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ABSTRACT

Let Kn = (V,E) denote the complete graph on n nodes. A
tour of KnI is the 0-1 incidence vector of the edge set of a hamilton
cycle in Kn. Let Tn denote the set of all tours of Kn. Then, given
edge weights €q € R far all e € E, the symmetric travelling
salesman problem (henceforth denoted by TSP) is to find a member of

Tn of minimum weight, i.e.
min [cx] x € Tn}.

An important Yinear programming relaxation of the TSP is
the subtour polytope Qg which is defined by the non-negativity,
apper bound, degree and subtour constraints of the TSP. By removing
the subtour constraints, a weaker relaxation is obtained, called the
fractional 2-factor polytope, and denoted by Qg.

In Chapter 4 we describe a primal simplex method for
aptimizing over 02 and related problems. The algorithm is a
specialized version of a simplex method for the generalized network
Tlow problem which in general {and specifically for optimiziag over
02) is not guaranteed to be finite. However, we ensure finiteness
of our method.

In Chapter 6 we iatroduce a finite dual simplex method for
optimizing over Qg and related problems. In general each pivot of

this method requires an exponential number of steps, howsver in many

{iv)

v

applications (including optimizing over Qg) the pivots can be
performed in a polynomial aumber of steps.

In Chapter 7 we discuss computational results cbtaijned
from implementations of these simplex methods, showing that fhese
methods, in combination with a navel method for predicting impartant
subtour constraints, provide good lower bounds for the TSP,

In Chapter 5 we describe new results on Qg, establishing
some properties of its vertices, and optimizing a class of objective
functions obtained from the clique tree inequalities over Qg.

Finally, in Chapter 2 we present a useful result on
deriving facet-inducing inequalities for a polytope from those of a

related polytope.
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CHAPTER 1

Introduction and Notation

1.1 INTRODUCTIGN

Consider the following problem. A salesman wishes to
visit each of a prescribed set of cities exactly once, then return
to the city at which he started, Find the shortest possible route
for the salesman to travel.

The above problem is known as the travelling salesman
problem, and is of interest both practically and theoretically. It
appears to have first been formulated about 55 years ago [Menger,
1932], and has been exteasively studied since its formulation as a
0-1 liqear program in 1954 by [Dantzig, FuTkersen and Johnsan,
1954]. Some of its practical applications include scheduling,
production’ management, and routing. Also it has beem shown [karp,
1972] that the travelling salesman problem belongs to the class of
NP-complete or “"hard" combinatorial problems, and thus is of
theoretical interest.

Mathematically the (symmetric) travelling salesman problem

{henceforth dencted by TSP} is defined as foilows: given a graph

G = (V,E) and a vector c € ]RE of edge costs, find a hamilton cycle
in 6 of minimum edge cost. As is aftea the case, we restrict
ourselves to problems in which & is the complete graph {denoted by

K|VI) since any edge not existing in & can be included with a

1.1

1.2

sutficiently large cost without affecting the optimum solution.
We study the TSP fram a polyhedral approach, which
consists of associating a polytope with the problem. This polytope,

referred to as the travelling salesman polytope and henceforth

denoted by Q?, is the convex hull of all 0-1 incidence vectors of
edge sets of hamilton cycles in Kn. Then te solve the TSP we

consider the problem

min [cx| x € q?}.

An extensive survey of the polyhedral aspects of the TSP caa be
found in [Grétschel and Padberg, 1985a] and {Grétschel and Padberg,
1985b0],

In order to apply standard linear programming techniques
to the problem of optimizing over Q? we would Tike to have a
complete linear description of it. Some of the necessary
inequalities for Q? are known. However, since optimizing over Q?
is an NP-hard problem the following theorem shows it unlikely we

will ever find a complete description.

{1.1.1) Theorem. [Karp and Papadimitriou, 1980]. If there exists
an NP-description of a class of valid inequalities that induce every
facet of the polytopes of a class of NP-compiete problems, then

NP = coNP.

It is considered unlikely by most researchers that
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NP = coNP, See [Garey and Johnsons, 19797 aad [Papadimitriou, 1982]
for good introductions to complexity theory.

Host bounds for WP-complete combinatorial optimization
problems are obtained from relaxations of the problem which are
easier to solve, These bounds in furn are useful in solutien
methods, such as branch and bound and cutting plane metheds, for
these NP-complete problems.

Nhen.studying the TSP we investigate optimizing over a
palytape ( which is defined by a subset of the necessary
inequalities known for Q?. This provides a lower bound for the TSP,
and in some cases an optimal solution. Such Tower bounds can prove
very useful when used as a part of branch and bound techniques used
to solve TSP's, or simply for bounding the error of a heuristic
solution.

In general optimizing over a partial description of Q% is
done by a linear programming cutting plane ‘approach. Typically in
this approach a commercial linear programming code is used to
optimize the objective function cx over a small subset of the
necessary constraints known for Q?. If the optimal solution x*
obtained corresponds to a solution for the TSP, then x* corresponds
to an optimal solution for the TSP. Otherwise we try to find a
vatid constraint for 0? which fis hot satisfied by x*, add it fu our
present set of constraints, and repeat.

This approach was first introduced by [Dantzig, Fulkerson

1.4

and Johnson, 19547 who used it te prove optimality for a 49-city
TSP, Later it was developed and used successfully by [Bréotschel,
19807 and [Padberg and Hong, 19807. At present, the largest real
world TSP solved to optimality is a 318 city problem {Crowder and
Padberg, 19801. This problem was introduced by [Lin and Kernighan,
1973] and arose from the routing of a Taser drilling machine.

Let Kn = {(V,E) be the comp1ete‘graph on n nodes. The
system of constraints most often used as a starting system for the
cutting plane approach for the TSP is the following:

L xij =2 for all i €V
JeEWN (1)

03 xij <1 for all ij € E.

We call the polytope associated with the above constraints the

fractional 2-factor polytope and denote it by BE. In general,

commercial 1inear programming packages are used to optimize over Qg.
Kowever, optimizing over 02 can also be solved in polynomial time
as an instance of bipartite b-matching or by selving it directly
using a primal-dual algorithm (see Section 4.4).

Optimizing over 02 can result in solutions which are
fractional. Moreover, the integer solutions may contain subtours,
i.e, the edges in Kn carresponding to integer components of a
solution may form cycles in K, of size less than a. Such salutions

can be “cut-off" by adding the so-called subtour elimination
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n
coastraints to the linear system for § , thus obtaining the system
F

I X.. = 2 for 811 i € ¥,
jengiy M
0g xij <1 for all ij € E,
I ox,, s |S)-1 for al11 SC.V, 35 |§] € n - 3.
ijes M

We call the associated polytope the subtour poiytope and denote it
by 05.

The results of [Dantzig, Fulkerson and Johnson, 19547,
[Grétschel, 19801, and [Padberg and Hong, 1980] indicate that the
Tinear system for Qg would provide a much betier starting point
than Q; for the cutting-plane approach for the TSP. In particular,
Qg provides the basis for a branch and bound technique for the TSP
used by [Held and Karp, 1970]. This technigue, based on l-trees,
uses a Lagrangian relaxation of the TSP to obtain a lower bound for
the optimal solution, and solviag over this Lagrangian relaxation
is equivalent to minimizing over Qg. Furthermore, it was shown
empirically by [Christofides, 1979] that optimizing over this
Lagrangian relaxation gave approximately 99% of the optimal value
for the TSP on randomly generated problems. Héwever, no efficient
means is known for soTving the Lagrangiam relaxation.

The separation problem can be solved in polynomial time

for 02, i.e. given any x € ]R" it can be determined in polynomial

time if x € Qg, and 1f not, an inequality in the defining system of

Qg which is violated by x is provided. Therefore we can optimize

over 02 in polynomial time by means of the ellipsoid algorithm

(see [Grétschel, Lovdsz and Schrijver, 19817 for more details).
However, there does not yet exist a direct, i.e. nonellipsoidal
polynomial time algorithm to solve the problem of optimizing over 02.
Also note that, unlike 02, the number of constraints in the linear
system for Qg is exponential in the size of the problem. Consequently,
no standard implementation of the simplex method can be used to
optimize over Qg.

The simplex method, introduced by [Dantzig, 1947], is a
method for optimizing a Tinear objective function subject to a
finite number of linear constraints. The general idea of the method
is to attempt to find a sequence of basic feasible solutions such
that the corresponding objective function values are always
improving until finally the optimal value is achieved. FEach
iteration of the simplex method consists of pivoting from the
present basic feasible solution to the next one in the sequence.

In theory the number of these iterations can be
exponential in the number of constraiats. However, in practice the
simplex method is very efficient, and it has been observed -that the
number of iterations required in practice grows linearly with the
nuﬁber of constraints (see [Kuhn and Quandt, 19637, and [Dantzig,

1963], p. 160).
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In the case of combinatorial optimization problems, it is
sometimes possible to design very efficient versions of the simplex
method which take advanfage of the special structure of the
particular problem. Perhaps one of the most successful examples of
this is in the case of the so-calied transshipment or network flow
problems (see [Chvatal, 1983]) far which the resuiting simplified
simplex method is called the network simplex method. Finiteness of
this algorithm is guaranteed by an elegant pivet rule due to
[Cunningham, 1976] which is easily implemented.

Another example of a combinatorial problem with a special
Structure is the perfect b-matchiag problem. Unlike the
transshipment problem, the number of coastraints in the linear
system for this problem is exponeatial in the size of the problem.
Hence any standard implementation of the simplex method is
impossible. However, in [Koch, 19791, a primal simplex method is
described in which all the bases encountered have special structures
which allow easy computatiens in the corresponding pivots.
Unfortunately, the methdd has no anti-cycling rule, and none of the
general anti-cyeling methods can be applied without destroying the
basis structure required. Hence the method is not guaranteed to be
finite.

The submodular flow problem is an example of a problem
with an exponential number of constraints for which there exists a

combinatorial primal simplex method which is finite. This methed,

1.8

due to [F. Barahona, W. Cunningham, 19847, requires an oracle which
can minimize a submodular function. In general this oracle is
available only via the ellipsoid algorithm, but in several
applications it is provided by an efficient combinatorial procedure.

An outline of the revised simplex method, both in the
primal and dual forms, is provided in Chapter 1, along with outlines
of the corresponding lexicographical methods for ensuring
finiteness. A1l of these methods are presentéd in the forms most
useful for our applications Tater. In Chapter ! we also introduce
some linear programming theory and our hasic notation.

In Chapter 2 we briefly discuss the polyhedral theory and
notation required for the thesis. Also included in Chapter 2 js a
method for generating facets of a polytope P from those of a
polytope P, where P is the poTytope obtained by extending P by the
negative of some cone C and then intersecting the resultiag
polyhedron with another cone D. A special instance of such a
polytope is in the case where P is the so-called monotone
completion of P. .

Generally in the past, the facets of a polytope P and its
monotone completion P have been studied separately, despite their
close relationship. This is true for the travelling salesman
polytope 0? and the monotone travelling salesman polytope ﬁ?, as
well as for the linear ordering polytope PEG and its monotone

cempletion P:c, the acyclic subgraph polytope (see Section 2.3).
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However, we show that for any facet-inducing inequality for P which
is valid for P, there is an equivalent inequality which is also
facet-inducing for P. MNote that this has previously been proven for
the case P = ﬂ? in [Grotschel and Pulleyblank, 1981].

In Chapter 3, we introduce the travelling salesman
nolytope 0? as well as several large classes of the facet-inducing
inequalities for it. These classes are those which have proven most
useful in cutting plane algorithms for the travelling salesman
problem. We also discuss in which instances the separation problem
can be solved in polynomial time for the inequalities introduced.

In Chapter 4 we introduce the fractional 2-factor problem
and its associated polytope 02. Recall that aptimizing over 02
provides a lower bound for the TSP, which in turn is useful in
branch and bound and cutting plane technigues used for solving the
TSP,

We then describe'a primal simplex method for a
gengralization of the fractional 2-factor problem. The success of
the network simplex method for the upper-bounded transshipment
problem indicates that such a method is desirable. At each

literation of the method we solve the original system of 0(§V|2)
constraints and variables by using the structure of the bases to
efficiently solve a system of |V| constraints. Note that this
problem is a special case of the network flow with gains problem

{or generalized network flow problem} and the simplex method

presented is a specialized implementation of a primal simplex method
far fhe network flow with gatns problem (see [Kennington and
Helgason, 19801). ‘Hnwever, this general algorithm is at present
known to be finite only for the case of pesitive gains (see [Elam,
Glover and K1ingman, 1979]) while the problem we address is an
instance of network flow with negative gains. We ensure finiteness
of our method by using a simplification of the lexicographical
anti-cycling method as it appiies to this problem.

In Chapter 5 we introduce the subtour problem and its
associated po]ytnpe Qg. Recall that optimizing over Qg provides
a lower hound for the TSP which is better than the one provided
by optimizing over QE. In the first part of the chapter we examine
the structure of the vertices of Dg, and in the latter part we
optimize a class of objective functions obtained from the so-called
clique tree inequalities over Qg.

In Ch;pter 6 we describe a dual simplex method for a
generalization of the subtour and perfect b-matching problems. For
these particular problems (and perhaps also for other instances of
the general problem) each iteration of the method can be performed
in a number of steps polynomial in the size of the problem. This is
accomplished by taking advantage of the structure of the bases for
these problems and also keeping the tight cuts nested at each
iteration. Note that at present we know of no technigue for

performfng primal simplex iterations in polynomial time for the



subtour problem. We ensuée finiteness of the method by using a
simplification of the lexicographical anti-cycling methad as it
applies to this problem.

The primal simplex method of [Kach, 1979} for the perfect
b-matching problem is also discussed briefly in Chapter 6, along
with an explanatian of why it is not possible to generalize the
specially structured bases he uses to the subtour problem.

Finally, in Chapter 7 we discuss computational results
obtained from an impltementation of the simplex method for the
fractional 2-factor problem (described in Chapter 4}, and an
implementation of the dual simplex method for the subtour problem
{described in Chapter 4},

A novel feature of the latter implementation is that when
it attempts to optimize over Dg, instead of starting initially with
the linear system of Qg and adding cuts one at a time, it predicts
a set of "important” subtour constraints which it adds to the
Tnitial system all at once.. It thus optimizes over a palytope P
satisfying 02(; ﬁg;cag. I¥ the optimal solution obtained is not a
member of Qg, we proceed to introduce cuts in a standard fashion.
These final cuts are found using an efficient heuristic procedure,
and were found sufficient for obtaining an optimal solution to the

subtour problem in almost all problems tested,

1.2 GENERAL NOTATION

For any finite set X we let |X| denote the cardinatity of
X. &iven another set Y X, we et X\Y denote the members of X
wWhich are not members of Y,

We let R denote the sét of real numbers. For any t € IR
we use the notation LtJ to denote the largest integer z such that
z < t, and [t} to denote the smallest integer z such that z 2 t.

For any finite set E we let ]RE denote the set of all real
vectors indexed by E. We let 0 represent the vector which is zero
in all components.

Given a vector x € IRE and a subset JC E for some finite
set E, we use the notation X5 to denote the vector whose components
are those of x indexed by J. If J = [i} we wse X5 rather than «x i

{i}”
E

For a € R and b € RE we say a £ b ifa_ ¢ be for all e € E,

e
For any finite set E the incidence vector of FC E is the
vector x € ItE defined by

1 ife€F

0 if e € F.

For any y € ]RE and JCE we let y(J) = & ¥y
i€J

A set Xg;IRE is linearly independent if whenever




I ax =0 for some a € R we have a = 0, Otherwise, X is
xex
linearly dependent.

For any two finite sets J and K we let BIJXK denote the
set of all real matrices whose rows are indexed by J and whose
columns are indexed by K. For any BLC K we let AB denote the matrix
whose columns are those of A indexed by B. If & = {i} we use Ai rather
than A{i}'

The rank or linear rank of a matrix A € BKJXK

is the
cardinality of a maximal independent subset of the columns of A,

We say A is ponsingular if the rank of A equals |K| and |K| = [J].
The row rank of A is the cardinality of a maximal independent set of
rows of A, A column basis for A is a maximal independent subset of
the columns of A.

For any positive integer n, the identity matrix of size n,
denaoted by I", is the matrix with n rows and n columns such that the
diagonal entries have value one and all otheér entries have value
zera. For finite sets J and X and any nonsingular matrix A € IquK
the inverse of A, denoted by A_l, is defined by ala = ¥

Finally, for any fisite sets J and K and matrix A € ]RJxK,
the transpose of A, denoted by At, is the matrix whose columns are

the rows of A and whose rows are the columns of A.

1.3- GRAPH THEORY

Some standard references on graph theory are [Bondy and
Murty, 1976] and [Harary, 1969].

For our purposes a graph G is an ordered pair (V,E), where
V is a finite set of elements called nodes, and E is a finite set of
elements called edges such that every edge & € E corresponds to two
distinct nodes in V, called the ends of e. An edge e € E with ends
u and v is sometimes denoted by uv, and we say e Joins u and v. Twe
nodes u,v € V are said to be adjacent if uv € E, and if e = uv, e is
said to be incident with u and v.

If G is any graph, we let V(G) and E{G) denofe the nade
set and edge set of 6 respectively. For any SC V(G) we use Y(5) to
denote the set of edges in E(G) with both ends in S, and we use §(5)
to denote the set of edqes in E(6) with exactly one end in S. For
any nade v € V(G} the degree of v is |§(v)|.

A graph & is complete if every pair of nodes is joined by
exactly one edge, The complete graph on n nodes is denoted by Kn.

A graph H is called a sublgragh of B if V(H) C V(G),

E(H) C_£(G6) and every e € E(H) has the same ends ia H as in G. If
V(H} € V{G} then H is a spanning subgraph, and if every edge of G in
y(V{H}) is in E(H} then K is an induced subgraph of &. For any

SC V(G) we use < S > to denote the subgraph of 6 induced hy S.

A path in a graph G is a finite non-null sequence
VoBIViBaYe- . 0LV whose terms are alternately nodes and edges such

Q
that the nodes are distinct, and for 1 < i < k the ends of e; are



Vi.y and v We say path P joins vy and v, and sometimes we denote

i

P by the node sequence v where Y{P) = {vD,vl,....vn] and

o’vl""’vn’
viqvs € E(®) for i = 1,2,...,n. The length of P is [E(P)|, and a
hamilton path of & is a path P'in 6 of length [V(G}]| - 1.

A graph G is connected if every two nedes in 6 are joined
by a path. A component of a graph & is any maximal connected
subgraph of G.

A cycle in G is a connected subgraph € of G such that
every node in V{C) has degree 2 in C. Scmetimes we denote P by the

aode sequence v <Yy where V(P) = {vo,vl,...,vn}, Vo¥a € E{G)

otVyeee
and v;_qv; € E(6) for 1 = 1,2,...,n. The Jeagth of € is |E{C)[, and
a hamilton cycle of 6 is a cycle C in 6 of Tength [V(G)].

A clique in a graph G is a set W V(G) of nodes such that
< W > is complete. An articulation set of G is a set C of nodes
such that remaving C from G disconnects 6. A cut is a set of edges
§{S) for some SC V(G).

A forest is a graph which contains ne cycles. A tree is a
connected forest. A1l trees T have the property that
JE(TY| = |¥(T)] - 1.

A graph G is bipartite if V{G)} can be partitioned into two
sets ¥, and ¥, such that E(6) = §(vy) = 5(V2), i.e. all edges in
E{G) have one end in V1 and the other in VZ'

The node-edge incidence matrix of a graph & is a matrix
s € RY(GIXE(G)

such that the entry .of A indexed by node v and edge

e has value 1 if v is an end of e, otherwise it has value 0. Also,

for any vector x € ]RE(G)

, the support of x is the graph whose node
set is V(G), and whose edge set consists of all edges e € E(G) such
that L # 0,

A matching of a graph & is a set of edges MC E(G) such
that every node v € ¥(G) is the end of at most one edge in M. We

say M misses v € V(G} if v is not the end of any edge in M. A

aear-perfect matching of G is a matching which misses exactly one

node in V(G), and a perfect matching of 6 is ane in which no nodes
are missed.

A digraph is a graph whose edges are each given a
direction. Thus each edge uv becomes an ordered pair (u,v), and
these ordered pairs are called arcs. Fdr any arc {u,v) we call u
the tail of the arc and v the head of the arc.

A dicycle in a digraph D is a non-nu1l sequence
Vol VyBg¥a. - -y whose terms are alternately nodes and edges such
that the nodes are distinct, a, = (vk_l,vo) and for 1 € i €k - 1 we
have a; = [Vi—l’vi)' We say a digraph is acyclic if it contains no

dicycles.

1.4 LINEAR PROGRAMMING

A dinear programming problem involves optimizing a 1inear

objective function subject to a finite number of linear constraints.
For our purposes, it is convenient to consider linear programming

prabiems having the following form:



minimize cx (1.4.1)
subject to  Ax = b

Dx 2 d

x 2 0.

Note that any general linear programming problem can be transformed
into the above form (see [Dantzig, 19631, p. 85-89) and all theorems
in this section can be extended in the appropriate way.

A vector x is a feasible solution to (1.4.1) if it

satisfies all of the given constraints. A feasible solution is an
optimal solutign for (1.4,1) if it minimizes cx for all feasible
solutians x.

The following is a conseguence of the fundamental theorem

of linear programming (see [Dantzig, 1963], p. 120).

(1.4.2) Theorem. For any linear programming problem exactly one of
the following situations occurs:
i} There exists no feasible solutioa.
i1} The objective function is unbounded subject to the
constraints.

ii1) There is an optimal feasible solution.

With any linear programming problem we can associate a
dual linear programming problem. The original is then referred to

as the primal problem. The primal and dual problems have the

property that the value of the objective function at a feasible
solution in one bounds the optimal objective value in the other.
The following is the dual linear programming problem

associated with (1.4.1):

maximize yb + wd (1.4.3)
subject to  yA + WD < ¢
w2 0, y unrestricted.
Note that every constraint in the primal problem corresponds to a
variable in the dual problem and vice versa.
The following three theorems describe the relationship

between (1.4.1) and (1.4.3}.

(1.4.4) Weak L.P. Duality Theorem (see [Dantzig, 19631, p. 130).

If x is a feasible solution to the primal problem (1.4.1) and (¥,w) is

a feasible solution to the dual problem (1.4.3) then cX 2 yb + ud.

{1.4.8) Strong Duality Theorem (see [Dantzig, 1963], p. 129, 134}.

If the primal problem (1.4.1) has an optimal solution x* then the
dual problem {1.4.3) has an optimal solution {(y*,w*) and

cx* = y*h + w¥d.

(1.4.6} Complementary Slackness Theorem (see [Dantzig, 19637,




p. 135-136). A feasiblg solution x to the primal problem {1.4.1}
and a feasible solution (y,w) te the dual problem (1.4.3) are
optimal if and only if
i) ij > 0 implies that {y,w) satisfies the corresponding dual
constraint with equality, and
i) Gi > 0 implies that x satisfies the corresponding prima)
constraint with equality.
We sometimes refer to an inequality ax € ag as tight with
respect to a solution x if ax = a, and slack if ax < 2,

The conditions i) and i1} in {1.4.6) are cailed the

complementary slackness conditions. This theorem shaws that one

easy way to prove some feasible primal solution is optimal for
{1.4.1) is to provide a feasible dual solution for (1.4.3) which
satisfies the complementary slackness conditions.

