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Abstract

Given a complete graph with non-negative edge costs and non-negative
integer vertex connectivity requirements, we consider the problem of find-
ing a minimum cost subgraph that has at least rij edge-disjoint paths
between every pair of distinct vertices i, j, where rij is the minimum of
the vertex connectivity requirements ri and rj . This is known as the sur-
vivable network problem. When multi-edges are allowed in the solution,
we call this the multi-survivable network design problem. Let rm be the
maximum vertex connectivity requirement and rl be the smallest nonzero
vertex connectivity requirement. We show that the integrality gap for
the linear programming relaxation of the multi-survivable network design
problem is at most 3

2
rm
rl

when rm is even, and at most 3
2

rm
rl

+ 1
2rl

when rm

is odd. We also present an approximation algorithm with this bound as a
performance guarantee. We show that these results are improvements for
the best known bounds for certain special cases of this problem.

1 Introduction

The minimum cost k-edge connected subgraph problem, k ≥ 2 is an important
problem in network design. Given a network of centres and specific non-negative
costs for connecting any two centres with a link, this problem consists of finding
a cheapest way to construct a network so that it can survive the loss of k − 1
links, i.e., so that the network remains connected even if k − 1 of the links are
lost. The problem has many practical, cost-saving applications, such as the
design of reliable communication and transportation networks. Here, “cost”
can be interpreted as the construction cost, and “reliable” as the continuation
of services in the event of a catastrophe causing the loss of a “link” (i.e. a
communications cable or a transportation road). For such applications, finding
a solution that is either optimal or very close to optimal means substantial
financial savings for the company constructing the network.
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In some applications, it is useful to allow more than one link (i.e., multi-
links) to be built between a pair of centres in order to build a reliable network
at lower cost. For example, to connect two components of a network, it may be
more practical and more cost efficient to use multiple duplicate links between
two centres of the network components (one centre from each component) rather
than a single link between two centres and other single links between different
pairs of centres of the two network components. Instances of this occur in the
laying of underwater wires between islands and a mainland, where a link failure
is considered to be the failure of a wire. Also, in case of a wire failure, sensors
in nuclear power plants are each connected by three wires to the main system.

A more general problem in network design is the survivable network design
problem. This problem consists of finding a cheapest way to construct a network
so that it can survive the loss of certain numbers of links in certain areas of the
network. This is used, for example, in designing fibre optic telecommunications
networks [17, 14].

1.1 Multi-SNDP, SNDP, Metric kEC, and Multi-kEC Prob-
lems

Given a graph G = (V,E), and any vertex set S ⊂ V , let δ(S) denote the set of
edges {uv ∈ E : u ∈ S, v 6∈ S}.

The survivable network design problem (SNDP) (also called the generalized
Steiner network problem) is as follows: Let G = (V, E) be a complete graph
with non-negative edge costs c ∈ RE , and vertex connectivity requirements
ri ∈ N≥0, i ∈ V . For each pair of distinct vertices i, j ∈ V let rij = min{ri, rj}.
The problem is to find a minimum-cost subgraph that has, for each pair of
distinct vertices i, j ∈ V , at least rij edge-disjoint paths between i and j. In
such a solution, the loss of any k edges still allows all vertices with connectivity
requirement greater than k to be connected.

If multiple copies of the edges are allowed in the solution of SNDP, the
problem will be referred to as the multi-survivable network design problem
(multi-SNDP). A multi-subgraph is a subgraph with multiple copies of at least
one of its edges. The equivalent cut requirement version of multi-SNDP is:
Given a cut requirement function f : 2V → Z defined on the subsets of V by
f(S) = maxi∈S, j 6∈S rij for all S ⊂ V , find a minimum-cost multi-subgraph
having at least f(S) edges in each cut δ(S), S ⊂ V . Note that if G is not
complete, we can make it into a complete graph by adding in all the “missing”
edges and assigning each of them an appropriately large cost.

When the edge costs c ∈ RE of a graph are non-negative and satisfy the
triangle inequality cuw ≤ cuv + cvw for all distinct vertices u, v, w ∈ V , the costs
are called metric. A SNDP problem with metric edge costs will be referred to
as metric SNDP.

A graph is said to be k-edge connected, k ≥ 1, k ∈ Z, if any k − 1 edges
can be removed without disconnecting the graph, or, equivalently, if there are
at least k edge-disjoint paths between every pair of vertices, or, equivalently, if
every cut δ(S), S ⊂ V , has at least k edges.
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Given a complete graph, G = (V, E), with non-negative edge costs c ∈ RE ,
the k-edge connected subgraph problem (kEC), k ≥ 1, is the special case of the
SNDP where ri = k for all i ∈ V . In particular, it is the problem of finding
a minimum cost k-edge connected spanning subgraph of G, k ≥ 1. Note that
1EC is the well known minimum cost spanning tree problem. A kEC problem
with metric edge costs will be referred to as metric kEC.

If multiple copies of the edges are allowed in the solution of kEC, the problem
will be referred to as the multi-k-edge connected subgraph problem (multi-kEC).
Problems kEC and multi-kEC are special cases of SNDP and multi-SNDP, re-
spectively. In this paper, we examine multi-SNDP, and apply our results to
SNDP, metric SNDP, multi-kEC, kEC, and metric kEC.

The SNDP is an NP-hard problem, since the Steiner tree problem, which
has been shown to be NP-hard [19], is a special case. Thus, multi-SNDP is an
NP-hard problem. Both kEC and multi-kEC (k ≥ 2) are also known to be NP-
hard problems [15]. (The minimum cost spanning tree problem is not NP-hard.)
As it is considered highly unlikely that efficient algorithms for exactly solving
NP-hard problems exist, we look at designing efficient algorithms that return
approximate, or near-optimal, solutions. If an algorithm runs in polynomial
time and returns a solution whose value is always within a constant factor α of
the optimal value, then the algorithm is known as an α-approximation algorithm,
and the factor α is called the approximation or performance guarantee of the
algorithm.

A related concept to approximation guarantees is that of integrality gaps.
Given a minimization problem P , its integer linear program Q, and its linear
programming (LP) relaxation QLP , the integrality gap for the linear program-
ming relaxation is the largest ratio opt(Q)/opt(QLP ) over all possible edge costs.
If it can be proved that this largest ratio has value k, the linear programming
relaxation is said to have a k integrality gap. Furthermore, if the proof of this is
constructive and of polynomial time, then it forms a k-approximation algorithm
for the problem P .

The best general constant factor approximation guarantee that has existed
for multi-SNDP, SNDP, kEC and multi-kEC has, to this point, been 2. This
guarantee is due to Kamal Jain [18], who, in 2001, presented a 2-approximation
algorithm for finding, in a general graph that may not be simple and has non-
negative edge costs, a minimum cost subgraph having at least a specified number
of edges in each cut [18]. Initially, multiple copies of edges are not allowed in the
solution, however, as is noted near the end of his paper, the 2-approximation
algorithm holds as well for the case when multiple copies of edges are allowed
in the solution. In addition to providing an approximation guarantee, Jain’s
algorithm provides a constructive proof that the integrality gap of the linear
programming relaxation of the general problem he considers is at most 2. In
particular, Jain’s result implies that the integrality gap of the LP relaxation of
kEC and multi-kEC is ≤ 2.

Not widely known is that Goemans and Bertsimas [16] in 1993 presented
an approximation algorithm (the improved tree heuristic) for multi-SNDP that,
given distinct vertex connectivity requirements ρo = 0 < ρ1 < ρ2 < . . . < ρq, has
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approximation guarantee
∑q

j=1
f(ρj−ρj−1)

ρj
, where f(c) = 3

2c when c is even, and
f(c) = 3c+1

2 when c is odd [16]. The proof used to obtain this is rather complex
and involved, and, although not indicated, implicitly yields an upper bound for
integrality gap as well. As a special case, this approximation algorithm has an
approximation guarantee (and integrality gap) for multi-kEC of 3

2 when k is
even, and 3

2 + 1
2k when k is odd.

