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Abstract

The Symmetric Travelling Salesman Problem (STSP) is the problem of finding a minimum

weight Hamiltonian cycle in a weighted complete graph on n vertices. This problem is well

known to be NP-hard. One direction which seems promising for finding improved solutions

for this and other NP-hard problems is the study of the structure of the extreme solutions

associated with the problem’s linear programming relaxation. This approach has led to new

approximation algorithms and results for several NP-hard problems. Moreover it has not been

possible thus far to obtain these results via other more traditional methods, i.e. knowledge of

the structure of these extreme points was key.

In this paper we study the structure of the extreme solutions of the Subtour Elimination

Problem (SEP), which is a linear programming relaxation of the STSP. We give some new

results on both the underlying structure of these extreme solutions, as well as the structure

of the defining cobasis for such solutions. We demonstrate the usefulness of these results by

showing how this new theory facilitates the generation of all extreme solutions of the SEP for

some values of n that were previously unattainable. This allows for the first time, for these

values, the verification of the well-known conjecture that the integrality gap is 4/3 for the

metric STSP. We believe that with further exploration these results may also facilitate the

development of improved approximation algorithms for the STSP.

§ 1. Introduction

Given the complete graph Kn = (V,E) on n vertices with non-negative edge costs
c ∈ RE , c 6= 0, the Symmetric Travelling Salesman Problem (henceforth STSP) is the
problem of finding a Hamiltonian cycle (or tour) in Kn of minimum cost. When the
costs satisfy the triangle inequality, i.e. when cuv + cvw ≥ cuw for all distinct triples
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u, v, w ∈ V , we call the problem the metric STSP. The STSP is known to be NP-hard,
even in the metric case [16].

One approach taken for finding reasonably good solutions for the STSP is to look
for a γ-approximation algorithm for the problem, that is, try to find a heuristic which
finds a tour which is guaranteed to be of cost at most γ times the optimal STSP value
for some constant γ ≥ 1. Currently the best γ-approximation algorithm known for the
metric STSP is Christofides algorithm [9] for which γ = 3/2. Note that for general costs
there does not exist a γ-approximation algorithm unless P = NP [16].

Another approach taken is to study a linear programming relaxation for the prob-
lem. Such relaxations are usually much easier to solve than the original problems, and
provide good starting points for the application of the branch and cut method, as well
as good bounds on the value of optimal solutions. Good bounds on the value of the
optimal solution are useful in evaluating the effectiveness of a heuristic.

An interesting problem that is closely related to the problem of finding a γ-
approximation algorithm is that of finding the integrality gap of a linear programming
relaxation for a problem, which is the value of the worst-case ratio between the optimal
value for the problem and the optimal value for the relaxation. This integrality gap is
important for finding improved solutions for NP-hard problems, as it gives a measure
of the quality of the bound provided for the original problem by the linear program-
ming relaxation. Moreover, a polynomial-time constructive proof of an integrality gap
of value α provides an α-approximation algorithm for the problem.

If we relax the integer requirement in the integer linear programming formulation
of the STSP we obtain the subtour elimination problem (SEP) relaxation for the STSP.
For the metric STSP, the integrality gap αTSP between STSP and SEP is not known,
although it is known that 4/3 ≤ αTSP ≤ 3/2 ([18]). In fact, a well-known conjecture in
combinatorial optimization says that αTSP = 4/3 for the metric STSP. Even though
this conjecture has been around for over 20 years, very little progress has been made
towards proving or disproving it. Also, surprisingly, no one has been able to improve
upon the Christofides 3/2-approximation algorithm in the last 30 years.

For problems such as the STSP where standard methods for obtaining approxi-
mation algorithms and the integrality gap have failed, it seems it may be necessary
to develop new techniques to have any hope of success. One direction which seems
promising for finding improved solutions for this and other NP-hard problems is the
study of the structure of the extreme solutions of the linear programming relaxation.
This approach has led to new approximation algorithms and results for several NP-hard
problems (see, for example, [15], [13], [12], [8], [11], [6] and [1]), moreover it has not been
possible so far to obtain these results via other more traditional methods, i.e. knowledge
of the structure of these extreme solutions was key in obtaining the results.
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In this paper we examine the structure of the extreme solutions of the SEP. It is
our hope that this will lead to improved approximation algorithms for the STSP and
also information regarding the integrality gap . In Section 2 we give some new overall
structural results on these extreme solutions, as well as some operations that allow us
to generate extreme solutions from those of smaller versions of the problem, and vice
versa. In Section 3 we examine the structure of the cobases for these extreme solutions,
and give some results. Finally, in Section 4 we demonstrate the usefulness of our results
by showing how they can be used to facilitate the the generation of all extreme solutions
for n = 11 and n = 12, something that has not been previously possible. This allowed
the verification of the 4/3 conjecture for the integrality gap of SEP for these values of
n for the first time.