We say that a linear programming prablem is in equality

form if all of its constraints are equations, i.e. it has the form

minimize CX {1.4.7)
subject to Ax =D
x 20,
and A has full row rank. It is possible to transform (1.4.1) into
the form shown in {1.4.7) by subtracting a non-negative slack
variable S5 frem each inequality in (1.4.1). Thus any linear

. programming problem can be put into
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equality form.

The dual problem for {1.4.7) is as follows:

maximize yb (1.4.8)
subject to  yA < ¢
y unrestricted.
A basis for {1.4.7) is defined by a set of column indices
B corresponding to a maximal independent subset of the columns of A.
The variables Xy are called basic varjables, and the columns of AB
are called basic columns. If we let N represent the set of indices

of nan-basic columns then the unique basic primal solution for

{1.4.7) corresponding to B is defined by

xy = 0 (1.4.9)

yAg = cp. (1.4.10

Note that these basic solutions are not necessarily feasible
solutions for their respective problems, but they do satisfy the
complementary sltackness conditions. Hence if they are both feasible
they are optimal solutions as well by the Compiementary Slackness

Theorem (1.4.6).



1.21

1.5 THE SIMPLEX METHOD

The simplex method [Dantzig, 1947] is an algorithm for
solving linear programming problems which is usually expressed for
problems in equality form. When it is performed on the primal

linear program it is called the primal simplex methed, but it can

also be applied to the dual, in which case it is called the dual
simplex method. In this section we describe the so-called revised
simplex method performed on the primal linear program (1.4.7). In
Section 1.6 we outline the corresponding procedure for applying this
method to the associated dual problem.

The general idea of the simplex method is to attempt to
find a sequence of basic feasible solutions such that the
corresponding objective function values are always improving until
finally the optimal value 1is achieved. The algorithm goes from one
primal feasible basis to the next one in the sequence by carefully
thoosing the index of some nen-basic columa to enter the basis and
the index of some basic columa te leave it. The corresponding

variables are called the entering variable and the leaving variable

respectively, and performing the exchange is called a pivot. The
choice of entering variable is motivated by the desire te improve,
i.e. decrease our objective function value. The chaice of leaving
variable is generally forced by the requirement that the new primal
basic solution be feasible, i.e. we wish to keep x 2 0.

To start the simplex method we need to find an initial
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prima] feasible basis, if one exists. There are general procedures
used for this, however they are not required for our specific
applications and hence are not discussed here.

Once we have an initial feasible basis we begin piveting.
At each iteration we are given the current primal feasible basis B.
Letting N be the set of indices of non-basic columns we can express
our objective fuaction value z in terms of the non-basic variables

Xy 45 follows:
z = c A lb + (cy - € Al ) x 1.5.1
B8 N T Catg W Xy (1.5.1)

Since Xy ¥ ¢ for our present primal basic solution, our curreat
objective value is cBABIb.

Given a primal feasible basis B, the next step in the
simplex methad is to calculate the corresponding dual solution y as
in (1.4.10). We check to see if y is dual feasible by calculating
EN =cy - iAN, called the reduced cost for the iteration. If
EN 2 0 then we have dual! feasibility and hence optimality for hoth
the primal and the dual ﬁrnb1em5 by the Complementary Slackness
Theorem (1.4.6). Otherwise there exists some j such that Ej < 0 and
we choose the corresponding Xj as our entering variable and add j to
our basis. We then let the value of xj increase from its present
value of 0 up to some value t 2 0. This results in a decrease of
—Ejt in our objective function value, as can be seen by substituting

= -1 :
Cy = Cy = Cahy AN into {1.5.1),



The requirement that we remain primal feasible 1imits how
large we can make t. Thus we require

-1

_ _ -1
= AB b t(AB Aj) 2 0. (1.5.2)

B

1

Calculating b = Aé band a = A;lAj. we satisfy (1.5.2) by defining t

as follows:

t = min [ | a; >0, i€8} .
d.
;

This portion of the simplex method is commonly referred te as the
ratio test.

If t has no limit, i.e. 51 < 0 for all i, then our
objective function can be made arbitrarily negative and thus our
primal linear program is unbounded. Otherwise at least gne basic
variable x; is forced to have value zero by our choice-of t, and we
choose such an X as the leaving variable for the pivot. The new
primal feasible basis B' is then defined by B' = {B U {j})\{i}.

If we have t » 0 for every iteratian, our objective values
are strictly decreasing, guaranteeing each basis encountered is
different from the rest. Such a guarantee implies termination of
the algorithm since the number of possible bases is clearly finite.

It may instead happes that t = 8 for some sequence of

consecutive pivots. Such pivots are called deqenerate, and can

cause the algorithm to repeat some basis from a previous iteration.
This phenomenon is known as cycling, and if it occurs the simplex
method may fail to terminate.

Fortunately there are various ways of preventihg the
occurrence of cycling. For example, the perturbation method and the
Texicographic methad guarantee no basis is repeated by forcing the
choice of leaving variable at each iteration of the simplex method.

In the perturbation methed for preventing cycling we

perturb the right-hand sides bl’b2"“'bm in {1.4.7) by small
positive amounts El1Egren iy which are chesen different enough to
guarantee every pivot will be nondegeneraie, yet small enough for
the problem to considered unchanged for all practical purposes. We
then apply the simplex method to the linear program (1.4.7) with b
replaced by b' = b + e, where e is the vector whose ith component is
€4 Consequently, given a basis B for (1.4.7) and an entering

column k, the correspondiag value of Xg @s given in (1.5.2} becomes
| e -l
xg=Ag(bt+e)-t AB k .

For suitable choices of Epi€gre By the leaving variable xj Will be
uniquely determined, for there will be a unique j € {1,2,...,m} such
that
-1 -j -1 =i
(hg b}y + ale (Agb); + d'e

= min

- . (Ag'k); > 0F {1.5.3)
(Ag k) i (Ag k)
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where 3' represents the it row of Agl.

The lexicographic method for preventing cycling makes use

of a lexicographic rule for ordering vectors. Given two vectors a

and b of length m, we say a is lexicographically less than b if

there exists 2 € {1,2,...,m} such that a; = bi for i =1,2,...4-1
and a£< bi‘

The lexicographic method is eguivalent to the
implementation of the perturbation method in which we define €5 = ei
for some fixed € > 0 which is sufficient1y_sma11. However, rather
thaa actually compute a suitable value for £, we treat the perturbed
right-hand sides of (1.4.7) as formal polynomials in € and keep
track of the corresponding coefficient vectors as we pivot.

Given a basis B for (1.4.7) and an entering column k, the
corresponding ith coefficient véctor of e = (6,62,53,...,Em) is
given by

ol = 1 (a5, 30 {1.5.4)
{Ag k),

where 31 denotes the it

row of Agl. It follows that, fore
sufficiently small, fiading j € (1,2,...,m} such that (1.5.3) holds

is equivalent to finding the unique Jexicographically minimum vector

among [d‘!(Aélk)i >0, 1 =1,2,3,...,m} for d as defined in (1.5.4}.

We then choose xj to. leave the basis.
1

-1
(A k),

Note that if there is a unique i for which (A5'h).

is minimum, the lexicographic method chooses the same Teaying
variable as the usual simplex method. Thus we need only implement
this method for choosing the leaving variable if there is a tie
between two or more variables in the pivot being performed. 1If
TC {1,2,...,m} is the set of indices of tied variables, we break
the tie by finding the lexicographically minimum vector among

{——%T——— 51|1 € T}. Thus we need only calculate the rows of Aél

(AB .
i
corresponding to T.
For more information on the simplex algorithm or more

details about the perturbation and lexicographic anti-cycling

methods, see [Chvatal, 1983].

1.6 THE DUAL SIMPLEX METHOD

In this section we describe the so-called dual revised

simplex method performed on the linear program {1.4.7) shown below.

minimize (%3 (1.4.7)
subject to Ax =D
xz 0,

The dual tinear program for {1.4.7) is as follows:

maximize yb (1.4.8)

subject to  yA g ¢
y unrestricted.



Recall that the solution ; for (1.4.8) correspending to a basis B
is given by y = cBAél, and B is called dwal feasible if yA £ c.

As mentioned earlier, the dual simplex method is simply
the revised simplex method described in Section 1.5 perfarmed on
dual Tinear program (1.4.8). However, for our applications of the
method it is useful to have an outline of the specific steps
involved.

The general idea of the dual simplex method is to attempt
to find a sequence of basic dual feasible solutions such that the
corresponding dual objective function values are always improving
until finally the optimal value is achieved. The algorithm goes
from the present dual feasible basis B to the next one in the
sequence by carefully choosing the “index of one of the basic
varjables xp to leave the basis and the index of one of the

non-basic variables to enter it. These variables are called the

leaving variable and the entering variable respectively. The choice
of leaving variable is motivated by the desire to improve, i.e.
increase our dual objective function value. The choice of entering
variable is generally forced by the requirement that the new basic
dual solution be feasible.

We start the method by finding an initial dual feasible
sotutien, if one exists, Then at each iteration of the algorithm we
have a current dual feasible basis B. Letting ¢ = ¢ - yA represent
the reduced costs for any feasible sotution y for (1.4.8), we can

express our dual objective function z in terms of EB as follows:

1.

S T
z = cphg'd - Gyhglh (1.6.1)

Since EB = 0 for our preseat basic dual solution, our current
objective value is cBAalb.

Letting N be the set of indices of non-basic columns, we
find the basic primal solution (iB,iﬂ) corresponding to the current
basis B as in (1.4.9), and we find the current basic dual salution
y = cBAél. If EB 2 0 thea we have primal feasibility and hence
optimality for both the primal and the dual problems by the
Complementary Slackness Theorem (1.4.6). Otherwise 21 < 0 for some
i € B, and we choose xj as our leaving variable. We then modify y
in such a way that the value of the reduced cost Ei =cy - yAi
increases from its present value of 0 up to some value t 2 0. This
results in an increase of “;it in the dual objective value, as can
be seen by substituting EB = A;lh into (1.6.1). It also results in

a new dual solution y which is defined by
y=7-ta (1.6.2)

where a is the row of Aél corresponding to the leaving variable X
The requirement that we remain dual feasible limits how
large we can make t, Thus we require our new reduced costs

Cy = Cy - yAN to be non-negative, i.e. we require

§AN - téAN ey - {1.6.3)
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We satisfy (1.6.3) by defining t as

t = rnin{ij_-—w\f| | jEMN, ah, < o} . (1.6.4)
’ -aAj J

If t has ao Timit, then the dual linear program (1.4.8) is
unbounded, and hence the primal linear program (1.4.7) has no
feasible solution. Otherwise some reduced cost Ej is forced to have
value zero by our choice of t, and we choose the corresponding
nonbasic variable xj as the entering variable for the pivot. The
new dual feasible basis B' is then dgfined by B' = (B U {jH\fil.

For more details oa the revised dual simplex algorithm,
see [Chvatal, 1983].

We can ensure finiteness of the dual simplex method by
applying a dual lexicographic method for choosing the entering
variable. This method is simply the lexicographic method described
in Section 1.5 in the case where the simplex method is applied to
the dual linear program (1.4.8). However, to make it more
convenient to impTement the method later, we describe the specific
steps involved.

In the dual lexicographic methad for preveating cycling,

we replace each right-hand side s of the dual Tinear program
(1.4.8) by Ci * &5, where e = €' for some fixed € > 0 which is
assumed to be sufficieatly smail in value for our purposes. Then if

there is a tie for the entering variable as we pivot, we break the

tie by lexicographically comparing the corresponding coefficient
vectors of e in {1.6.4).
More specifically, let 8 be any basis for (1.4.7), and let
N be the indices of the non-basic columns. The corresponding
solution for (1.4.8) with c replaced by ¢ + e is
V= cphg’ + eghy!
Substituting this into {1.6.4) gives

-1 -1
(c. = cpA ALY + (e, - egh AL -
t = min i B8] 1 BB i |jen, aa <o},
-3 Aj J

where a is the row of Agl corresponding to the leaving variable X
Thus if there existed a tie in (1.6.4} between the indices TCHN, we
would break the tie for the entering variable by finding the unique

lexicographically minimum vector among

{ 1w je T}. ' {1.6.5)
-3 A,

i

where kJ,j € N §s defined by
1 ifm= g

i ol :
Kl (-Ag A, ifmeED

0 otherwise.

If the minimum vector is kn, the corresponding variable X is then

chosen to enter the basis.



CHAPTER 2

Basic Polyhedral Theory and Facet Gemerating Technigues

In the first part of this chapter we define the basic
terminnlogy of polyhedral theory and discuss some of the important
results in this area. In the latter portion of the chapter we
examine methods for generating valid inequalities for a set §C ERE
and prove some general results concerning these.

Our discussion of polyhedral theory is brief and covers
only what is essential for later sections. More detailed treatments
of the subject can be found in [Bachem and Grétschel, 19821,

: [Rockafel]ar, 19707 and [Stoer and Witzgall, 1970].

2.1 POLYHEDRA AND THEIR FACES

For any finite set E let Eﬁ denote the set of all real
vectors indexed by E. For any XC Bf the convex hull of X, denoted
by conv(X), is the set of all y € Hg such that y can be expressed
as a convex combination of a finite subset of the members of X, i.e.
canv(X) = ty € B[y = £(ax} x € X} for some finite XC X and some
re rY such that I(A | x € X) =1, 120},

A halfspace is a set HEC IRE of the form fax < ao} and a
hyperplane is a set L ¢ yiid of the form {ax = ao} for some
a € BiE\[D] and a, € IR, We say that H is defined by the inequality

ax < a, and L is defined by the equation ax = 3y An inequality

2.1

2.2

ax < a, is valid for some 5C RE if § is contained in the halfspace

defined by ax < 8, This valid inequality is called supporting for

§ if the intersection of S with the hyperplane defined by ax = a, is
non-empty.

A polyhedron PC Hf is the intersection of finitely many
halfspaces. Equivalently, P is the solution set of a finite system
of linear equations and inequalities, and can be expressed in the
farm P = jx € IRE| Dx = d, Ax < b}. A polytope is a polyhedron
which is bounded.

A polyhedron C is calied a cone if it is the solution set
of a homogeneous linear system, i.e. if it can be expressed in the
form € = {w € R*| wA 2 0}. We say € is pointed if
(w€C|wA=0}={0}. Forany XC RE the cone of X, denated by
cone{X), is the set of all non-negative linear combinations of

members of X, i.e.

cone(X) = [y € ]HEI y = E(uxx| x € X} for some o € ]RX such that a« 2 0.

The following result is due to [Weyl, 1935].
(2.1.1} Theorem. For every finite XCQ ]RE, cone(X) is a cone.

The converse of (2.1.1) is due to Hinkowski (see {Bachem

and Grdtschel, 1982]).
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(2.1.2) Theorem. For every cone (< IRE there exists a finite set

Xe ®E such that C = cone(X].

For any cone C < B we call X < T 3 generating set for
C if C = cone(X). We then say X generates €, and call the points in
X generators far C.

The fallowing is a fundamental result which is due to
[Goldman, 1956] and deducible from (2.1.1) and {2.1.2). The
necessary portion of the theorem also follows from [Motzkin, 1936].

E and C € IRE we use the

For convenience, given PS R
notation P + C to denote {x € ]REi x = v + r for some v € P and

r € C} and define P - € in a similar fashion.

(2.1.3} Thecrem. P& ]RE is a polyhedron if and only if there

exist finite sets Vand R€ }RE such that P = conv{V) + cone(R).

Kote that P is a polytope if and anly if the set R above
is empty, i.e. if and only if P = conv(V} for seme V< ]RE.

A subset F of a pulyhedn;‘on P is a face of P if F is either
the empty set or else the polyhedran obtained by taking the linear
system which defines P and replacing some of the inequalities with

the correspanding equations. A face F of P is called proper if

F#P. Apoint x € P is called an interior point of P if x belongs

to no proper face of P.

2.4

Linear programming duality can be used to prove the

following (see [Stoer and Witzgall, 1970], p. 43).

(2.1.4) Theorem. Let PC ]RE be a polyhedron and let F be a
nonempty subset of P. Then F is a face of P if and only if there

exists a € ]RE

and a, € IR such that F = {x € P| ax = a,}-

If ax g 8, s a valid inequality for P then we say the
face F = [x € P| ax = ao} is induced by ax £ a.

Finally, two valid inequalities ax < a, and bx Dy for P
are called equivalent with respect to P if they induce the same
face, i.e, {x € P|] ax = ao] = {x € P| bx = b 1.

[}

2.2 FACET INDUCING TMEQUALITTES

A finite set X C ZIRE is affinely indepeadent if whenever

E(Axx[ x €X) =0 and E(J\x| x €X) =0 for some A€ IHX we also have
A=0.

Given XC ]RE the affine hull of X, denoted by aff(X), is
the set of all y € ]RE for which there exists a fipite set ‘Ig X
such that vy = E(Axx| x € i) and Z(Axl X E 7() =1 for some A€ ]Rx.
Note that for any SC IR there exists & set XC S such that
S = aff(X}; in particular, S is the affine hull of a largest
affinely independent subset of itself.

Unlike Tinear independence, affine independence has the
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property that it is invariant under traaslations of the origin. The
affine rank of a set SC Eﬁ is the cardinality of a largest
affinely independent subset of § and is denoted by ra(S). It is
related to the linear rank of §, denated ra(S), in the following

way.

(2.2.1) Proposition. For any SC BRE, if 0 € aff(S) then

r,(8) = ro(S) + 1, otherwise r (S) = r,(S).

The dimension of a polyhedron PC ﬂiE is defined as
ra(P) - 1 and denoted by dim{P). We say P is of full dimension if
dim{P} = |E| or equivalently if there does not exist some Tinear
equation ax = a satisfied by all x € P. Given a-lingar system
defining P, the set of constraints which are satisfied with equality

by all x€P is called the equality set or equation system and is

related to the dimension of P in the follaowing way (see

fPulleyblank, 1973}, Section 2.2).

(2.2.2) . Theorem. Let PC ]HE be a non-empty polyhedron and let
Ax = b represent the equality set for P. Then if the linear rank of

A is p, we have dim(P) = n - p.

Any proper face of a non-empty polyhedron P is called an
edge if it has dimensien 1, and a vertex if it has dimension 0 {i.e.

if it consists of a single element). The set X of vertices of a

2.6

polytope P have the property that P = conv(X); thus optimizing some
abjective function cx over polytope P is equivalent to optimizing cx
aver X,

Often in combinaterial optimizaticn the description of a

polyhedron P is given in terms of its vertices, precluding the use

. of Tinear programming techniques on the associated problem. Thus a

major problem is to find a finite Tinear system which defines P,
hopefully having as few constraints as possible. To do this
requires the finding of inequalities which induce max fmal nonempty
proper faces of P, called the facets of P. The inequalities which

induce facets are called facet-inducing inequalities. The following

gives the relationship between facets and a minimal defining linear

system for a polyhedron P (see [Pulleyblank, 1973], Section 2.3).

(2.2.3} Theorem. let P Iﬁ be a polyhedron and suppose
P=1{x € BQE[ Ax £ b, Dx = d}. Thea this is a minimal linear system
sufficient to define P if and only if
i) the rows of D are linearly independent and Dx = d forms the
equality set, and

ii) each constraint of Ax § b induces a distinct facet of P,

Finding a complete minimal tinear system which defines a
polyhedron P is often a difficult problem, but even a partial

description can be useful for combinatorial optimization problems.
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: . . . . CONE
Thus the problem of identifying facet-inducing imequalities for P is 2.3 FACETS FOR POLYTOPES EXTEWDED BY A €O

E . - . _ .
an important one. The following theorem provides two basic methods Let PC R be a polytope which lies in the non-negative

orthant of TF. The monotone completion P of P is defined by

for preving an inequality is facet inducing (see [Pulleyblank,

5 _ E) o< - '€ P}, Letti
19731, Chapter 2). P=1{[x € RE]O<x £ x' for some x' € P} etting € be the
non-negative orthant of RE, we can equivalently describe P as

(2.2.4} Theorem. Let F be a non-empty proper face of (P-C)n¢c, i.e. P extended by the negative of cone G and then

P=ixe IRE[ Ax ¢ b, Dx = d}, let Dx = d be an equality set of P intersected with C. The resulting P is clearly a polytope.
and let the rows of B be indexed by a finite set I. Then the Often when P is a polytope arisiag from a combinatorial
following statements are equivalent: problem, the monotene completion of P also represents a problem of
i) F is a facet of P. interest. For example, consider the linear eordering problem which
i1) din(F) = din(P) - 1. can be defined as follows. Let Dn = (V,An} be the complete digraph
i11) For any a, & € ]RE and o, @ € R satisfying F = (x € P| ax = a} ' on n nodes. A tournament in Dn is a subgraph D = (V,A) of Un such
- {x € P| ix = a} there exist ) € IRI and positive y € R that for every two nodes u,v € V there exists exactly one arc in A

such that 3 = ya + AD and & = Ya + Ad : with endnodes u and v. &iven a positive integer n and a vector

¢ € R of real arc weights, the linear ordering problem is to find

Using Theorem (2.2.4), one method of showing a valid an acyclic tournament (V,T} in D, such that c(T) is maximized.
inequality ax < o for polyhedron P is facet-inducing is to exhibit a The linear ordering polytope is denoted by PEU in [Grotschel,

set of k = dim{P) affinely independent vectors X1s XpieooaXp €P Jinger and Reinelt, 1982a] and defined as

which satisfy ax; = a for i =1,2,...,k, and show ax ¢ « does not P'Ij[) = conv{xT € JRA"| T is the arc set of an acyclic tournament of Dn].

induce P. The secand method involves assuming there exists a valid

_ _ The monotone completion of PEU is the so called acyclic subgraph
inequality ax £ a for P such that

noo . - ;
polytope denoted by PAC in [Grétschel, Jinger and Reinelt, 1982h]

@#F={x€P| ax=alC{x€P| ax = a} # P. and defined by

Then using the properties of the points in F we show it must be the i A An
_ PAC = coav{x” € R" | A s the arc set of an acyclic subgraph of D }.
case that a = Ya + AD for some » € TRI and positive scalar ¥. This n

implies that a = Ya + Ad since ax ¢ & is both valid and supporting.
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Another example is the travelling salesman problem whose

associated polytope Q? has as its menotone completion the so-called

monotene travelling salesman pelytope, denoted by ﬁ? and defined as
ﬁ? = [xT € H§| T is a subset of the edge set of a hamiiton cycle in
Kn (v,E)}.

Generally in the past the facets of a polytope P and its

monotoae completion P have been studied separately, despite their
close relatioaship. Although this was originally the case for Q?
and ﬁ?, it was shown in [Grdtschel and Pulleyblaak, 1981] that for
any facet-inducing inequality of Q? which 15 valid for ﬁ; there is
an equivalent inequality which is also facet~-inducing for ﬁ?. In
this section we prove a more general result of the same nature using
some similar techniques.

let PC RE e a polytope and let € < IRE, D< i be
cones such that D contains P and € is pointed. We can generalize
the notien of monotone completion by considering P extended by the
negative of cone C and then intersected with cone D, i.e. we
consider O = (P - C) N 0. In particular we are interested in the
cases in which P is not of full dimension and @ is of full
dimension, and wish to determine the conditions under which-a
facet-inducing inequality for such a P will also be facet-inducing
for such a ). Before answering this question we require some
preliminaries.

