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Abstract

A careful study of the points of the Subtour Elimination Poly-
tope could lead to a better approximation algorithm for the Travelling
Salesman Problem or at least a better understanding of how good a
lower bound on the optimal value of the Travelling Salesman Problem
we obtain by optimizing over the Subtour Elimination Polytope. In
this paper we look at two simple operations which we can use to gen-
erate many new extreme points of the Subtour Elimination Polytope
on n vertices from our knowledge of the extreme points of the Subtour
Elimination Polytope on n’ vertices where n’ < n. We also look at
what structures we can observe in an extreme point that tell us that
the extreme point can be obtained by the application of one of the
operations.

Let K, = (V,E) be the complete graph on n vertices. The Subtour
Elimination Polytope (henceforth abbreviated to SEP) is the subset of R¥
which obeys the following constraints.

z(0(v)) = 2forallveV (1)
z(6(8)) > 2forallfCc SCV (2)
ze > Oforallec FE (3)
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The contraints of the form (1) above are called the vertex equalities. The
constraints of the form (2) are called the cut constraints and (3) are called
the zero-edge inequalities or the nonnegativity constraints.

Given a point = of the SEP, a constraint is said to be tight if it holds with
equality for z. If a constraint of the form (2) given by z(6(S)) > 2 is tight
then we call 6(S) a tight cut and S a tight set. We also call an edge e € F a
I-edge if x. = 1. We define E, = {e € E' | z. > 0} and we then define the
support graph of x to be the subgraph G, = (V, E,).

Lemma 1. Let x be a point of the SEP-polytope. Let S be a tight set of x
such that |S| > 2 and there exists an edge uv € 6(S) such that x,, = 1 and
let v e S. Then S\{v} is a tight set of x and

2(8(5)) = 2(0(S\{v})) = x(5(v)) + 27wy

Proof. Suppose, for a contradiction, that there exists some w € S\{u} such
that z,, > 0. Thus by the vertex equality, z(d(v)) = 2, we know that
r(v, S\{v}) < 1. However, 2(6(S\{v})) > 2 so 2(S\{v},S) > 1. However,
since Ty, = 1 and 7, > 0 we know that z(v,S) > 1. Now

(6(5))

(v,8) +z(S\{v}, 9)
> 1+1

= 2

2(0(9)) =

i
T

which contradicts the fact that z(5(S)) = 2. Therefore, z(v,S) = 1 and
so z(v,S\{v}) = 1 because of the vertex equality z(d(v)) = 2. As well,
we have that z(S\{v},S) = 1 since z(6(S)) = 2. Thus z(6(S\{v})) =
z(v, S\{v}) + 2(S\{v},S) = 2 and the result follows. O

Please note that for Proposition 2, we only consider tight sets
in the cobasis of size at least 3 and at most n — 3.

Proposition 2. Let x be an extreme point of the SEP-polytope on n vertices.
Then there is a cobasis, B, for x such that the tight sets corresponding to the
tight cut constraints in B form a Laminar set and no such tight cut contains
a I-edge.



Proof. Begin with a cobasis consisting of all the valid equalities of the form
ZTuy = 0 and z,, = 1. Add to this as many vertex equalities as possible (of
course the rest will be implied). Build up a cobasis for z by then adding tight
cut constraints for tight sets of size between 3 and n — 3. We can use the
uncrossing lemma to ensure that the tight sets of the tight cut constraints in

the cobasis form a Laminar set.

Suppose that there is a tight cut in the cobasis which contains a 1-edge.
Among all such tight cuts, choose one, call it §(S), whose tight set is inclu-
sionwise minimal within the Laminar set. Let uv be a 1-edge of 6(S) where
veSs.

Suppose, for a contradiction, that S\{v} crosses another tight set, T, in
the Laminar set induced by our cobasis. Then T" and S are not disjoint and
it cannot be that S C T. Hence, due to the Laminar nature of our tight
sets in the cobasis, we know that 7" C S. However, since T' crosses S\{v}
it must be that v € 7. On the other hand, v ¢ S and T' C S so u ¢ T.
Thus uv € §(7T") and we contradict the fact that S is a minimal subset of
our Laminar set which induces a tight cut in our cobasis containing a 1-edge.
Hence, if we replace S by S\{v} we still have a Laminar set.

