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Abstract

A careful study of the points of the Subtour Elimination Poly-
tope could lead to a better approximation algorithm for the Travelling
Salesman Problem or at least a better understanding of how good a
lower bound on the optimal value of the Travelling Salesman Prob-
lem we obtain by optimizing over the Subtour Elimination Polytope.
In this paper we study the graph-theoretic structure of the support
graph of points of the Subtour Elimination Polytope and we intro-
duce the concept of block-toughness. This is a stronger requirement
than Chvéatal’s toughness criteria for a graph. We extend both block-
toughness and toughness to give a necessary condition for a graph to
be a possible support graph of a Subtour Elimination point. We finish
our paper with some numerical results.

1 Hamiltonian and SEP-feasible Graphs

A Hamilton cycle in a graph G is a cycle in G which contains all the
vertices of G. We say that a graph is Hamultonian if it has a Hamilton
cycle. The problem of determining whether or not a graph has a Hamilton
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cycle is one of the most famous NP-complete [12] problems. There have
been many attempts to find a good characterization of Hamiltonian graphs.
There are several well-known sufficient conditions [10, 16, 8] for a graph to
be Hamiltonian. In this paper, we would like to explore further the graph
theoretical structure of Hamiltonian graphs.

Concurrently, we would like to explore the nature of a certain polytope.
Let G = (V, E) be a graph. The Subtour Elimination Polytope (henceforth
abbreviated to SEP) associated with G is the subset of R¥ which obeys the
following constraints.
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This polytope was first introduced by Dantzig, Fulkerson, and Johnson [9]
in their landmark paper. In that paper, the SEP was used as the feasible re-
gion of a linear programming problem used to solve an instance of the famous
Travelling Salesman Problem (TSP) - the problem of finding a minimum cost
Hamilton cycle in a graph with edge-costs.

Since every point, x, of the SEP associated with a graph G is an assign-
ment of real values to the edges of GG, we can define the support graph of
x which is the subgraph of G induced by the edges with positive z-values.
The support graph of a point, specifically an extreme point, of the SEP
gives us the graph-theoretic structure of the constraints of the form z, > 0
which are not met with equality. This can be helpful in understanding how
these constraints interact in the cobasis of an extreme point and can give us
some insight into the nature of extreme points of the SEP. By studying the
structure of extreme points of the SEP we hope to better understand the
relationship between the SEP and the TSP which could lead to better lower
bounds on the optimal value of the TSP or even an efficient combinatorial
approximation algorithm for the TSP.

If the SEP associated with a graph G is non-empty then we say that G
is SEP-feasible. As with Hamiltonian graphs, in this paper, we would like to
futher explore the graph theoretical structure of SEP-feasible graphs.

For a graph G = (V| E), and a Hamilton cycle C, we define the charac-
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teristic vector of C' to be x € R¥ where

[ 1 ifeeC
Te= 91 0 otherwise

It is straightforward to see that the characteristic vector of any Hamilton
cycle of a graph GG obeys the constraints of the SEP associated with G. Hence
if G is Hamiltonian then G is also SEP-feasible. Conversely, any necessary
condition for a graph to be SEP-feasible is also a necessary condition for a
graph to be Hamiltonian.

Now, since we know the linear constraints which define the SEP on a given
graph G, we can apply Farkas’ Lemma [11] to find another characterization
of SEP-feasible graphs.

Lemma 1. G is not SEP-feasible if and only if there exist variables y and d
which satisfy

Zvar st > 0

veV bcScv

Yu + Yo + Z ds < 0 for eachuv € K
bcScvVv
uv € 6(S)

ds > 0 foreach®) C ScCV.

We will use Lemma 1 for several of our proofs to prove that a certain
graph is not SEP-feasible or not Hamiltonian.

2 Graph Toughness

One simple characteristic of both Hamiltonian and SEP-feasible graphs
is stated in Proposition 2. Although this result is fairly straightforward, we
will provide a proof which illustrates the effectiveness of Lemma 1.

Proposition 2. If a graph G s Hamiltonian or SEP-feasible then it is 2-
vertex-connected.



Proof. Let G = (V, E) be a graph which is SEP-feasible. Suppose, for a
contradiction, that GG has a cut vertex, u. Let (1, ..., Qs be the components
of G — u where s > 2. Define

| -1 itv=u
Yo = 0 otherwise

{1 if S=@; forsome1<7<s
dg = )

0 otherwise

We can compute

Zyy—i— Z ds =s— 1.

veV pcScv

Any edge of §(Q;) for some 1 < i < s must have one endpoint in ¢; and the
other endpoint must be u. Thus we see that the conditions in Lemma 1 are
met and therefore G is not SEP-feasible. Hence we have a contradiction so
GG must be 2-vertex-connected.