We present an upper bound for the integrality gap for the linear program-
ming relaxation of multi-SNDP; that is, we show that the integrality gap for
the linear programming relaxation of the multi-survivable network design prob-
lem is at most 3

2
rm

rl
when rm is even, and at most 3

2
rm

rl
+ 1

2rl
when rm is odd,

where rm is the maximum vertex connectivity requirement and rl is the smallest
nonzero vertex connectivity requirement. We present as well an approximation
algorithm for multi-SNDP which has a performance guarantee the same as this
upper bound. These are both improvements for the best known bounds for
certain special cases of the problem. We show the application of these re-
sults (integrality gap and approximation algorithm) to SNDP, metric SNDP,
multi-kEC, kEC, metric kEC, and Steiner multi-kEC. Additionally, we discuss
the relationship between our approximation algorithm and the improved tree
heuristic of Goemans and Bertsimas [16]. We show that our multi-kEC approx-
imation algorithm, with a given modification, applies as well for metric 2EC;
and that problems multi-2EC and metric 2EC are closely related.

Our results for integrality gap and the approximation algorithms for multi-
SNDP and multi-kEC depend upon new upper bounds for the optimal values of
the minimum cost T -join and the minimum cost spanning tree in terms of the
optimal value of the LP relaxation of multi-SNDP, which are also presented.

1.2 Related Problems and Overview

Given a general graph G = (V,E) with non-negative edge costs c ∈ RE and
vertex connectivity requirements ri ∈ {0, k} for all i ∈ V , k ≥ 1, the Steiner
k-edge connected subgraph problem (Steiner kEC) is that of finding a minimum
k-edge connected subgraph of G that spans the set of terminal vertices S = {i ∈
V | ri = k} ⊆ V ; i.e., such that there are at least rij = min(ri, rj) edge-disjoint
paths between all pairs of vertices i, j ∈ V . This problem is NP-hard [23].
Problem kEC is a special case of Steiner kEC, which is a special case of SNDP.
If G is a complete graph and multiple copies of the edges are allowed in the
solution of Steiner kEC, the problem will be referred to as the Steiner k-edge
connected multi-subgraph problem (Steiner multi-kEC). Problem multi-kEC is a
special case of Steiner multi-kEC, which is a special case of multi-SNDP.

Problem kEC is a special case of the graph augmentation problem: Given
a complete graph G = (V,E), a subgraph (V, F ), F ⊂ E, and a non-negative
cost function c ∈ RE , find a set of edges E′ ⊆ E\F of minimum cost such that
the “augmented graph” (V, F ∪E′) satisfies a given property [9]. Among other
things, this problem can be used for improving the reliability (or survivability)
of already existing networks. For kEC we have F = ∅, and the property to
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be satisfied is that the augmented graph (V, F ∪ E′) = (V,E′) must be k-edge
connected. As is mentioned earlier, kEC is a special case of SNDP and multi-
kEC is a special case of multi-SNDP.

For a summary of the current known results on the different versions of kEC,
see [21].

The remainder of this paper is organized as follows. In Section 2, we give
some required background information on minimum cost perfect matchings, T-
joins, and spanning trees. In Section 3, we present the main results of the paper,
along with new upper bounds for the optimal values of the minimum cost T -
join and the minimum cost spanning tree in terms of the optimal value of the
LP relaxation of multi-SNDP. We also present a family of examples where our
integrality gap for the LP relaxation of multi-SNDP, and our approximation
algorithm for multi-SNDP, are improvements for the best known bounds of the
problem. In Section 4, we show the applications of our results to SNDP and
metric SNDP. In Section 5, we show the applications of our results to multi-kEC,
kEC, metric kEC, and Steiner multi-kEC, and discuss the relationship of our
approximation algorithm for multi-kEC to Goemans and Bertsimas’ improved
tree heuristic. In Section 6, we show how problems multi-2EC and metric 2EC
are closely related. We also show that the integrality gap for the LP relaxation
of metric 2EC has an upper bound of 3

2 , and how a 3
2 -approximation algorithm

for metric 2EC can be obtained. This algorithm (but not the proof) is similar
to the 3

2 -approximation algorithm for metric 2EC and metric 2VC given by
Frederickson and Ja’Ja’ in [10]. We show how our proof can provide a simpler,
more compact proof of their result.

2 Minimum Cost Perfect Matchings, T-joins, and
Spanning Trees

Before presenting our main results, the following background information is
required.

A minimum cost perfect matching in a connected graph G = (V,E) with
non-negative edge costs, is a minimum cost subset of edges of E such that each
vertex in V is incident to exactly one edge in the subset. Using an efficient im-
plementation of Edmonds’ blossom algorithm, a minimum cost perfect matching
in G can be found in O(n(m + n log n)) time [7], where n is the number of ver-
tices and m is the number of edges in G. If G is a complete graph, this becomes
O(n3).

Given a connected graph G = (V, E) with non-negative edge costs c ∈ RE ,
and given T ⊆ V , a minimum cost T-join is a minimum cost set of edges Ẽ ⊆ E
such that |δ(v) ∩ Ẽ| is odd if and only if v ∈ T . Note that a connected graph
has a T -join if and only if |T | is even.

Let xe represent the number of times each edge e ∈ E is included in the
solution. For any edge set E′ ⊆ E and x ∈ RE , let x(E′) denote the sum∑

(xe : e ∈ E′). The following theorem states that we can find the cost of an
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optimal T -join by solving a linear program that has no integer constraints.

Theorem 1 (Cook et. al. [6], Theorem 5.28) If G = (V, E), T ⊆ V with
|T | even, and c ∈ RE with c ≥ 0, then the minimum cost of a T -join of G is
equal to the optimal value of

minimize cx (1)
subject to x(δ(S)) ≥ 1, for all S ⊆ V s.t.

|S ∩ T | odd, (2)
xe ≥ 0, for all e ∈ E. (3)

A solution to the minimum cost T -join problem can be found in polynomial
time in the following way: Find a shortest (i.e. minimum cost) path, Puv,
in G between each pair of vertices u, v ∈ T ; and let fuv be the cost of this
path. Next, form a complete graph Ĝ = (T, Ê) using the vertices in T and
the edge costs fuv, and find a minimum cost perfect matching M̂ ⊆ Ê in it.
The symmetric difference of the edge-sets of the corresponding paths Puv for
uv ∈ M̂ , is a minimum cost T -join of G [8, 6]. The shortest path between two
vertices in a connected graph with non-negative edge costs can be determined in
O(n log n+m) time [22]. For a complete graph, this becomes O(n2) time. Thus,
finding a shortest path between each pair of vertices in a complete graph (i.e.,
finding all pairs shortest paths) takes, in the worst case, O(n3) time. Therefore,
finding a minimum cost T -join can be done, in the worst case, in O(n3 + n3) =
O(n3) time.

A minimum cost spanning tree of a complete graph G = (V, E) is a tree of G
that includes all the vertices of G and has minimum cost. Such a spanning tree
can be found in O(n log n + m) time [11]. This becomes O(n2) for a complete
graph.

Before presenting a corollary that is foundational to our results, we need the
following definitions and proposition.

Given a graph G = (V, E), a partition P = (V1, V2, . . . , VkP
) of the vertex

set V is feasible if each part Vi induces a connected subgraph G(Vi) for all
i = 1, 2, . . . , kP . The graph GP is the shrunk graph, obtained by identifying all
the vertices in Vi into a vertex ṽi and deleting all the edges of G that have both
endpoints in the same part, Vi, of the partition P . GP has kP vertices, and
its edge set, EP , contains all the edges of G that have endpoints in different
parts, Vi, of the partition P . Given a connected graph G = (V,E), consider the
collection of spanning trees of G. The incidence vector, x, corresponding to a
spanning tree, T , has xe = 1 if T contains e, and xe = 0 otherwise, for all e ∈ E.