By Lemma 1 we know that x(5(S)) = 2 can be replaced in our cobasis
by z(6(S\{v})) = 2 since x,, = 1 is already in the cobasis and z(d(v)) = 2
is implied by the constraints in our cobasis. Clearly z(6(S\{v})) = 2 cannot
already be in the cobasis since this constraint is implied by z(6(S)) = 2,
z(0(v)) = 2, and x4, = 1.

Therefore, we obtain a new cobasis which has all the same properties
as the old - namely that the tight sets of the tight cut constraints in the
cobasis form a Laminar set. Furthermore, this new cobasis is the same as
the old except that one of the tight sets has been replaced with a smaller
one. If we repeatedly choose a tight cut containing a 1-edge and whose tight
set is inclusionwise minimal within the Laminar set we can generate cobasis
after cobasis. Each repetition reduces the size of one of the tight sets, so we
cannot repeat this action indefinitely. Therefore, we must arrive at a cobasis,
B, where no tight cut in the cobasis contains a 1-edge. Additionally, we have
preserved the Laminar property of these bases at every iteration so the tight
sets corresponding to tight cut constraints in B form a Laminar set. O

Lemma 3. Let x be a feasible point of the SEP-polytope on n vertices and
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let G be the support graph of x. Let S be a tight set of x such that G,[S] is
a cycle. If . < 1 for every e € v(S) then every tight set of x either contains
S or s disjoint from S.

Proof. Let T'# S be a tight set of z which intersects S.

Suppose, for a contradiction, that S properly contains 7. Since T is a
tight set, G,[T] is connected and hence is a path. However, due to the vertex
equalities, z(6(7")) = 2 if and only if z(7(7T")) = |T| — 1. But G.[T] is a path
and so contains exactly |T'| — 1 edges. Hence z, = 1 for every e € (7).
This contradicts the fact that z. < 1 for every e € v(S). Therefore S cannot
properly contain a tight set.

Suppose, for a contradiction, that S does not properly contain S and T'
does not properly contain S. Then S — T is either a single vertex or a tight
set. As noted above, S—T cannot be a tight set since it is a tight set properly
contained in S so it must be that S — T is a single vertex. However, since
T — S is nonempty we also have that S N 7T is either a tight set or a single
vertex. Again, since S NT' is a tight set properly contained in S it must be
that SN T is a single vertex. But S = (S—T)U(SNT) so |S| = 2. This
contradicts the fact that G,[S] is a cycle and hence must contain at least
three vertices.

The only remaining possibility is that that S C T.

Therefore any tight set of z either contains S or is disjoint from S. [

Lemma 4. Let x be an extreme point of the SEP-polytope on n vertices and
let G, be the support graph of x. Let S be a tight set of x such that G,[S]
is an odd cycle. If z. < 1 for every e € y(S) then no vertex of S can be
adjacent to two distinct vertices of S in G.

Proof. Let uv € §(S) such that v € S.

Suppose, for a contradiction, that there exists some w € S such that
w # v but uw € §(5). Choose any € > 0 and let P be the unique even
{v,w}-path in G,[S]. Let ey, ..., e, be edges encountered as we travel along
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P from v to w. Define e 11 = wu and ey o = uv. Define 2’ such that

z. + € if e = e; for some even %
. =< x,— € if e =¢; for some odd ¢
Te otherwise

Since ey, ..., ek, ki1, exro form an even cycle in G, and since we alter-
nated whether or not we added or subtracted e to the z-values around this
cycle to obtain the x’-values, the vertex equalities all hold for z’. Futher-
more, since Te,,...,Te,,, > 0 we know that 2’ does not violate any of the
tight zero-edge equalities of x. Lastly, since the edges eq,...,ep o form a
cycle in G, every tight cut of z must contain an even number of these edges.
However, by Lemma 3, no tight cut can contain the edges ey, ..., ex. Thus
every tight cut of x either contains none of the edges of the cycle or it con-
tains only the edges exy1 and exo. In either case, if T is a tight set of x then
it is also a tight set of x’.