For polytope PC rE not of full dimension let Ax = ¢ be a

minimal equation system for P and for any b € ]RE and finite KQ;]RE
defina K°(b,K) = fg € K| bg=0}. Let 6 € T*F be the matrix whose
columns are the elements of K. Then we call a facet~inducing
inequality ax < 3, for P support reduced with respect to K 7

{Ag| g € K°(a,K)} contains a column basis of the matrix AG. Note
that if P is of full dimension then any facet-inducing inequality

for P is support reduced with respect to K.

(2.3.1) Lemma. Let P RE be a polytope not of full dimension
with minimal equation system Ax = ¢, A € IRLxE, c € IRE. Let
Cg;.n{E be a pointed cone with generating set K, and let ¢ € wEXK
be the matrix whose columns are the elements of K. Then P - C is of

full dimension if and only if AG has full row rank.

Proof. Suppose matrix AG does not have full row rank. Then there
exists ) € IRL, ) # 0 such that MG = 0. Let a = M, and consider
az for any z € P - C. Since z € P - €, 2 = x - By for some x € P
and y € Hﬁ, y 2 0. Thus

az = ax ~ aliy

I

Ax - AAGvY
=C
and it follows from (2.2.2) that P - € is not of full dimension
Conversely, suppose P - C is not of full dimension. Then

by (2.2.2} there exists a non-zero vector a € RE aad a, € R such



that ax = a, for all x € P-C. Since 0 € C, ax = ag for all x € P
and thus a = XA for some A # 0, A € R (since Ax = 0 is a minimal
equation system for P}. Since ax = ¢ for all x € P - C, it thus
follows that -aGy = 0 for all y 2 0, y € K and consequently

MG = 8§, Therefore AG does not have full row rank. O

The following is the main result of this sectian.
(2.3.2) Theoren. Let PC RE by a polytope and 1et c& RE,
g Hﬁ‘be cones such that € is peinted and 0 contains P. Suppose
(P-CyNnois of full dimension, and Tet ax £ 3, be a facet-
inducing inequality for P which is valid for (P - C) 1 O, suppart
reduced with respect to a generating set X for €, and for which the
correspanding facet of P is not contained in any facet of D. Then
ax £ a, is facet-iaducing for (P - €) N D,

LxE and ¢ € I* be such that Ax = ¢ is a minimal

ExK

Proof. Let A € W
equation system for P, and let G € TR be the matrix whose columns
are the elements of K. Since a is support reduced with respect to
K, there exists BC K°(a,K) €K such that {Ag| g € B} is a calumn
basis of AG. Since ax ¢ a, is facet-inducing for P there

exists a set of dim{P) affinely independent points in P which
satisfy ax = &y and we let X denote such a set. Hote that

(P - C) N.D being of full dimension implies D and P - € are also of
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full dimeasion, and thus |B| = |L| by {2.3.1). Also note that
XC (P-C)yNnDsince PCDand 0€C, and |X| = [E] ~ |L| by
(2.2.2).

Let {dix 20, i=1,2,...,r} be a minimal defining
system for cone D. Since the facet of P induced by ax < a,

is assumed not to be contained in any facet of 0, it follows

that for 311 1 € {1,2,...,r} there exists an x| €% such

. r
that d.x' > 0, and we let % = g i, Clearly ax = a
! " =1 °

and dii >0 for all i € {1,2,...,r}. Next, for all g € B

d:x g -
define Gg = min [TH%ET | i=1,2,...,r}, et 9=5%- Ggg and let
X =1x9] g € B}.
Clearty ¥€ P - C. We also have XC D since for all gEB

and 1 € {1,2,...,r},

d.x

!
a
St
1
O
=
=)

=0
and thus XC(P - €) N D. We have axd = a, for 211 x¥ € ¥ since ag = 0

for all g € B. Mence X U X gives us dim{{P - C) N D) points 1in
(P - C) N Dwhich satisfy ax = ay- We can complete the proof
that ax ¢ 3, is facet-inducing far (P - C) N D by showing that these
points are affinely independent.
Let a € ngi be such that

i) T(a,] x € ) + 2yl 9 €8) = 0, and



i1) lax] x € K) + z(agi‘3| g €8} =0,

Substituting x% = x - 80 into ii) and multiplying through by matrix A

gives

c(t(qx; x € X) + t{ng| qg€8)) - z(ugagng| g € By = 0.
Using 1) it then follows that
L € =
(ugﬁgAgi geB)=20

which implies ag = 0 for all g € B since {Ag} g € B} is a column
basis for AG, It then follows from i) that o = 0 and thus X U X is

an affinely independent set. o

Given a facet of P induced by ax £ a,, there exist many
equivalent inequalities which induce it when P is not of full
dimension. We provide below the necessary and sufficient conditions
foer the existence of an inequality equivalent to ax ¢ CH which
satisfies the conditions of (2.3.2).

The following Temma is equivalent to Farkas' Lemma
[Farkas, 19027,

2.3.3 Lemma. Given.b € ®RY, 8 € w*Y

for some finite sets I and
J, the system Bx = 0, bx < 0, x 2 0 is unselvable if and only if the

system AB < b is solvable.

2.3.4 Theorem. Llet PC ]RE be a polytope not of full dimension,
let Ax = c be a minimal equation system for P and let C C ]RE be a
pointed cone. Then a facet=inducing inequality ax < a, for P has an
equivalent form which is valid for P - C if and only if there does

not exist x € C such that Ax = 0 and ax < 0.

Proof. Let KC WE be a generating set for C and let G € TExK pe
the matrix whose columns are the elemeats of K. An inequality ax ¢ a,
which is valid for P is also valid for P-C if and only if

a{x - Gy) € ag for all x € P and y € kK such that v 2 0; or
equivalently, if and only if aG 2 0. Thus by (2.2,4) there exists

an inequality ax < 50 which is equivalent to ax < a, with respect to
P and valid for P - C if and only if there exists a scalar y> 0 and

x € Y such that
YaG + ME2 © . (2.3.5)

Dividing inequality (2.3.5) by y, it follows from {2.3.3} that there
exist such a ¥ and X if and only if there does not exist a vector
y 2 0 such that AGy = @ and aby < 0; i.e. if and only if there does

not exist x € € such that Ax = 0 and ax < 0, as required. D

Given an ineguality ax < 3, which is facet-inducing for P

and valid for P - €, the following algorithm finds an equivalent



inequality ax % 50 which is support reduced with respect to a

generating set K for C.

(2.3.6) Support Reducing Algorithm

Llet PC BRE be a polytope not of full dimension, let
cC HiE be a pointed cone, and let ax s a, be a facet-induciag
inequality for P which is valid for P - C. Let Ax = ¢, A € RU5E
and ¢ € B{E, be a minimal equation system for P, let KQ RE be a

ExK

generating set for C, and let 6 € TR ** be the matrix whose columns

are the elements of K.

(1) If {Ag| g € Ky{a,K)} contains a column basis of AG then let a-=a,
50 = ag, and stop.- Otherwise go to step (2).

(2) Find A € TR such that A{AG) £ 0 but Mg = 0 for all g € KO(a,K},
and let g = min[ﬁ-g| g € Kand Mg > 01, Let & = a - BA and let
a, = a, - BAc. Replace a with a and a, wWith a, and go to
step (1}).

To show the validity of (2.3.6} we make use of the following

temma (see [Whitney, 19351}.

{2.3.7) Lemma. For finite sets L, E, and K 1et A € RE apa

G € MEXK, Then fAg] g € SC K} coatains no column basis of AG if
and only if there exists Y € Rt such that Y{AG) # 0 but YAg ='0 for
all g € 8.

(2.3.8) Theorem. let P, C, ax ¢ a_, Ax = ¢, K, and G be as in
(2.3.6). Then the support reducing algorithm (2.3.6}) finds, in a
finite number of steps, an inequality ax < 50 which is equivalent to

ax s Ay valid for P - C, and support reduced with respect to K.

Proof. If [Ag|g € Kﬂ(a,KH does not contain a column basis for AG

then by (2.3.7) there exists v € ]RL such that Y(AG) # 0 and YAg = 0 fo

all g € K9(a,K). If Y(AG) < O then et X = -, otherwise let x = v
and use X to obtain a and 50 as in step (2) of the algorithm.
Certainly ax < 50 indeces the same facet of P as ax ¢ ag-

Also, since an inequality fx < f0 which is valid for P 1is valid for

P - C if and only if fG 2'0, our choices of B and A in step (2) of the
algorithm guarantees ax < a_ is valid for P - € and K%(a,k)C K%(a,K).
Thus after at most |E| repetitions of stepﬁ (1) and (2) the algorithm

obtains the inequatity ax < 50 as required. O

Combining the results of (2.3.2), (2.3.4) and (2.3.8) gives

the following result.

{2.3.9) Corollary. let PC B{E be a polytope not of full dimension
with minimal equation system Ax = ¢, and Tet co ]RE, 0DC mE be
cones such that C is painted, D contains P, and (P - C) N D is of
fuil dimension. Then a facet-inducing inequality ax s a, for P has

an equivalent form which js facet-inducing for (P - C) N D if
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ax 2 0 for all x € C such that Ax = 0.

When the extension cone C is the non-negative orthant of
}ﬁ‘ as is the case for the monotone campletion P = (P - Cy N C of P, we

can prove the following result which is a specialization of (2.3.2}.

{2.3.10) Theorem. Let PC ® be a polytope which 1ies in the
non-negative orthant C of Ff, and 1et Ax = c be a minimal eqﬁation
system for P. Then a facet-inducing inequality ax < ag for P is facet-

inducing for the monotone completion P = (P ~ C) N C of P if a 2 0,

Ag contains a column basis of A for 5 = {e € E| ag = 0}, and for

all e € E there exists x € P such that ax = a, and Xq £0,

Proof. The set K composed of the columns of the identity matrix
I|E| provides a generating set for C. Thus a 2 0 implies ax £ ag
is valid for P.
For every e € E let x® be a point in P such that
x,2 >0, and let ¥ = TéT £ x%. Clearly X € P and X > 0. Thus
9e nfl =% - I (X)k, g €K U{0} contains [E} + 1 affinely
independent points ?ﬁkggand P is of full dimension.
Far 5 = fe € Ef a, = 0} we have AS contains a
column basis for A, and hence ax < g, is support reduced with
respect to K. 8y (2.3.2) it follows that ax < ag is facet-inducing

for P. O

2.18

We conclude this section by examining the implications of
{2.3.10} for the acyclic subgraph polytope PEC. In particular we can

use (2.3.10) to show that all four classes of inequalities which are

EO in
fGrétschel, Jinger and Reinelt, 1982a] are facet-inducing for P:

shown to be facet-inducing for the linear ordering polytope P

c
Note that these inequalities are among those shown to be facet-
inducing for P:C in [Grotschel, Jinger and Reinelt, 1982hJ.
Let Dn = {V,An) be the complete graph on n nodes. In
[Grdtschel, Jinger and Reinelt, 1982a] it is shown that
dim(PEU) = (g) , and that
x(i.j)+ x(j,i)= 1 for all (1,J)EAn {2.3.11)

is a minimal equation system for an. Letting Ax = c, A € ]RLXAn,

¢ € T represent the system (2.3.11), then clearly for any SC AL
[AE[ e € S} contains a columa basis for A if and anly if Aﬁ\S
contains at most one of the arcs (1,j) and (j,i) for all (i,j) € An‘
Thus given an inequality ax £ a and the set § = fe € An| a, = 0},
{AEI e € 8} contains a column basis for A if S satisfies the above,
This is easily verified for all four classes of inequalities shown
fo be facet—inducing for PED in [Grétschel, Jinger and Reinelt,
1982a]. Also it is trivial to show these jnequalities are all

valid for PRC. Thus by {2.3.10) they are all facet-inducing

n
for PAC'



CHAPTER 3

The Travelling Salesman Polytope and its Facets

In this chapter we introduce the travelling salesman
problem and its associated polytope Q?. Since optimizing over Q?
is an NP-hard problem ([Karp, 1972]), it is unlikely we will ever
find a complete linear description of 0? (see [Karp and
Papadimitriou, 19807]}). However, some of the necessary constraints
are known, and the main purpose of this chapter is to introduce
several large classes of these facet-inducing inequalities for Q?.
This will show that to give a complete linear description of Q?
would require a very large number of constraints.

It is easy to see that Q? is not of full dimension. Thus
it is possible to have two distinct inequalities which induce the
same facet of Q?. In order to find a minimal Vinear description of
a polytope, such redundant inequalities must be removed. Therefore
we discuss in this chapter which of the inegualities introduced
induce distinct facets of Q?.

We also discuss in which instances the separation problem
can be solved in polynomial time for the inequalities introduced.
For a class of inequalities and a given point x, the separation
problem is to find an inequality in the class which is violated by
X, or show no such inequality exists. If there exists a polynomial

algorithm to solve the separation problem for all coastraints in a
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linear description of a po1ytobe P, then there exists a polynomial
algorithm for optimizing over P using the ellipsoid algorithm (see
[Grétschel, Lovdsz and Schrijver, 19817). Thus the separatioa
problem is useful in determining over which partial descriptions of
0? we can optimize in polynomial time.

The classes of facet-inducing inequalities discussed in
this chapter are those which have proven most useful in cutting
plane algorithms for the travelling salesman prablem. There are
other classes of facets for 0? which are related to hypohamiltonian
or hypotraceable subgraphs of Kn {see [Maurras, 1976], [Grotschel,
IBBDj. and [Cornuéjols and Pulleyblank, 1982]). These facets are
complicated to describe, and the cutting plane approach has been
used successfully to fiad optimal or close to optimal solutions
without them. Consequently, they are not discussed here,

For an extensive overview of the polyhedral aspects of the

travelling salesman problem, see [Grdtschel and Padberg, 1985a,b].

3.1 THE TRAVELLING SALESMAN POLYTOQPE 0?

Let Kn = (V,E) denote the complete graph on n nodes. A
tour of Kn is the 0-1 incidence vector aof the edge set of a hamilton
cycle in Kn. Then, given a vector ¢ € Eﬁ of edge weights, the

{symmetric)} travelling salesman problem (henceforth dencted by TSP)

is te find a tour of Knl of minimum weight, i.e.
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minf{cx| x is a tour of Kn}. {3.1.1)

In the polyhedral approach to studying the TSP we consider

the associated travelling salesman polytope, denoted by Q?, whose
vertices are the tours of Kn; i.e. 0? is the convex hull of all

tours of K,. Then to solve the TSP we consider the problem
min{ex] x € Q%].

Since every node in K, must be incident with exactly two

edges of any hamilton cycle, any x € 0? must satisfy

x(8{v)) = 2 for all v € V. (3.1..2)

These n equations are called the degree constraints fur Q?. They
indicate that Q? is not of full dimension. 1n fact, since the
equations {3.1.2) are linearly independent it follows by (2.2.2)
that dim(97) s [E] - n = a/2(n - 3). By actually canstructing
nf2(n - 3} + 1 affinely independent tours, [Grdtschel and Padberg,

1579a7 proved the following result,

{3.1.3) Theorem. The dimension of Q? is nf2(n - 3) for n 2 3.

The following is a direct consequence of (2.2.2) and

£3.1.3).

3.4

(3.1.4) Corollary. Let A € RYXE be the node-edge incidence
matrix for K. Then Ax = 2 forms a minimal equation system for Q?

for n 2 3.

3.2 SIMPLE CLASSES OF FACETS FOR Q?
For this section let V and E represent the node set and

edge set of Xy.
There are several large classes of necessary inequalities

known for 0?. Clearly for any x € Q? we have x ¥ 0, or equivalently
~xp £ G for all e € E, (3.2.1)

These are called the trivial or non-negativity constraints.

(3.2.2) Theorem [GrGtschel and Padberg, 1979a]. Ffor 211 n 2 5,

the inequalities xp 2 0, e € E, induce distinct facets of ﬂ?.

Since a tour of ¥, cannot contain a subtour, i.e. cannot
contain the 0-1 incidence vector of a cycle of length w < n, every

x € Q? must satisfy
x(v(5)) s |S| -1 foral1 SCV, 25 18] <n -2, (3.2.3)

These constraints are called the subtour elimination constraints,

and were first introduced by [Dantzig, Fulkerson and Johnson, 19547.

Note that if we take any constraint x{¥(5)}) < [S]-1 in ({3.2.3) and
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subtract half the sum of the all degree constraints for v € § we
abtain -1/2(x{8(S})) € -1. Thus the subtour elimination constraints

{3.2.3) can equivalently be described as
x(8(S)) 2 2 for al1 SV, 2< |S] s n -2, (3.2.4)

which is known as the cut form of these constrainits. IL is ¢lear
from this form that we need only consider these inequalities for

[$] ¢ [nf2] since 5 and VAS result in the same inequality.

(3.2.5) Theorem [Gratschel and Padberg, 1979b]. For all nz 4
and SC V satisfying 2 ¢ |S] € [n/2], the subtour elimination

constraints (3.2.3) induce distinct facets of Q?.

Note that none of the subtour elimination constraints
induce trivial facets. Also note that by taking |S| = 2 in the
inequalities (3.2.3), we obtain the so-called upper-bound

constraints

X, ¢ 1 for all e € E, (3.2.6)

The separation problem for the non-negativity constraints
(3.2.1) and the upper-bound constraints {3.2.6) can be solved in
polynomial time simply by checking each of the constraints. Such a
method would not be satisfactory for the subtour elimination
constraints (3.2.3) as there exists an expoaential number of them.

However, it is pessible to solve the separation problem for the

3.6

subtour elimination constraints by using the polynomially-hounded
algorithm of [Gomory and Hu, 19617 for finding the minimum cost cut
in a graph. Taking the current solution x* as the edge costs, the
algorithm is used to find a minimum cost cut &(5), $ Ccv., If
x*(6(5))} 2 2 then x* satisfies all subtour elimination constraints
(3.2.4), otherwise x(&(S}) 2 2 is a most-violated constraiat. In
the above separation routine we are required to solve V| - 1
maximum flow problems, thus it requires D(n4) steps to implement.

As 3 result, it is not generally used in the cutting plane approach

to the TSP,

3.3 CLIQUE TREE INEQUALITIES

A class of facet inducing inequalities for Q? called
clique tree inequalities was introduced by [Grdtschel and
Pulieyblank, 19817. A clique tree is a connected graph C whose
maximal cligues partition into two sets, the set of handles and the
set of teeth, which satisfy the following properties:

{1} No two teeth intersect.

{2) No two handles intersect.

{3) Each tooth coentains at Teast two and at mest n - 2 nodes, and
at least one ncde belonging to no handle.

(4) The number of teeth intersecting each handle is odd and at

least three.
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(5} If a tooth T and a handle H have a nonempty intersection, then BIx(y(H))} R € HO)} + 2(x(y(TH] T € T(C))

. e
HNA T is an articulation set of the clique tree. ST([H] | HE€NEL)) + (T - ty| TE€TC)) - jl—j‘ljj;;—kl (3.3.1)
An example of a cligue tree is shown below in Figure

where for T € T{C), tT denotes the number of H € H{C) which

3.3.1. The ellipses indicate cliques, and the teeth and handles are
intersect T. For convenience, we represent inequality (3.3.1) by
indicated by T and H respectively. .
dcX € ap. A simple clique tree is a clique tree C such that

For any clique tree we use H{C) respectively T(L) to .
. : {HN T] €1 for al1 T € T(C) and H € H{C) which intersect in C.
denote the set of handles respectively teeth of C. A tooth of C is

Note that a simple clique tree produces inegualities in which all
called pendent if it intersects at most one handle in C. We denote

coefficients have value zero or one, while the more general clique
the set of pendent teeth of C by Tp{C). A1l other teeth are called

trees produce inequalities whose coefficients belong to {0,1,2}.
nanpendent, and the set of these teeth is denoted by TNP(C).

A comb is a clique tree with one handle. The inequalities

Given a clique tree C, the clique tree inequality for C is . .
: corresponding to simple combs were introduced by [Chvdtal, 1973b3}

and later generalized to the inequalities corresponding to general
combs by [Grotschel and Padberg, 1979a]. The clique trees
consisting of a single tooth provide us with the subtour elimination
constraints. Hence the ¢lique tree inequalities include as special
cases both the comb and the subtour elimination constraints.

tet C be a comb with H{C) = {H} and T(C) = [TI’TZ""'Tk}‘
Then C' with H(C') = {VAH} and T(C') = [TI’T2=""T } is also a

comb. Furthermore, if we take the comb jnequality 3pX S op for C,

subtract half the sum of the degree constraints for v € H and add
half the sum of the degree constraints for v € VAN, we obtain the
comb inequality for comb C'. Hence these two combs induce the same

. facet of Q?. [Grotschel, 1977] showed that, except for this case,

Figure 3.3.1
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the comb inequalities induce distinct facets of Q?, and in all cases
these facets are distinct from those induced by the non-negativity

constraints (3.2.1) and the subtour elimination constraints (3.2.3}.

{3.3.2) Theaorem [Grdtsche? and Pulleyblank, 1981]. Each ¢lique
tree inequality is facet inducing for Q?. Koreover, distinct clique
trees induce distinct facets except for the comb and subtour

elimination cases previously described.

Simple combs generaiize the 2-factor constraints

xrs)) + xy s s}« B L s ant s, we 8(s),
[H] 2 3 and odd (3.3.3)

which were first introduced by [Edmonds, 1965]. [Padberg and Rao,
19827 showed that the separation problem can be solved for these
constraints by using a modification af the minimum cut algorithm
[Gomory and Hu, 1961]. However, the 2-factor constraints (3.3.3}
and the subtour eliminatien constraints (3.2.3) are the only classes
of clique tree inequalities for which a polynomial time algorithm is
known for the separation problem, and an outstanding problem is to
find other classes of clique trees for which separation can be

solved in polynomial time,

CHAPTER 4

A Simplex Method for the Fractional 2-Factor Problem

Given Kn = (V,E) and a vector ¢ € ]RE of edges costs, the

fractional 2-factor problem is to find x € ]RE which minimizes cx

subject to x satisfying the degree constraints (3.1.2),
non-negativity constraints (3.2.1) and the upper-bound constraints

3,2.6) for Qn. Thus it is the prablem
T

minimize cx ) (4.0.1)

subject to  x(&(v)) = 2 for a1l vEYV
0

s x s 1.

The corresponding polytope, which we denote by 02, is

defined by Qf = [x € REp Ax = 2, 0<% <13, where A € m*E

is the
node-edge incidence matrix of K;. The vertices of this polytope
have a special structure: any vertex X of QE is half-integer, and the
set of edges JC E such that ij = % for al11 j € J partitions into the
edge sets of an even number of odd disjoint cycles (see [Balinski,
1970]).

The polytope Qf contains Qf. Since all the defining

constraints for 02 are valid for Q?. Thus we have

minfcx| x € QE} < min{cx] x € Q?}.

Furthermore, if the solution to a fractional 2-factor problem is a
tour, it is necessarily an optimal tour for the related TSP.