Note that in order to keep this paper brief we have omitted the proofs for many
results, although we have included some sketches of proofs to give the flavour of the
methods used. Complete proofs for all results can be found in [2], [3] and [4].

We conclude this section with a few definitions and explanations of the notation
used.

Given a graph G and vertex subset U of G, we use the notation G[U ] to denote the
subgraph of G induced by U , and γ(U) to denote the edges with both endpoints in U .
Given a graph G and disjoint vertex subsets X and Y of G, we let E(X : Y ) denote all
the edges with one end in X and one end in Y .

For any edge set F ⊆ E and x ∈ RE , let x(F ) denote the sum
∑

e∈F xe. For any
vertex set W ⊂ V , let δ(W ) denote {uv ∈ E : u ∈ W, v /∈ W}. Let S = {S ⊂ V, 2 ≤
|S| ≤ n− 2}. Then we define an integer linear programming (ILP) formulation for the
STSP is as follows:

minimize cx(1.1)

subject to: x(δ(v)) = 2 for all v ∈ V,(1.2)

x(δ(S)) ≥ 2 for all S ∈ S,(1.3)

xe ≥ 0 for all e ∈ E,(1.4)

x integer.(1.5)

The constraints (1.2) are called the vertex equalities, the constraints (1.3) are called the
cut constraints, and the constraints (1.4) are called the non-negativity constraints.

If we drop the integer requirement (1.5) from the above ILP, we obtain a linear
programming (LP) relaxation of the STSP called the Subtour Elimination Problem
(SEP). The extreme solutions of this relaxation are the extreme points of the associated
SEP polytope, which we denote by Sn for the problem on n vertices. The SEP polytope
is the set of all vectors x satisfying the constraints of the SEP, i.e.

Sn = {x ∈ RE : x satisfies (1.2), (1.3), (1.4)}.
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Note that despite the fact that there is an exponential number of constraints (3), the
SEP can be solved in polynomial-time (using the ellipsoid method) since there is an
exact polynomial-time separation algorithm for each of its constraints [14]. However,
no practical polynomial-time algorithm is currently known.

Given any feasible x ∈ Sn, the weighted support graph Gx = (Vx, Ex) of x is the
subgraph of Kn induced by the edge set Ex = {e ∈ E : xe > 0}, with edge weights
xe for e ∈ REx . We say that a constraint is tight with respect to x if x satisfies the
constraint with equality, and we say a vertex subset S of V is a tight set if x(δ(S)) = 2.

§ 2. Results on extreme point structure and generation

In this section we report some new results pertaining to the structure of the extreme
points of the SEP polytope Sn. These results fall into two types. First we have results
that look at the overall structure of a support graph Gx for points x in Sn. These
results are useful in identifying conditions that are necessary for a graph G to represent
a support graph for points in Sn. In Section 4 we will use these results to greatly reduce
the number of possible graphs in generating all the extreme points for Sn. Second we
present operations that allow us to generate extreme points for Sn from extreme points
of Sk where k < n. Again these results will prove very useful in Section 4 for greatly
reducing the work required in generating all the extreme points for Sn.

The following are several results already known to be necessary for support graphs
Gx for x ∈ Sn.

Theorem 2.1 (Boyd et. al. [7]). Let x be an extreme point of Sn, n ≥ 3. Then
|E(Gx)|+ 1

2q ≤ 2n−3, where q represents the number of vertices in Gx which have degree
3 and for which none of the corresponding incident edges e ∈ E have value xe = 1. ¤

Theorem 2.2 (Boyd et. al. [7]). Let x be an extreme point of Sn, n ≥ 3. Then
there are at least three edges e of Gx for which xe = 1. ¤

Theorem 2.3 (Goemans [13]). Let x be an extreme point of Sn. Then for any
U ⊂ V , |E(Gx[U ])| ≤ 2|U | − 3. ¤

Without much extra work, we can refine the results of Theorem 2.3.