Thus all the inequalities which define the SEP-polytope and which are
tight for = are also tight for 2’. However, x is an extreme point and hence is
the unique solution to its set of tight inequalities so we have a contradiction.
Therefore every vertex of S can be adjacent to at most one vertex of S. [

Let = be a feasible point of the SEP-polytope with support graph G, and
let S be a tight set of x. We let x | S to denote the set of edge values induced
on G,/S (where S is identified to a single vertex, v) as follows.

| x(w,S) ife=uv
(@] 8)e= { Te otherwise
Lemma 5. Let x be a feasible point of the SEP-polytope on n vertices and let
G be the support graph of . If S is a tight set of x then x | S is a feasible
point of the SEP-polytope on n — | S|+ 1 vertices.

Proof. Clearly x/, > 0 for every edge e so the edge inequalities all hold for 2.
Let us call v the vertex obtained by the contraction of S. If w # v is a vertex
of G,/S then o' (6(w)) = z(6(v)) = 2. Also 2/ (6(v)) = x(5(5)) = 2 so all of
the vertex equalities hold for 2’. Now let T be any subset of the vertices of
G./S where 2 < |T| <n—|S|—1. If v ¢ T then 2/(6(T)) = z(6(T)) > 2. If
v € T then 2/(0(T)) = x(6(SU(T\{v})) > 2. Hence all of the cut constraints
hold for 2’ and therefore 2’ is a feasible point of the SEP-polytope. O
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Theorem 6. Let x be an extreme point of the SEP-polytope on n wvertices
and let G be the support graph of x. Let S be a tight set of x such that G,[S]
is an odd cycle. If xo < 1 for every e € ¥(S) then x | S is an extreme point
of the SEP-polytope on n — |S| + 1 vertices.

Proof. Let ' = x | S. By Lemma 5, 2’ is a feasible point of the SEP-
polytope on n — |S| + 1 vertices.

By Lemma 4, every edge of GG,/S corresponds to a unique edge of G.,.
Thus contracting S in z results simply in removing the edges of (S) and
relabelling the edges of §(S). By Lemma 3, no tight cut of z contains any
edges of v(9) and furthermore, every tight set of z is either disjoint from S or
contains S. Notice too, from Lemma 5 that every tight set of 2’ corresponds
to a tight set of . Additionally, by Lemma 3, every tight set of  corresponds
to a unique tight set of 2’ except for S which corresponds to v. Hence, the
tight cut constraints of z’ are just relabellings of tight cut constraints of = and
vice versa (with the exception that z(5(S5)) = 2 gets mapped to 2/(d(v)) = 2.
Furthermore, every vertex equality z(6(w)) = 2 for each w ¢ S gets relabelled
to the vertex equality z/(d(w)) = 2.

Let m be the number of edges in G,. Then G,/S has m — |S| edges. If
we take any cobasis of x which contains all of the tight zero-edge inequalities
and remove the tight zero-edges inequalities then we get a linearly indepen-
dent set of vertex equalities and tight cuts constraints of size m. If we then
remove any vertex equalities which correspond to vertices in S we get a lin-
early independent set of constraints of size at least m —|S|. By contracting S
we get a relabelling of the variables in these constraints. This new set of con-
straints is therefore linearly independent and is feasible for x’. Furthermore,
these constraints only contain variables corresponding to the edges of G, /S.
However, GG,./S only has m — | S| edges so this set of constraints, along with
the tight zero-edge inequalities of 2/, must form a cobasis for x’. Therefore,
2’ is an extreme point. |

Let = be a feasible point of the SEP-polytope on n vertices and let GG, be
the support graph of x. Let v be a vertex of GG,. Suppose we can partition
the edges of G, incident to v into k non-empty parts, (Fi,..., Ex) where
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k> 31is odd and for each 0 <7 < k — 1 we have that

5(k=3)
Z T(Eit2j42) <1
§=0
(where all indices are taken modulo k). Then we define x T, (Ep,..., Fx_1)
as follows. Remove v from G, and add k new vertices, vg,...,v,_1. Let
S = {Uo, ce ey vk—l}
Te if e € (S)
Tuw if e = uv; € §(5)
(1" TU (E07 ceey Ek—l))e = (k-3 .
;io )$(Ei+2j+2) if e = vV
otherwise