Now, if G is Hamiltonian then it is also SEP-feasible so, from above, G
is 2-vertex-connected. ]

More general necessary conditions have been proven as well. Let k(G)
denote the number of connected components of a graph GG. We say that a
graph, G = (V, E) is t-tough if for every T' C V we have that

IT| >t k(G —T).

The concept of t-toughness was first introduced and explored by Chvétal [6].
In his paper, Chvatal was interested in using toughness to find necessary
and sufficient conditions for a graph to be Hamiltonian. He noted that every
Hamiltonian graph must be 1-tough and conjectured that any graph that
was t-tough for some ¢t > g is necessarily Hamiltonian. However, Bauer,
Broersma, and Veldman [2] later found a 2-tough non-Hamiltonian graph.
As well, Bauer, Hakimi, and Schmeichel [3] proved that deciding whether or

not a graph was t-tough is an NP-hard problem.

Other authors also picked up on this sort of structure in graphs. Chvétal [7]
later introduced the notion of a sub-2-factor showed that if a graph is Hamil-
tonian then it has a sub-2-factor. He further showed that the set of all graphs
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with a sub-2-factor is a proper subset of the set of all 1-tough graphs. Most
recently, Katona [13] introduced the idea of edge-toughness and showed that
every Hamiltonian graph is 1l-edge-tough. Katona [14] later showed that
every l-edge-tough graph also has a sub-2-factor. Bauer, Broersma, and
Schmeichel [1] penned an excellent survey of toughness in graphs.

Returning to 1-toughness, notice that every 1-tough graph is also 2-
vertex-connected - removing any vertex in a 1-tough graph leaves exactly
one component. Thus 1-toughness is a stronger necessary condition than
2-vertex-connectivity. For our purposes, 1-toughness also plays a role in
SEP-feasibility.

Proposition 3. If G is SEP-feasible then G is 1-tough.

Proof. Suppose G is not 1-tough, then there exists ) € 7" C V such that
k(G —T)>|T|. Let Q1,...,Qs be the components of G — T'. Define

| -1 itveT
Yo = 0 otherwise

and
de — 1 if S=Q;forsomel <i<s
571 0 otherwise ’

Since @y, . .., Qs are the components of G —T', any edge of §(Q;) for some
1 <i < s must have exactly one endpoint in 7" and the other in ¢);. Hence

Yu + Yo + Z ds < 0 for every uv € F.

hbcsScv
uv € 6(S)
Furthermore,
Yoyt Y ds=—|T|+k(G-T)>0.
veV pcscv
Therefore, by Lemma 1, G is not SEP-feasible. ]

We can impose similar, but stronger, conditions on a graph which are
necessary for SEP-feasibility. Given a graph, H, let by(H ) denote the number
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Figure 1: A 1-tough graph that is not 1-block-tough

of blocks of H which contain no cut vertices and let b (H ) denote the number
of blocks of H which contain exactly one cut-vertex. We will say that a graph,
G = (V, E), is t-block-tough if for every T' C V we have that

7] >t <bO(G _7)+ %bl(G - T)> |

Let’s define an end-block of H to be any block of H which has exactly
one cut-vertex.

Proposition 4. Every t-block-tough graph is t-tough.

Proof. Since every block graph is a forest, every component of G — T" which
has a cut-vertex must have at least two end-blocks. Thus

1
bo(G—T)+ §b1(G—T) >k(G-T)
and so the result follows. O

However, the converse of Proposition 4 does not hold. An example, first
presented by Chvatal [6], is shown in Figure 1 of a graph which is 1-tough
but not 1-block-tough. Interestingly, it can be seen that this graph is also
not SEP-feasible.

Theorem 5. If G is SEP-feasible then G is 1-block-tough



Proof. Let x be a feasible point of the SEP associated with G. Suppose, for a
contradiction, that G = (V, E) is not 1-block-tough. Then there exists some
T C V such that

1

If there are s > 2 end-blocks of G — T which share a common cut-vertex,
v, then these end-blocks become separate components in G — (1" U {v}).
Each of these components is either 2-vertex-connected or contains at least
two end-blocks. Thus

(G — (T'U {}) + ghi(C — (TU {0})
1

Z bo(G—T>+§<b1(G—T)—8>—|—8
= 50(G—T) + 5(0(G ~T)) + 55
> (G —T)+ (G~ 1)) +1

> |T|+1

= [TU{v}.