Corollary 2.4. Let x be an extreme point of Sn. Then for any U ⊂ V , |E(Gx[U ])| ≤
2|U | − b(U)− 3 where b(U) is the number of bipartite components of Gx[U ]. ¤

There is also the following result, which is easily proved.

Proposition 2.5. If x ∈ Sn then Gx is 2-vertex-connected. ¤
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We have found that more general necessary conditions can be proven as well. Let
κ(G) denote the number of connected components of a graph G. We say that a graph,
G = (V, E) is t-tough if for every T ⊂ V we have that

|T | ≥ t ∗ κ(G− T ).

The concept of t toughness was first introduced and explored by Chvátal [5]. In his
paper, Chvátal was interested in using toughness to find necessary and sufficient condi-
tions for a graph to be Hamiltonian. He noted that every Hamiltonian graph must be
1-tough.

Notice that every 1-tough graph is also 2-vertex-connected, i.e. removing any vertex
in a 1-tough graph leaves exactly one component. For our purposes, 1-toughness also
plays a role as a necessary condition for support graphs of points in Sn. We can show
the following result holds.

Proposition 2.6. If x ∈ Sn then Gx is 1-tough. ¤

We can impose similar, but stronger, conditions on a graph which are necessary
for it to be a support graph for a point in Sn. Given a graph, H, let b0(H) denote the
number of blocks of H which contain no cut vertices and let b1(H) denote the number
of blocks of H which contain exactly one cut vertex (we call these blocks endblocks).
We will say that a graph, G = (V, E), is t-block-tough if for every T ⊂ V we have that

|T | ≥ t

(
b0(G− T ) +

1
2
b1(G− T )

)
.

Note that it can be shown that every t-block-tough graph is t-tough. Hence the following
result is a generalization of Proposition 2.6:

Theorem 2.7. Let x ∈ Sn. Then Gx is 1-block-tough.

Sketch of Proof. We basically show this by using a result from linear programming
duality that says that a primal linear program is infeasible if its corresponding dual
linear program is unbounded.

Let G = (V, E) be a graph and suppose there exists some T ⊂ V such that

|T | < b0(G− T ) +
1
2
b1(G− T ).

It is easy to show that we may assume that no cut vertex of G− T is contained in
two different endblocks.

Now let Q1, . . . , Qk be the endblocks of G−T which contain cut vertices v1, . . . , vk

respectively. Let R1, . . . , Rl be the 2-connected components of G − T . Define y ∈ RV
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such that yv is −2 if v ∈ T , −1 if v = vi for some 1 ≤ i ≤ k, and 0 otherwise. Define
d ∈ RS such that dS is 2 if S = Ri for some 1 ≤ i ≤ l, 1 if S = Qi or S = Qi\{vi} for
some 1 ≤ i ≤ k, and 0 otherwise.

It is straightforward to check that y and d are values for the variables of the dual
linear program of the SEP which can be used to indicate that the dual linear program
is unbounded. Thus by the theory of linear programming duality, the SEP is infeasible
on the graph G. ¤

We next move on to several new results that allow us to generate extreme points
for Sn from extreme points of Sk, k < n. In fact, the next theorems show, in particular,
how any extreme point x of Sn for which there is a tight set S ⊂ V of size 3 can be
obtained directly from an extreme point of Sn−1 or Sn−2. As will be shown in Section 4,
this result greatly reduces the work required in generating all the extreme points for
Sn, as many of these can be obtained directly from the extreme points of Sn−1 or Sn−2

via this operation.
Let x ∈ Sn and let S be a tight set of x. We let x ↓ S denote the set of edge values

induced on Gx/S (where S is identified to a single vertex v) as follows.

(x ↓ S)e =

{
x(E(u : S)) if e = uv

xe otherwise.

The next two theorems deal with an operation that shows how we can “split” or
“unsplit” an edge e in Gx for which xe = 1.