Proposition 1 (Chopra [4]) Given a connected graph G = (V,E), the domi-
nant of the spanning tree polytope is defined by

{
x ∈ Rm

+ :
∑

e∈EP

xe ≥ kP − 1, for all feasible partitions P

}
. (4)
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Notice that for a complete graph, all partitions of G are feasible.
Chopra [4] shows that, given a partition P of G, the partition inequality∑

e∈EP
xe ≥ kP − 1 defines a facet of (4) if and only if the shrunk graph GP

is two-vertex connected. In particular, this means that for a complete graph
all the partition inequalities of (4) are facet-inducing and thus necessary in the
description.

The following corollary is foundational to our results, and follows directly
from Proposition 1. It states hat we can find the cost of a minimum cost
spanning tree by solving a linear program that has no integrality constraints.

Corollary 1 If G = (V, E) is a connected graph, and c ∈ RE with c ≥ 0, then
the cost of a minimum cost spanning tree of G is equal to the optimal value of

minimize cx (5)

subject to
∑

e∈EP

xe ≥ kP − 1, for all feasible partitions P , (6)

xe ≥ 0, for all e ∈ E. (7)

3 Integrality Gap and Approximation Algorithm

Problem multi-SNDP can be formulated as an integer linear program (ILP) as
follows:

minimize cx (8)
subject to x(δ(S)) ≥ max

ij∈δ(S)
rij , for all ∅ ⊂ S ⊂ V, (9)

xe ≥ 0, for all e ∈ E, (10)
xe integer.

The linear programming (LP) relaxation of multi-SNDP is:

minimize cx (11)
subject to x(δ(S)) ≥ max

ij∈δ(S)
rij , for all ∅ ⊂ S ⊂ V, (12)

xe ≥ 0, for all e ∈ E. (13)

The following notation and definitions will be used throughout the rest of this
paper: Given any multi-SNDP problem, i.e., given a complete graph G = (V,E)
with non-negative edge costs c ∈ RE and vertex connectivity requirements
ri ∈ N≥0, i ∈ V , let rm = max{rij | i, j ∈ V }, rl = min{rij | rij > 0, i, j ∈ V },
and V + = {i ∈ V | ri > 0}. Let G+ be the complete graph with vertex set
V +, respective vertex connectivity requirements from G, and edge costs c+

ij ,
i, j ∈ V +, the cost of a minimum-cost i-j path in G. In other words, if G4 is
the metric completion of G, then G+ = G4−{i ∈ V | ri = 0}. Furthermore, let

7



opt(multi-SNDP) be the cost of an optimal multi-SNDP solution (i.e., the opti-
mal value of the integer linear program (8)) on G, and let opt(multi-SNDPLP )
be the cost of an optimal solution to the LP relaxation of multi-SNDP (i.e., the
optimal value of the linear program (11)) on G.

Given a complete graph G = (V, E) with non-negative edge costs c, the
metric completion, G4 = (V, E), of G is obtained by setting the edge cost c4ij
to be that of a minimum-cost path connecting vertices i and j in G, for every
edge ij ∈ E. Clearly, the edge costs c4 are metric. Note that, given a complete
graph G′ with metric edge costs, its metric completion, G4, does not necessarily
have the same edge costs (although both have metric edge costs).

Theorem 2 (Theorem 3 Goemans and Bertsimas [16]) Let G = (V, E)
be a complete graph with non-negative edge costs c ∈ RE and a non-negative
connectivity requirement rij for every (unordered) pair of vertices i, j ∈ V . Let
G4 = (V, E) be the metric completion of G, with metric costs c4 ∈ RE. Then
the optimal values of multi-SNDP on G and on G4 are equal (and the optimal
values of their linear programming relaxations are equal).

When Theorem 2 is applied to multi-kEC, k ≥ 1, the following corollary is
obtained.

Corollary 2 Given a complete graph G = (V, E) with non-negative edge costs
c ∈ RE and the metric completion G4 of G,

opt(multi-kEC on G) = opt(multi-kEC on G4).

Lemma 1 Given a complete graph G = (V,E) with non-negative edge costs
c ∈ RE,

opt(multi-SNDP ) ≤ opt(SNDP ).

Also,
opt(multi-SNDPLP ) ≤ opt(SNDPLP ).

Proof: The problem multi-SNDP is a relaxation of SNDP (relaxing the con-
straints that each edge can be chosen at most once in the solution). Similarly,
the linear programming relaxation of multi-SNDP is a relaxation of the linear
programming relaxation of SNDP. ¥

The following proposition can be obtained directly by combining Lemma 1
with Theorem 2.

Proposition 2 Given a complete graph G = (V, E) with non-negative edge
costs c ∈ RE, let G4 = (V, E) be the metric completion of G, with metric costs
c4 ∈ RE. Then

opt(multi-SNDP on G) ≤ opt(SNDP on G4)

and
opt(multi-SNDPLP on G) ≤ opt(SNDPLP on G4).
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The following theorem follows directly from the parsimonious property of
Goemans and Bertsimas [16].

Theorem 3 Given a complete graph G = (V, E) with metric edge costs c ∈ RE

and vertex connectivity requirements ri ∈ N≥0, i ∈ V . The optimal value of the
LP relaxation of multi-SNDP, LP (11), is equal to the optimal value of

minimize cx (14)
subject to x(δ(S)) ≥ max

ij∈δ(S)
rij , for all ∅ ⊂ S ⊂ V, (15)

x(δ(i)) = 0, for all i ∈ V \V +, (16)
xe ≥ 0, for all e ∈ E. (17)

Proposition 3 Given a complete graph G = (V, E) with non-negative edge
costs c ∈ RE,

opt(multi-SNDPLP on G+) = opt(multi-SNDPLP on G).

Proof: Let G4, c4 be the metric completion of G. Let x∗ be an optimal
solution to LP(14) on G4. Let y be x∗ restricted to G+, with edge costs c4,V +

as defined at the beginning of the section. Since x∗ satisfies the constraints (16),
i.e., since x∗e = 0 on all the edges incident to vertices i with ri = 0, we have that
c4,V +

y = c4x∗. By Theorem 3, c4x∗ = opt(multi-SNDPLP on G4).
Clearly, y satisfies the LP relaxation of multi-SNDP (LP(11)) on G+. Sup-

pose that y is not an optimal solution of LP(11) on G+. Let W be an optimal
solution of LP(11) on G+. Let cost(∗) be the cost of ∗. Then cost(w) < cost(y).
Form a solution w′ on G4 by setting w′ = 0 on all the edges that are incident to
a vertex i ∈ V \V +, and w′ = w otherwise. Note that w′ is a solution to LP(14).
Then cost(w′) = cost(w) < cost(y) = cost(x∗). This is a contradiction, since x∗

is an optimal solution to LP(14). Thus, y is an optimal solution of LP(11) on
G+, i.e., cost(y) = opt(multi-SNDPLP on G+).

Hence, we have that opt(multi-SNDPLP on G+) = c4,V +
y = c4x∗ =

opt(multi-SNDPLP on G4). From Theorem 2, opt(multi-SNDPLP on G4) =
opt(multi-SNDPLP on G). The result follows. ¥

Let opt(T-join) be the cost of a minimum cost T -join on G.

Lemma 2 Given a complete graph G = (V,E) with non-negative edge costs
c ∈ RE and vertex connectivity requirements ri ∈ N≥0, i ∈ V . Let T ⊆ V +, |T |
even. The following holds on G:

opt(T-join) ≤ 1
rl

opt(multi-SNDPLP ) ≤ 1
rl

opt(multi-SNDP).