Lemma 7. Let let © be a feasible point of the SEP-polytope on n wvertices
and let G, be the support graph of x. Let k > 3 be an odd integer and let v
be a vertex of G,. If the edges incident to v in G, can be partitioned into k
non-empty parts, (Eo, ..., Fx_1), such that for each 0 < i < k — 1 we have
that X

5(k—3)

> w(Eigajia) <1

§=0
(where all indices are taken modulo k) then x T, (Fo, ..., Ex_1) is a feasible
point of the SEP-polytope on n+k—1 vertices. Furthermore, if S is the set of
the new vertices added to G, — v then S is a tight set of x T, (Eo, ..., Ex_1)
and every tight set of x 1, (Eo,..., Ex_1) either contains S or is disjoint
from S.

Proof. Let 2/ =z 1, (Ep, ..., Ex_1) and let G, be the support graph of z’
with vertex set V.

Clearly the nonnegativity constraints hold.

If w e V/\S then 2/(§(w)) = x(d(w)) = 2. As well, for each 0 <i < k—1,

'T/((S(vl)) = 2)1'_11)1' + 'T;i’vi_,_l + Z x;lw
weV\S
1(k-3) 1(k-3)

= Z :C(Ei+2j+1) + Z 'T(Ei—|—2j+2) —I—SC(E,)

8
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Therefore the vertex equalities hold.

Let T C V' such that 2 < |T'| < n+ k — 3. Notice that x = 2/ | S
soif SNT = 0 then 2/(6(T)) = z(6(T)) > 2. It S C T then 2/(6(T)) =
z(0((T\S)UA{v})) > 2. If T C S then G[T] is a collection of paths since
G.[9] is a cycle. However, Zj%:(]é_?)) 2(Eiyoj10) < lforeach 0 <i<k-—1
and hence 2/, < 1 for every e € v(T'). Thus 2/(y(T")) < |T'| — 1 and so, by the
vertex equalities, we get that 2/(6(7)) > 2.

The only case that remains occurs when SNT # 0, S —T # (), and
T — S # 0. Furthermore, since §(T) = §(T), we may assume that these
properties hold for T as well. In particular, we may assume that SUT C V.
Now, by simple comparison of the variables, we have that

2(8(T)) = 2/ (8(S — T)) + 2/ (8(T — 8)) — 2'(5(S)) + 2¢/(SN T, SUT).

But S —T C S so 2/(6(S —T)) > 2 as noted above. We also have that
(T —S)NS = 0 so from above, 2/(6(T — S)) > 2. Trivially, S C S so
from above, 2/(§(S)) = x(d(v)) = 2. Lastly, due to the nonnegativity of the
variables, 2'(SNT, S UT) > 0. Putting all these pieces together, we get that

Z(6(T)>2+42-2+0

and therefore, 2/(6(T')) > 2. Hence, in all cases, 2/(6(T)) > 2 and 2’ obeys
the cut constraints. Therefore 2’ is a feasible point of the SEP-polytope.

Notice that in the above discussion, that 2/(6(S)) = 2 and if T is not
disjoint from S and 7' does not contain S then 2/(6(7")) > 2. Thus, the
result follows. O

Theorem 8. Let let x be an extreme point of the SEP-polytope on n vertices
and let G, be the support graph of x. Let k > 3 be an odd integer and let v
be a vertex of G,. If the edges incident to v in G, can be partitioned into k
non-empty parts, (Eg, ..., Ex_1), such that for each 0 < i < k — 1 we have

8



that
3 (k=3)

Z T(Eit2j42) <1

=0
(where all indices are taken modulo k) then x 1, (Fo, ..., Ex_1) is an extreme
point of the SEP-polytope on n + k — 1 vertices.

Proof. Let ' = x 1, (Ep,...,Ex_1) and let G, be the support graph of x’
with vertex set V'. By Lemma 7 we know that 2’ is a feasible point of the
SEP-polytope on n+ k — 1 vertices. Let S = {vp,...,vx_1} be the set of new
vertices added to G, — v. Notice that G,[S] is an odd cycle where z/, < 1
for every e € v(S). In fact, z = 2" | S.