It is possible to solve the fractienal 2-factor problem in

1.1
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polynomial time either by transforming it inte an instance of
bipartite b-matching or by solving it directly using a primal-dual
algorithm (see Section 4.4}, or by a polynomial algorithm for Tinear
progranming. However, the success of the network simplex algorithm
for the upper-hounded transhipment problem and the fact that it was
found in practice to be as fast or faster than the primal-dual methed
{see [Glover, Karney, and Klingman, 1977]) for large problems
indicates it would be desirable to find a simplex method for the
fraﬁtinna] 2-factor problem.

In this chapter we present a finite combinatorial simplex

method for the following linear program:

minimize cx (4.0.2)
subject to Ax = b
0sxsu

where A € IRVxE is the node-edge incidence matrix of Kn = (V,E),

C € BE,am b€ Ev,u € mE

satisfy b 2 0 and u > 0 (see Section 1.5
for a description of the revised simplex method). HNote that the
fractional 2-factor prohlém is a special case of (4.0.2) in which
b=2andu=1,

Problem (4.0.2) is a special case of the network flow with
gains problem (or generalized network flow problem) and the simplex
method presented in this chapter is a specialized implementation of a
primal simplex method for the network flow with gains problem (see

[Kennington and Helgason, 19801). However, the general algorithm is

at present only finite in the case of positive gains (see [Elam,

4.3

Glover and Klingman, 1979]) while (4.0.2) is an instance of network
flow with negative gains. ' .

The simplex method presented here ensures finiteness by
providing a combinatorial interpretation of lexicography for the
linear program (4.0.2)., Although this method is easy to implement, it
would be more desirable to find a set of "strongly feasible" bases
along with a pivot rule which would ensure finiteness, as [Cunningham,
19767 did for the network simplex method and {Barr, Glover and
Klingman, 19777 did for the assignment problem. We do not know such a
set of bases and pivot rule for (4.0.2) or even for the fractional
2-factor problem, but we believe they exist.

There are other linear programs which can be transformed

into the form of (4.0.2). For instance, consider the linear program

minimize c'x (4.0.3)

subject to  Ax = b’
L' £ x < u'

where A € BY¥E s the node-edge incldence matrix of K = (V,E},

c' € BRE, and u' € Iﬁ, e ﬂ# satisfy u* 2 2', This linear

program can be transformed inte the form of (4.0.2) in the following

way. Let u=u' -2*, let b\r = b; - 2'(8(v)) for all v €V, et

€ ® cé for all e € E such that ué > Qé, and let ¢ = += if ué =EE'.

Then it is easy to verify that x is an optimal solution for (4.0.2) if

and only if x' = x + &' is an aptimal solution for (4.0.3). Thus the

method we describe far solving (4.08.2) could also be used to salve

(4.0.3).
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Before presenting the simplex method for linear program
(4.0.2), we discuss some properties of the node-edge incidence matrix

A of Kn which will prove useful.

4.1 THE NODE-EDGE INCIDENCE MATRIX OF I(n

Let G = (V,E) be a graph with node-edge. incidence matrix
B € BRVXE, and let I be the family of all subsets of E such that the
caorresponding columns of matrix B are 1inearly independent. Then
H{G) = (E,I)} is a matroid defined on the set of edges E which is
sometimes called the real matroid of G (see [&rdtsche) and
Pulteybiank, 1981]). The independent sets of M{G) (i.e. those subsets
J of E for which the corresponding columns of B are linearly
independent) can easily be shown to be the set of all TC E such that
each component of G' = (V,T) contains no even cycles, and at most ane
odd cycle. The circuits, or minimal dependent sets of W(G) are the
sets CQ; E such that € is either the edge set of an evea cycle in & or
else the edge set of two disjoint odd cycles joined by a bath {see
Figure 4.1.1). We use the term dumbbell to denote a graph coasisting

of two disjoint odd cycles joiaed by a path.

{4.1.1) Theorem. Let A€ IRVXE be the node-edge incidence matrix of

7~
n

n (V,E). Then TC E is a basis of A if and only if every component of
6' = (V,T) contains no even cycle and exactly one odd cycle., Also, a set
CC E indexes a minimal dependent set of columns of A if and only if C is

the edge set of an even cycle or a dumbbell in Kn.

An independent set of edges of M(G). Two circuits of K(G).

Figure 4.1.1

A connected graph which contains exactly one cycle is
composed of a tree with one edge added. If the cycle is odd we call
such a graph an odd 1-tree. 1If all the components of a graph G are
odd l-trees, we call G an odd l-forest. Thus TC E is a basis of
the node-edge incidence matrix A of Kn = (V,E) if and only if
G' = (V,T) is an odd 1-forest.

For the remainder of this section let A € ]RVXE be the

- node-edge incidence matrix of Kn = (V,E) and Tet TC E be a column

basis of A,
It follows from Theorem (4.1.1)} that the system ATx =g
has a unique solution for any d € BRV; i.e. there is a unique
X € :mT satisfying x(s(v)} = dv for all v € ¥ in the graph
6' = (V,T). This solution x can be obtained easily from the

1-forest structure of G' using the algorithm described below. The
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general idea of this algorithm is to cansider each l-tree in &' to
be rocted at its odd cycle, then calculate x progressively for each
1-tree by starting with the edges on the outside of the tree and

working in towards its root.

{4.1.2) Algorithm to solve A.x = d for the odd 1-forest G' = (V,T).

Without loss of generality we assume &' consists of a
single odd l-tree, since each component of G' can be treated
fndependent]y. Let C be the single odd cycle in G', and at any
stage of the algorithm let U represent the edges e in TAE{L) for
which X has not yet been calculated.

(1} Let U = TME(C).

(2) If U=2@ then go to (4).

{3) Choese u € VAV(C) such that u has exactly one edge uv € U
incident with it. Let Xuy = d, - x(&(u)y\U), and let
U= Uv{uv}. Go to step (2}).

(4} For every v € V(L) let d) = d - x{8(V)\E(C)).

() For each e = uv € E(C) Tet (XE,YE) be the bipartition of the
nodes of € in the bipartite graph obtained by removing e from
€. Since C is an odd cycle, both v and v are on the same side,

say XE, of this partition. Let

g ® 1/2 (E(d&| W E Xe) - I(d;| w € YE)) for every e € E(C}.

4.7

It also follows from (4.1.1) that the system yAT = ¢ has a

unique solution for any vector ¢ € HJ; i.e. there i3 a unique

y € Eﬁ such that Yo v ¥y T Sy for any edge uv € T, Again, the

structure of the l-forest G' = (V,T} can be used to obtain y. The
general idea of the method is to consider each l-tree as rooted at
its odd cycle and calculate y for the nodes of each of the l-trees

progressively from the root outwards.

(4.1.3) Algorithm to solve yAr = ¢ for the odd 1-forest G' = (v,T),

Without loss of generality assume G' consists of a single
odd l-tree, and Tet C be the odd cycle in G&'. At any stage of the
algorithm Tet U represent the nodes v in VAV(C) for which Yy has not
yet been calculated.

(1} Let W = WVWV(C}.

(2) For any node v € V(C), let Mv be the matching in C which misses
only node v, and let Nv = E(C}\HV. Then for each v € V{C) 1let
¥, = 1/2 (c(NV) - c(Hv}).

(3) If U=2a, then stop.

(4) Choose edge uv € TAE(C) such that u € U, v € U. Let

Yy = Cyy ™ Yyo and let U = U\fu}. Go to step {3).

The properties of matrix A and edge set T can also be used

. -1 TxL
to find AT AL &€ M

the simplex methods presented in this chapter and in Chapter 6. In

for any LE EVT, This is a necessary part of
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P -1
particular, we need to calculate specific columns of HT AL and
specific rows of A}l, We discuss the methods for doing this in the
remainder of this section.

T

Let k¥ € R' denote the column of A_%AL indexed by edge
-1

e €L; i.e, let K& = AT Ae. Then k® is the unique soletion to

Ak® = A £4.1.4)

This could be solved using the odd l-forest &' = (V,T) and Algorithm
{4.1.2). However, we can also solve {4.1.4) by making use of the.
set of edges LC T U {e} which index a minimal dependent set of
columns in A. It follows from Theorem (4.1.1) that the edges in C
either form an even cycle or a dumbbell in X . By taking advantage
of these structures, we can calculate k" for any edge uv € L by
letting k?“ =0 for all j € T\C, and ensuring

1 ifWw=uorw=yv

kY (8 (w) N (C\{uv})) = { (4.1.5)

0 otherwise.

It is easily verified that k® as calculated by Algorithm (4.1.6)

below satisfies (4.1.5).

4.1.6) Algorithm to caleulate k& = AZla e € E\T, using the
-

circuit formed by C.

Case 1. C forms an evea cycle P in Kn.

4.9

We can uniquely partition € into disjoint perfect

matchings M1 and M2 of P such that the edge e being added to T is ia

Hy. Then k% € BT is defined by
-l ifjEN
e _ cr s
kj =11 if j € "2
4 otherwise

(see Figure 4.1.2).

n
[

o— corresponds to k?

Quuasay  corresponds to k; -1

- edges j € T with k? = D are not shown

Figure 4.1.2

Case 2. € forms a dumbbell P in Kn.

Let the two odd cycles in P be 01 and 02, and Tet the path

Joining them be R. Define H; ta be the near-perfect matching of Q)



deficient at the node where R joins 01, and define the near-perfect

matching Mz of 02 similarly.

(a) The length of R is odd.

Let Hy be the perfect matching of R, and define b € R by
(-1 if j € Hy
e _
1 if j € E(R]‘\H3 O=—=0 corresponds to kj =1
by = §-1/2 ifjEH UH, Crmumeny corresponds to k? = -1
/2 iP5 € (E(D)\y) U (E(Qy) M) OANANO  corresponds to kg =2
1 0 otherwise, .
OAANSO corresponds to kj = -2
Then && € ]RT is defined by - edges j € T with k; = 0 are not shown
b if e € My Figure 4.1.3
k¥ = |-b if e € E(R)\H,
2b if e € !11 U I‘I‘2
-2b if & € (E(0;)\M)) U (E(Qy)\Hy) - it j ey
1 if j € E{R}\H3
{see Figure 4.1.3). bj s A w1f2 ifje Hz U (E{Qﬂ\”ﬂ
1/2 if jEn U (E{02}\M2)
{b) The length of R is even. 9 otherwise.

) L
Let Mq be the near-perfect matching of R deficient at the

node where R joins 0, and define b € W by Then k° € T is defined by
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b if e € H3 indexed by e. We can calculate a® € rY by using the odd 1-forest
¥ = |- if e € E(R}\M, algorithm (4.1.3) to solve
2b if e € M, U (E(QI)\HI)
. aP’AT = t, {4.1.7)
-2b if e € LAY (E(Dz)\Hz)
where t € ]RT is defined by
[see Figure 4.1.4).
1 iff=e
t1= =
0 otherwise.
However, we can also solve (4.1.7) by making use of the structure of
the odd 1-forest G' = (V,T}. When any edge e i5 removed frem a
1-tree, a tree H is formed. Using the bipartite graph H we
calculate a® by letting as = 0 for all v € VAV(H]}, and ensuring as[ﬁ)
satisfies
O====0 corresponds to k; =1 of 4 o = 1 ife=uy
o v v 0 otherwise’
O’y COTresponds to k3 = -1

J

d K& = 172 for 211 edges uv € E(H) U {e}. This can be accomplished as follows.
CAANDO corresponds to i

OANANC corresponds to k; = -1/2

{4.1.8) Algorithm to calculate a®, the row of A;l indexed by e € T.
adges j € T with k? = 0 are not shown ‘

tet a® € R’ denote the row of AT' € RV indexed by
Figure 4.1.4 . e €T, and Tet H be the tree formed when edge e is removed from the
" odd 1-forest &' = (V,T). Then H forms a bipartite graph, and we let

1 VI’VZ be the correspanding unique bipartition of V(H) such that at

TxL

Finding the row of A} AL € M| indexed by e € T is

o o -1 Teast one end of e is in v
equivalent to calculating a AL, where a~ denotes the row of AT :
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Case 1. e € E{C) for some odd cycle C ia the odd l-forest G' = (V,T).

. e . : .
In this case, a  is defined by In this case a° is defined by

. /2 if W€V 1 ifwey,
a, = j-1/2 if w€v, a: = -1 ifwev,
0 otherwise i 0 otherwise

(see Figure 4.1.5).
(see Figure 4.1.6)

A - —

= 1/2

{ corresponds to a

n
—

O corresponds to a

@® corresponds to a_ = -1/2

X m X

u

e
W
@ corresponds to a:, -1
- nodes with aﬁ = 0 are not shown

- nodes with aﬁ = 0 are not shown

Figure 4.1.5
Figure 4.1.6

Case 2. e € C for any odd cycle C in the odd 1-forest &' = (V,T).

15



4.2 A SIMPLEX METHOD FOR LINEAR PROGRAM (4.0.2)

Recall that we wish to solve the Tinear program

minimize cx (4.0.2)
subject to Ax = b
0<gx <u
where A € HiVXE is the node-edge incidence matrix of Kn = (V,E},
c € ]BE, and b € BRV, u € RE satisfy b 2 0 and u > 0. We can write
this linear program equivalently as

minimize EE CoXg . (4.2.1)
e

subject ta  x(8(v)} = bv for all v €V,
"Xyt -u for all e € E,

x, 20 for all e € E.

The associated dual linear program is

maximize L yb,- E pu (4.2.2)
vev YV eer G °
subject to Yo Y ¥yt Wy < oy for all uv € E,

p, 2 0 for all e € E.

e
In order to obtain & simplex method for (4.2.1) we must do
the following:
i} determine what a basis for the Tinear program looks 1like,
ii) find a method for obtaining the corresponding basic primal

solution,
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i1i} find a method for obtaining the corresponding basic dual
safution,
iv) describe how to perferm a simplex pivot, and
v) describe how to find an initial primal feasible basis.
In addition to the above, we must easure the sequence of

pivots performed is finite. This is discussed in Section 4.3.

i) The Bases
By introducing slack variables 5o for every edge e € E, we
can rewrite the linear program (4.2.1} in equality form as follows:
minimize I c.x ' {4.2.3)
ece ©°
subject to  x(3(v)) = bv far all v € ¥,
Xy T Sy = U for all e € E,

Xgabg 2 6 for all e € E.

The coefficient matrix and right-hand side for (4.2.3) have the

following form:

rows corresponding (4.2.4)
to degree
coastraints {j A 0 b
rows corresponding €] IE]
to upper-hbound -1 -1 -u
constraints

columas columns

corresponding corresponding

to Xy 05,

Coefficient Matrix Right-Hand Side



It follows from Thearem (4.1.1) that matrix A has rank
[V]. thus the coefficient matrix above has rank |V| + [EJ.
Consequently, a basis corresponds to specifying V| + |E| of the
variables Kg» Sg» € E as basic variables. For each e € E there
are the following possibilities:
{a) both Xy and 5, are basic;

{b) x_ is basic, s

o is nonbasic;

e

{c) «x_ is nonbasic, s

° is basic;

e
{d) both L and S, are nonbasic.

In the corresponding basic solution we require Xy = 8, = 0
fer edges e of type (d), implying u, = 0 for these edges. Since we
assume u > 0, it follows that possibilities (a), (b), and {c)
partition the edges of Kn into three sets, say T, B and 7
respectively. Edges e in B must have X % Ug and 5, = 0 in the
correspending basic solution, and edges e in I must have X = a,

Since there are |V| + |E| basic variables in our set, it
fallows that 2|T| + |B]| + |Z| = |E[ + |V|, and thus |T| = |V¥].
Furthermore, the columns corresponding to all Xy and Sqr & €T, must
be linearly independent. Clearly this is true if and only if the
columns of A indexed by T are atso 1{near1y independent, hence the
edges in T must ferm an odd 1-forest in Kn by Theorem (4.1.1).

In summary, selecting a basis for (4.2.3) is equivalent to

specifying a partition (7,B,7) of E such that the graph 6' = {V,T)

is an odd 1—fofest. The set of basic varjables will then consist of
{xe,se] e €T U {xei g EB} U {se| e € 7}.

In the basis (T,B,I), B represents the adges ¢ for which
Xa is at its upper bound (i.e. Xg ® up), and 7 represents the edges

e for which Xg is at its lower bound of zero (i.e. Xy = 0).

it} Finding the Corresponding Basic Primal Solution

Let the edge partition (T,B,I) define a basis for the
Tinear program (4.2.3). In the corresponding basic primal solution
(X.5), * € T, 5.¢€ ]RE, we require the nonbasic variables ;Z and §B

to equal zero, and the basic variables ET’ EB’ ET' 52 to satisfy

(4.2.5)
degree ] ]
constraints AT AB h} Q T b
upper-bound |8} - -
canstraints i} -1 0 i Xg
for e € B I
upper-bound n _
constraints | -1" 0 -1 0 St -U
for e €T _
upper-hound ] iz -
constraints 0 0 0 i | S7
e €1 ] L

¥ L Y LA
///,a’ A \‘K‘\
columis columns columns columns
corresponding corresponding corresponding corresponding
to Xy to Xg to ST to Sz



where A is the node-edge incidence matrix of K.

Thus we can calculate x and 5 as follows.

(4.2.6) Algorithm to calculate prima} solution (X,§) for basis

(T,8,17).
(1} Let iB = ug, and EZ = 0.

(2) Let b' € ]RV be defined by b; = hv - uB(d(v} N 8}. Then ET is
the unique solution to ATET = b', which can be found using the

odd 1-forest &' = (V,T) and Algorithm {4.1.2).

{3) Let S; = U, Sp = 0, and Sp o= Up - xp.

iii) Finding the Corresponding Basic Dual Solution

Given the basis of (4.2.3) defined by (T,B,2), the
corresponding basic dual salution (y,n), y € Ew, pemE qust
satisfy {y,u)}A' = [cy.cg.01, where A is the coefficient matrix of

(4.2.8), Thus we require {y,u) to satisfy

yu * §V “ My = Gy for all edges uv €T U 8,

=1
[
=

for all e €T U I,

Hence we can calculate y and p as follows.

(4.2.7) Algorithm to calculate dual solution (v,n) for basis

(T,8,7}.
(1) Let ﬁe =0 foralle€TUi,

(2) The vector y is the unique solution to ;AT = Cr, which can be
found using the odd 1-forest G' = (V,T) and Algorithm (4.1.3).

(3) For all uv € B iet Wy ¥, F Y, T Gy

iv) Performing a Pivet

At each iteration of our simplex method we must check to
see if the current basis is dual feasible, i.e. check to see if the
corresponding basic duwal soTution satisfies the linear program
(4.2.2), If it does, the current basic primal and dual solutions
are optimal for their respective problems. Otherwise one of the
following necessarily occurs:

(a) Yo v Yy > L for some edge uv € 7.
{b} M € 0 for some uv € B, or equivalently LA Cuy for
some uv € B.

In case (a) we would choase the nonbasic variable X,y 85
our entering variable, and in case (b) we would choose the nonbasic
variable S,y 3s the entering variable. In either case, adding the
correspoading column to the basis is equivalent to adding uv te T;
T.e. adding uv to the odd l-farest &' = (V,T). By Theorem (4.1.1},

this results in a set of edges CL T U {uv] which forms either an

even cycle or a dumbbell in 6" = (V,T U fuv}}.



4,22

Let (x,s} be the current basic primal solution. Then by
{4.2.5) iT satisfies Agxy = b', where b' € ®Y is defined by
bJ = b"r - ug(s(v) f1 B). 1If x, is the entering variable for some
g € 1, we wigh to raise its value from zero to some value a € I,

a2 0. Then Xp is the unique solution to

ATXT +ah = b' (4.2.8)

or equivalently,

Xp = Ky - ak® (4.2.9)

where k¥ = A}IAE. By taking advantage of the structure of the

subgraph of Kn formed by the minimal dependent set of edges C, we
can calculate k® using Algorithm (4.1.6).

If the eatering variable chosen is s for some edge e € B,
increasing Sa from its preseat value of 0 up to some value
a corresponds to 1uwering_xe from its present value of Uy Lo u, - a.

e
In this case, the corresponding value of Xy is given by

xp = Xp o+ ok’ {4.2.10)

The requirement that we preserve primal feasibility
restricts how much we increase the value of the entering variable Xy
or s,. In both cases, this is accomplished hy increasing a until
either Xg = Up OF Xp = 0 for some edge f € T U {e}, where X is

given by (4.2.9) or (4.2.10). In the faormer case we remove edge f

from T and add it to U, and variable Sq leaves the basis. 1Ip the

latter case we remove f from T and add it to Z, and %, leaves the

basis.

Given a primal feasible basis {T,B,I) for the linear
program (4.2.1), the steps of a simplex pivot can be summarized as
follows:

{1} Calculate the values of the primal variables ET carresponding
to (7,B,%) as in (4.2.6), and calculate the values of the dual
variables } corresponding to (T,B,7) as in (4.2.7).

(2) If ;u * ;v S c,, for all uv € Z and ;u + ;v z ¢, for all
uv € B then stop; the current basis is an optimal basis.
Otherwise, either choose e = uv € Z such that iu + ;v > €y and
go to step (3), or else choose e = uv € B such that
Yyt ¥, < c,, 2nd go to step (4).

(3) Calculate k® using the circuit algorithm {4.1.6) and let
X1 = iT -ok® LetT" =T Uf{e}, B =8, and 2' = INfe). 6o
to step (5).

(4) Calculate k® using the circuit algorithm {4.1.6) and let

xp = Kyt ok, Let T' =T U {e}, B' = B\{e}, and Z'

z.
(5) Increase the value of a until Xp = Ug or g = 0 for some

edge f € T'. In the former case let T" = T'\{f}, B"

I

B' U [F}
and I" = 1I', In the latter case let T" = T*\{f}, B" = B' and
I" = 7' U ff}. The new basis is then given by (T*,B",I") and

the pivot is complete.



v) Finding an Initial Primal Feasible Basis.

An initial feasible basis is easily constructed for some
instances of Tinear program (4.0.2), and in particular for the
fractional 2-factor prablem (see Section 4.4)}. In general, the
two-phase method for the simplex algorithm can be used to find such
a basis, although a combinatorial method would be more desirable
(see [Chvéatal, 1983] for a description of the two-phase method for

the simplex algorithm),

4.3 ENSURING FINITENESS

We can ensure finiteness of the simplex method described
in Section 4.2 for the Tinear program (4.2.1) by applying the
Yexicographic  anti-cycling method described in Section 1.5.

Given the current basis (T,B,7) for the linear program
{4.2.1}, consider the system of equations as shows in (4.2.5) which
we must solve in order to obtain the current primal basic solution
{x,5). Let A' be the coefficient matrix of (4.2.5), let a be the
celumn of the coefficient matrix of (4.2.4) corresponding to the
entering variable chosen multiplied by (A*)"Y, and let L be the
matrix whose ith row corresponds to the ith row of (A')-1 divided by
Ei. Now whenever we have a tie for the Jeaving variable, wé avoid
degeneracy by calculating the Texicographically minimum vector among

the carresponding rows of L, using an ordering of the indices V U E

of the columns of L chosen before beginning the simplex method. We
show how to calcuTate these rows combinatorially. We also show that
the rows of LV are sufficient for ca]cu]ating the lexicographically
minimum row of L if we index the first |V] columns of L with V in
the prescribed ordering; i.e. we need only compare the first v
entries of any tied rows in order to break the tie. HNote that this
technique of shortening of the lexicography rows can be done for any
problem with upper bounds on the variables {see [Murty, 1983]).