Proof: Let x∗ be an optimal solution to the multi-SNDP linear programming
relaxation LP(11). In particular, x∗ satisfies the constraints (12). Notice that
maxij∈δ(U) rij ≥ 0, and hence x∗(δ(U)) ≥ 0, for all ∅ ⊂ U ⊂ V . We show that
1
rl

x∗ satisfies the constraints (2), i.e., that 1
rl

x∗ satisfies x(δ(U)) ≥ 1 for all
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∅ ⊂ U ⊂ V such that |U ∩ T | is odd. We do this by examining the following
two cases.

Case 1 : For some ∅ ⊂ U ⊂ V , either ri = 0 for all i ∈ U , or rj = 0 for all
j ∈ V \U ′, or both. Thus, we have that either maxi∈U ri = 0, or maxi∈V \U ri =
0, or both. Notice that, in a complete graph,

max
ij∈δ(U)

rij = min{max
i∈U

ri, max
j∈V \U

rj}.

Then maxij∈δ(U) rij = 0 and thus x∗(δ(U)) ≥ 0. Without loss of generality,
assume that ri = 0 for all i ∈ U . Since there does not exist a vertex i ∈ T such
that ri = 0, we have that T ⊆ V \U . Thus, we have that |V \U ∩ T | = |T | is
even, and |U ∩ T | = 0 is even. Thus, for all ∅ ⊂ U ⊂ V for which either ri = 0
for all i ∈ U , or rj = 0 for all j ∈ V \U , or both, then 1

rl
x∗ satisfies x(δ(U)) ≥ 0

and |U ∩ T | is even.
Case 2 : For some ∅ ⊂ U ⊂ V , there exists i ∈ U , j ∈ V \U such that ri > 0

and rj > 0. Thus, rij > 0 and x∗ satisfies x(δ(U)) ≥ rij . Since

rl = min{ri | ri > 0, i ∈ V } = min{rij | rij > 0, i, j ∈ V, i 6= j},

therefore rij ≥ rl. Therefore x∗ satisfies x(δ(U)) ≥ rl, and hence 1
rl

x∗ satisfies
x(δ(U)) ≥ 1.

Thus, 1
rl

x∗ satisfies the constraints (2) for all ∅ ⊂ U ⊂ V .
In addition, since x∗ satisfies the constraints (13), 1

rl
x∗ also satisfies the

inequalities xe ≥ 0 for all e ∈ E. Thus, 1
rl

x∗ satisfies the constraints (2) and
(3). This means that 1

rl
x∗ is a feasible solution of LP(1). Using Theorem 1, we

therefore have that, for T ⊆ V , |T | even,

opt(T-join) ≤ 1
rl

cx∗ =
1
rl

opt(multi-SNDPLP ) ≤ 1
rl

opt(multi-SNDP).

¥
Given a complete graph G = (V, E) with non-negative edge costs c ∈ RE ,

let opt(MST ) be the cost of a minimum cost spanning tree (i.e., the optimal
value of LP(5)) on G.

Lemma 3 Given a complete graph G = (V,E) with non-negative edge costs
c ∈ RE and vertex connectivity requirements ri ∈ N≥0, i ∈ V , the following
holds:

opt(MST on G+) ≤ 2
rl

opt(multi-SNDPLP on G) ≤ 2
rl

opt(multi-SNDP on G).

Proof: Let G4, c4 be the metric completion of G. Let x∗ be an optimal solution
to LP(14) on G4. Let y be x∗ restricted to (V +, EV +), the subgraph of G4

with vertex set V +, edge set EV + , and edge costs c4,V +
, where EV + is the set

of edges of G4 with both ends in V + and c4,V +
are the costs c4 restricted to
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(V +, EV +). Since x∗ satisfies the constraints (16), i.e., since x∗e = 0 on all the
edges incident to vertices i with ri = 0, we have that

c4,V +
y = c4x∗ (18)

and

y(δ(S)) ≥ max
ij∈δ(S)

rij , for all ∅ ⊂ S ⊂ V +, (19)

ye ≥ 0, for all e ∈ EV + . (20)

Since y satisfies the constraints (19) and since, for all ∅ ⊂ S ⊂ V +, maxij∈δ(S) rij ≥
rl, therefore 2

rl
y satisfies

y(δ(S)) ≥ 2
rl

( max
ij∈δ(S)

rij) ≥ 2, for all ∅ ⊂ S ⊂ V +. (21)

Let P = (S1, S2, . . . , SkP ) be a partition of (V +, EV +). Note that P is always
feasible since (V +, EV +) is a complete graph. Using (21) above, we have, for
2
rl

y,

∑

e∈EP

ye =
1
2
[
y(δ(S1)) + y(δ(S2)) + . . . + y(δ(SkP

))
]

≥ 1
2

(kP · 2)

= kP

≥ kP − 1.

Thus, 2
rl

y satisfies
∑

e∈EP
ye ≥ kP−1, for all feasible partitions P = (S1, S2, . . . , SkP )

of (V +, EV +).
Note that y also satisfies the constraints (20). Thus, 2

rl
y satisfies the con-

straints (6) and (7) for the graph (V +, EV +). This means that 2
rl

y is a feasible
solution of LP(5) on (V +, EV +). Using Corollary 1 and equation (18),

opt(MST on (V +, EV +)) ≤ 2
rl

c4,V +
y

=
2
rl

c4x∗

Applying Theorems 3 and 2, we therefore have that

opt(MST on (V +, EV +)) =
2
rl

opt(multi-SNDPLP on G4)

=
2
rl

opt(multi-SNDPLP on G)

≤ 2
rl

opt(multi-SNDP on G).
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Noticing that (V +, EV +) is precisely G+ completes the proof.
¥

Lemmas 2 and 3 will be used to create a solution for multi-SNDP within a
given bound of the optimal. Before doing this, we need to define two special
graphs. These two graphs will be used for the remainder of this section. Let
G = (V,E) be a complete graph with non-negative edge costs c ∈ RE and
vertex connectivity requirements ri ∈ N≥0, i ∈ V . Vertices with ri = 0 are
called Steiner vertices. Let M = (V, F ) be a minimum cost spanning tree of
G+. Let V odd ⊂ V be the set of vertices of G+ having odd degree in M . Let
J ⊆ E be a minimum cost T -join on G+, where T = V odd. Let E′ be the edge
set consisting of d rm

2 e copies of the edges in F , and J ′ be the edge set consisting
of b rm

2 c copies of the edges in J . Let K+ = (V, E′ ∪ J ′). Let K be the multi-
subgraph of G that is formed from K+ by adding the Steiner vertices of G to
K+ and by replacing the edges of K+ by the minimum-cost paths in G that
gave rise to their edge costs. It will be seen at the end of this section that K
is the heuristic solution to multi-SNDP that is returned by our approximation
algorithm.

The following proposition is needed:

Proposition 4 LetG = (V,E) be a complete graph with non-negative edge costs
c ∈ RE and vertex connectivity requirements ri ∈ N≥0, i ∈ V . The graph K+ is
a rm-edge connected spanning multi-subgraph of G+, the graph K is a rm-edge
connected multi-subgraph of G, and the total cost of K is equal to the total cost
of K+.

Proof: We show first that K+ is a rm-edge connected spanning multi-subgraph
of G+. Since a connected graph has a T -join if and only if |T | is even, and it is
known that every graph has an even number of odd degree vertices, therefore,
G+ has a V odd-join.

Clearly, all the vertices of the subgraph H = (V, F ∪ J) of G+ have even
degree (note that H may contain multiple copies of the edges). This means that
H is an Eulerian graph, i.e., it contains an Euler tour. Hence, H is two-edge
connected, i.e., it has two edge disjoint paths between every pair of vertices.