Theorem 2.8. Let x be an extreme point of the SEP-polytope on Sn, n ≥ 4,
and let u and v be vertices of Gx such that xuv = 1. If there exists a vertex, w, of Gx

such that xuw > 0 and xvw > 0 then x ↓ {u, v} is an extreme point of Sn−1. ¤

Let x ∈ Sn and let Gx be the support graph of x. If zw is an edge of Gx and we
can partition the edges, apart from zw, which are incident to z in Gx into two parts,
E1 and E2, such that 0 ≤ x(E1), x(E2) ≤ 1 then we define x ↑z (zw, E1, E2) (as shown
in Figure 1) by deleting the vertex z and adding two new vertices u and v where

(x ↑z (zw, E1, E2))e =





1 if e = uv

1− x(E1) if e = uw

1− x(E2) if e = vw

xqz if e = qu and qz ∈ E1

xqz if e = qv and qz ∈ E2

xe if e is an edge of Gx − z

0 otherwise.

.
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Figure 1. The edge-splitting operation

Theorem 2.9. Let x be an extreme point of Sn. If zw is an edge of Gx and we
can partition the edges, apart from zw, which are incident to z in Gx into two parts,
E1 and E2, such that 0 ≤ x(E1), x(E2) ≤ 1 then x ↑z (zw, E1, E2) is an extreme point
of Sn+1. ¤

Note that Theorem 2.9 is a generalization of a result by W. H. Cunningham reported
in [7] that deals with the special case of the theorem for which the edge zw has value
xzw = 1 and z has degree 3 in Gx. Also Theorems 2.8 and 2.9 together imply the
following result, as a special case:

Theorem 2.10 (Benoit et. al. [1]). Consider x ∈ RE such that for some vertex
v we have xuv = xvw = 1. Let x̂ = x ↓ {u, v}. Then x̂ is an extreme point of Sn−1 if
and only if x is an extreme point of Sn. ¤

We also have the following theorem which demonstrates the importance of the
edge-splitting operation in its effect on the rank of the vertex equalities.

Theorem 2.11. Let x be an extreme point of Sn, n ≥ 4, and let F be the set of
all 1-edges of x. If x cannot be obtained via the edge-splitting operation from an extreme
point of Sn−1 then the vertex equalities of Gx − F have rank n or n− 1. ¤

The next two theorems tell us that we can shrink any fractional odd cycle that is
tight in the support graph of an extreme point of Sn and get another extreme point,
and we can also reverse this operation under certain conditions.

Theorem 2.12. Let x be an extreme point of Sn and let S be a tight set of x

such that Gx[S] is an odd cycle. If xe < 1 for every e ∈ γ(S) in Gx then x ↓ S is an
extreme point of Sn−|S|+1.

Sketch of proof Here we will illustrate the ideas of the proof by sketching it only for the
special case where |S| = 3.



8 S. Boyd and P. Elliott-Magwood

We can show that each tight cut of x is either disjoint from S or contains S. We
can then show that no two vertices of S are adjacent to a common vertex outside of S,
since otherwise we have have a 4-cycle in Gx such that every tight cut of x contains 0
or 2 (adjacent) edges of this 4-cycle. Furthermore, all of the edges of this cycle obey
0 < xe < 1 so by choosing some small ε > 0 we can alternately add and subtract ε to
every edge in the cycle and obtain a new solution to the system of equations which are
tight for x. This contradicts the fact that x is an extreme point. Hence every edge of
Gx/S corresponds to a unique edge of Gx and thus contracting S in x results simply in
removing the edges of γ(S) and relabelling the edges of δ(S). Hence the tight sets of
x ↓ S can be obtained from the tight sets of x simply by removing the 3 vertex equalities
for the vertices in S. Since Gx/S has 3 fewer edges than Gx, these tight constraints
form a set of equations for which x ↓ S is the unique solution. By the above, x ↓ S is
also feasible for Sn−2 thus x ↓ S is an extreme point of Sn−2. ¤

The next theorem is an analogous result that says that, under certain conditions,
we can expand a vertex of an extreme point into a fractional odd cycle and obtain
another extreme point.

Let x ∈ Sn and let v be a vertex of Gx. Suppose we can partition the edges of
Gx incident to v into k non-empty parts, (E1, . . . , Ek) where k ≥ 3 is odd and for each
0 ≤ i ≤ k − 1 we have that

1
2 (k−3)∑

j=0

x(Ei+2j+2) < 1

(where all indices are taken modulo k). Then we define x ↑v (E0, . . . , Ek−1) as follows.
Remove v from Gx and add k new vertices, v0, . . . , vk−1. Let S = {v0, . . . , vk−1}

(x ↑v (E0, . . . , Ek−1))e =





xe if e ∈ γ(S)
xuv if e = uvi ∈ δ(S)∑ 1

2 (k−3)
j=0 x(Ei+2j+2) if e = vivi+1

0 otherwise

.