We first consider how to calculate a specific row of (A')-1.
Finding row i of (A')7! is equivé]ent to fiading the solution (y¥,u) for

1

(y,u)aA* =@ (4.3.1)

where y € RY, u € TRE, and e represents row 1 of 1/VI*IE| Using
the structure of the basis (7,8,7}, this can be done using a method
similar to Algorithm (4.2.7) for finding the basic dual solutien.

First we calculate y by solving
yA; = w (4.3.2)

for a particular right-hand side w € TRY. We then calculate the
corresponding valee of u as in step (3) of Algorithm (4.2.7).

The rows of (A')-l correspond to the basic variables xy,
sT, xg and s7. For each of these four types of raws the vector
W E ]RT for (4.3.2) and the corresponding values of § and y are

easily calculated from (4.3.1). They are as foTlows.



Case 1. Row i of (A*)”! corresponds to basic variable xg» 8 €T, Case 3. Row i of {A")7) corresponds to basic variable x_, e € 8.
T . .
The vector w € IR for (4.3.2) is defined by The vector w € R for (4.3.2) is defined by w = 0, thus
{1 for j = & y = 0 in this case. The corresponding value of p € RE is defined by
W. =
J therwise.
D otherw -1 forj=e
-1 ﬁ.} =
Thus the solution y for {4.3.2) is the row of AT corresponding to 0 otherwise.

] i found using the tree formed when edge e is ) )
edge e. This can be found using the tr ormed W 9 Case 4. Row i of (A"} correspands to basic variable s,
1-forest 6' = (V,T) and Algorithm (4.1.8).
removed from the odd ore ( ) a g ( ) The vector w € ]RT for (4.3.2) is zero, and thus

m
m
~

by
1l
o

. - E . .
d Tue of w € TR™ 15 defined b -
The corresponding va ! y The corresponding value of u € JRE is defined by

§u+§v for uv € B -1 for j=e

=
-

=
L2y
[l

0 otherwise. 0 otherwise.

. -1 . ;
Lase 2. Row i of (A') ° carresponds to basic variable s , e €T, In order to now calculate a specific row of matrix L we

T . .
The vector w € R~ for (4.3.2) is defined by take the corresponding row of {A')"! and divide ft by the
1 forj-e i corresponding component of a. MWe can calculate a by solving for
- or i =
W, = Xo,XpWS1,54] 10
J {0 otherwise. [ ToEetT Z]
1 T
Thus the solutien y for (4.3.2) is the negative of the row of A} At Xg
=a
s
corresponding te edge e, which can be found using Algorithm (4.1.8), sT
- z
The corresponding value of p € IRE is defined by
- - where a is the column of the coefficient matrix in (4.2.4)
LA foruv €8
corresponding to the entering variable x5,.2 € 7 or s, & € B.
By ® -1 for uv = e . 1
0 otherwise, Calculate ke = AT Ae using the even cycle or dumbbell formed when e

is added to T, and Algorithm {4.1.6). Then we have the following

two cases.
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Case 1. The entering variable is Xp, @ € 1.
In this case a = [x7a%gaSy,sy] where xp = K&, xg = 0,

St = -ke. and s, is defined by

7 .
{:l in the component corresponding to e

1
0 elsewhere.

Case 2. The entering variable is Sp, & € B.

In this case a = IxT,xB,sT.sZ] where Xp ® —ke, Sy = kE,

T
8§ = 0 and Xg is defined by
1 in the component correspaonding to e

0 elsewhere,

Now consider the set X of possible leaving variables among
which we may have to break a tie. If the edge indexing the entering
variable is e, then KC g I} St ] {se} U [xe}. Furthermore K
contains at most one of xj and Sj for j €T U {e}. Thus_if £ and m
are two rows of matrix L corresponding to variables in K, it is
easily verifjed from our previous calculations that RV # my. If we
assume the first |V} columns of L are indexed by V, it follows that
the rows of Lv are sufficient for determining which of the rows of L
corresponding to the variables in K is lexicaographically minimum.

In summary, we can choose a leaving variable

lexicographically in our simplex method for the linear program

(4.2.1) as follows,

(1)

{2)

{3)
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Given the current basis (T,B,Z) for {4.2.1) and entering
variable Xgr €1 or Sa» © € B, determine the set of variables
K which are the possible leaving veriables found by the simplex
method.

If [K| = 1, pivot as usual. Otherwise, let k® € R

be as

described in the circuit algorithm (4.1.6) (note that k® Wil

have already been calculated earlier in the pivet operation).

Then each row % of LV corresponding to a variable in K is found

as follows:

(a) If the variable is sj for some.j € Z or xj for some j € B
then & = 0.

{b} If the variable is §j Or Xj for some edge j € T then find
the row of A}l corresponding to j, denoted aj, using the
tree formed when edge j is removed from the odd 1-forest
6* = (V,T) and Algorithm {4.1.8). Then 2 is defined by

aj/ke if Xgr B € 7 was the entering
variable

-al7k® if Sg» € € B was the entering

variable.

Using a prescribed ordering ViaVgas-ma¥y of the node set

V= [vil i=1,2,...,n} {chosea before beginning the simplex
method}, find the variable in K for which the corresponding row
in LV is lexicographically minimum. Choose this variable as

the leaving variable.
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4.4 SOLVING THE FRACTIONAL 2-FACTOR PROBLEM

The fractional 2-factor prohlem is a special case of
linear program (4.0.2) in which b = 2 and u = 1. As a result we can
solve this problem using the finite simplex method described in
Sections 4.2 and 4.3. An initial feasible basis (T7,8,2) for the
problem is easily constructed from any hamiltton cycle C of
Kn = (V,E) as follows. Choose an edge i € E(C), and an edge
Jj € (EAE{C)) U {i} which creates an odd cycle when added to
G' = {V,E{C}V{i}). Then let T = {E{CI\{i}) U {j}, let B = [i} if
i#jorlet B=0if i =j, and let T = E\(T U B}.

There also exist other efficient methods for solving the
fractional 2-factor problem. For example, we can salve this problem
in polynomial time by transforming it into an instance of an
uncapacitated bipartite b-matching problem as follows. First form
a new graph G = (V,E) from K, = (V,E) by replacing each edge
@ =uv €k by a uv-path u,u’,v',v. Let the new edges replacing e be
8y = un', e, = u'v', and ey = v'v (see Figure 4.4.1), and consider

the problem

minimize cx {4.4.1)

=l

subject to

Lo I}
oo

where A is the node-edge incidence matrix of G, b € RY 1s defined by

4.31
o0& 5 == oflof o ® 4
u v u w v’ v
Figure 4.4.1
2 ifvey
bv =
1 otherwise,
and ¢ € RE s defined by
) <, if f=¢e for some e € E
¢ =
1] otherwise.

Given any solution x for the fractianal 2-factor problem for Kn, we

can construct a solution X € rE for (4.4.1) by letting Eel = Xa,

X and x. =1 - x, for every e € E. Coaversely, a solution X

ey Xer e,
for (4.4.1) corresponds to a solution x for the fractional 2-factor

problem in which x_ = e for all e € E,
1

e
We then transform problem (4.4.1) into an instance of

bipartite b-matching by splitting each node v € ¥ iato nodes vy and

Vo and rep]aciﬁg each edge e = uv € E by edges e, = uv, and

By = UpVy. Letting 6' = [V1 U VZ,E'] be the resulting bipartite

graph, we consider the bipartite b-matching problem



minimize [ ¢ (4.4.2)
subject to A'x = b'
xz0
Vs B : - Vilvy .
where A' is the node-edge incidence matrix of G', b' € IR is

defined by b' =hb' =b for allyv € V, and ¢' € B{E is defined by
vy vy v

] — ¥ — 1 C B ol

Uve = Syou. =7 Cuy for all uv € E. A solution x for (4.4.1)
172 172

corresponds to the solution x' in (4.4.2) in which

Uy, xuzvl = Xy for all uv € E. Conversely, a solution x' for

{4.4.2) corresponds to the solution x for (4.4.1) in which

= 1
X5 o {x! + x!
uy 7 upvy ugVy

) for all uv € E. Problem (4.4.2) can be
solved in polynomial time using network flows (see [Lawler, 1976]).

The fractional 2-factor problem can also be solved
directly in polynomial time by a primal-dual method. This method is
a simplified version of the primal-dual method developed by [Edmonds
and Johnson, 1970] aad described in [Havel, 1982] far the integer
2-factor problem. In the fractional case, the fact that we allow
values of 1/2 in the solution makes the shrinking of blossoms

unnecessary as we can augment instead. The details of the algorithm

are easily deduced from [Havel, 1982} and thus are not included

here.

CHAPTER &

The Subtour Polytope

Given Kn = (V,E)} and a vector ¢ € ]RE of edge costs, the
subtour problem is to find x € Bﬁ which minimizes cx subject to x
satisfying the degree constraints {2.1.2), non-negativity
constraints (3.2.1), and the subtour elimination constraints (3.2.3)

for the travelling salesman polytope Q?; i.e. it is the linear

program
minimize ex {(5.0.1)
subject to x(é(v})} = 2 for all v € ¥

x(6(S$)) s |S| ~t forall sCV, 25 )8 <n -2,
Xg 2 0 for ajl e € E,

The associated subtour polytope, which we denote by 02, is
defined by

o =ixe w|Aax=2 8sh}, (5.0.2)

where A 1s the node-edge incidence matrix for Kn, and Bx £ b
consists of all subtour elimination constraints (3.2.3) and
non-negativity constraints (3.2.1).

In the first part of this chapter we examine the structure

of the vertices of Qg. In particular, we Took at the types of

5.1



5.2

fractions which can occur as comporents of a vertex x of Qg, as well
as discuss the structure of the support of x.

In the latter part of this chapter we optimize a class af
abjective functions obtained from the clique tree inequalities

{3.3.1) over {Jg.

5.1 THE STRUCTURE OF THE VERTICES OF THE SURTOUR POLYTOPE

The vertices of some polytopes have a very specific
structure, and knowledge of this structure can prove useful when
developing combinatorial algorithms. For instance, consider the
fractional 2-factor polytope Qg. As discussed in Chapter 4, if x is
a vertex of GE, then x is half-integer, and the set of edges J
such that ij = % far all j € J partitions into the edge sets of an
even number of odd disjoint cycles (see [Balinski, 1970]}.

The fallowing result shows that, in general, the vertices
of the subtour palytope 02 have & much more complicated structure.

For any 'Fc_:ag, Tet Bp = [j € E(K)[x; = O for a1l x € F}
and let Dp = [EX V(Kn]| 2< |S] <n-2and x(8(5)) = 2 for all x € F}.

(5.1.1) Theorem. For any positive integer k 2 3 there exists a

vertex of Q§k+4 which contains components of the form % , where

gedfa,k) = 1.

[+

§k+4 corresponding to Figure §.1.1,

Proof. Consider the point x€Q
where the support of x is a ladder-like structure with k

"rungs" 81480500058 . Figure 5.1.1 shows x for k odd. For k even,
the two triangtes would be on the same side of the figure.

We show that x is a vertex of Q§k+4 by showing that

-
1

= [x}, where

2
F= {xeqsk*ﬁxe = 0 for all e€B,, x(5(5)) = 2 for all SED},
X

Suppose x € F. Then ie =0 for all e € BR, and ;e =1
whenever ie =1, Let i(a,b) = A, where a gnd b are shown in
Figure 5.1.1. Then in order for x to satisfy degree constraints,
the remaining components of x must have the values shown in
Figure 5.1.2,

Consider SC V(Kgy 4} such that 8(S) = CPRLPRPPRN N
Since S € Dg it follows that

K(2A) = x(&(S)) = 2

and A = %. Thus x = X. D

Before proving some results concerning the structure of
the support of vertices of Ug, we establish two preliminary results.

Let V be a non-empty set and let C = {C;,Cz,...,Ck} where
Qv i= 1,2,-...,k. We say sets Cj, cj eross if €. N cj 70
and neither ciq; Cj nor CjC; C;. We call Ca nested family if it

contains no pairs of sets which cross.



=

Cm==0

corresponds to X
corresponds to x
corresponds to x

corresponds to

corresponds to ie =

edges with ;e =0

=1
_2

k
k-2

ko2
k-1
TR

1
“k

are not shown.

Figure 5.1.1

5.4

o= - corresponds to ;e =1

- edges with ie = 0 are not shown.

Figure 5.1.2

5.5
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{5.1.2) Theorem. Let F be any face of Qg. Then F can be defined as

F={x€0g] x, = 0 for all e € B;, and x(s(S)) = 2 for all § € 0]

for some D*CD. such that D* is a nested family,

F

Proaf, By definition,

F={x€ lexe =0 for all e € Bg, and x(6{5)) = 2 for all § € D}

for some D € D.. Suppose D contains a pair of sets Sl' 52 which
crass., Let C = {e € E(kn)l e €(6(51) N &§(52))\&(51 N S2}}, and define
F' = {x € ng LA D for all e € BF, and x(§(5)) = 2 for 311 S € D'},
where D' = (DB {S; U S3,51 N Sp}1\(S],52}. We will show F = F.

. E(Kp)
First observe that for any x € I .

x(6(S) N S5)) + x(8(S; U S,)) + 2(x(C)) = x(8(5))) + x(6(Sp)). (5.1.3)
Hence for x € F we have
4= x(8(5))) + x(8(5,))

X(5(S; N Sp)) + x(8(S; U $,)) + 2(x{(C))
4+ 2(x(C)).

L

It follows that CG B, x(8{Sy U Sp)} = 2, x(§(S; N §,)) = 2 and hence
x € FL.

5.7

Now, suppose x € F'. \Using (5.1.3) and the above it follows
that

-y
i

x(d(s1 n Sz)) + x(s(S1 u 52)) + 2{x(C))
x(8(5;)) * x(8(S,))
2 4.

Hence x(é(Slu =2, x[ﬁ{Sz)) =‘2, and thus x € F.
From the above we can conclude F = F', Furthermore, if

either S, US, €D or S NS, €D then [D'] < D[, and if

5, U5, €0 and 5) NS, €D then
2 2 2
E S |7 = B |So]T #2(|SAS,] ¢ 1SS D> & 5T
sienr | sienI il RS 15y si€p

Since |B| is finite and I .|S§| is bounded above for any set K
i
of subsets of V[Kn], repeatedly applying the "uncrossing" procedure

described above must eventually result in D* as reguired. O

Theorem (5.1.2) also appears in [Cornuéjols, Fonlupt and

Naddef, 1983], Theorem (3.11).

(9.1.4) Lemma. Let C be any nested family of distinct subsets of a

non-empty set V. Then |C] s 2]V] - 1.

Proof. The proof follows easily by induction en |V|. For details

see [Pulleyblank, 1973]. o
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For any x € Qg, let GR denote the support of x. Given
such & graph By we let V; represent the set of nodes of degree i
in Gg, and 91 represent the set of nodes of degree i not incident
with an edge j for which ij =1,

Let C be a cycle of Tength three in Go. If V(C)C,

and x(&§(V(C))) = 2, then we call € a triangle configuration. Thus

if C is a triangle configuration in GR, the three components

of X corresponding to the edges of §{V(C}) must have values @y, Ggy

and oy such that 0 < a; < t for 1 € f1,2,3} and 1§1 a. = 2. Because

degree constraints must be satisfied, it follows that the

components of ¥ corresponding to edges in E{C) rust also have values

a], op, and a3 as shown in Figure 5.1.3. ‘
Given x € Qg such that Gg contains a triangle configuration

C, let x be a vector obtained from X by removing the componeats

corresponding to E(C}. We denote x by xiC.

o

ay ]

ay ay ag

Figure 5.1.3

5.9

{5.1.5} Lemma. Let X € 02 for some n 2 5 and let € be a triangle

configuration in G,. Then xiC € Qg_z.

Proof. If all edges of &(V(C)) have a common endpoint then

Gg = K4 implying ¥ € Qé. If exactly two edges of §(V(C)) have a
common endpoint w, then X(8(Y(C) U fu})) < 2 implying X € 02_ Hence
each edge of &(V(C)} must have a distinct endpoint, and centracting
C in Gg ¢reates no multiple edges. Since x¥C alse satisfies all

the constraints for anz, it follows that XiC € 02-2. a

Given x € 03_2 and v € 93 in G5, we can replace v by a
triangle configuration C to obtain a corresponding vector X, where
the values of the components of x corresponding to E(C} are uniquely
determined by those of &{v) in x as in Figure 5.1.3. We denote X

by xtv.

nt+2
g -

{5.1.6) Lemma. Let x € Qg and let v € 93 in Gi' Then xtv € @
Proof. Let x = xty. Clearly x satisfies all the degree and non-
negativity constraints for 02+2. Furthermore, if there exists
S¢g V(GR] such that x(8(S)) < 2, we can assume [&(5) 0 E(C)| = 2.
But then either x(8{S\V(C) U {v})) < 2 ar x(&(S\V(C)}} < 2,
contradicting the fact that x € Qg. Hence ¥ must satisfy atl

subtour elimination constraints for 02+2 énd thus x € QE+2. [n}



(5.1.7) Corotlary. Let x € Qg and let C be a triangle configuration

in G,. Then x is a vertex of 02 if and only if X¥C is a vertex of

n-2
QS .

Proof. MNoting that ¥y = 0 for x € Qg, n § 5, the above result
follaws from Lemmas (5.1.6) and (5.1.6) and the fact that x is not
a vertex of 02 if and only if x can be expressed as a convex

combination of k distinct points of Qg, k2 2.0

Using Theorem (5.1.2) along with Lemma (5.1.4) and
Corallary (5.1.7), it is possible to obtaia an upper bound on the
number of tight subtour elimination constraints which are necessary

to define a vertex of Qg..

(5.1.8) Thearem. Let k be a vertex of Qg, n 2 3. Then there
exists DC Dy such that [x} = {x € Gg) %o = 0 for all e € B..

1951
and %(5(5)) = 2 for al1 S € D} and [B] € n - = - 3.

Proof. We prove the result by induction on n. If n = 3 then
X = {1,1,1} and D = @ suffices.

Mow assume the .theorem is true for 3 <n <k -1 and
tet % be a vertex of Qé. If there exists a triangle configuration

C in Gy then x = x¢C is a vertex of Qs§~z by Corallary (5.1.7).

Hence by the induction hypothesis there exists D'C D; such that

fx} = fx € ¢§Z[x, = 0 for o1l e € B and x(8(5)) = 2 for all § € D'}
. Y31 .

and [D'] $ k - - 4. Letting v € V(Kk_z) be the node resulting

from the contraction of C, define

D= [V{C)} U {S'q;'V(Kn}| $' = (S\{[v}) U V{C) for some S € D'},

The result now follows for x and D.

Suppose Gg contains no triangle configuration. (In this
case we do not actually require induction.} 8y Theorem (5.1.2) there
exists DC Dy sufficient to define x such that D is a nested
family. Also, since subtour elimination constraints are equivalent
for SC V(Kn) and § = V(Kn)\s (see [Grétschel and Padberg, 1979b7]),
we can assume S € 0 implies S € 0. Let D* = D U {5} for some maximal
SED, and let € = D" U [{v}] vEV(Kn)} 1] {V(Kn)}. Then € is a nested

family, and |€| = |[D} + n + 2. We now show that there exists

FC IsC V{Kn)}\C such that |F| 2 I—;ﬂ and FUC is a nested family.
for each v € Va there is a unique minimal S € D* such that

v € 5. If S properly contains at least one member of D then,

Yetting T = {v € 5| v € §' for any 5'C §}, we define F%gl subsets of

V(Kn) different from those in C as follows. First form tH?H

sets which consist of disjoint pairs of nodes in T. Then, if T is

odd, add a set consisting of the singleton not included in the

previous pairs plus any 5' € D* such that S'€ S5. MNote that, in

the case T = fv}, S\T € D' since v € 93 and x(&6(S)) = 2 implies



5.12

X(5(S\T)) > 2, and thus S'Ufv} # S.
1f § does not properly contain any members of D' then
IS| 2 2. In fact, since S contains v € V3 and X(&(S)) = 2, IS] z 3.
If |S| = 3 then |S N ﬁ3] $ 2 since, by assumption, S does not form
a triangle configuration in GR' In this case we define one subset
of ¥(K_) different from those in C by cheosing any pair of nodes
in §. If {5| 2 4 then we define [lgll new subsats of V(K ) as
follogws. First form ligll sets wnich consist of disjoint pairs
of nodes in S. Then, if |S] is odd, add a set consisting of one of
the pairs and the singleton nat previously included in the pairs.
Let F be the set of all subsets defined above,
considering each minimal § € B' containing some v € 93. Since F

satisfies the required properties, F U C is a nested family such

' Vsl
that |F U €| 2 [D] + n » —> + 2. By Lema (5.1.4),

Y3l
[FOC|s2n-1and thus |D] £ n - —?2— - 3 as required. O

From Theorem (5.1.8) we obtain the following two

corollaries coacerning vertices of 02.

(5.1.9} Corollary. Let x be a vertex of Qg, n2 3., Then

V51
|E(Gx)| * S - 3.

Proof. Let I} be as in Theorem (5.1.8). Then, since x is a vertex

of 03,
IBo| « [D] 2 dim(07) = (5} - n.

Hence

[E(6e)| = (3) - [Bg| < [D] + n.

1V,
By Theorem (5.1.8), [D] S n - == - 3 and thus

151
IE(GR)I sn - —7§— -3 as required. O

(5.1.10) Corollary. Let X be any vertex of Qg, n ez 3. Then
i€ E(Kn)[xj =13 2 3.

n
Proof. Since 2[E(Gy)| = I 1|V4], it folTows that
i1 .
3
JE(GE] 2 Vo) * 3|V3l + 2(n = |V,] - [V3]}. Thus by Corollary
(5.1.9),

[v3\ﬁ3|

Vol + —=2 3. (5.1.11)




Every node in V, is incident with two edges j for which ij =1
and every node in V3\\73 is incident with one such edge. Thus
VoY

B | !
O3 EEK) &5 = 1] 2 Vyl » —2,2° and the result follaws fram

(5.1.11). o

The bounds in Coroltaries (5.1.9) and {5.1.10) are both
tight for the vertex of Qg shown in Figure 5.1.4.

We know of no infinite family of vertices for which
ejther bound is always tight. However, consider the vertex x of
05" shown in Figure 5.1.5 which is obtained from Figure 5.1.1.

By repeatedly expanding nodes Vi and/or ¥g into triangle

configurations we obtain an infinite family of vertices x for which

V51 -
[E(G)] = 2n - - dand [{§ € E(X)] & = 1] = 4.

5.2 CLIQUE TREE INEQUALITIES AND Qg

For an introduction to clique trees and cligue tree

inequalities see Section 3.3. For the remainder of this section

we represent the clique tree inequality (3.3.1) by apx £ op.

Q) -~

OvWWnO -

corresponds to Xy = 1
1
corresponds to X =3

edges for which Xg = 0 are not shown.