Thus, when rm is even, K+ partitions into rm

2 Eulerian subgraphs, i.e., rm

2
2-edge connected subgraphs. Thus, K+ has rm

2 ·2 edge-disjoint paths (counting
parallel edges as distinct edges), and is thus rm-edge connected. When rm is odd,
K+ partitions into rm−1

2 Eulerian subgraphs and one minimum spanning tree,
i.e., rm−1

2 2-edge connected subgraphs and one connected subgraph. Thus, K+

has rm−1
2 · 2 + 1 = rm edge-disjoint paths (counting parallel edges as distinct

edges), and is thus rm-edge connected. Hence, K+ is a rm-edge connected
spanning multi-subgraph of G+.

Form a multi-subgraph, K, of G from K+ by adding the Steiner vertices of G
to K+ and by replacing the edges of K+ by the minimum-cost paths in G that
gave rise to their edge costs. This is done with no decrease in edge-connectivity.
By construction, the total cost of K is equal to the total cost of K+. ¥

Lemmas 2 and 3 lead to the following theorem:
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Theorem 4 Given a complete graph G = (V,E) with non-negative edge costs
c ∈ RE and vertex connectivity requirements ri ∈ N≥0, i ∈ V . The integrality
gap for the linear programming relaxation of multi-SNDP is at most 3

2
rm

rl
when

rm is even, and at most 3rm+1
2rl

= 3
2

rm

rl
+ 1

2rl
when rm is odd.

Proof: Let cost(K) be the cost of K, and cost(K+) be the cost of K+. Let
opt(M on G+) be the cost of a minimum cost spanning tree of G+, and let
opt(J on G+) be the cost of an optimal V odd-join on G+. Using Lemma 2 and
Proposition 3,

opt(J on G+) ≤ 1
rl

opt(multi-SNDPLP on G+)

=
1
rl

opt(multi-SNDPLP on G).

If rm is even, then d rm

2 e = b rm

2 c = rm

2 , and, using Proposition 4 and Lemma
3 we have,

cost(K) = cost(K+) =
rm

2
· opt(M on G+) +

rm

2
· opt(J on G+)

≤ rm

2
· 2
rl

opt(multi-SNDPLP on G) +
rm

2
· 1
rl

opt(multi-SNDPLP on G)

=
3
2

rm

rl
opt(multi-SNDPLP on G). (22)

Therefore, on G,

opt(multi-SNDP) ≤ cost(K) ≤ 3
2

rm

rl
opt(multi-SNDPLP ),

i.e.,

opt(multi-SNDP)
opt(multi-SNDPLP )

≤ 3
2

rm

rl
. (23)

Thus, when rm is even, the integrality gap for the linear programming relaxation
of multi-SNDP is at most 3

2
rm

rl
.

Similarly, if rm is odd, then b rm

2 c = rm−1
2 , d rm

2 e = rm+1
2 , and we have

cost(K) = cost(K+) =
rm + 1

2
· opt(M on G+) +

rm − 1
2

· opt(J on G+)

≤ rm + 1
2

· 2
rl

opt(multi-SNDPLP on G) +
rm − 1

2
· 1
rl

opt(multi-SNDPLP on G)

=
(

3rm + 1
2rl

)
opt(multi-SNDPLP on G)

=
(

3
2

rm

rl
+

1
2rl

)
opt(multi-SNDPLP on G). (24)
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Therefore, on G,

opt(multi-SNDP) ≤ cost(K) ≤
(

3
2

rm

rl
+

1
2rl

)
opt(multi-SNDPLP ),

i.e.,

opt(multi-SNDP)
opt(multi-SNDPLP )

≤ 3
2

rm

rl
+

1
2rl

. (25)

Thus, the integrality gap for the linear programming relaxation of multi-SNDP
when rm is odd is at most 3

2
rm

rl
+ 1

2rl
. ¥

From Theorem 4, we obtain the following two corollaries.

Corollary 3 Given a complete graph G = (V, E) with non-negative edge costs
c ∈ RE and vertex connectivity requirements ri ∈ N≥0, i ∈ V . The cost of K is
less than or equal to 3

2
rm

rl
of the optimal solution value for the LP relaxation of

multi-SNDP if rm is even, and less than or equal to 3
2

rm

rl
+ 1

2rl
of the optimal

solution value for the LP relaxation of multi-SNDP if rm is odd.

Proof: By equations (22) and (24). ¥

Corollary 4 Given a complete graph G = (V, E) with non-negative edge costs
c ∈ RE and vertex connectivity requirements ri ∈ N≥0, i ∈ V . The cost of K
is less than or equal to 3

2
rm

rl
of the optimal solution value for multi-SNDP if rm

is even, and less than or equal to 3
2

rm

rl
+ 1

2rl
of the optimal solution value for

multi-SNDP if rm is odd.

Proof: We know that opt(multi-SNDPLP ) ≤ opt(multi-SNDP). Combining
this with equations (22) and (24) we obtain the result. ¥

The constructive proof of Theorem 4, along with Corollary 4, yields the fol-
lowing approximation algorithm for multi-SNDP:

Input: A complete graph G = (V, E) with non-negative edge costs c ∈ RE

and vertex connectivity requirements ri ∈ N≥0, i ∈ V .
Output: A rm-edge connected spanning multi-subgraph (i.e., subgraph with
multiple copies of the edges allowed) of G, having cost within 3

2
rm

rl
of the opti-

mal solution value for multi-SNDP, rm even, and 3
2

rm

rl
+ 1

2rl
, rm odd.

A0. Form the complete graph G+ with vertex set V +, respective vertex con-
nectivity requirements from G, and edge costs c+

ij , i, j ∈ V +, the cost of a
minimum-cost i-j path in G.

A1. Find a minimum cost spanning tree, M = (V, F ), of G+ and take d rm

2 e
copies of its edges. Let this form the edge set E′. Let V odd ⊂ V be the
set of vertices of G+ having odd degree in M .

14



A2. Find a minimum cost T -join J ⊆ E, on G+, where T = V odd, i.e., M has
a corresponding V odd-join. This is accomplished by finding a minimum
cost “pairing” of the odd degree vertices of M using shortest paths from
G+. Take b rm

2 c copies of the edges in J , and let this form the edge set J ′.

A3. Combine the minimum cost spanning trees from (A1) and the T -joins from
(A2), i.e., form the multi-subgraph K+ = (V,E′ ∪ J ′).

A4. Form a multi-subgraph, K, of G from K+ by adding the Steiner vertices
of G to K+ and by replacing the edges of K+ by the minimum-cost paths
in G that gave rise to their edge costs.

Theorem 5 Given a complete graph G = (V,E) with non-negative edge costs
c ∈ RE and vertex connectivity requirements ri ∈ N≥0, i ∈ V . The above
algorithm yields, in polynomial time, a feasible multi-subgraph K which is rm-
edge connected and which has cost less than or equal to 3

2
rm

rl
of the optimal

solution value for multi-SNDP when rm is even, and cost less than or equal
to 3

2
rm

rl
+ 1

2rl
of the optimal solution value for multi-SNDP when rm is odd.

Thus, it is a 3
2

rm

rl
-approximation algorithm for multi-SNDP, for rm even, and

a (3
2

rm

rl
+ 1

2rl
)-approximation algorithm for multi-SNDP, for rm odd.