Hence, T'U {v} also proves that G is not 1-block-tough and we can replace
T by T'U {v}. Therefore, we may assume that no two end-blocks of T" share
a common cut-vertex.

Now let @)y, ..., Qs be the end-blocks of G —T which contain cut-vertices

v1,...,0s respectively. Let Ry,...,[R; be the 2-connected components of
G — T. Define
-2 ifoeT
Y=< —1 ifv=wv;forsomel <i<s

0 otherwise

and

if S=R; for some 1 <i <]

if S=0Q; forsome 1<i<s

it S =Q;\{vi} forsomel <i<s -
otherwise

ds =

O = =N



It is straightforward to check that

Yu + Yo + Z ds < 0 for every uv € E.

bcsScv
wv € 6(S)

Furthermore, notice that

Zyv =-2|T[-s

veV

and

E dS:2l+8+S

pcsScv
SO

Zyv‘i‘ Z ds = —2|T|—s+2l+2s
veV pcscv
= 2 +s5—2|T|

— (G T)+ (G —T)— 2T
= (G~ T) 4 5hi(G—T) ~ [T])

> 0.

Hence, by Lemma 1, GG is not SEP-feasible which is a contradiction. O

Unfortunately, not every 1-block-tough graph is SEP-feasible. Bauer,
Broersma, and Veldman [2] present a graph which is 1-block-tough but not
SEP-feasible. As an immediate corollary of Theorem 5, however, we get that
if G is Hamiltonian then it is 1-block-tough. However, we can do even better
as we see in Theorem 6.

Theorem 6. If G = (V, E) is Hamiltonian then for every T C V,

by (2(02@-)_‘

Tz hG-1)+3 |

where Q1, ..., Q4 are the components of G=T which are not 2-vertex-connected.



Proof. Suppose G is Hamiltonian and let x be the characteristic vector of a
Hamilton cycle of G. Let T' C V and let ()q,...,Qs be the components of
G — T which are not 2-vertex-connected. Let H be an end-block of @); for
some 1 <7 < s and let v be the unique cut-vertex contained in H. Then

2(0(H)) + x(5(H\{v})) = 2(0(v)) + 22(T, H\{v}).

However z(6(H)) > 2, z(6(H\{v})) > 2, and x(d(v)) = 2 so 2z(T, H\{v}) >
2 and thus z(T, H\{v}) > 1. Therefore, for each end-block of @;, there is
at least one edge of the Hamilton cycle with one end in T and the other in
H\{v}. Hence z(5(Q;)) > b1(Q;). Futhermore, since z is the characteristic
vector of a Hamilton cycle, z(5(Q;)) must be even for every 1 <i < s. Thus

(6@ 2 2| 252

for every 1 <i < s.

For any 2-vertex-connected component, J, of G—T', we have that z(4(.J)) >

2. Thus
bl Qz>—‘ )

2(6(T)) > 2by(G —T) +2Z[

But z(6(v)) > 2 for every v € T and hence x(6(T")) < 2|T'|. Therefore

2|T| > 2bo(G —T) + 2 [51(2@)}

and hence the result follows. O

3 An Application of 1-block-toughness

In order to thoroughly study the nature of the SEP, we have been working
to generate all the extreme points of the SEP on the complete graph K, for
small values of n. One very successful method for exhaustive generation of
these extreme points has begun with a consideration of potential support
graphs of extreme points of the SEP.

We began with what information was previously known about the support
graphs of SEP extreme points. Boyd and Pulleyblank [5] proved that every
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support graph of an SEP extreme point has at most 2n — 3 edges. Later,
Benoit and Boyd [4] showed that any extreme point for n > 4 whose support
graph had a vertex of degree 2 could be easily obtained from an extreme
point of the SEP on K, _;. Lastly, as per Proposition 2 we limited our
attention to graphs that were 2-vertex-connected. Thus, for small values of
n, we generated all of the non-isomorphic 2-vertex-connected graphs which
had degree at least 3 at every vertex and at most 2n — 3 edges. We used
a software program called NAUTY (created by Brendan McKay [15]) to
accomplish this task.

In Table 1 we give the results of our search. The second column tells us
how many non-isomorphic 2-vertex-connected graphs which had degree at
least 3 at every vertex and at most 2n — 3 edges were generated by NAUTY.
The last column shows how many of those graphs were 1-block-tough.

n | Graphs produced by NAUTY | 1-block-tough Graphs
8 38 28

9 302 250

10 3745 2718

11 54721 43585

12 956444 745407

Table 1: Number of 1-block-tough Graphs
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