Figure 5.1.4

n
ot

corresponds to x

[

"

2
3

corresponds to Xq

carresponds to Xg = %

edges for which X = 0 are not shown,

Figure 5.1.5



For any clique tree C define . .
in the order rl'sl'sa""’sl%l'rz'sl%l +1,...,515f,r3,r4...,rlm

_ n,o -
GAP{C) = max[apx| x € Og} = op . (see Figure 5.2.1}. Then (%) defined by

Thus GAP{C) 1is-the amount by which the right-hand side of the clique % for edges i €D

tree inequality corresponding to C is less than it would have to be E(K) _ 1 for edges i of the form (St S|S| . 1) for
i ' -t

if the inequality were to be valid for Qg. Therefore, in a sense, a2, l%l

it measures the amount of Qg “cut of f" by the inequality. 0 otherwise
Theorem (5.2.2) below shows that GAP(C) is determined by )
satisfies the required properties.
the number of noa-pendent teeth in C. First we require the

following lemma.
Case 2. |5| is odd.

Construct a hamilten cycle D in < K\{r|R1} > that visits the
(5.2.1) Lemma. Let K be a cligue in a graph 6, let R C K satisfy

nodes in the order ri,51,505...,5 Fo,s . [
- 1! II 2: 3 S =17 21 S +1* » S 3 3 »
2] 2 3, and Tet S = K\R. Then there exists ¥ € RY(X) satisfying L erlsi s34
(1) i(K)(ﬁ(v]) =2 for all vE€S- . . TR (see Figure 5.2.2). Then (X} defined by

(2) ¥ sv)) =1 for all v ER )
(3) E(K) : 0, and 3 for edges i€D

EQK) = 1

(1) *0s(0)) 2 2 for all nonempty 0 C S. for edges i of the form {s¢,s)¢) ¢ )

for t = 1,2,.... 1322 and cdge (51517 r))

0 therwi
Proof (by construction). Let § = [51’52"“’5|S|} and otnerwise

R = {rl'rZ""'r]R]]‘ satisfies the required properties. o

Case t. [S] is even. (5.2.2) Theorem. Faor any clique tree C for which H(C) # @,

Construct a hamilton cycle D ia < K > that visits the nodes

[Typ(C}] + 1
GAP(C) = ————



={X 1
owwnp corresponds to xé )
—=o corresponds to §£K] =1

- adges e with §£K) = 0 are not shown.

Figure 5.2.1

orvo corresponds to

30 . 1

o—=0 corresponds to iéK) =1

- edges e with ;gk) = 0 are not shown.

Figure 5.2.2

Proof. Let the defining linear system for Qg be
Ax =2 , Bx <b

where Ax = 2 represents all degree constraints (3.1.2), and Bx < b
consists of all subtour elimination constraints {3.2.3) and
non-negativity constraints (3.2.1).

We wish to solve the linear program
(P} max[acx| Ax =2, Bx s b, x € Ef}.
The dual of P is

) min{A2 +Yb| A +YB = a_, Y 2 0j.

C)
By the Complementary Slackness Theorem (1.4.6), feasible solutions
x and {X,¥) for P and D respectively are optimal if and only if
Bii = b_.l whenever fi > 0, where Bi represents the ith row of B.

For any T € T(C) define T = T\[ U T H} and for any
' HEH(C)

H € H(C) define ® = B\{ U TN H}. Let (XY} be defined by
: TET(C)

% whenever A'x = 2 is a degree constraint for
v €T for some t € TP(C)

>
-t
1S

0 otherwise



and Yi

rof— Y

0
-
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i .
whenever B x £ hi is

1) a subtour elimination constraint for T, f, or
T A H for some T € T,(C) and H € H(C} which
intersects T in C. ] .

2) a non-negativity constraint for an edge
e € S(HY\E(C) for some H € H(L}, or

3) a non-negativity constraint for an edge
e € §(T)\E(C) for some T € Typ(C).

whenever Bix < bi is a subtour elimination
constraint for TN H for some T € TNP[C) and
HE H(C) which intersects T.

otherwise.

It can be checked by diract calculation that {A,¥) is a

feasible solution for D. We show that it is also an optimal

soelution by constructing a feasible solution X for P which satisfies

the complementary slackness conditions as follows:

{1) For each T € TP(C), construct a hamilton path in < T > with ends

Wy €T and Uty € TN H, where H is the unique handle ian H{C)

intersecting T. Construct this path so that it is also a

hamilton path in < TN H> and < T >,

{2) For each T € TNP(C] construct a hamilten path in < TN H > for

each H N H({C) which intersects T. Let the ends of this path be

uT,H and VT.H'

(3)

(4)

{5)

(6)

For each T € Typ(C) for which t; = 2, construct a hamilton path

in<Tu {VT,Hl’VT Hz} > with ends Yo Hy* Vi Hy? where < H1 > and

< H2 > are the two handles in C which intersect T.

For each H € H(C), use Lemma (5.2.1) to obtain x(") for the

L]

clique H

For each T € TNP(C) With th 3,-use Lemma (5.2.1) to obtain

SUR, were 5 = Il and R = fup yl T intersects Hj.

(T} for the clique T =5 U R, where S =T and R = vg yl

H iatersects T}.

Use Lemma (5.2.1) to obtain i(v) for clique V = Sﬁ u RV where

Sg = V(K )\Y(C) and Ry = {ur| T € T,(C)].

Mow et X be defined by

-

1

x{

o= D

x{V)

]
L

for all edges i in the hamiltan paths of (1},(2)
or (3)

for each edge 1 €{fi), H € H(C)
for each edge i €Y(T), T € Typ(C), ty2 3

for each edge 1 €Y(V)

otherwise.

It can easily be checked that x satisfies degree

constraints, non-negativity constraints, and complementary slackness

conditions.

It remains to be shown that x satisfies the subtour

elimination constraints, i.e. x(§(5)) 2 2 for all SCV(Kn) such that

2s ]S sn- 2.

We will consider three cases.



Case 1. scfl,scT,orsci.
For such § it follows by Lemma (5.2.1) and the

construction of % tnat X(&(5)) 2 2.

Lase 2. S QV(KH)\\?.

Clearly for any maximal clique K in ¢ and any cut &(M} of
< K > for nonempty M ,K, we have x(6{M)) z 1. If S satisfies the
conditions of Case 1, we are done. Otherwise, &(5) must contain at
least two cuts of the form &(M) as described above and hence

~

X(6(5)) 2 2.

Case 3. S5C V(Kn) satisfies SNV #9, SN (V(Kn)\V) £0.

Again we have x(§(M)) 2 1 for any cut &(M) of < V> for
nonempty HC V. Since §(S) must contain at least one cut of < ¥ >
and one cut of <. X > for a maximal clique in C, it follows that

x(6(5)) 2 2.

In all cases, x{6(S)} 2 2. Thus x and {A,y) are optimal

solutions for P and D respectively. It now follows that

GAP(C) = apk - a;

ke + b - ag

3

T(IH]: B € B(C)) + o([T|: T € Typ(e)) » (7] - yTE To(C))

T (E(ITNR] -1 HENC), NNT#0) : TETLC)) - o

n

E([H[: H € H(CY) + 2(|T| - tyz TE T(C)) - %]TP(C)| -,

CMgp(Q)f + 1
g AL

in general, for any clique tree C there exists a vertex of
02 which maximizes apx over Qg. Theorem (5.2.2) constructs x € Qg

which maximizes apx over Qg, however this x is not necessarily a

vertex of Qg. For example, consider the vector x corresponding to

Figure 5.2.3. Then x is of the form described in Thearem

{5.2.2). However,

=it

EERS

where x and % are the vectors correspanding to Figure 5.2.4 and
5.2.5 respectively. Since i,; € Qg we have ¥ is a convex combination
of other points in Qg and thus cannot be a vertex.

It is possible to modify the construction used in Theorem
(5.2.2) so that vector x constructed is a vertex of Qg. Notice

that x is half-integer, i.e. ii € {0,%,1}. Hence the edges of the



- _1
oneng corresponds to X =3

ovw~a corresponds to ie = % -
o—=gp corresponds to X, = 1

n
f—

c—=0 corresponds to ie

- edges with ie = 0 are not shown.
- edges with ie = 0 are not shown

Figure 5.2.4
- corresponds to teeth

- corresponds to handles

Figure 5.2.3



support - of X for which ;i = % partition into edge disjoint cycles
which we will call 1/2-cycles in X.

We have the following theorem.

(5.2.3) Theorem. Let X be constructed as in Theorem (5.2.2}. Then

if the support of x is planar, x is a vertex of Qg.

Proof. We show that such an x is the unique point of Qg satisfying
a set of subtour elimination constraints and non-negativity
constraints with equality, and hence is a vertex of Qg.
Let B ={e € E(K)[ X, =0} and D= {SCVK)| X(s(S)) = 2,
2<|S)<n-2)and let F={x € Qg|xE = 0 for all e € B, x(6(S8)) = 2

for all § € 0. Suppose x € F. It trivially follows that ;e = ie for
all e such that X, = 0 or X, = 1. We wish to show ie = % whenever
ie = %, Given any clique tree C and T € T(C), H € H(C), we adopt the

notation of Theorem (5.2.2) for wy, v, A, SV and Rq and given any

owano corresponds to x, = % clique X we adopt the notation of Lemma (5.2.1) for 2K
o==0 corresponds to ie =1
.=(¥) - 1
- Clai . - ( = € E(J).
- edges with X, = 0 are not shown. laim 1. For the 1/2-cycle J in %77, x, = ¢ for all e (J)

Figure 5.2.5
Proof of Claim 1. For all v € V(J) there exists an edge e = (v,w)

such that ;e = 1. Hence for degree constraints to be satisfied we

must have x, + x_ = 1 for any pair e,,e, of adjacent edges in J.
g g, 1*72



Claim 1 now follows if J is an odd cycle, which is the case if C is
a comb. Otherwise, due to the tree structure of clique tree C,
there exists & handle H of £ which has exactly one non-pendent tooth
T which intersects it. Let TH = {Tl'TZ""’TZk} be the pendeat
teeth intersecting H.

Consider Slg; V{K,) where

5, =T, URUYUIZ

1 H
SV if Wp o=y for some T € TH' and |5V| even
and Y = SV\ESISq|] if wp = r, for some T € T, and [Sg| odd .
TOwAnG==0w -~ corresponds to J
] otherwise .
o=—0 - corresponds to edges with same L value.
H if we = r for some TET, and |Sg| odd
SEL T TRyl p and |3yl
and I = Figure 5.2.8
@ otherwise
{see Figure 5.2.6).
Let 6(S;} N E(J) = fe),e,]} where iel = iez. Furthermore - ‘ 2= 5(6(51]) + i(G(Szl} - x(8(v)) = 4§E1

Sl €D. Thus if [HNT| > 1 or tT = 2 then

which implies ie = %, and again Claim 1 holds.
2=§(s(sl))=§cel+i + 1 !

e, Using Claim 1 we can show
which implies ;e = % and Claim 1 holds. Otherwise HN T = {v} €laim 2. For any edges e; = {u,v) and e, = (v,w)} adjacent in some
1 - -
where v is the common nade of two l/2-cycles in x, Let S, = SyMivl. 1/2-cycle in x, x, *+x, =1
1 4

Noting that S, € D we have



Proof of Claim 2. The only situagtion ia which Claim 2 does not
trivially hold is when v is a common node of two 1/2-cycles in x.
In this case [v] is an articulation set for C. Hence, using the

planarity of the support of X, we can find § € D such that

8(S) = fe|.ey,%,y}, %, ¥y € E(J). Thus, using Claim 1, x. +x_ =1,

& %

It follows from Claim 2 that ie = % for all odd 1/2-cycles
in x. MNote that all 1/2-cycles for handles of C are odd, but we can
have even §/2-cycles occurring in non-pendent teeth T for which

tT 23,

Let D be the 1/2-cycle in such a tooth T. Using methods
simifar to those used in Ctaim 1 it is possible to find S € D such
that &(S) = [el,ez,x,y} where x,y € J, 8.8, €D and ;e = x

e."
Hence ! 2

2= x(6(5)) = zie +1
1

- _1
and X, = 3 [md

It is always possible to construct x as in Theorem {(5.2.2)
so that the support of X is planar by forming the support in a
planar fashion one ¢lique at a time. Thus it follows from
Theorem {5.2.3) that we can always perform the coastruction used

in Theorem (5.2.2) so as to obtain a vertex of Qg.

CHAPTER 6

A Simplex Method for the Subtour Problem

Since q?g Qgg [)2, the subtour problem (5.0.1) is related
to the fractional 2-factor problem (4.0.1) and the TSP (3.1.1} in

the following way:

minfex| x € Qg} < minfcx] x € Qg} s minfex| x € Q?].

Thus optimizing over Qg provides a lower bound on the optimal value
of the related TSP. Furthermore, if the optimal solutien for the
subtour problem is integer, it is an optimal toer for the related
TSP. The lower bound provided by the subtour problem is, in
general, a substantially better lower bound than that provided by
the fractional 2-factor problem, but is more difficult to obtain.
The separation problem can be solved in polynomial time
for Qg {see Chapter 3), therefore we can pptimize over 02 in '
polynomial time by means of the ellipsoid algorithm (see [Gratschel,

Lovasz and Schrijver, 19817 for more details). However, there does

not yet exist a direct, i.e. nonellipsoidal polynomial time algorithm to

solve the problem of cptimizing over Qg. Also note that, unlike QE, the

aumber of constraints in the linear system far 02 is exponential 1in
the size of the problem.: Consequently, no standard implementation
of the simplex method éan be used to solve the subtour problem.

In this chapte? we describe a finite dual simpiex method

for the following linear program:

6.1
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minimize cx (6.0.1)

subject to Ax =b, Dx 2 d
0<x sy
where A € }WXE denotes the node-edge incidence matrix of Kn = {V,E),

D€ H§XE denotes the cut-edge incidence matrix of the cuts §(S} defined

by the members S of a family 5 of subsets of ¥, ¢ € BiE, and d € ]QS,

Eand b € Hy satisfy b 2 0, d 2 0, and u > 0 {see Section 1.6 for

u €M
a description of the revised dual simplex method). At each iteration of
the methed, the basis is broken into blocks, which is a common practice
in combinatorial simplex methods (for instance see the generalized upper
bound simplex method described in [Chvatal, 19837). Finiteness of the

method is ensured by applying dual lexicegraphy in a. form which is

considerably simplified computationally for this problem.
SxE

For the remainder of this chapter, let A € IRVXE, Demw

ceRE, e RS, be RY and ue RE

be defined as above.

Hote that the subtour problem (5.0.1) is a special case of
(6.0.1) for which b=2,d=2, u=1, and $={SCV| 3¢ |5 <n~3].

Another special case of (6.0.1) is the perfect b-matching
problem far which u = +=, d =1, and § = {SC V| b{S) is odd}. Thus it
is also a problem which, in general, has an exponential number of
constraints. This problem can be saived in poiynom1a1 time by applying
scaling techniques described in [Marsh, 1978] to the primal-dual
algorithm developed by J. Edmonds (see [Pulleyblank, 19737). Also, in
[Koch, 1979] a primal simplex method for the perfect b-matching problem

is described in which all1 the bases encountered have a special structure

which allows easy computations in the corresponding pivots.
Unfortunately, the method has no anti-cycling pivet rule to ensure
finiteness. Moreover, the specially-structured bases do not generalize
to the subtour problem (see Section 6.4).

The dual simplex method described here for (6.0.1) has two
major drawbacks in the general case. First of all, |S| may be
exponential in n, as is often the case when S is described implicitly,
tike "$ is the set of all cuts". Thus checking the primal feasibility
of some basic so]ﬁtinn for the cut constraints of {6.0.1) may, in
principle, require an exponential number of steps. However, for both
the subtour problem and the perfect b-matching problem there exists a
separation routine which, in polynomial time, can find an infeasible cut
constraint for a given basic soTution if there exists one (see Sections
6.3 and 6.4). Thus each iteration of the dual simplex method presented
here in general requires an exponeﬁtia] number of steps, but can be
performed in 2 polynomial number of steps in the case of the subtour and
b-matching problems. Note that at present no technique for performing
primal simplex iterations in a polynomial number .of steps is known for
the subtour problem.

Thé second drawback is that this dual simplex method is not
completely combinatorial. At any iteration it may be necessary to solve
a linear system with k equations and k unknowns where, in general,

k £ |E] - |V]|. HNote that this system is small compared to the originat

system of V| + |E] + |S| equations and unknowns, yet can be large



6.4 ‘ 6.5

enough to prcve‘difficu]t to solve computationally. However, it is max imize .vév ¥eby = eéE moll, * Sés 6dg (6.1.2)
possible to ensure k € |V| - 5 for the subtour and b-matching problems subject ta  y, +y, -, *+ E(6g| S € S,uv € §(S)) < Cuy
by keeping the sets corresponding to active cut constraints nested (see for all uy € E,
Sections 6.3 and 6.4). , u, z 0 for all e€E,
Finally, note that any linear program having the same form as 6502 i for all S€3

(6.0.1} but with general lower bounds x < & for someR,EﬂRE, L £ u, can be )

We refer to the three types of constraints in (6.1.2) as the dual

transformed into an instance of (6.0.1) using a transformation similar to .
edge constraints, and the non-negativity constraints for w and &

the one described in the intreduction of Chapter 4. Thus the method we
respectively.
tescribe for solving (6.0.1} can also be used on such problems. i
In order to develop the dual simplex method for (6.1.1) we

must do the following:
6.1 A DUAL STHPLEX METHOD FOR LINEAR PROGRAM (6.0.1)

i) determine what a basis for the Vinear prog%am looks like,
Recall that we wish to solve the linear program . . . . . .
ii) find a method for obtaining the corresponding basic primal

minimize (43 (6.0.1) solution,

subject to  Ax = b ii1) find a method for obtaining the corresponding basic dual
Ox 2 d ’ .
0 <x<u - solution,

. iv) describe how to perform a dual simplex pivot, and
This Tinear program can be written equivalently as . .
v) describe how to find an initial dual feasible basis.

minimize L ocox, (6.1.1) In addition to the above, we must ensure the sequence of
CcEE

pivots performed s finite. This is discussed in Section 6.2.
subject to  x(8{v)) = bv for all v € ¥,

x(5(5)) 2 d; for all €S .
i} The Bases
“Xg 2 U, for alt e € E,

By introducing slack variables 5, for every edge e € E and

X, 2 0 ' for all e € E.

Y far every S € §, we can rewrite the linear program (6.1.1) in

equality form as follows:
ihe dual linear program is
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minimize EE Co¥a (6.1.3)
e

subject to x(s(v}) = bv far all v € V,
Xy T Sy = Ty for all e € E,
x(4(8)) - Yg = c[S for all § € §,
XaaSg 2 0 for alt e € E,
¥g > 0 for all S € S,

The coefficient matrix and right-hand side for {6.1.3) have the form

shown in Figure {6.1.1}.

rows [
corresponding
to degree | A 0 0 b
constraints o
raws
corresponding
to upper- 1 -IiE! -IIE! Q -u
bound
constraints
rous
corresponding ¢ - _1l8]
to cut 0 0 I d
constraints
v e v ———
columns columns calumns
corresponding corresponding corresponding
to Xq to S, to Yg
Coefficient Matrix Right-Hand
Side

Figure 6.1.1

6.7

It follows from (4.1.1) that matrix A has rank |Vv|, thus
the coefficient matrix above has rank [V| + [E| + |S]|. Consequently
a basis corresponds to specifying |V] + 1E} + |S| of the variables

s e € E, and YS' S € S to be basic. As in the case of the

x
e*’e’
fractional 2-factor preblem, there are the following possibilities

for each é € E:

fa) both x, and s, are basic;
(b) X, is basic, 5q is nonbasic;
{c} x, is nonbasic, s, is basic;

{d} both Xg and S are nonbasic.

- In the corresponding basic solution we require X, =8,=0
for edges of type (d), imp]jing Ug ® 0 for these edges. Since we
assume u > 0, it follows that passibilities (a), (b}, and (c)
partition the edges of Kn into three sets, which we denote by J, B,

and 7 respectively. Edges e in B must have x, = u,, 5, = 0 in the

corresponding basic sotution, i.e., must have their values at upper
bound, Edges e in I must hgve L a, Sg = Ug-

Let KC S be the set of subsets in 5 such that the
correspanding slack variables are nonbasic, i.e. such that YS\K are
basic. Since there are |V| + |E| + |S| basic variables in total, it
follows that 2|d| + [B] + [Z} * |S) ~ [K] = {V] + 1E] + |S|. Thus
1J] = |V} + |¥|, since [d] + |B] + |2} = [E}. Furthermore, the
columns corresponding to Aar Sp for & € J and Ys for § € S\K must be

Tineartly independent. This is true if and anly if the matrix
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Ay
— (6.1.4)
Dy

is nensingular, where D& IRKXE is the matrix composed of the rows

of D correspondiag to cut constraints for K. Thus J can be

partitioned into edge sets T and L of size [V| and [K| respectively

such that T is the edge set of an odd l-forest in graph Kn‘

In summary, selecting a basis for the linear program
(6.1.3) is equivalent to specifying a quadruple (K,J,B,I} which
satisfies the following:

{a) KC§;

{b) 1d,B,2} is a partition of E;

{c) The matrix of (6.1.4) is nonsingular. Horeover, J can be
partitioned into edge sets T and L of size |V| and |K|
respectively such that the graph G' = (V,T) is én odd
1-forest.

The set of basic variables will then consist of
{¥g] S €S\K} U [xe,se| e€Jd} Uix,|e€B} U fsgle € 2}.

In a basis defined by (K,J,B,2), K represents the set of
tight cuts {i.e. x(&6(8)) = ds for all SEK), B represents the edges
e for which L is at its upper bound (i.e. Xg = uB), and 2
represents the edges e for which L is at its lower bound of zero

{i.e. x, = 0).

It is wseful to note that for any basis (K,d,B,I} of
(6.1.3) we must have [K| € |E] - |V| since |K{ = {J] - |V| and
JC E. In other words, the number of "tight cuts" required to

define a basic solution will never he greater than |E] - |V].

ii} Finding the Corresponding Basic Primal Solution.

For the remainder of the section let D € RKxE denote the
cut-edge incidence matrix for cuts &(S), S € K, and let 0 € :m?‘K*E
denote the cut-edge incidence matrix for cuts &(5), S € S\K.

Let the quadruple (K,J,B,2) define a basis for the linear
program (6.1.3). In the corresponding basic primal solution

(%,5.9), x € o

, S € Hﬁ, Y € IRS, we require the nonbasic variabies
EZ’ EB’ and ?K to equal zero, and the basic variables id’ EB' EJ,

51, ?S\K to satisfy the following:
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degree "]
constraints A AB 0 0 0

cut ~

constraints DJ
for S €K o]
upper-bound _v|B

canstraints 0 I 0 0 ¢
for e €EB —_—

[e=]]

upper-bound |‘3| |‘J|
constraints -1 0 -1 0 0 S3 | = -u
for e € J ]

upper-bound |Z|
constraints 0 0 0 -1

s
for e € 1 L

cut :
constraints i -Ilsi'|K]
for SES\K dJ B

=
=
[=]
o

Y5\ S\K

columis columis columns columns columns

corresponding corresponding corresponding corresponding corresponding
to Xy to xp to 5, to 57 to Yok

Thus (id, ;B' EJ, EZ, ?S\k) must satisfy

xj(8(v) N J} * xp(&(v) N B) = b, for alt v € Vv,
iJ(s(S) N J) + X (5(5) N B) = dg for all S € K,

X, = U, for all e € B,
Xy * 5y = Uy for all e € J,
S = Ug for all e € 1,

X1(6(8) 01 J) + xg(8(S) N B) - Yg = dg for all § € S\K,

6.11

As with the fractional 2-factor problem, we solve (6.1.5)
by decomposing the basis into blocks, then solving for the basic
variables a block at a time. In this way we are able to take
advantage of the combinatorial structure of the basis (K,J,B,2).