Proof: From Theorem 4, K is a rm-edge connected spanning multi-subgraph
of G. By Corollary 4, it has cost less than or equal to 3

2
rm

rl
opt(multi-SNDP)

when rm is even, and cost less than or equal to ( 3
2

rm

rl
+ 1

2rl
)opt(multi-SNDP)

when rm is odd. From the discussion in Section 2, this algorithm has worst case
running time O(n3). ¥

Jain [18] gave both an approximation guarantee of 2 for multi-SNDP, and
an integrality gap of 2 for the LP relaxation of multi-SNDP. Given distinct
vertex connectivity requirements ρo = 0 < ρ1 < ρ2 < . . . < ρq, Goemans
and Bertsimas’ [16] improved tree heuristic for multi-SNDP has approximation
guarantee,

∑q
j=1

f(ρj−ρj−1)
ρj

, where f(c) = 3
2c when c is even, and f(c) = 3c+1

2

when c is odd. Although not indicated, the proof of this implicitly yields an
integrality gap of

∑q
j=1

f(ρj−ρj−1)
ρj

.
For rm even, our approximation guarantee (and the integrality gap of the LP

relaxation) for multi-SNDP is strictly less than 2 (and is thus an improvement
on Jain’s result when applied to multi-SNDP) when rm

rl
< 4

3 . For rm odd,
our approximation guarantee (and the integrality gap of the LP relaxation) for
multi-SNDP is strictly less than 2 when rm

rl
+ 1

3rl
< 4

3 .
When rm = rl = k (i.e., when we are looking at the special case of multi-

kEC), our approximation guarantee and integrality gap, and those of Goemans
and Bertsimas are the same – equaling 3

2 for k even, and 3
2 + 1

2k for k odd.
When rm > rl, there are certain instances where our approximation guarantee
and integrality gap is an improvement both on the bounds of Goemans and
Bertsimas and on the bounds of Jain, hence providing for those instances a
better approximation guarantee for multi-SNDP and integrality gap for the LP
relaxation of multi-SNDP than has been previously known. It is difficult to
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determine all the instances where our bound is an improvement on the best
known bounds, however, for an example of a family of such instances, see the
family in Section 3.1.

Thus, our integrality gap for the LP relaxation of multi-SNDP and our ap-
proximation algorithm for multi-SNDP are an improvement on the best known
bounds for special cases of multi-SNDP.

3.1 A Family of Examples

In this section, we present a family of examples for multi-SNDP where the
approximation guarantee for multi-SNDP of Theorem 5, and the integrality
gap of the LP relaxation of multi-SNDP of Theorem 4, are both less than
Jain’s result and less than that of Goemans and Bertsimas (and hence are
an improvement on the best known bounds). Let G = (V, E) be a complete
graph with non-negative edge costs c ∈ RE and vertex connectivity requirements
ri ∈ N≥0, i ∈ V . Let F be the family of multi-SNDP problems such that:

(i) 1 < rl < rm if rm is even; and 1 < rl < rm − 1 if rm is odd

(ii) rm

rl
< 4

3 if rm is even; and rm

rl
+ 1

3rl
< 4

3 if rm is odd

(iii) all the connectivity requirements are present between rl and rm (i.e., let
the distinct connectivity requirements be rl, rl + 1, rl + 2, . . . , rm− 1, rm).

Recall that our bound (both approximation guarantee and integrality gap)
for multi-SNDP is at most 3

2
rm

rl
when rm is even, and 3

2
rm

rl
+ 1

2rl
when rm is odd.

We now show that on the family F this is an improvement on the best known
bounds for multi-SNDP. First, we will show that condition (ii) ensures that our
bound is strictly less than 2 for the family F , and hence an improvement on
Jain’s bound [18]. This is seen by noting that 3

2
rm

rl
< 2 if and only if rm

rl
< 4

3 ;
and 3

2
rm

rl
+ 1

2rl
< 2 if and only if rm

rl
+ 1

3rl
< 4

3 .
Secondly, we will show that conditions (i)-(iii) ensure that our bound is

strictly less than that of Goemans and Bertsimas [16]. Note that when rm = rl,
our bound and that of Goemans and Bertsimas is the same, and less than that
of Jain. Thus we only examine instances where rl < rm.

Notice that when rl = 1 and rm is even, condition (ii) implies that rm = 0,
which is a contradiction with rl < rm. When rl = 1 and rm is odd, condition
(ii) implies that rm < 1, which is a contradiction with rl < rm − 1. Thus we
state that rl > 1. Note that for both rm even and rm odd we have, by condition
(ii), that rm

rl
< 4

3 , and thus 1
rm

> 3
4rl

. Furthermore, notice that rl < rl + 1 <

rl + 2 < . . . < rm − 1 < rm implies that 1
rl

> 1
rl+1 > 1

rl+2 > . . . > 1
rm−1 > 1

rm
.

To show that conditions (i)-(iii) ensure that our bound is strictly less than that
of Goemans and Bertsimas for problems in the family F , we consider two cases.

Case 1: rl is odd, and rm is even or odd. Notice that rl is odd and rl < rm

automatically implies that rl < rm−1 when rm is odd. The bound of Goemans
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and Bertsimas [16] for problems in F with rl odd is

1
2 [3rl + 1]

rl
+

2
rl + 1

+
2

rl + 2
+ . . . +

2
rm

>
3rl + 1

2rl
+

2
rm

+
2

rm
+ . . . +

2
rm

=
3rl + 1

2rl
+ (rm − rl)

2
rm

.

For both rm even and rm odd we have 1
rm

> 3
4rl

, and thus

1
2 [3rl + 1]

rl
+

2
rl + 1

+
2

rl + 2
+ . . . +

2
rm

>
3rl + 1

2rl
+ (rm − rl)(2)

(
3

4rl

)

=
3rl + 1

2rl
+

3rm − 3rl

2rl

=
3
2

rm

rl
+

1
2rl

>
3
2

rm

rl
.

Since our bound is at most 3
2

rm

rl
when rm is even, and 3

2
rm

rl
+ 1

2rl
when rm is

odd, it follows that Goemans and Bertsimas’ bound is always greater than our
bound for problems in family F with rl odd and rm even or odd.

Case 2a: rl is even, and rm is even. The bound of Goemans and Bertsimas
[16] for problems in F with rl even is

3
23rl

rl
+

2
rl + 1

+
2

rl + 2
+ . . . +

2
rm

>
3
2

+
2

rm
+

2
rm

+ . . . +
2

rm

=
3
2

+ (rm − rl)
2

rm
.

Applying 1
rm

> 3
4rl

, we have

3
23rl

rl
+

2
rl + 1

+
2

rl + 2
+ . . . +

2
rm

>
3
2

+ (rm − rl)(2)
(

3
4rl

)

=
3rl

2rl
+

3rm − 3rl

2rl

=
3
2

rm

rl
.

Since our bound is at most 3
2

rm

rl
when rm is even, it follows that Goemans and

Bertsimas’ bound is always greater than our bound for problems in family F
with rl even and rm even.

Case 2b: rl is even, and rm is odd. Notice that if rl is even, rm is odd,
and rl = rm − 1, then our bound is not strictly less than that of Goemans and
Bertsimas: Assume it is, i.e., assume that 3

2
rm

rl
+ 1

2rl
<

3
2 rl

rl
+ 2

rm
= 3

2 + 2
rm

.
Substituting in rl = rm − 1, we get 3rm+1

2(rm−1) < 3rm+4
2rm

. Simplifying, this leads to
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0 < −8, which is a contradiction. Thus, we must have that rl < rm − 1 when
rm is odd.

The bound of Goemans and Bertsimas [16] for problems in F with rl even
is
3
23rl

rl
+

2
rl + 1

+
2

rl + 2
+ . . . +

2
rm

>
3
2

+
2

rm − 1
+

2
rm − 1

+ . . . +
2

rm − 1
+

2
rm

=
3
2

+ (rm − rl − 1)
2

rm − 1
+

2
rm

Since our bound is at most 3
2

rm

rl
+ 1

2rl
when rm is odd, it follows that Goemans

and Bertsimas’ bound is always greater than our bound for problems in family
F with rl even and rm odd provided that

3
2

+ (rm − rl − 1)
2

rm − 1
+

2
rm

>
3
2

rm

rl
+

1
2rl

. (26)

Re-arranging and simplifying, this is true provided that

7r2
mrl − 3rmrl − 4rmr2

l − 4rl − 3r3
m + 2r2

m + rm > 0.

