMP. Specifically, add a de-
pot vertex to the BP-median graph, and add the edges be-
tween the depot and all other vertices with the edge weight
of 3_%@. Solve the TSP on this extended graph where an
optimal tour starts and ends at the depot. Then remove the
depot to obtain a path of minimum cost that goes through
all vertices. This path corresponds to the sequence of the
genes in the solution for the linear unichromosomal BMP.

3.2 Median problem for signed genomes

The transformation described in the previous section consid-
ers unsigned genomes. In this section we provide a method
to transform a signed unichromosomal circular BMP to a
TSP instance and we then generalize the result to include the
linear multichromosomal case, and thereby reduce the lin-
ear multichromosomal breakpoint median problem on signed
genomes to a TSP. Recall that the breakpoint distance be-
tween two signed multichromosomal genomes can be defined
using Equality(1), and that in signed genomes, there are four
possible adjacencies between two genes u and v depending
on the direction of the genes: upvn, unve, Utvn, or urve. The
telomeres are sets that contain one element, i.e. up, ut, vp
or vs.

Consider the signed BMP on three unichromosomal circular
genomes A, B, and C where each genome has n (signed)
genes. We construct a signed BP-median graph G with 3n
vertices. Each gene g in the chromosome corresponds to
three vertices g, (representing the head of the gene), g: (rep-
resenting the tail of the gene) and g in the graph. Both
edges gngm and gmg: have weights equal to zero. All the
other edges with g,, as an endpoint have weights equal to
infinity. Also, all edges between the head and the tail of the
same gene, gng:, have weights equal to infinity. See Figure
4. A positive (negative) gene in a genome indicates that in
a Hamilton cycle of G, the head (tail) is visited before the
tail (head). All other edges are formed as in the BP-median
graph, and the weights are similarly assigned based on the
adjacencies in the signed genomes: for example, the weight
w(ge frn) on the edge between the tail of gene g and the head
of gene f is 3 — adj(g:fr) where adj(g:fr) is the number of
times tail of g and head of f are adjacent.

The existence of a vertex g,, between the head and the tail
of each gene g is necessary to ensure that an optimal tour
for the TSP includes g, if g: is picked (and vice-versa) by
travelling through g¢,,. Otherwise, if g, is not included in
the model, it is possible to have a case where one endpoint of
a gene is visited and it is not followed by the other endpoint.
Note that the edges of weight co in the signed BP-Median
graph G ensure that the edges g:g» and gng: will be in-
cluded in the optimal TSP solution for every gene g.

Similar to the unsigned case, a solution to the TSP on the
signed BP-median graph provides a solution to the BMP
simply by taking the vertices in the order they are visited in
the TSP solution, ignoring the g, vertices. For example, in
Figure 4, the TSP tour 1:1,, 142121 2:3¢3mm3r 1 corresponds
to the genome (1:15 2,2+ 3¢3p).

Figure 4: An example of transforming a circular
unichromosomal signed BMP for 3 genes to a TSP
on 9 vertices: the solid unlabelled edges will receive
weights according to the adjacencies, and the dotted
edges have infinity as their weight.

In the multichromosomal case, similar to what was described
previously for the unsigned case, the problem can be trans-
formed to an rmTSP.

ALGORITHM 2. Transformation of a signed multichromo-
somal BMP to an rmTSP

e Add a depot vertex d.

e Add an edge between the depot d and all vertices g cor-
responding to the heads and tails, such that the weight
of such edge is equal to w(dg) = 37%(9) where 7(g)
is the number of times g is a telomere in one of the
chromosomes of the three genomes.

e Add an edge of weight oo between the depot and all
vertices Gm.

e Find a solution to the rmTSP on this graph.

A solution to the rmT'SP described above has at least r and
at most m visits to the depot. Let P be such a solution.
After deleting the depot, we are left with at least r and at
most m disjoint paths covering all (non-depot) vertices of the
graph. Once again, if we ignore the g,, vertices, each path
corresponds to a chromosome in the solution to the signed
multichromosomal BMP. By combining Algorithm 1 and Al-
gorithm 2 a multichromosomal BMP for signed genomes can
be transformed to a TSP.