An example for k = 3 is depicted in Figure 2.

Theorem 2.13. Let let x be an extreme point of Sn, let k ≥ 3 be an odd integer
and let v be a vertex of Gx. If the edges incident to v in Gx can be partitioned into k

non-empty parts, (E0, . . . , Ek−1), such that for each 0 ≤ i ≤ k − 1 we have that
1
2 (k−3)∑

j=0

x(Ei+2j+2) < 1

(where all indices are taken modulo k) then x ↑v (E0, . . . , Ek−1) is an extreme point of
Sn+k−1. ¤
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Figure 2. Inserting a 3-cycle

Note that Theorems 2.12 and 2.13 are a generalization of a result in [7], which deals
with the special case of these theorems for which the odd cycle in the support graph has
size 3, forms a tight set, and each vertex in the cycle has degree 3 and is not incident
with an edge e for which xe = 1.

The following corollary, which will be used extensively in the application in Sec-
tion 4, follows directly from Theorems 2.8 and 2.12.

Corollary 2.14. Let x be an extreme point of Sn and let S ⊂ V be a tight set
for x such that |S| = 3. Then we can obtain x from an extreme point of Sn−1 or Sn−2.
¤

§ 3. Reults on the cobasis structure of the extreme points of Sn

Given a system Ax = b of equations, we will use the term rank for this system to
denote the linear rank of matrix A.

Any extreme point x ∈ Sn is uniquely determined by its tight constraints, i.e. it is
the unique solution to the system Ax = b composed of vertex equalities, and cut and
non-negativity constraints that are tight with respect to x. Let the rank of Ax = b be
k. We say that a subsystem of k of these tight constraints form a cobasis for x if it has
the same rank as A. The extreme points of Sn are highly degenerate in that for any
extreme point there is a huge number of possible cobases. For example, for the extreme
point x which is a tour for S6 there are over 2000 possible cobases which determine x.

Many results from the previous section on extreme point structure arise from the
knowledge that, for any extreme point x ∈ Sn, there always exists a cobasis that satisfies
certain properties. In this section we extend what is currently known. These results
will prove essential in generating all the extreme points for S11 and S12, as described
in Section 4, as they show it possible to consider a very small subset of the cobases for
an extreme point rather than all of them.
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Figure 4. The LBT

A family of sets L is called laminar if no two sets in the family properly intersect
each other, i.e. for any two sets S, T ∈ L we have that S ⊂ T or T ⊂ S or S ∩ T = ∅.
The following theorem is well-known:

Theorem 3.1 (Cornuéjols et al. [10]). For any x ∈ Sn there exists a cobasis for
which the tight vertex subsets corresponding to the tight cut constraints form a laminar
set. ¤

We will show how the above theorem can be strengthened.
There is a way of compactly storing the laminar set of tight cuts in our cobasis by

means of a labelled tree which we will call the Laminar Basis Tree or LBT for short.
The LBT has one node (and one edge) for each tight cut in our laminar set plus one
extra root node. The node corresponding to a set S in our laminar set will be labelled
with the set of vertices of Gx which are in S but not in any proper subset of S in the
laminar set. The root node will be labelled with the set of all vertices of Gx that are in
no set in the laminar set. Two nodes will be adjacent if for the corresponding sets, one
is the minimal set which contains the other. The root node will be adjacent to all the
sets which are not contained in any other. As an example, Figure 3 shows a laminar set
and Figure 4 shows the corresponding unlabelled LBT.

Notice now, that if we take a maximal subset in our laminar set and replace it with
its complement, we get another laminar set which is also a cobasis (along with the tight
non-negativity inequalities and the vertex equalities) for x. This occurs because our new
laminar set induces the exact same cuts as the old one. In fact, the constraints in the
cobasis are exactly the same. The LBT for this new laminar set will be identical to that
of the first laminar set, the only difference being which node is the root. By repeating
this process of replacing a maximal subset in the laminar set with its complement, we
can make any node the root in the corresponding LBT. However, these changes to the
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laminar set do not actually change the constraints in the cobasis. Hence, for a given
cobasis, we can construct an LBT which we will consider to be unrooted. We now
proceed with some properties of LBTs.