Notice that rm > rl + 1, rl even, and rm odd imply that rm = rl + n, where
n ∈ N is odd and n ≥ 3. Substituting in rm = rl + n, where n ≥ 3 is odd, we
obtain that the above inequality is equivalent to

(n− 1)r2
l + (−2n2 + n− 3)rl + (−3n3 + 2n2 + n) > 0, n ≥ 3, n odd. (27)

Note that rm < 4
3rl − 1

3 (from condition (ii)) and rm = rl + n, n ≥ 3 odd,
implies that rl > 3n + 1, i.e., that rl ≥ 3n + 3 for n ≥ 3 odd. Using this, it
is easily seen that inequality (27) is true. Thus, inequality (26) is true. Hence,
Goemans and Bertsimas’ bound is always greater than our bound for problems
in family F with rl even and rm odd.

Therefore, Goemans and Bertsimas’ bound is always greater than our bound
for problems in family F . Hence, for problems in family F , our bound is an
improvement on both the bound of Jain and the bound of Goemans and Bert-
simas.

4 Application of Multi-SNDP to SNDP and Met-
ric SNDP

As application to SNDP, applying Proposition 2 to Lemmas 2 and 3, we obtain
the following:

Corollary 5 Given a complete graph G = (V, E) with non-negative edge costs
c ∈ RE, let G4 = (V, E) be the metric completion of G, with metric costs
c4 ∈ RE. Then

opt(T-join on G) ≤ 1
rl

opt(SNDPLP on G4) ≤ 1
rl

opt(SNDP on G4),

18



and

opt(MST on G) ≤ 2
rl

opt(SNDPLP on G4) ≤ 2
rl

opt(SNDP on G4).

Applying this to metric-SNDP, we obtain

Corollary 6 Given a complete graph G′ = (V,E) with metric costs,

opt(T-join) ≤ 1
rl

opt(metric SNDPLP ) ≤ 1
rl

opt(metric SNDP ),

and

opt(MST on G′+) ≤ 2
rl

opt(metric SNDPLP on G′) ≤ 2
rl

opt(metric SNDP on G′).

5 Application of Multi-SNDP to Multi-kEC, kEC,
and Steiner Multi-kEC

The results for multi-SNDP apply to multi-kEC as follows: Lemmas 2 and 3
hold for multi-kEC. Simply set ri = k for all i ∈ V . The remainder of the
results are similar, except that adjustments need to be made based on the fact
that the graph G+ is no longer required.

For multi-kEC, we need to define one special graph. Let G = (V, E) be a
complete graph with non-negative edge costs c ∈ RE and vertex connectivity
requirements ri ∈ N≥0, i ∈ V . Let M = (V, F ) be a minimum cost spanning
tree of G. Let V odd ⊂ V be the set of vertices of G having odd degree in M . Let
J ⊆ E be a minimum cost T -join on G, where T = V odd. Let E′ be the edge
set consisting of d rm

2 e copies of the edges in F , and J ′ be the edge set consisting
of b rm

2 c copies of the edges in J . Let K = (V, E′ ∪ J ′). It will be seen that
K is the heuristic solution to multi-kEC that is returned by our abbreviated
approximation algorithm.

The following proposition is obtained from Proposition 4.

Proposition 5 Given a complete graph G = (V, E) with non-negative edge
costs c ∈ RE, k ≥ 2, k ∈ Z. The graph K = (V, E′ ∪ J ′) is a k-edge connected
spanning multi-subgraph of G.

Theorem 4 (on integrality gap), Corollary 3, and Corollary 4, all apply to
multi-kEC. Simply set rm = rl ≡ k and ri ≡ k for all i ∈ V .

When applying the approximation algorithm for multi-SNDP in Section 3
to multi-kEC, rm = rl ≡ k, and steps A0 and A4 can be omitted. It follows
directly from Theorem 5 that this is a 3

2 -approximation algorithm for multi-
kEC, for k even, and a ( 3

2 + 1
2k )-approximation algorithm for multi-kEC, for k

odd.
Note that the bounds for integrality gap and our approximation algorithm

hold as well for Steiner multi-kEC, and, in this case, are strictly less than 2 and
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equal to the bounds of Goemans and Bertsimas. Hence, they are equal to the
best known values to date.

In 1994, Khuller and Vishkin [20] presented a 2-approximation algorithm
for kEC, given a general connected simple graph with non-negative edge costs.
Their algorithm works by converting to a directed graph, and does not create
multiple copies of edges in the heuristic solution.

When the edge costs are uniform in a general graph, Gabow, Goemans,
Tardos, and Williamson [13], gave a rounding algorithm in 2005 that has an
approximation guarantee of 1 + 2

k for kEC when k > 1 is even, and 1 + 3
k when

k is odd. Using Jain’s iterated rounding algorithm, they improved this guarantee
to 1 + 2

k when k is odd. They also provide tight examples for these guarantees.
In addition, they showed that the integrality gap of the LP relaxation of kEC
with uniform edge costs is at most 1 + 2

k , both for undirected and directed
graphs.

It is interesting to note that, for uniform edge costs in a general multi-
graph, Gabow [12] in 2004 gave a 3

2 -approximation algorithm for finding a 3-edge
connected (spanning) subgraph.

Setting rl = k, Corollary 5 applies to kEC, and Corollary 6 applies to metric
kEC.

6 Application of Multi-2EC to Metric 2EC

Given a complete graph G′ = (V, E) with metric edge costs and |V | ≥ 3, equality
holds in Lemma 1 for the special case where ri = k = 2 for all i ∈ V . This
is shown by Alexander, Boyd, and Elliott-Magwood [2] in their Lemma 3. In
other words, when the edge costs are metric in a complete graph G′ = (V, E)
with |V | ≥ 3, we have that

opt(multi-2EC on G′) = opt(2EC on G′).

It is important to note that equality in Lemma 1 does not hold in general.
In fact, equality does not even hold in general for kEC and multi-kEC for k > 2,
even for metric edge costs. For example, take the family of complete graphs on
k + 1 vertices, k > 2. Arrange the vertices in a circle. Assign edge costs 1 to
all the “outside” edges, and edge cost 2 to all the “inside” edges. These edge
costs are metric. The optimal kEC solution is the graph itself, with total cost
1(k + 1) + 2[ (k−2)(k+1)

2 ] = k2 − 1. An optimal multi-kEC solution, k even, is
obtained by taking k

2 copies of all the outside edges, with total cost k
2 (k + 1) <

k2−1. An optimal multi-kEC solution, k odd, is obtained by taking k+1
2 copies

of k of the outside edges and (k+1
2 ) − 1 copies of the remaining outside edge,

with total cost (k+1
2 )(k) + [(k+1

2 )− 1] = 1
2 (k2 + 2k− 1) < k2 − 1. Thus, for this

family of graphs with metric edge costs and k > 2, opt(multi-kEC) < opt(kEC).
Figure 1 illustrates this family of graphs for k = 3.

In 2006, Alexander, Boyd, and Elliott-Magwood showed that the integrality
gap of the LP relaxation of multi-2EC (and metric 2EC) is ≤ 3/2 [2], and
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Figure 1: k = 3 in the family of graphs.

showed the exact integrality gap for graphs of up to 10 vertices, and a tight
lower bound for the integrality gap for graphs of 11 to 14 vertices. In both
[3] and [2], it is mentioned that examples exist with an integrality gap ratio
which asymptotically approaches 6/5, thus indicating that the integrality gap
for the LP relaxation of multi-2EC (and metric 2EC) is between 6/5 and 3/2. In
1998, Carr and Ravi [3] conjectured that the integrality gap is in fact 4/3, and
presented a result that provides some support for this. In 1982, Frederickson
and Ja’Ja’ presented a 3/2-approximation algorithm that applies to metric 2EC
[10].