Similar to Section 3.1.1 for unsigned genomes, our proposed
method for signed genomes can handle different require-
ments on the number of linear chromosomes.

As mentioned in [13], since typically the number of salesmen
m for an rmT'SP is much less than the number of vertices n of
the graph, the addition of m depots and therefore expanding
the graph to n+m vertices is not a substantial increase, when



m << n. Also, in theory, the mTSP on n+m vertices should
be an easier problem to solve than the T'SP on n vertices [13].
From a biological point of view, this is also accurate, since
the m depots correspond to m chromosomes, and typically,
the number of chromosomes is far less than n, the number
of genes.

4. COMPUTATIONAL EXPERIMENTS

We tested our method on randomly generated datasets. For
this purpose, we randomly generated sets of genomes with
various numbers of chromosomes. To simulate the occur-
rence of breakpoints, randomly selected genes in each genome
were swapped. The number of gene swaps corresponding to
the occurrence of breakpoints were assigned by setting a ra-
tio k = 7+ x 100 where m is the number of breakpoints
compared to the identity, and n is the total number of genes
present in the genome. We performed our tests for a range
of ratios between 10% and 90%, for the number of genes
ranging from 10 to 10,000. We also tested this method on
both signed and unsigned genomes with various numbers of
chromosomes: A fixed chromosome number for all genomes,
and a lower and upper bound for the number of chromo-
somes allowed in each genome. After generating these ran-
dom datasets, we created the BP-median graph for each test.
We then used our transformation to add the depots to the
graph based on the number of chromosomes, and found the
input for the rmTSP. The next step was to apply the sec-
ond algorithm to tranform the rmTSP to a TSP. Once we
obtained an instance of the TSP corresponding to our linear
multichromosomal BMP, we applied Concorde [2] to solve
the TSP. Concorde is a sophisticated TSP solver that com-
bines many of the most recent advances on TSP research
to find exact or provably nearly-exact solutions for a TSP.
It uses the linear programming formulation of the TSP and
applies advanced branch-and-cut steps to move towards the
optimal solution. Concorde starts from a feasible solution
(not necessarily optimal) and applies cutting-plane methods
to move towards the optimal solution. It also finds a lower
bound on the value of the optimal solution. If a solution is
obtained with value equal to the lower bound, then it is an
optimal solution. If the optimal solution cannot be reached,
Concorde provides the best found solution and a bound in-
dicating its worst-case distance from optimality. The output
from Concorde is in the form of a sequence of vertices that
gives the TSP tour. Based on our method, we can translate
this tour back into the sequence of the genes present in the
median. We used the C programming language, and all the
tests were performed on an Intel Xeon 3.2 GHz with 3.2 GB
of memory and the GCC compiler for Linux. The reported
results are for k = 30% and they are averages over 5 runs
for each sample type of the simulated data. There was no
noticable difference in performance time and optimality gap
within various ratios. The optimality gap is calculated as
the worst-case difference, as a percentage, between the re-
ported median and an optimal solution (i.e. the difference,
as a percentage, between the reported median value and
the lower bound found by Concorde on the optimal solution
value). Note that an optimality gap of 0 indicates that an
optimal solution was found. Table 1 provides a summary of
the results of applying our method for the multichromoso-
mal BMP. The average time to find the optimal median in
the case of 3 chromosomes in each genome was 127.54 sec-
onds. Note that we were successful in obtaining an optimal

median in all cases where n < 10000. For n > 10000, the
worst-case accuracy of 7% gap from the optimal solution was
for 25000 genes per genome spread over 23 chromosomes.

For real-world datasets we tested our method on the human,
cat, and mouse gene data available from [20]. This dataset
consists of 114 common genes (markers) contained in sev-
eral chromosomes. Our method was able to find an optimal
breakpoint median of this dataset in less than one minute.
The parameters chosen were r = 19 and m = 23 (The num-
ber of chromosomes for cat, mouse and human are 19, 20,
and 23, respectively). An optimal median was found with
20 chromosomes.