Proposition 3.2. Let T be a LBT for a support graph with n vertices and let
n1 and n2 denote the numbers of nodes of T of degree 1 and 2 respectively. Then

1. T has at most n− 2 nodes,

2. the total number of labels on the nodes of T is n,

3. every node of T of degree 1 must contain at least two labels,

4. every node of T of degree 2 must contain at least one label, and

5. 2n1 + n2 ≤ n. ¤

Proposition 3.3. Let x be an extreme point of Sn with support graph Gx and
let S be the set of labels corresponding to some node, v, of a LBT, T , for some cobasis
of x. Then each component of Gx[S] is either a tree or a 1-tree with an odd cycle.
Futhermore Gx[S] has at most degT (v) components. ¤

Proposition 3.4. Let x be an extreme point of Sn for which the minimum
degree of Gx is at least 3. Then there is a cobasis, B, for x such that the tight sets
corresponding to the tight cut constraints in B form a laminar set and the leaf nodes of
the associated LBT correspond exactly to the 1-edges of x. ¤

We give a small example to illustrate the power of Proposition 3.4 in restricting
the number of cobases we need to examine for an extreme point. Consider the extreme
point, x of S10 with vertices u0, . . . , u4 and v0, . . . , v4 such that uiui+1 = vivi+1 = 1/2
for each 0 ≤ i ≤ 4 and uivi = 1 for eacb 0 ≤ i ≤ 4. If we build up a cobasis for x from
the vertex equalities and all tight nonnegativity constraints, then there are at least 1792
different families of tight sets which will give us a cobasis for x. There are 280 such
families which are laminar, but only 1 meets the requirements of Proposition 3.4.

§ 4. An application: Finding all non-isomorphic extreme points for S11

and S12

In [1], Benoit and Boyd were able to find the exact integrality gap αTSP for the
STSP when the problems were restricted to have n vertices, n ≤ 10. The method they
used requires a list of all the non-isomorphic extreme points for Sn for each value of n

considered. Although they were able to generate such a set for each value of n ≤ 10,
their methods and tools were completely impractical for n = 11.
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In this section we explain how the results in the previous sections can be used to
find a complete list of the non-isomorphic extreme points for Sn, and demonstrate this
for n = 11 and n = 12. The basic idea is to take each graph G that could potentially
represent a support graph Gx for an extreme point x of Sn, and then match it with
all possible cobases that could go with that graph. For each such pairing we check the
corresponding solution x to see if it is indeed an extreme point. Of course the number
of possible cobases for a graph makes this method impractical, as can the number of
potential support graphs themselves. However if we carefully apply our results from the
previous two sections we can make both of these numbers quite manageable for n = 11
and n = 12.

We begin by outlining how to obtain a set of potential support graphs. Note that
by Corollary 2.14 we can generate all extreme points x which have a tight set S of size 3
from the extreme points of Sn−1 or Sn−2, so we will assume that the extreme points we
seek do not have such a tight set (which implies, in particular, that we do not have two
adjacent 1-edges in any support graphs). To obtain a reasonable-sized set of potential
support graphs for all other extreme points x of Sn, we used the following:

Step 1 Find all the non-isomorphic 2-vertex connected graphs on n vertices that have
at most 2n − 3 edges and minimum degree of 3. This can be accomplished using
the software tool NAUTY [17].

Step 2 For each graph G′ from Step 1, check if it has a subset S where |E(G′[S])| >

2|S| − b(S)− 3. By Corollary 2.4 we can eliminate such a graph from our set.

Step 3 For each remaining graph G′, check if it is 1-block tough. If not, we can
eliminate it by Theorem 2.7.

We have outlined in Table 1 the effectiveness of these two ways of eliminating
potential support graphs. Note that the process from Corollary 2.4 and for block-
toughness were run independently, and thus there is some overlap in the numbers in the
table (i.e. some graphs were eliminated by both processes).

n Graphs produced Graphs eliminated Graphs eliminated Remaining
by NAUTY by Corollary 2.4 by Block-toughness Graphs

11 54721 3649 11136 42087
12 956444 29654 211037 715753

Table 1. Elimination of Potential Support Graphs

Next we outline how to obtain a set of LBTs to be paired with each potential
support graph. In this step we do not associate a set of vertices with each node of the



Structure of the Extreme Points of the Subtour Elimination Polytope of the STSP 13

LBT, but rather one label that represents the number of vertices associated with that
node of the LBT.