From (6.1.5) we easily obtain EZ = u; and EB = ug. Then
letting b' € Biv he defined by b; = bv - ug(s(v) N 8) for all v € ¥
and Tetting d' € RS be defined by d¢ = dc - up(8{S) N B) for all

S ES, it follows that EJ is the unique solution to

bl
1l s (6.1.6)
J K

(=11

We solve for §J by further decomposing the basis.
Partition J into edge sets T and L of size |V] and [K| respectively

such that the graph G' = (V,T} is an odd 1-forest. Then we salve

A AL -)(TW -b !

T | O VL dg

=

or equivalently

1|T| -1

-1

- — = (6.1.7)
d

|

B

> -

T




From the top |V| equations of {6.1.7) we obtain

S S |
xp = Ap b’ = ATA X, . (6.1.8)

Substituting (6.1.8) into the bottom L equations gives
(B - B.(AZta ))x, = d) - G.AZ b
L7127 K T 7

. SRS T -
Letting B = DL - DT(AT AL) and p = dK - DTAT b', we then find X
by solving Bx =p. Then we use ;L in {6.1.8) in order to obtain
;T' Finally, from §J = (ET,iL] we can calculate EJ and ?S\K'

In order to solve BxL = p we must find B and p. We
obtain w = A;lb' by solving ATw = b* using the odd 1-forest
structure of T and Algorithm (4.1.2). Then p € =K is easily obtained
by calculating pg = dg - w(8(5) N T) for all S € K.

To obtain matrix B € B{KXL

we must calculate each of the
R S | -1 -
entries in DT{AT AL). Each column k© = AT Ae' e €L, of ATIAL can
be calculated using Algorithm ({4.2.10) and the even cycle
or dumbbell formed when edge e js added to the odd 1-farest
G' = (V,T). Thea for each e € L, the entry of ﬁTke correspanding
to S € K s simply x{®)aqsy n 7).
Once we have found ;L by solving Bx, = p, we find ET by
: . v . . o ohr L
salving Apxp = T, where f €ER is defined by f= bv
for all v € V. This can be done using Algorithm (4.1.2) and the odd

x (8(v) N L)

1-forest G' = (V,T).

6.13

In summary, we calculate the basic primal solution

corresponding to the basis {K,J,B,7) as follows.

(6.1.9) Algorithm to calculate primal solution (X,5,¥) for basis

(,J,8,7)
(1) Let EB = ug and iL =0,

(2) Partition J into edge sets T and L of size |V]| and |k]
respectively such that &' = (V,T) forms an odd l-forest.

v

(3} Let b' € IR be defined by b; =bh - uB(ﬁ(v) N B) for all v € ¥

v
and let w € IRT be the unique solution to ATw = b' found by using
Algorithm {4.1.2) and the odd 1-forest &' = (V,T}). Then define
p € mK by Pg = dS - uB(ﬁ(S) N By - w{&(S) N T) for al1 § € K,

(4} For every e € L calculate k& = A}lAe by using the circuit
formed when e is added to T and Algorithm (4.2.10).

(5) For all S € K and e € L, define each entry 3 e of matrix

pe T by a_ =0 - k(s(S) A T), uhere

{1 if e€s(5)

0 otherwise.

S,

g =

(6) Calculate the unique solution EL to RxL = p.
(7) Define ¥ € ]RV by fv = bv = ug(s{v} N B) - iL(a(v} niLy for all
v € V. Then calculate the unigque solution ET to ATXT =f using

the odd 1-forest &' = (V,T) and Algorithm (4.1.2).



{8) Let 5

Sy Uy T Xy, Sg = 0, S7 = Uz, YK =0, and let

Tg = dg - ug(§(SINB) - X (s(S)NJ) for all S € S\K,

Note that in the above algorithm, the‘va1ues of all basic
values corresponding to a basis (K,J,B,I) are found combinatorially
using the structure of the basis with the exception of ;L’
determined in step (6). We calculate §L by solving the system
Bx, = p which has [K| equations and |K| unknowns. In general, it is

possible for |K| to be as large as [E] - |V|. However, for some

specific instances of linear program (6.1.3), and in particular for

the subtour problem, it is possible to restrict the size of K to be at

mast |V| -~ 8 by ensuring K is a nested family {see Section 6.3).
Also note that, in general, the size of S may be

exponential in terms of the size of V, and thus calculating fS\K

requires an exponential number of calculations. However, in

practice it is not generally necessary to calculate fS\K'

ii1} Finding the Corresponding Basic Dual Soluticn.

Given the basis of (6.1.3) defined by (X,J,B,1}, the

correspoadiag basic dual solution (y,u,8), vy € ®R,ie i, e

must satisfy

tight dual
constraint
edges e €

tight dual
constraint
edges e €

tight non-
negativity
constraint

tight non-
negativity
constraint

tight non-
negativity
constraint

S5\

columis
correspond
ing to y

Thus we re

Y, *

=
]

(=]}
[}

It follows

{6.1.10)
s for t st _tl9] mt y
J AJ DJ 0 I 0 BJ -:;-— £
K —
t ) st j_7IB| =t
; for AB DB 1 0 0 DB ug g
-1l -
s for u) 0 0 0 I 0 ] uy |= 0
4 —
{ o o | o | o [-rlZl] o w | o
s for g z _
S1-1¥| .
o oo | o] o [ s 0
s for S\K
columns columns columns columns cGlumns
- gorrespnnd— correspond- carrespond- correspond- correspond-
ing to S Ing to ug ing to vy ing to u; ing ta gk
quire (y,u,8) to satisfy

Yy ~ My, * I8l S €K, uv € 5(S)} = ¢, for all uv € J U B,

uy
6 for all j€J U Z, and
0 for all § € S\K,

that (§,Ek) can be calculated by solving

J DJ -1 = 1c, (6.1.111




after which we can calculate ug using

By ;'u + ;v + x[SSI $ €K, uv € §(8)) - ¢, for all uv € B.

In order to solve {6.1.11) we once again take advantage of
the fact that we can partition J into the edge sets T and L of size
|¥| and |K| respectively such that G* = (V,T) is an odd l-forest.

Thus we solve

t | ft
AT DT y o1
t | st
A TR L [
or eguivalently
T t, -1zt t.-1
R TP L w4l
- = (6.1.12)
at
AL 0 S °
From the top [T| equations of {6.1.12) we obtain
_ -l = -1
y = cfAp - S DA (6.1.13)

Substituting {6.1.13) into the bottom |K| equations gives

= m el L _ -1
S D = DpA AL = o - cpRpA

. _ -1 -1 .
Letting B = DL - BTAT AL and p = C - cTAT AL , we then find GK by

sotving 6KB = p. Then we use SK in {6.1.13) in order to obtain y.

. In order to solve §.B = p we must find B and p. We obtain

W o= cTAT1 by solving wAT = o using the odd l-forest structure of T
and Algorithm (4.1.3). Then p € IRL is easily obtained by

calculating p, = €, - W, ~ ¥, for all edges uv € L,

One method for obtaining B € RF*: has already been
described in Algorithm (6.1.9), which s used to find the current

basic primal solution. We can also obtain B by first calculating

each of the rows of ﬁTA}l € R*Y, For each S € K, let rS denote

the row of ﬁTA}l indexed by 5. Then for every edge uv € L, the entry
rSAL indexed by uv is simply ri + ra.

We can calculate r> for each S € X in one of the following

S

two ways. First, wé can Tind rs by solving rSAT = d°, where 35 is

defined by

i 1 ife€s{S)NT
a2 =
e 0 otherwise.

This can be done using the odd 1-forest 6' = (V,T) and Algorithm
{4.1.3).

Alternatively, we can find r3 by first ca1culating each
of the rows of A7l € WX
can be found using Algorithm {4.1.8) and the tree formed when edge e

is removed from the odd 1-forest 6' = {V,T). Then we have

PS = o8 e E8(S)NT),

indexed by edges e € &(S) N T. Each of these



where a® denotes the row of AT1 indexed by edge e.

Once we have found Sk by solving &B = p, we find ¥ by

solving yAy = f, where f is defined by fo = ¢y - L(bg| & € &(S))

for all e € T. This can be done using Algorithm (4.1.3) and the odd

1-forest G*

{v,7}.

In summary, we calculate the basic dual solution

corresponding to the basis (k,J,B,Z) as follows.

(6.1.14) Algorithm to calculate dual solution (y,u.3) for basis

(1)
(2)

(3)

(4)

(5)

{6)

(x,J,8,7).

Let GJUZ = {0, and GS\k =0,
Fartition J inte edge sets T and L of size |[¥] and |k|
respective]y such that 6'(V,T) forms an odd 1-forest.
Let w € ﬂ{v be the unique solution to wAr = found by
using Algorithm (4.1.3) and the odd 1-forest §' = {(V,T}. Then
define p € RL by puy = cyy -~ wy - w, for all edges uv € L.
tet a® € RY denote the row of A;l € ™ indexed by edge e € T,
Then for every e € T, calculate a° using Algorithm (4.1.8) and
the tree formed when edge e is removed from the odd 1-forest
&' = (V,T).
For al1 S € K, calculate r> € R defined by

rS e r(a®| e €45(5) N T).

For all S € K and uv € L, define each eatry BS v of matrix

B € REL by 8 =8 - (rg + rS) , where

S,uv

{? it uv € §(5)
4 =

0 otherwise.

(7) Calculate the unique solution SK to §,8 = p.
(B) Define f € ® by f, = ¢, - E(ES| S e k,e € §{S)} for all e € T.

Then calculate the unique solution y to yAr = f using Algorithm

I3

{4.1.3} and the odd 1-forest G' (v,T).

(9} For every edge uv € B calculate ﬁuv using

Bay ® Ty * Ty * EBg] S € Kouv €5(5)) - ¢ .

iv) Performing a Pivot.

At each iteration of the dual simplex method we are given
a dual feasible basis for linear program (6.1.3) which is defined by
the quadruple (k,J,B,l]. We will also assume we are given a
partition of the edge set J into the sets T and L respectively such
that T is the edge set of an odd 1-forest. As part of the pivot
procedure we will obtain such a partition for the next iteration.

~First We ﬁust check to see if the current basis (k,d,B,Z)
is primal feasible, i.e. check to see if the correspanding primal
solution as given in Algorithm (6.1.9) satisfies linear program
(6.1.3). If it does, then the current basic primal and dual
solutions are optimal for their respective problems. Otherwise one

of the follewing necessarily occurs:



(a} X, <0 for some edge e € J.

{b) 5, < 0 for some edge e € J, or equivalently Xg 2 Uy for
some e € J. .

{c} yg < 0 for some subset S € S\K, or equivalently x(§(S)) < dg
Tor some § € S\K.

In case (a) we would choose the basic variable x, as our
leaving variable, and in case (b) we would choose the basic variable
s, as our leaving variable. In either case, this corresponds to
edge e leaving J.

In case (c) we would choose the basic variable YS to leave
the basis. This corresponds to 5 joining the set K of tight cuts.
In all three of the above cases we then allow the dual
constraint correspoading to the leaving variahle {which is currently
tight) to become slack by some amount t 2 8. Letting (y,u,8) be
the curreat dual solution and letting A' denote the coefficient
matrix of (6.1.10), the new dual solutiom in terms of t is defined
by

[y 288 ) = [Va8gamdgy) - ta
where a denotes the row of (Jl\')_1 correspanding to the leaving
variable chosen.

We calculate a = [;,5K,ﬁ,§S\K] by solving
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5
iy q
Al —TB— = —l-)— (6.1.15)
ild r
AED
i J _55\|'<_ | 2|

where q € ]Rd, r € HIJ, and z € IRS\K are defined by

1 if Xy is the leaving variable

q =
e 0 otherwise,
1 if Se is the Teaving variable
r =
& 0 otherwise,
1 if g is the leaving variable
and Z =

0 otherwise

{i.e. the right-hand side of (6.1.15) has value 1 in the component
corresponding to the dual constraint being made slack and value 0
elsewhere).

We solve (6.1.15) a block at a time. From the structure
of A' it follows immediately that ﬁJ =r, EZ =0, and bg, = z.

We then find (},Sk] by salving
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=1}
ey
I[
n
o

(6.1.16)

where h = q - r +'[ﬁ5)z. Thus h = q if X, 1s the leaving variable,
h =-rif Sa is the leaving variable, and if Yg is the Teaving
varfable h is the column of 55 correspanding to S, i.e, h € ]HJ is

defined by

1 if e € &(5)

e 0 otherwise.

We salve (6.1.18) ﬁsing the partition T,L of J which is
given, and steps (3)-(B) of the dual solution a]gurithm'(6.1.14}
with the right-hand sides Cr -and C replaced with hT and hL
respectively. . We can then calculate GB as in step (9) of Algorithm
{6.1.14) using cg = 0.

Once we have found 3 = [},Sk,ﬂ,@s\k], the new dual

solution in terms of t is given by
EY:ﬁkoU:GS\k] = [)’:Gknu:ss\k] - t[y,ﬁk.u-ﬁs\{(]

where {i,sk,ﬁ,és\k] is the current basic dual solution. We then
raise the value of t as high as possible while still maintaining
dual feasibility. There are the following three types of dual

constraints which may restrict t:

(1} an edge constraint for some edge e € 1
(i1} a non-negativity constraint for some variable Has B £ B,
(111} @ non-negativity constraint for some variable 8g, S € K.

Defining the reduced cost vector ¢ € EF by

Cup = Sy (yu A E(GS] S €K, uv € §(5)),

it follows that (y,u,8) will be dual feasible if and only if t
satisfies

(1) ¢, 2 -t(&u + §v + z(§S| $ €K, uv € §(S))) for all uy € 1,

(1) ©,, S -ty, * J, + E{5g| S € K, uv € §(5))) for all uv € B, and
{iii) &2 tdg for all S € K. _

We choose t as large .as possible, subject to the above

restrictions. If t is restricted by an edge constraint for an edge
e € 7, we choose X, 85 the_variab]e te enter the basis and we add e
to J. If t is restricted by a non-negativity constraint for a

variable Hoat® € B, we choose s_ as the variable to enter the basis

g
and we add e to J. Finally, if t is restricted by a non-negativity
constraint for a variable 53-5 € k, we choose YS as the variable to
enter’ the basis and § is added to S\K, or equivalently S leaves K
and the corresponding cut constraint is no longer required to be
tight.

The only part of the pivot procedure which remains to be

discussed is the maintenance of the odd 1-forest &' = (V,T). This

odd 1-forest is only affected during the pivet if the leaving
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variable chosen is Xg OT 5, for some e € T, in which case the
corresponding edge e s removed from T. We deal with this
immediately after such a leaving variable is chosen rather than at
the end of the pivot as this simplifies the calculation of y and EK
in {6.1.16) in some cases.

If the leaving variable is Xy OF 5, for some e € T, we
try to find an edge f € L such that (T\fe}} U ¥ forms the edge set of
an odd 1-forest, i.e. we try to find an edge in L which we can "swap"
with e. To do this, we first calculate a®, the row of A}l
corresponding to e. We cam find a® using Algorithm (4.1.8) and the
tree formed when edge e is removed fram the odd l-forest G' = (V,T).
Then it is clear from the alternating structure of a® (see
Figures 4.1.5 and 4.1.6) that edge uv € L will form the edge set of
an odd 1-forest when added to T\[e} if and only if aE + as # 0,
i.e. if and anly if aEAuV £ 0.

Consequently we calculate aEAuv = as + as for each uv € L.
If we find some edge uv € L such that aeAuv # 0, we replace the
partition T,L of J with the partition TiL', where
T' = {T\fe}) U fuv} and L* = (L\{uv}} U {e}. Thus our Teaving
variable stays the same, but the corresponding edge leaving J is now
in L, not T.

If we cannot find an edge f € L to swap with the Teaving
edge e € T, then aeAL = 0. In this case solving SKB = p becames

unnecessary since p =0 - aeAL =0 . Hence'5K = 0, and the

non-negatiyity constraints for the variables GS,S €K will not
restrict the value of t in the pivot. Consequently the entering
variabte will be Xe OT S¢ for some edge f € Z U B, and J becomes
{Jv{e}) U {f}. Since it is always possible to find a subset of edges
in J which forms an odd l-forest, it follows that we can replace T
with (T\[e}) U [f] in our partition of J.

Given a dual feasible basis (K,J,B,Z) for linear program
{6.1.3) and a partition T,L of edge set J such that iT| = |V] and
G' = (¥,T) is an odd l-forest, the steps of a dual simplex pivot can

be summarized as fallows.

{6.1.17) Algorithm to Perform a Pivot.

[i] Calculate the values of the primal variables iJ corresponding
to basis (k,J,B,Z) as in Algorithm (6.1.9), steps (3)-(7),
and calculate the values of the dual variables y and EK
corresponding to basis (k,J,B,Z) as in Algorithm (6.1.14),
steps (3)-(8).

(2) If

i) x, 20 for all e € 4,
1) EE Sy, foralle €,
and i) X;(6(S) N ) + ug(6(S) N B) 2 dg for all SE S

then stop; the current basis is optimal. Otherwise do one of

the follaowing:



{3)

(4]

i} Choose edge e € J such that ;e < 0, and let J'= J\fe},
B'= B, 2'= 2 U fe], and K'= K. 6o ta step (3).
ji) Choose edge e € J such that ie > u,, and let
J's J\[e}, B'=B U {e}, 2'=Z, and K'= K. Go to
step (3).
i51) Choose M € S\K such that x;(s(H) N J) + uy(§(M) N B) < dy,
and let J'=J, B'=B, I'= I, and K'= K U {H}.

et T'= T, L'= L, define h € R by

h, =

{? if edge § € 6{N)
J

0 otherwise

and go to step (5) to calculate y and Sk.

If e €L thea let T'= T, L'= L\fe], define h € R° by

1 ifj=e
h, =
J 0 otherwise,
and go to step {5) to calculate § and Sk. Utherwise, e € T, and

we let a° € ]RT

a® using the tree formed when edge e is removed from the odd

denote the row of A}l indexed by e. Calculate

1-forest &' = (V,T} and Algorithm (4.1.8).

e

If a, * as # 0 for some edge uv € L, let T = (T\{e}} U [uv},

Tet L = (L\{uv}} U {e} and go to step {3). Otherwise, let Ek =0,
§ = ae, T'= Tvfe}, L'= L, and go to step (6) to choose the

value of t.
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(5) Find B € KL and p € bl as in Algorithm (6.1.14), steps (3)-(6},

with ) replaced by h. Calculate &K by solving ;KB =p , thea
calculate y by selving ;AT = f, where f € ® is defined by

fj =hy - z(SS[ S €K, j€&(S5)) for all edges j € T. Go to
step (6) to calculate the value of t.

{6) For all edges uv € J U B caiculate ¢ and ¢,y defined by

Cuy = Cyy = 7y * ¥y * E(Bg] S €K, uv € 8(5)))

and Cuy = (yu Yy, z(as} S €K, uv € 5(8)))-

Then calculate

I i
, & min { Ay jer, &, <0y,
Cj ]

=+
b

-c, -
t,=min { =L} jes, c;> 0,

2
c.
]
3¢ .
and t3 =min { — | $ €K, §g > 0} .
5
S
let t =

min {tl'tz't3}‘
{7} Do one of the following.

i) Choose an edge f € I such that t = Ltet J"=J' U {f}],

C
f

B'= 8', 2"s I'\[f}, and K"= X', If {T'| = |V| - 1,

then et T"= T'U {f} and L"= L'. Otherwise let T"= T',

and L"= L U {f}.



-t
ii}) Choose an edge T € B such that t = :f. Let J"= J' W [f},
c
f
Be= B'\[f}, I"= I', and K"= K', If |T'| = |¥] - 1,

then let ¥'= T'U {f} and L"= L'. Otherwise let T'= T*,

and L"= L U {f}.

iii) Choose a subset of nodes N € K such that ¢ = . Let

&-a]
= =

J*=J', B"= B', I"=1', and K"= K'\fN}.
(8) Define the new dual feasible basis to be (K",J",B",1"), and
the new partition of J" to be T",L" where |T"| = |V]| and

&' = (V,T") is an odd I-forest. The pivot is now complete.

Note that in step (2} of the piéot operation we may need
to check primal feasibility for an exponential number of
constraints. However, for many specific instances of linear program
{6.1.13) and in particular for the subtour problem, it is possible
to check this in polynomial time using a separation routine (see
Section 6.3}).

Also note that in steps (1) and (5) of the pivot we are
required to solve a system of [K| equations and |K] unknowas. 1In
general, |K| ¢ }E[ - |V]. However, for some specific instances of
linear program (6.1.13), and in particular for the subtour problem,
it is possible to restrict the size of K to be at most |V| - 5 by

ensuring that K is always a nested family {see Section 6.3}.

v} Finding an Tnitial Dual Feasible Basis

To find an initial dual feasible basis for linear program
(6.1.3), we first solve linear program (4.2.1) using the simplex
method described in Chapter 4. Let the optimal basis found for
(4.2.1) be defined by the edge partition (7,B,Z). Then letting
K =0 and J = T, the basis defined by the quadruple (k,J,B,Z) is a
dual feasible basis for (6.1.3). The corresponding initial

partition T,L of J is defined by T = J, L = &.

6.2 ENSURTNG FINTTENESS

We can ensure finiteness of the dual simplex method
described in Section 6.1 for the linear program (6.1.1) by applying
the dual lexicographic anti-cycling method described in Section
1.6, We app1¥ this method to the dual Tinear program {6.1.2}, which

can be represented by

{y.,u,8] P < [c,0,0] ,

where P is the coefficient matrix shown in Figure 6.1.1.

When we perturb the right-hand side of (6.1.2), the
corresponding coefficient vectors will have length [E| + |E| + |S].
We assume the first JE| compoﬁents of these vectors correspend to
the dual edge constraints, or equivalently, we assume the first |E|

components are indexed by E in some prescribed ordering chosen at
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the beginning of the dual simplex method. Then given any basis for
(6.1.1) and a leaving variable, we describe how to calculate these |E|
companents far the correspoading coefficient vectors and show they are
sufficient for determining which coefficient vector is lexicographically
minimum, Note that shortening these vectors by [E] components is
pessible far any linear program with upper bounds (see [Murty, 1983]).