Suppose that
, 1 1
where y and z are feasible points of the SEP-polytope on n + k — 1 vertices.
Since S is a tight set of 2/, it must also be a tight set of y and z. Thus
by Lemma 5 y | S and z | S are feasible points of the SEP-polytope on n
vertices. Additionally z = Z(y | S) + 3(z | S). Since z is an extreme point
we have that y | S = x and z | S = z. Futhermore, the support graphs of
y and #z, call them G, and G, respectively, must each be subgraphs of G, .
Hence every vertex of S is adjacent to at most one vertex of S in both G,
and GG,. Therefore, y and z all have the same edge values as 2’ on every edge

except possibly those of the odd cycle of G,/[S].

Now, for any 0 <7 < k — 1 we have that

1(k-3) 1(k-3)
Yvvipr = y(’y(S)) + Z y(U2j+i+27 S) - y(d(U2j+i+2))
Jj=0 7=0
1(k-3) 1(k-3)
= (k’ — 1) + Z $,(U2j+i+27§) — 2
§=0 j=0
2 (k—3) .
= (/{3 — 1) + .”L'(Egj+i+2) — 2(5(16 — 3) + 1)
7=0
= (/’4:—1)-1—:1:2“,1,+1 (k—1)

ViVi41"



By symmetry, we have that

oivip1 — x’/UiUz'-H'
Hence y = 2 = 2’ and therefore 2’ is an extreme point of the SEP-polytope.

(]

Lemma 9. Let x be an extreme point of the SEP-polytope on n > 4 vertices
and let G, be the support graph of x. Let u and v be vertices of G, such that
Tuw = 1. Then there exists at most one vertex, w, of G, such that x,, > 0
and Ty, > 0.

Proof. Suppose, for a contradiction, that z,, = 1. Then z(y({u,v,w})) > 2
since x,, > 0. However, since x is a feasible point of the SEP-polytope on
n > 4 vertices, we know that z(v(S)) < 2 for any distinct triple, S, of the
vertices of GG,. Thus we know that x,, < 1 and, by symmetry, z,, < 1.

By Lemma 2, we know that there is a cobasis, B, for z such that no tight
cut in the cobasis contains a 1-edge. Specifically, no tight cut of B contains
the edge uv. Now, {uv,uw,vw} is a cycle of G, so any cut of G, must
contain an even number of edges of this cycle. Hence every tight cut either
contains no edges in this cycle or it contains precisely uw and vw. Also, since
Tuw < 1 and z,, < 1 we know that z,,, = 1 and z,, = 1 are not constraints
in B. Therefore, the only possible constraints of B which contain exactly one
of Ty, and z,, are the vertex equalities z(d(u)) = 2 and z(d(v)) = 2. Notice
that these vertex equalities may not even be in B.

Suppose, for a contradiction, that there is another vertex of G, say z # w
such that z,, > 0 and x,, > 0. Then by the above reasoning, the only
possible constraints of B which contain exactly one of z,, and z,. are the
vertex equalities z(d(u)) = 2 and x(d(v)) = 2. Choose some € > 0 and define

2" as follows.
Te+e€ if e=wuwore=uwz

=< x,—¢ ife=vwore=uz

Te otherwise
Since 0 < Tyw, Tow, Tuzy Lo < 1, 2’ obeys all the same zero-edge and 1-edge
constraints as x. Also 2’ clearly obeys all the vertex equalities. Lastly, as
noted above, every tight cut in B contains

1. none of x4, Tyw, Ty, and .,
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2. ZTyw and x,,, but not x,, or z,,,
3. T, and x,, but not x,, or z,,, or

4. all of Tyw, Tow, Tus, and T,,.

Therefore, every tight cut of x in B is also a tight cut of /. Hence 2z’ is also
a solution to the system of constraints in B which contradicts the fact that
x is an extreme point with cobasis B. O

Theorem 10. Let x be an extreme point of the SEP-polytope on n > 4
vertices and let G, be the support graph of x. Let u and v be vertices of G,
such that x,, = 1. If there exists a vertex, w, of G, such that x,, > 0 and
Tyw > 0 then x| {u,v} is an extreme point of the SEP-polytope on n — 1
vertices.