Step 1′ Find all the LBTs which obey the conditions of Proposition 3.2.

Step 2′ Since we are assuming that our support graphs have minimum degree 3, we
know that each will have at least d 3n

2 e edges. Thus for our cobasis to have full rank,
we must have at least d 3n

2 e−n tight cut constraints. So we remove any LBTs from
Step 1′ that have fewer than d 3n

2 e − n + 1 nodes.

Step 3′ By Proposition 3.4 and Theorem 2.2 we can assume the LBTs have at least
3 leaf nodes, and all leaf nodes have label 2 (i.e. we can assume that the leaf nodes
in the LBT correspond exactly to the 1-edges in the extreme point). Hence we can
eliminate any remaining LBTs that do not satisfy these conditions.

Step 4′ By using Corollary 2.14 we can assume we have no tight sets of size three in
our extreme points. Hence we can also eliminate all remaining LBTs that have a
node with degree 2 with label 1 which has an adjacent leaf node with label 2.

In total, at the end of Step 4′, there were only 24 eligible LBTs for n = 11 and 92
for n = 12.

The final stage of the method involves pairing each potential support graph with
each labelled LBT. Below we give a brief sketch of the steps for this which must be
followed for each potential support graph G′ in our list.

Step 1′′ We begin by assigning some of the edges of G′ to have value 1 in the corre-
sponding extreme point. For each extreme point x we are generating, we know by
our assumptions thus far that xe will have value 1 for at least 3 edges, and that the
edges with value 1 will form a matching in the support graph of x. So we find all
matchings for G′ of size between 3 and bn

2 c.
Step 2′′ For each matching in Step 1′′, find the rank k of the system K of constraints

consisting of the non-negativity constraints, vertex constraints, and constraints xe =
1 for the edges in the matching. Take G′ with this matching and pair it with each
labelled LBT with the correct number of nodes and implied 1-edges from the leaf
nodes such that this pairing could potentially result in a cobasis when we take
the system K and add the cut constraints corresponding to the LBT. For each
assignment of actual vertices for the node labels of the LBT, see if the resulting
system of constraints does indeed result in an extreme point of Sn by checking its
rank, and whether the corresponding solution is feasible for the SEP .

At the end of the pairing process, we directly generate all the extreme points with
tight sets of size 3 from the extreme points of Sn−1 and Sn−2 and add these to our list
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of extreme points. As a final step, we remove all the isomorphic extreme points from
the list, again using the software package NAUTY to do this.

Table 2 summarizes the results for n = 11 and n = 12. All of the numbers listed
are the numbers of non-isomorphic extreme points, and include the tour. Also note
that some identical extreme points were generated by some of the processes. Notice
that over 85% of the extreme points in each case were generated by the edge-splitting
operation (this is true for all 7 ≤ n ≤ 12).

n Points produced Points produced Points produced Total number
by pairing by Theorem 2.13 by Theorem 2.9 of points

11 673 15 4386 4972
12 9265 378 60390 68320

Table 2. Generating all extreme points

By successfully computing all the non-isomorphic extreme points of Sn, we were
able to, for the first time, find the exact integrality gap αTSP for n = 11 and n = 12
using the method described in [1]. This value was 19/16 for n = 11 and 6/5 for n = 12,
which verifies that the conjecture by Benoit and Boyd [1] about the exact value of the
integrality gap for each value of n holds true for n = 11 and n = 12.

We conclude with some remarks on the time involved for solving these problems.
Not surprisingly, the bottleneck in the time for finding the extreme points using our
method was in completing Steps 1′′ and 2′′ above. For n = 11 these steps required just
under 20 hours when running on a SUNW UltraSPARC-II. For n = 12 we partitioned
the data into 8 pieces and ran them each on a different processor. These pieces took
between 16 and 24 days each. Finally, in comparing to the time required by Benoit
and Boyd [1], on the same machine their method required almost 4 days to find all the
extreme points for n = 10, whereas our method required less than 7 minutes.
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