As mentioned in other studies (for example see [23]) and
to the best of our knowledge, aside from our current work,
there are no other large-scale linear multichromosomal me-
dian solvers for breakpoint distance. We should mention
that there are other tools available for finding the median of
multichromosomal genomes using other distance functions.
These tools include MGR [5], GRIMM [20], MGRA [1], and
ASMedian [21]. Among these packages, MGR and GRIMM
are primarily based on reversal distance and can only handle
genomes of significantly smaller size (in the range of 100 or
fewer genes). MGRA can handle larger data, however, it is
based on a scenario called “2-break” that is used to approx-
imate other rearrangement scenarios such as reversals. AS-
Median, solves the median problem under Double Cut-and-
Join (DCJ) distance. A recent version of ASMedian, called
ASMedian-linear [22] has been developed for linear chromo-
somes under DCJ distance and tested on large datasets of
up to 5000 genes, again using the DCJ distance measure.
The reported running times for ASMedian-linear are very
fast. One drawback is that it is possible to have circular
chromosomes in the solution found by ASMedian-linear. As
mentioned, none of these tools are based on breakpoint dis-
tance and therefore, we were not able to compare them to
our method.

4.1 Unichromosomal breakpoint median prob-

lem
The circular unichromosomal breakpoint median problem can
be defined in cases where each genome has only one circular
chromosome. There has been more studies on the unichro-
mosomal case compared to the multichromosomal median
problem. Therefore, we decided to test our method for the
unichromosomal case as well so we could compare its per-
formance with other available packages, given that we know
of no other methods for large-scale linear multichromosomal
breakpoint median problem. For this purpose, we focused
on the circular unichromosomal BMP for signed and un-
signed genomes. This problem is known to be NP-hard ([6],
[7]). In Section 3 we discussed the transformation proposed
in [16] for transforming the unichromosomal BMP for un-
signed genomes, as well as our adaptation of this method for
signed genomes, into an instance of TSP. We use this trans-
formation and apply the TSP solver Concorde [2] to obtain
a solution to the TSP, and then translate this solution to
the median. We tested our method on both real-world and
synthetic datasets of 3 to 10,000 circular unichromosomal
genomes, each containing 10 to 10,000 genes for both signed
and unsigned cases. For all of our test data, we were able to
obtain an optimal solution. The time it took for our method



Number of Genes | Number of Chromosomes Time Median | Optimality

Per Genome In Each Genome (seconds) | Score Gap
10 3 0 15 0%

100 3 5.12 182 0%

500 3 18.49 873 0%

1000 3 42.17 1802 0%
5000 3 125.19 9247 0%
10000 3 574.26 5274 0%

10 3<n<5 0 18 0%

100 3<n<5h 9.07 192 0%

500 3<n<5h 28.31 943 0%

1000 3<n <5 189.06 2403 0%
5000 3<n <5 170.41 10684 0%
10000 3<n <5 681.01 14278 2%
25000 n=23 1091.72 31361 7%

Table 1: Performance for the multichromosomal breakpoint median problem on simulated data sets with a
ratio of 30%, averages over 5 runs for each sample type of the simulated data. The optimality gap is calculated
as the difference, as a percentage, between the reported median and the lower bound found by Concorde on

the value of an optimal solution.

to reach optimality ranged from less than 1 second to about
5 minutes for the largest dataset on an Intel Xeon 3.2 GHz
with 3.2 GB of memory running Linux. The times reported
are averages over 5 runs for each sample type of the simu-
lated data. The optimal median is found using the optimal
TSP solution from Concorde. Total average time over all
samples for our method was 39.38 seconds.

For real-world datasets, we tested our method on the hu-
man, fruit fly, and sea urchin mtDNA data which was used
in [18]. This dataset contained 33 signed genes over the
three genomes. We also tested the Campanulaceae cpDNA
dataset which was considered a more challenging dataset
studied in [9]. This is a dataset of 13 genomes each with 105
genes. In both cases, our method was able to find optimal
solutions in a matter of seconds.

A well-known genomic median solver is GRAPPA [3]. We
compared the performance of our method to GRAPPA. For
smaller genomes (less than 60 genes per genome) GRAPPA
was faster than our method, however, once the genome size
exceeded 60 genes, our method outperformed GRAPPA in
terms of speed. For n > 1000, GRAPPA was unable to find
any median even after one hour of running time. Also, in
terms of accuracy, our method obtained provably optimal
results for all test cases, whereas GRAPPA was, on average,
20% away from optimal in the test cases where it was applied
and able to find a solution. Table 2 provides the results for
the unichromosomal BMP.