Proof. Let ' = x | {u,v} and let G, be the support graph of z’. Since
ZTuy = 1, by the vertex equalities we get that z(6({u,v})) = 2 and so {u, v} is
a tight set of . Hence, by Lemma 5, 2’ is a feasible point of the SEP-polytope
on n — 1 vertices.

As noted above in the proof for Lemma 9, there is a cobasis, B for x such
that the only constraints of B containing exactly one of x,,, or x,, are the
vertex equalities z(d(u)) = 2 and z(d(v)) = 2. In this cobasis (which contains
all the 1-edges of z by Lemma 2) we will replace the constraint x,, = 1 with
the equivalent constraint (since all the vertex equalities are implied by B)
x(0({u,v})) = 2 to obtain a new cobasis B’ of z. Notice, that this constraint
contains both x,, and z,,. Furthermore, z(6(u)) = 2 and z(d(v)) = 2 are
the only possible constraints in B’ which contain x,,. Hence, if we remove
z(d(u)) = 2 and z(d(v)) = 2 (if they are present) from B, we get a set, S,
of linearly independent constraints, none of which contain z,, and such that
every constraint which contains x,,, also contains x,,, and vice versa.

Hence if G, has m edges then B’ has m constraints which are tight 1-edge
constraints, vertex equalities, and tight cut constraints. Hence S contains
at least m — 2 such constraints. Furthermore, to obtain G, from G, we
simply contract uv and identify the edges uw and vw. Thus G, has m — 2
edges. Therefore, S along with all the tight zero-edge constraints of z’ forms
a linearly independent set of size (n —1)(n — 2) and thus is a cobasis for 2.
Hence, 2’ is an extreme point of the SEP-polytope on n — 1 vertices. 0
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Let x be a feasible point of the SEP-polytope on n vertices and let G, be
the support graph of z. If zw is an edge of G, and we can partition the edges,
apart from zw, which are incident to z in G, into two parts, F; and FE5, such
that 0 < x(E1),z(E2) < 1 then we define z T, (2w, E1, Es) by deleting the
vertex z and adding two new vertices u and v where

( 1 if e =uv
1—z(Ey) ife=uw
1—z(Ey) ife=ovw

(x 1, (2w, By, Es))e = Tgs if e =qu and ¢z € F;
Tgz if e=qu and qz € F»
Te if e is an edge of G, — 2
0 otherwise

Please see Figure 1 for a pictorial representation of this operation.

Figure 1: An edge-splitting operation

Lemma 11. Let x be a feasible point of the SEP-polytope on n vertices and
let G, be the support graph of x. If zw is an edge of G, and we can partition
the edges, apart from zw, which are incident to z in G, into two parts, F,
and Ey, such that 0 < x(E4),z(E3) < 1 then x T, (2w, Ey, Ey) is a feasible
point of the SEP-polytope on n + 1 vertices.

Proof. Let 2’ =z 1, (2w, E1, E») and let G, be the support graph of z/. Let
u and v be the vertices added to G, — z as described above.
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Since 0 < z(Ey), z(Ey) < 1, clearly o/, > 0 for every edge e of G,. Also,
2 (0(q)) = z(6(q)) = 2 for every vertex ¢ ¢ {u,v,w} of G,. Since z is
feasible, z(0(2)) = 2 so x(Ey) + x(E2) 4+ 2, = 2. Now

7'(6(w)) = z(6(w)) — 2w + (1 = 2(E1)) + (1 — 2(E2))
= 4—1x,,—x(E)—z(Es)
2.

Additionally, 2’ (0(u)) = 1+x(E7)+1—x(E,) = 2 and similarily 2/(5(v)) = 2.
Thus all the vertex equalities hold for x’.

Let S be any subset of the vertices of G,» where 2 < |S| < n—1. Ifu,v ¢ S
then 2'(6(S)) = z(8(S5)) > 2. If u,v € S then 2/(6(5)) = z(6(S\{u,v})) > 2.
If we SbutvégsS then

'(0(8)) = 2'(0(S\{u})) — 2'(6(u)) + 22/ (u, 5).