Note that when edge costs are metric, k = 2, and there are at least three
vertices in the graph, Alexander, Boyd, and Elliott-Magwood [2] show that there
is always an optimal solution of multi-2EC that is simple. In other words, given
a complete graph G′ = (V, E), with |V | ≥ 3 and with metric edge costs c′ ∈ RE ,

opt(multi-2EC on G′) = opt(metric 2EC on G′). (28)

Problems multi-2EC and metric 2EC are closely related. This is shown by
the following proposition.

Proposition 6 Given a complete graph G = (V,E), |V | ≥ 3, with non-negative
edge costs c ∈ RE, let G4 = (V, E) be the metric completion of G, with metric
costs c4 ∈ RE. Then

opt(multi-2EC on G) = opt(metric 2EC on G4).

Proof: Set k = 2 in Corollary 2 and apply equation (28) with G′ = G4. ¥
It is interesting to note that, for graphs that are their own metric completion,

there is a relationship between the integrality gaps for the linear programming
relaxation of multi-2EC and for the linear programming relaxation of metric
2EC.

Lemma 4 Given a complete graph G′ = (V, E), |V | ≥ 3, with metric edge costs
c′ ∈ RE, if the metric completion G4 is the same as G′, i.e., if G4 = G′, then
the integrality gap for the linear programming relaxation of multi-2EC on G′ is
less than or equal to the integrality gap for the linear programming relaxation of
metric 2EC on G′.

Proof: By Lemma 1,

opt(multi-2EC on G′) ≤ opt(metric 2EC on G′).
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By equation (28), opt(multi-2EC on G′) = opt(metric 2EC on G′). Hence,
opt(multi-2ECLP on G′) = opt(metric 2ECLP on G′). We therefore have that

opt(multi-2EC on G′)
opt(multi-2ECLP on G′)

≤ opt(metric 2EC on G′)
opt(metric 2ECLP on G′)

.

¥
The following lemma comes from equation (28) and the proof of Theorem 4.

It agrees with a result presented by Alexander, Boyd, and Elliott-Magwood [2].

Lemma 5 Given a complete graph G′ = (V, E), |V | ≥ 3, with metric edge costs
c′ ∈ RE, the integrality gap for the linear programming relaxation of metric 2EC
is at most 3

2 .

A graph is said to be k-vertex connected if it has at least k internally vertex-
disjoint paths between every pair of vertices. All k-vertex connected graphs are
k-edge connected, but not vice versa. Given a complete graph, G = (V, E),
with non-negative edge costs c ∈ RE , the k-vertex connected subgraph problem
(kVC) is the problem of finding a minimum cost k-vertex connected spanning
subgraph of G. Problem 2VC is sometimes called the biconnected augmentation
problem. Problem kVC with metric edge costs will be referred to as metric kVC.
For a summary of the current known performance guarantees on the different
versions of kVC, see [21].

It can be shown that opt(metric 2EC) = opt(metric 2V C). This is an im-
plicit result of Frederickson and Ja’Ja”s shortcutting method (cf [10]), and is
used by Carr and Ravi in [3], and by Monma, Munson, and Pulleyblank in [23].

In 1982, Frederickson and Ja’Ja’ examined the biconnected augmentation
problem on complete graphs with metric edge costs and F = ∅ [10], i.e., metric
2VC. Following a similar idea to that of Christofides’ 3

2 -approximation algorithm
for the metric travelling salesman problem [5], Frederickson and Ja’Ja’ presented
a 3

2 -approximation algorithm for metric 2EC and metric 2VC.
Given a complete graph G′ = (V,E) with metric edge costs, our approx-

imation algorithm for multi-kEC in Section 3 can be modified to get a 3
2 -

approximation algorithm for metric 2EC that is similar to that of Frederickson
and Ja’Ja”s. The modification is as follows: Set k = 2 and let Ĥ be the heuris-
tic solution obtained from our approximation algorithm (cf Section 3) applied
to G′. Note that Ĥ is a 2-edge connected spanning multi-subgraph. Also note
that any multi-edges of Ĥ consist of exactly two parallel edges. (Otherwise, we
can remove at least one copy of the parallel edges without affecting the 2-edge
connectivity, thus obtaining a cheaper solution.) We can remove the parallel
edges of Ĥ as follows [10]: For each edge uv in J ′ ∩E′: (a) remove uv from J ′;
(b) find an adjacent edge ux or vw in E′, remove it from E′ and replace it with
either vx or uw, respectively; (c) insert the remaining edges of J ′ into E′, and
call this combined set of edges Ẽ. Form the simple subgraph H̃ = (V, Ẽ).

Corollary 7 Given a complete graph G′ = (V,E), |V | ≥ 3, with metric edge
costs c′ ∈ RE, the approximation algorithm from Section 3 (with k = 2), with
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the addition of the above transformation as step (A4), is a 3
2 -approximation

algorithm for metric 2EC.

Proof: Set k = 2 and let Ĥ be the heuristic solution obtained from the ap-
proximation algorithm from Section 3 applied to G′. Let H̃ be the resulting
subgraph after applying the above transformation to Ĥ.

Note that, by construction, all the vertices of Ĥ have even degree. Without
loss of generality, assume that the edge ux is removed along with uv in the step
(A4) above, and xv is added. The degree of u decreases by two, and the degree
of x and v remain the same. Since the vertex u was incident with the parallel
edge uv and the edge ux, and its degree was even, therefore the degree of u was
greater than or equal to four. Thus, decreasing the degree of u by two does not
disconnect u from the graph. Hence, the resulting subgraph is connected and
still has vertices of all even degree. As well, no new parallel edges are created,
since the edge xv is not in Ĥ (if xv were in E′ then (V,E′) would contain a
cycle (cycle xuvx) and thus would not be a minimum spanning tree; and if xv
were in J ′ then J ′ would not be a T -join for T = V ′). Repeating for each of the
parallel edges of Ĥ, we see that the resulting subgraph H̃ is connected and has
vertices of all even degree. Hence, H̃ is 2-edge connected. H̃ is also simple.

Due to metric costs, the transformation of step (A4) is performed at no
increase in total edge cost. Thus, H̃ is a 2-edge connected spanning simple
subgraph of G′ with cost at most 3

2opt(metric 2EC). Since step (A4) can also
be done in polynomial time, this yields a 3

2 -approximation algorithm for metric
2EC. ¥

Note that if, furthermore, we wish the metric 2EC heuristic solution H̃ to
be 2-vertex connected, then we apply Frederickson and Ja’Ja”s shortcutting
method [10] to obtain at equal cost (due to metric costs) a 2-vertex connected
spanning simple subgraph in the following manner: Choose a cut vertex v of H̃
and find edges uv and vw in Ẽ such that u and w are in different blocks (maximal
two-vertex connected components of the graph). Replace uv and vw by uw ∈ E.
The blocks containing u and w will then become one block. Repeat until all
the blocks of the subgraph are merged and no cut vertices remain. This forms
a 3

2 -approximation algorithm for metric 2VC. The proof of our approximation
algorithm for this case provides an alternate, simpler, and more compact proof
for Frederickson and Ja’Ja”s result.

It is also worthwhile noting that, given a complete graph G = (V,E) with
non-negative edge costs, a 3

2 -approximation algorithm for multi-2EC can be
obtained by taking the metric completion G4 of G, applying Frederickson and
Ja’Ja”s 3

2 -approximation algorithm for metric 2EC [10], and then using the
transformation by Goemans and Bertsimas in the proof of their Theorem 3 [16],
to transform the heuristic solution on G4 back to a heuristic solution on G at
no increase in cost and no decrease in edge connectivity.
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