Let the current basis bé defined by the quadruple (K,J,8,7)
and let A' be the corresponding coefficient matrix of (6.1.5). Note
that the rows of {A'}‘l carrespond to the basic primal varijables. We
let a represent the row of [A']_1 corresponding to the current leaving
variable. Then it follows from (1.6.5) that the first |E] components of
the coefficient vector corresponding to a particular dual constraint j
are given by

_Log (6.2.1)
- P_
*y

where P is the coefficient matrix shown in Figure 6.1.1, and

1 € RE §s defined by

-+
[SH
"

3 the components of (A')_IP corresponding to the
basic variables X3

—
(AR
n

3 the components of [A')_le corresponding to the
basic variables Xp»

and for all edges z € 1,

j 1 if j is the dual edge constraint for z
£ =
z 0 otherwise.
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We describe how to calculate fj for each of the three
types of dual coastraints j which correspond to non-basic primal

variahles,
Case 1. j i5 a dual edge constraint for some edge e € Z,

To find £ we must calculate the components of (A')-lpj

correspoading to 3 and Xp- These are found by solving

A‘J AB h

= - x‘] -

DJ DB t (6.2.2)
B — I

0 -II I Xp g

where B € :meE is the cut-edge incidence matrix for cuts

V' t € IRK, and g € I{B are defined

corresponding to K, and h € R
by h= AE, t =‘De' and g = 0.
Clearly Xp = 0. We solve for X, by using the current
partition T,L of J and steps {3)-(7) of the primal solution
atgorithm (6.1.9) with Ug: b, and dk replaced by 0, h, and t

E

respective]y; Thus fj € IR is defined by

1 ifi=e
J - 4. e
fi X ifigd

0 otherwise

for all 7 € E.



Lase 2. j is a non-negativity constraint for u,, & € B. In this
case we find the companents of (A’)'le corresponding to Xy and g
by solving (6.2.2) with right-hand sides h = 0, t = 0, and g defined
by
-1 ifi=e
%~ 0 otherwise.

for all i € B.

Clearly Xg = 0. Me salve for Xy by using the current
partition T,L of J and steps (3)-(7) of the primal solution

algorithm {6.1.9) with Ug» b, and dK replaced with g, 0, and 0

respectively. Thus fJ € ]RE is defined by
) -1 ifi=e

A if o4
fi % ified

0 otherwise

for a1l i € E.

M € K.

Case 3. j is a non-negativity constraint far GM'

In this case, we find the components of (A')_le
correspanding to X and Xp by solving (6.2.2} with right-hand sides

h=20,qg=20, and t defined by

=1 ifs=H

0 otherwise

for a1l § € K.

Clearly xg = 0. MWe solve for x; by using the current
partition T,L of J and steps {3)-(7) of the primal algorithm (6.1.9)
with ug, d, by replaced with 0, 0, t respectively. Thus £§ € IF¥ is
defined by

Xy ifi€d
1] otherwise

for all 1 € E.
After calculating fl, we find the vectors defined in

{6.2.1) by finding EPj and then calculating m%—— . e have
-aP.

- J
already calculated an as part of the pivot algorithm (6.1.17).
The vector a = [;,SK,G,ﬁs\K] as calculated in Section 6.1, and thus

aP. is defined by

J
Euv if j is the dual edge constraint for uv, uv € 2
EPj = 9 'Euv if j is the non-negativity constraint for
Hypr UV €B
“éS if j is the non-negativity coastraint for
L

5, S €K

where for all uy € J U B, Euv = ;u + §v - z(SS| S € K,uv € 6(5)).

Since the coefficient matrix of (6.2.2) is noasingular,

5 h
and no two of the right-hand sides 2 = [f] for dual constraint j
a

are multiptes of each other, if follows that the vectors »%—— ngB
-aP.

are distinct for all dual coastraints j corresponding to non-basic
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primal variables. Thus the first |E| components of the coefficient
vectors given by (6.2.1) are sufficient for determining the entering

variable using the dual lexicographic method in the case of a tie.

6.3 A SIMPLEX METHOD FOR THE SUBYOUR PROBLEM

The subtour problem {5.0.1}) is a special case of linear
pragram (6.0.1) for which b = 2, d = 2, v = 1, and
S={SCV|3< 5] £n -3}, Thus the dual simplex method described
in Sections 6.1 - 6.2 can be applied to this problem. Primal
feasibility can be checked in polynomial time at each iteration of
the method using a separation routine for subtour canstraints {see
Section 3.3). Moreover, by keeping the set k which carresponds to
tight subtour constraints nested at every iteration, it is possible
to improve the computational effectiveness of this dual simplex
method for the subtour problem (see Section 5.1 for an introeductian
to nested families of subsets).

In our initial dval feasible hasis we have K = 8 which is
trivially nested. Then to ensure k stays nested at each iteration,
we choose the leaving variable in step (2} of the pivot algorithm
(6.1.17) more carefully,

Recall that for a given basis (k,J,B,Z) with correspending
primal solution x, there are three types of primal inequalities

which can be violated:

i) ie 2 0 for some edge & € J,

ii) ie €1 for some edge e € J,
iii) x(8{(S)) z 2 for some S € S.

We choose the leaving variable for the current iteration by choosing

a violation of one of the above, if one exists.

If we choose a set $ for which iii] is violated, we must
add the set S to K. Thus we desire to find such a violation for
which 5§ U K is nested. This can be obtained from any violation of
111) by repeated applications of the following uncrossing algorithm,
which requirés that 0 < g < 1 (i.e. it requires there be no

violated inequalities of types i) or ii)).

{6.3.1} \Uncrossing Algorithm

Let the basic primal solution X corresponding to the
curreat basis (k,J,B,Z) satisfy 0 < id $1, Tet S, € S violate
ii1), and suppose 5 crosses some set S2 € K.
Calculate o) = i(s(sl N5,)}) and a, = i(a(sl Us,)).
Since ay + a, = i(a(sl N S,}) + i(s(sl Is,))
= i(.s(sl)) + E(a(sz)) - 25((.5(51) N §(S,1)V6(S) N S,))
4 i(a(sl)) + 2
< 4,

it follows that either @ < z, a, < 2, or both. If oy < 2, then let
§* = S1 N'5,, otherwise let §* = S 0 5,.



Nete that the subset §* found in Algorithm (6.3.1)
satisfies 3 ¢ |S*]| £ n - 3 since X € 1. Thus $* € S and violates
iii). Moreover, the number of sets in K crossed by 5* is strictly
less than the number of sets in K crossed by Sl' ConsequentTy,
after at most |kf repetitions of Algorithm (6.3.1) we will abtain
5 € S such that § vialates iii), and k U S is a nested family.

The separation routine for subtour constraints runs in
time 0(n4) {see Section 2.3) and for general problems,
|k] $ [E] - |V]. Thus checking primal feasibility for the subtour
prablem where K is required to remain nested requires time O(nqj,
where n = |V].

The following.theorem shows that if K is a nested family

of the sart used in the algorithm, its size is restricted.

(6.3.2) Theorem. Let (k,J,B,Z) be a basis for 1inear program
(6.0.1) such that KC {SC V] 3 ¢ |5| s a - 3} and K is a nested
family. Then |k| $n -5, wheren = |V},

Proof. Since cut constraints are equivalent for SC Y and § = VAS,
we can assume S € K implies S € K. Let K' - K U {§} for some maximal
S € K. Thea K' must contain at least two minimal members 51 and Sp.

It follows that |Sq| = |S2| = 3, and we Jet S} and S5 be subsets

of cardinality twe in S1 and 52 respectively.

6.37

Let € =K' U {51,52] UfviU({fvi|v € Vl. Then C is a
nested family such that [C] = |k| +na+ 4, Thus it follows that

|K| €n - 5 by Lenma (53.1.4}.

Recall that in the dual simplex method for linear program
(6.0.1), we are required to solve systems of |K| equations and |K]
unknowns. Ia general |K| < [E| - |¥]|, but for the subtour problem
we can ensure |K] € [V| - 5 by keeping K nested, thus improving the

computational effectiveness of the method.

6.4 A SIMPLEX METHOD FOR THE PERFECT b-HATCHING PROBLEM

The perfect b-matching problem is a special case of linear
program {6.0,1} in which d = 1, u = += (i.e. there are no
upper-bound constraints), b > 0 and qinteger, and § = S C V| b{S} is
odd, 3 ¢ |$| $ n - 3}. Thus the dual simplex methed described in
Sections 6.1 - 6.2 can be applied to this problem, where fof every
basis (K,J,B,1) we have J = 8. Primal feasibility of the
corresponding cut constraints can be checked at each iteration in
polynomial time using a separation routine developed by [Padberg and
Rao, 19827 which is based on a modification of the -procedure of
[Gomory and Hu, 19617 for fiading a minimum cost cut in a graph.

As in the case of the subtour problem, we can improve the

computational effectiveness of this dual simplex method for the
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perfect b-matching problem by ensuring the set K corresponding to
tight cut constraints stays nested at every iteration {see Section
5.1 for an introduction to nested families of, subsets). 1In the
initial feasible basis we have K = @ which is trivially nested.
Then for any given basis (X,J,0,1) with corresponding primal
solution x, there are two types of primal constraints which can be
violated:

i) Ee > 0 for some edge e, and

11} x(&(%}) 2 1 for some § € §.
We choose the Teaving variable for the curreat iteratien by choosing
a violation of one of the above, if one exists.

Assuming our current set K is a nested family, we ensure
it remains nested in the next iteration by only choosing violations
of i1) for which the corresponding set S € S does not cross any
members of K. Given any vioplation of ii) we can obtain one for
which 5 U K is nested by repeated applications of the follawing
uncrossing algorithm, which requires EJ 2 0 (i.e, it requires. there

be no violations of 1)).

6.4.1 LlUncrossing Afgorithm

Let the hasic primal solution X corresponding to the
current basis (K,J,0,71} far the perfect b-matching problem
satisfy EJ 2 0, let S € 5 violate ii), and suppose $ crosses same

set T € K.
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Since b{S) and b{T) are both odd, it follows that either

b(S 0 T) and b(S U T) are both odd, or else b(S\T) and b{T\S} are

both odd.

Case 1. B(SNT) and b{S U T) are odd.

Calculate a) = X(5(S N T)} and ay = X(5(S U T)}).

Since
ap +a, = X(6(SNT)) + x(s(SUT))
= x(6(S)) + X(8(T)) - 2x({6(5) N &{TIIN&(S N T))
< X(&(5)) + 1
<2,

it follows that either ay < 1, ay < 1, or both.
S* = SN T, otherwise let S* =S U T.

Case 2. DB(S\T) and b(T\S) are odd.

If ap < 1 then let

Caleutate oy = x{8(S\T)) and o, = x(6{T\S}).

X{6(S\T)) + X{&(T\S))

< X(8(8)) + 1

< 2,
it follows that.either ay < 1, o, < 1, or both.
§* = S\T, otherwise let $* = T\S.

X(8(S)) + X(8{T)) - Zx{6(S N TI\(S(S\T} U §(T\8)))

if ay < 1 then let



Since the subset 5* found in Algorithm (6.4.1) violates
i) and b{5*) is odd, it foltows that 3 < [S*| £ n - 3 and thus
S* € S. Moreover, the number of sets in K cressed by 5* is strictly
less than the number of sets in K crossed by $, since K is nested.
Consequently, after at mast |K| repetitions of Algerithm (6.4.1)
we will chtain § € § such that § violates i7), and K U § is a nested
family.

Recall that in the dual simplex method for linear program
[6.0.1) we are required to solve systems of [K| eguations and |¥|
unknowns at each iteration. In general, if K is not nested thea
[K| < |E| - 1V|. However, in [Pulleyblank, 19731 it is shown that
if K is a nested family of subsets of the sort used in the dual
" simplex method for the perfect b-matchiag problem, then
|K| s l!l?:_l_ Thus by ensuring k ié always a nested family,
we can improve the computational effectiveness of this method.

Ancther simplex metﬁod for the perfect b-matching problem
appears in [Koch, 1979]. This method is a primal simplex method
which encountsrs only specially structured bases, called bundles,
which allow easy computations in the corresponding pivots,
Unfortunately, the method has no anti-cycling pivot rule to ensure
finiteness, and none of the general anti-cycling methods can be
applied without destroying the basis structure required.

Let FC S be a nested family, and for any M € F let

51’52""‘St be the maximal members of F contained in M, Then the

6.4%1

surface gragh_GF of F is the graph obtained from &' = (F,E 1 v(F)) by
“shrinking" each S € {SI,SZ,...,St} into a node Vg called a
pseudo-node; i.e. V[EF] = (M\(S1 i} 52 g...u St)) i Ivsl,vsz,...,vst},
E(GF) = (EnN Y(RIIN(Y(S)) U Y(SZ) U...0 ¥(5;}), and 8{vg) in G
equals &(S) in G' for all S € {51’52""’St}‘

F

A bundle corresponds to a basis (K,J,0,I) far the perfect
b-matching problem which satisfies the following:
i1} K is nested.
ii) For all S € K U {V}, the graph G = (V(GS),J N E(Gg)) is
an odd 1-forest.
In [Kach, 1979] it is shown how the structure of a bundle can be
used to find the corresponding primal and dual basic solution
recursively. It is also shown that
{a) given any non-optimal feasible bundle, there always exists a
primal simplex pivot to another feasihle bundle, and
(b) for any objective function cx, ¢ € IRE, there exists a bundle
for the associated perfect b-matching problem such that the
corresponding basic primal and dual solutions are optimal.
It is not always possible to find an optimal basis for
the subtour problem which corresponds to a bundle. Showa in
Figure 5.1.1 is a vertex of Q§k+4, where k 2 3 is a positive
integer (see Theorem (5.1.1)}. This vertex has a unique
correspondiag basis ([5),Jd,B,2) shown in Figure 6.4.1, The surface
graph GV for this basis is shawa in Figure 6.4.2, and is clearly not

an odd 1-forest.



o—0 carresponds to e € J
oa—o corresponds to ¢ € B

- edges e € I are not shown

Figure 6.4.1

Figure 6.4.2




CHAPTER 7

Computer Implementations and Results

In this chapter we present computational results abtained
from an implementation of the simplex method for the fractional
2-factar problem described in Chapter 4. We also present the
computational results of an implementation of the dual simplex
method for the subtour problem {described in Chapter &) in which,
rather than iacluding all the subtour constraints, we instead
include only a small subset of them which are predicted to be
“important" cuts. If the optimal solution obtained is not a member
of Qg, we proceed to add subtour constraints which we obtain using

an efficient heuristic procedure with very favourable results.

7.1 AN TMPORTANT SET OF CUTS

To solve the subtour problem using the dual simplex method
described in Chapter 6, we first obtain the optimal solution to the
corresponding fractional 2-factor problem, then add all the subtour
constraints to our linear system and apply the dual simplex method.
At each iteration of the method we check primal feasibility using,
when necessary, a separation routine for subtour constraints which
requires D{n4) steps, where n is the number of nodes (see Section
3.2). In order to avoid having to use this separation routine, we

instead seek to find a small subset of subtour constraints which are

7.1
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easily obtained, and Tikely to be violated by our initial primal
solution and subsequent infeasible basic primal solutions
encountered.

We obtain such a set of subtour constraints by finding a
minimem cost spaaning tree in Kn, using the same edge costs as those
for the subtour problem. Such a spanning tree can be found in D(nz}
staps (see [Papadimitriou and Steiglitz, 19821).

Consider any infeasible basic primal solution encountered
during the dual simplex method. TIf there exists a violated subtour
constraint for some S € §, it indicates that the cost of any edge in
&{S) is high. Hence the minimum cost spanning tree is 1ikely to
only have one edge across such a cut. Consequently, as our dinitial
set of subtour constraints we use the cut constraints corresponding
to all sets SCV, 3 ¢ |S| £ n - 3 such that S is one side of a node
partition obtained by removing some edge from the minimum cost
spanning tree. Letting Sypy represent the set of all such node
subsets S, we then use the dual simplex method described in Chapter
6 to solve linear program (6.0.1) in the case whereu =1, b = 2,
d=2, and § = SHIN' Note that ISHIN' < n - 5, where n is the
number of nodes.

If the optimal solution obtained is not in Qg, we Took for
a violated subtour constraint to add to our current linear system,

and then continue the dual simplex method. Again, to aveid making
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use of the separation routine which requires O(nq) steps, we use a
fneuristic procedure to find such a violatien.

In this heuristic procedure we first find a maximum cost
spanning tree using the costs ie for all e € E, where X is the
current basic primal solution. Then letting SMAX be the set of all
SCV, 3¢ JS| £ n - 3 such that § is one side of a node partition
obtained by removing some edge from the maximum cost spanning tree,
we simply check all the subtour constraints corresponding to sets
5 € Sy,y for feasibitity. This method does not necessarily find an
existing violated subtour cesstraint, but we do have the following

result.

{7.1.1) Theorem. Let x € T satisfy the constraints of the
2-factor problem, let GR represent the suppart of X, and let T be a
maximum cost spanning tree of Kn = (V,E} with respect to the costs
EE for all e € E. Thea if x{6(S)) * 2 for every SCV,

35|85 sn-3 such-that S is one side of a node partition cbtained
hy removing some edge from T, it follows that GR is 2-edge

cannected.

Proof. Suppose Gg is not 2-edge conneched. Then there exists SC V
such that |§(S) N E(Gg)| < 2, and thus x{&6(8)) < 2 since x £ L.
Consequently, |6(5) N E(T)| 2 2, and for at least ane edge

e € §(5) N E(T} we have RE = 0.

7.4

Consider §¢ V obtained by teking one side of the node
partition formed when edge e is removed from T. By assumption,
A(6(5)) z 2. Thus there exists some edge ¥ such that f € §(S) and
if > 0. Consequently, the spanning tree T' = T\[e} U {f} has a
greater cost that T, contradicting the fact that T is a maximum

cost spanning tree. O

7.2 COMPUTER IMPLEMENTATIONS

411 our computer implementations are run on an IBM PC
using Basic 2.0.

The first algorithm implemented was the simplex method
described in Chapter 4 for the fractional 2-factor problem on
Kn = (V,E). We then used‘the optimal basis obtained to find an

initial dual feasible basis for the following problem:

minimize cX {7.2.1})

subject to x(&(v)} =2 for allv €V,
x{6(5)) 2 2 forall SE SHIN’

rPgx<1

where SMIN is the set of al1 SCV, 3 ¢ |5] £ a - 3 obtained from
a minimum cost spanning tree of Kn using edge costs ¢ (see
Section 7.1). We solve (7.2.1) using the dual simplex method

described in Chapter 6. ‘Note that the polytope P associated with
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{(7.2.1) satisfies Qgg; 54; QE, thus solving (7.2.1) provides a
better lower bound for the TSP than the fractional 2-factor problem.
We use TREETOPE to denote the polytope P,

If the optimal solution X obtained for (7.2.1) is not in
Qg, we grow a maximum cost spanning tree T with respect to the edge

costs x, and let § represent atl the SC V, 3 ¢ jS| <£n-=-3

MAX
obtained from T (see Section 7.1), If all the subtour constraints
corresponding to S € SHAX are satisfied by X we stop. Otherwise we
add a violated cut coastraint to our current linear system and
continue the dual simplex method.

The next time we reach optimality we check the feasibility
of the cuts corresponding te the old SHAX before growing a new
maximum cost spanning tree with respect to the curreat basic primal
solution x. In this way we only grow a maximum cost spanning tree
when necessary.

Once we have stopped, our linear system consists of the
constraints of (7.2.1) plus several more subtour constraints. MNote
that the polytope P correspoading to this linear system satisfies
Qg C PC TREETOPE, thus we have now obtained a better lower bound
for the TSP, We use TREETOPE(X] to denote the polytope P.

In all implementations, the odd 1-ferests are stored by

making use of the "triply linked" structure (see [Koch, 1979]). The
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praﬁ1ems used are either Euclidean problems generated from a random
number seed, or else problems for which the corresponding cost or
distance matrix is read into the program. In the case of Euelidean
problems, the data for the problem requires O(n} bytes of storage,
for a11 we need store are the locations of the citie;. Our
implementation of the fractional 2-factor problem also requires, in
principle, O(n} storage. However, for reasons of efficiency, we
actually compute the full distance matrix at the beginning of the
pragram, and hence we use O(nz) bytes of storage. (This is our only
reguirement of 0(n2) bytes of storage, in this case.) 0f course,
for the case of non-Euclidean problems, storage of this distance
matrix is esseatial. The algorithms for TREETOPE and TREETOPE(X)
require O(nz) bytes of storage.

7.3 COMPUTATIONAL RESULTS

For all implementations we ran a set of 35 randomly
generated Euclidean problems. Of these 35 probiems, 10 were 40-city
problems, 10 were 60-city problems, 10 were 80-city probtems, and §
were 100-city problems. We also ran the 120-¢ity problem discussed
in [Gratschel, 1980] and the 48-city problem discussed in [Rinaldi
and Yarrow, 1985]. The re§h1ts for the fractional 2-factor problem
dare shown 1in Table 7.3.1,-the results for optimizing over TREETOPE
are shown in 7,3.2, and the results for optimizing over TREETOPE(X)

are shown in Table 7.3.3.
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To each randomly generated problem we applied various
standard TSP heuristics available to us. 1Lletting HCOST represeant
the cost of the best tour found using the heuristics, we then
calculated

sap = 100 (HCOST ~ COST,

far each of the three implementations, where COST represents the
cost of the optimal solution found by the implementatian. Far the

48-city problem and the 128-city problems we let HCOST represeat the

‘tost of an optimal tour.

For each TSP tested, GAP represents the percent difference
between the best heuristic solution and the Tower bound found by
each implementation. Note that a large GAP for a problem may
indicate that the heuristics performed poorly, rather than
indicating the lower bound obtained is poor. For the fractional
2-factor problem the average GAP over all 3 problems tested was
6.9%, while for optimizing over TREETOPE and TREETOPE(X} it was 2.3%
and .7% respectively. Of the solutions found by optimizing over
TREETOPE(X), all but 4 were also optimal solutions for the
corresponding subtour problem, and 5 of the solutions were towrs.
The total elapsed times required by all these routines ranged from
around five minutes on a problem of 40 to 50 cities to seventy

minutes for the 120 city problem.

RESULTS FOR THE FRACTIONAL 2-FACTOR PROBLEM

Number Average Average Average | Maximum | Minimum
of Number of | Number of Gap Gap Gap
Cities Pivots Degenerate
Pivots
10 47 11 7.4% 15.3% 2.1%
60 75 67 7.6% 13.8% 3.3%
=1 93 8l 6.6% 10.5% 3.7%
100 126 112 6.1% 7.9% 3.2%
48-city 65 54 5. 4% - -
problem
120-city 142 130 4.0% - -
problem

Tabte 7.3.1




RESULTS FOR OPTIMIZING OVER TREETOPE

RESULTS FOR OPTIMIZING OVER TREETOPE(X)

Humber {Average| Average Average Average fMaximum{Minimum
of Number |Number of Number of Gap Gap Gap
Cities of Degenerate [Tight Subtour
Pivots Pivots Constraints
40 32 6 5 1.9% 4.6% 0%
&0 38 11 7 2.3% §.2% 5%
80 46 12 8 2.6% 4.1% 1.1%
100 47 16 8 3.0% 4.0% 1.7%
48-city 38 1 8 7% - -
problem
120-city| 37 2 9 1.4% - -
problem
Table 7.3.2

Number [Average| Average Average Average|Haximum|Minimum
of Number |Humber of Number of Gap Gap Gap
Cities of Degenerate|Tight Subtour
Pivots Pivots Constraints
40 32 7 7 .5% 2.1% 0%
60 64 21 12 I3 1.8% (14
80 84 33 16 .B% 1.6% 0%
100 98 37 21 1.1% 2.2% .6%
48-city 45 3 11 .3% - -
problem
120-city| 85 6 21 A8 - -
problem

Table 7.3.3
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