However, as noted above, '(6(S\{u})) = z(6(S\{u})) > 2 and 2'(6(u)) = 2.
Furthermore v € S so 2'(u, S) >z, = 1. Thus 2/(§(S)) > 2. By symmetry,
if ve Sandu¢ S then 2/(0(S)) > 2. Hence, in all cases, 2/(6(5)) > 2 and

therefore 2z’ is a feasible point of the SEP-polytope on n + 1 vertices. O

Theorem 12. Let x be an extreme point of the SEP-polytope on n vertices
and let G, be the support graph of x. If zw is an edge of G, and we can
partition the edges, apart from zw, which are incident to z in G, into two
parts, By and Es, such that 0 < x(Ey),x(E3) < 1 then z T, (2w, Ey, Es) is
an extreme point of the SEP-polytope on n + 1 vertices.

Proof. Let ' =z 1, (2w, E1, Ey) and let G be the support graph of 2’. Let
u and v be the vertices added to GG, — z to obtain G, as described above.
By Lemma 11, 2’ is a feasible point of the SEP-polytope on n + 1 vertices.

Let a and b be feasible points of the SEP-polytope on n + 1 vertices such
that 2/ = %a + %b. Every tight cut of 2’ is also a tight cut of a and b.
Thus {u,v} is a tight set of both a and b. Hence a | {u,v} and b | {u,v}
are both feasible points of the SEP-polytope on n vertices by Lemma 5.
Notice that ' | {u,v} = z so since x is an extreme point, we know that
a | {u,v} =0 {u,v} =2x. Thus a. = b, = z, for every edge e of G, except
for possibly the edges uv, uw, or vw. However, since {u,v} is a tight set of a
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and b we know that ay, = by, = 1 = . By our vertex equalities we know
that

Auw = 2— E (g

q¢{u,w}
= 2- Z Tug
q¢{u,w}
2—1—x(E)
= 1—x(F)

/
uw

T

Similarily, a,, = 2., and so a = 2’. By symmetry, b = 2’ and therefore, 2’
is an extreme point of the SEP-polytope on n + 1 vertices. O

Theorem 13. Let x be an extreme point of the SEP-polytope on n > 4
vertices. Let G, be the support graph of x and let F' be the set of all 1-edges
of . Suppose that no two edges of F' are adjacent in G,. Suppose further
that G, — F has a bipartite component with vertex set C and let uv € F' such
that w € C. Ifv & C or if u and v are in different parts of the bipartition
of (Gz — F)[C] then x | {u,v} is an extreme point of the SEP-polytope on
n — 1 vertices.

Proof. Let ' =z | {u,v} and let G, be the support graph of z/. If v and v
are adjacent to a vertex w in G, then we can use Theorem 10 to show that
2’ is an extreme point of the SEP-polytope on n — 1 vertices. Hence we may
assume that u and v have no common neighbour in G,.

Let S be the set of all vertex equalities, tight 1-edge constraints, and tight
cut constraints for z and let m be the number of edges of GG,.. Since x is an
extreme points, the rank of S is m. Thus by Lemma 1, we can remove all
of the cut constraints of § which contain the variable z,, to obtain a set of
valid constraints which also has rank m. Also,

Zuy = 5 (2(0(u)) + 2(5(v)) — 2(6({u, v})))

so we can also remove the constraint z,, = 1 from § without affecting the
rank. Hence, let &’ denote the resulting set of constraints, which have rank
m.