5. CONCLUSIONS

In this paper, a novel approach for solving the breakpoint
median problem on signed and unsigned multichromosomal
genomes is presented. The focus of our framework is on
the NP-hard problem of finding a multichromosomal break-
point median for linear genomes. Our method is based on
constructing a complete graph that has all the genes as ver-
tices and the edge weights representing the breakpoints. We
then obtain a multiple salesman TSP by adding a depot.
Next, we converted this graph into an rmTSP. The param-

eters r and m (minimum and maximum number of sales-
men/chromosomes) can be used to capture different biolog-
ical assumptions on the number of chromosomes in a com-
mon ancestor. By setting these parameters, we can use our
method to test hypotheses on the number of chromosomes
of a common ancestor, even when the known genomes or
the available data provide less chromosomes. It should be
noted that the parameters » and m only need to be spec-
ified if desired. If such information is unknown or we do
not want to restrict our solutions to particular parameters,
we can still use the same method without any restrictions.
In such cases, we can set r to be the minimum number of
chromosomes (say 1) and m to be the maximum number of
chromosomes possible.

Also, our method can be easily extended to include more
than 3 genomes. For example, if we want to find the median
of K genomes, it suffices to set the weights as w(gh) =
K — adj(gh) instead of 3 — adj(gh) for genes g and h, and
w(dg) = K_Tf(g) instead of 3_%(’” for a depot d and a gene
g in our TSP transformation.

The other advantage of this method is its computational ef-
ficiency in terms of both the running time and also accuracy
of finding optimal results. In terms of the running time,
the presented method allowed us to compute the median
in realistic time limits on datasets which can appropriately
resemble real-world data. In all cases up to 5000 genes an
optimal solution is found. For datasets of size 10,000 the
optimality gap is 2% and in the largest dataset that was
tested, n = 25000 with 23 chromosomes, the worst case
difference between the solution we found and the optimal
solution value is 7% and this solution was found in less than
20 minutes.

One drawback of this method is the assumption of contain-
ing equal gene content in the genomes. This is a very com-
mon assumption in the field in order to reduce the general
problem into manageable datasets. Ideally, models should



Number of Time for Time for | Median Score | Median Score | Optimal
genes per | our method | GRAPPA with with Median
genome (sec.) (sec.) our method GRAPPA
10 0.01 0 11 14 11
20 0.05 0 33 43 33
30 0.07 0.02 44 56 44
50 0.18 0.04 76 91 76
60 0.33 0.28 96 104 96
70 0.49 3.2 min 113 121 113
80 0.76 12.5 min 137 148 137
90 1.08 48.7 min 142 153 142
100 1.34 > 60 min 168 172 168
150 2.02 > 60 min 259 267 259
200 3.88 > 60 min 351 352 351
500 10.74 > 60 min 861 869 861
1000 28.12 > 60 min 1743 N/A 1743
1500 22.27 > 60 min 2640 N/A 2640
2000 39.31 > 60 min 3485 N/A 3485
3000 54.07 > 60 min 5259 N/A 5259
5000 83.54 > 60 min 8719 N/A 8719
10000 328.14 > 60 min 10751 N/A 10751

Table 2: Our method versus GRAPPA: unichromosomal breakpoint median problem. The results are for
simulated data with a ratio of 30%. The times reported are averages over 5 runs for each sample type of the

simulated data.

allow for unequal numbers of genes in the genomes. We are
planning to extend our method to include cases where un-
equal gene content can be considered, and we believe that
such an extension of our framework can be done. For future
work, including several copies of the genes may also lead to
a more realistic model.

We should point out that finding a median is a combinatorial
optimization problem that is only a rough approximation
of a common ancestor. With more genomic data becoming
available and different biological hypotheses tested on known
common ancestors, it would be very interesting to compare
the results of the median obtained by our method to the
sequence of a known common ancestor. Such comparison
could shed light on appropriate parameters and constraints
that need to be considered in computing medians in the
future.
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