14



Let (A, B) be the bipartition of (G, — F)[C] such that u € A and so we
have that

Zx(é(w))—2 Z Tapr— Z Ty = Zx(é(w))—2 Z Tapr— Z T

wEA w,zEA weA,z¢C wEB w,2€B weB,z¢C

If v € B then

eGw) = — 3 2@)+2 Y vt 3 2

weA\{u} w,z€EA weEA2¢C

) 2(6(w) =2 ) Tur— Y Tue

weB w,zEB weB,z¢C

If v ¢ C then

P0) = — 3 w0w)+2 Y dus + 52(0(w) + 52(0(0) — 52(3({u,0})

weA\{u} w,z€EA

+ Z Ty + Z z(0(w)) — 2 Z Ty — Z Tz

weA\{u},2¢C weB w,z€EB weB,z¢C

a0 = — 3 (b)) +2 Y wuet 52(0(0) — 5a(8({u,0}))

weA\{u} w,z€EA

DL SECCHEED DETE NP DT
weA\{u},z¢C weB w,z€B weB,z¢C

2(6(u) = =2 Y @(6w))+4 ) u: +2(6(v) — 2(5({u,v}))

weA\{u} w,zEA

+2 Z azwz+22x(5(w)) —4 Z Tz — 2 Z T

weA\{u},z¢C weB w,2€B weB,z¢C

Notice that in either case, all of the constraints corresponding to terms
on the right hand side of this equation are in &’ and so we can remove the
constraint z(6(u)) = 2 from &’ without changing the rank. Thus, if we
remove both z(d(u)) = 2 and z(6(v)) = 2 from S’ to obtain a new set of
constraints, S” then S” has no constraints containing the variable x,, and
has rank m — 1. Now, since v and v have no common neighbour in G,
there is a bijective correspondance between the edges of G and the edges
of G, —uv. Thus 8" induces a set of constraints of rank m — 1 for 2’. Since
G, has precisely m — 1 edges, we know that 2’ is an extreme point. O
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Let x be a feasible point of the SEP-polytope on n vertices and let G,
be its support graph. Let z be a vertex of G, such that the edges of G,
incident to z can be partitioned into two parts, £ and Fs, where z(E;) = 1
and z(FEy) = 1. Consider removing z and replacing it with two vertices, u
and v. Then we define z T, (E1, E») such that

1 ife=wuv
Zq. if e =qu and qz € F;
(7, (E1, Es))e =< x4 ife=quandqze E,
z. if e is an edge of G, — z
0 otherwise

Theorem 14. Let x be an extreme point of the SEP-polytope on n vertices
with support graph G,. If z is a vertex of G, such that the edges of G,
incident to z can be partitioned into two parts, Fy and Es, where x(F1) =1
and x(FEy) =1 then x T, (E1, Es) is an extreme point of the SEP-polytope on
n + 1 vertices.

Proof. Let ' = x T, (Ey, Ey), let G, be the support graph of 2/, and let u
and v be the two vertices of (G, which have been added to GG, — z. Let m be
the number of edges of GG, and let S, be the set of all vertex equalities and
tight cut constraints of . Thus S, has rank m.

If we replace z with u and v in every tight set of z containing z and
also in the vertex equality, z(d(z)) = 2 we see how S, induces a new set of
tight constraints, S’, which are valid for 2’. Additionally, S’ has rank m.
However, no constraint in &’ contains the variable z/,. Thus, if we add the
vertex equality z/(d(u)) = 2 to &’ we get a set of valid constraints for z’
which have rank at least m + 1. However, (G, has precisely m + 1 edges so
2’ must be an extreme point of the SEP-polytope on n + 1 vertices. O

Corollary 15. Let x be an extreme point of the SEP-polytope on n vertices.
Let G, be the support graph of x and let F' be the set of 1-edges of x. If x
cannot be obtained via the vertex splitting or edge splitting operations from an
extreme point of the SEP-polytope on n— 1 vertices then the vertex equalities
of G — F have rank n — 1 or n.

Proof. 1f G, — F' has more than one component and at least one of them is
bipartite, then we see from the proof of Theorem 13 that we can contract
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a l-edge of x to get an extreme point, 2/, of the SEP-polytope on n — 1
vertices. However, we can use Theorem 14 to obtain x from 2’ via a vertex
splitting operation or use Theorem 12 to obtain x from 2’ via an edge splitting
operation. Hence we may assume that either every component of GG, — F' is
non-bipartite or that G, — F' is connected and bipartite.

If every component of GG, — F' is non-bipartite, then the vertex equalities
are all linearly independent, and hence have rank n. If G, — F' has a single
bipartite component, then the vertex equalitites have rank n — 1. ]
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